EP0086014B1 - Verfahren zur Erzeugung und Stabilisierung eines reversiblen Zweiweg-Gedächtnisseffektes in einer Cu/Al/Ni- oder einer Cu/Al-Legierung - Google Patents

Verfahren zur Erzeugung und Stabilisierung eines reversiblen Zweiweg-Gedächtnisseffektes in einer Cu/Al/Ni- oder einer Cu/Al-Legierung Download PDF

Info

Publication number
EP0086014B1
EP0086014B1 EP83200130A EP83200130A EP0086014B1 EP 0086014 B1 EP0086014 B1 EP 0086014B1 EP 83200130 A EP83200130 A EP 83200130A EP 83200130 A EP83200130 A EP 83200130A EP 0086014 B1 EP0086014 B1 EP 0086014B1
Authority
EP
European Patent Office
Prior art keywords
alloy
temperature
subjected
stabilization
memory effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83200130A
Other languages
English (en)
French (fr)
Other versions
EP0086014A1 (de
Inventor
Joachim Dr. Albrecht
Thomas Dr. Duerig
Olivier Dr. Mercier
Walter Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Priority to AT83200130T priority Critical patent/ATE23570T1/de
Publication of EP0086014A1 publication Critical patent/EP0086014A1/de
Application granted granted Critical
Publication of EP0086014B1 publication Critical patent/EP0086014B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/006Resulting in heat recoverable alloys with a memory effect

Definitions

  • the invention is based on a method for generating and stabilizing a two-way memory effect according to the preamble of claim 1.
  • the invention is based on the object of specifying a method for Cu / Al / Ni and Cu / Al alloys in order to induce a considerable reversible two-way memory effect in these substances and, if appropriate, to stabilize this effect in such a way that the alloys used for components that can be used in practice can be produced.
  • thermomechanical or heat treatments are highlighted by a frame.
  • the diagram does not need any further explanation. Process example in parentheses.
  • FIG. 2 shows a time / temperature diagram of the sequence of the individual method steps corresponding to the flow diagram of FIG. 1.
  • 1 represents the usual solution annealing mostly at approx. 850 ° C. H. the conversion of the alloy into the structural state of the ⁇ mixed crystal, 2 the subsequent water quenching to carry the metastable state to room temperature.
  • 3 is the critical deformation step necessary to achieve a memory effect and to shape the component, which takes place at room temperature or in principle at any below 300 ° C temperature can be performed. After this deformation, the workpiece does not necessarily have to be relieved. In the event of deformation above room temperature, it can be cooled.
  • step 5 is the step of shape stabilization, which is carried out at 150 to 425 ° C (in this case 300 ° C) under tension, i. H. with simultaneous application of a load. Subsequently, cooling can be carried out slowly according to 6. From step 3, the state according to step 5 can optionally also be reached via step 4 (maintaining the temperature). 7 and 8 illustrate an optional one-way effect treatment followed by slow cooling. However, these steps can also be omitted. The additional advantageous step of martensite stabilization with subsequent slow cooling is shown in sections 9 and 10. Finally, there is the optional but advantageous two-way effect zero stabilization according to section 1 and the slow cooling 12.
  • Fig. 3 shows a diagram of the two-way effect using the example of a bending rod.
  • the deflection (deflection) is plotted in mm as a function of the temperature T in ° C. If you go through a temperature cycle between about room temperature and 200 ° C, the reversible out according to hysteresis curves becomes steering achieved. Curve 13 corresponds to the effect without, curve 14 to that with martensite stabilization. The quantitative improvement due to the martensite stabilization is clearly evident.
  • the maximum achievable deflection difference of approx. 5 mm between the high and low temperature phase corresponds in this case to an elongation e of approx. 1.3%.
  • Fig. 4 an experimental device for bending rods is shown schematically.
  • 15 is the memory alloy bending rod.
  • 16 represents a clamping device for the bending rod, that is to say the so-called fixed point.
  • 17 is a cord which is guided over a cable pulley 18 and is slightly tensioned by means of a counterweight 19.
  • the cord 17 is attached to the movable end of the bending bar 15.
  • the counterweight 19 is dimensioned such that it only surely overcomes the frictional forces during the movement process.
  • the arrow represents the direction of movement of the deflection of the bending rod 15, which, when fully deflected (deflection), reaches the position according to FIG. 21 with its axis.
  • the movements can be read or registered on a sensor (not shown) mounted on the roller 18.
  • the rod had a square cross section of 2.5 x 2.5 mm and a length of 35 mm. It was treated similarly to the procedure shown in FIGS. 1 and 2. First, the rod was pre-shaped at a temperature of 900 ° C in such a way that its longitudinal axis described a circular arc with a radius of -37 mm (negative sign, since curvature in the opposite direction with respect to the later definitive shape). The pre-bent rod was then subjected to solution annealing at a temperature of 950 ° C. for 15 minutes and subsequent quenching in cold water (similar to 1 and 2 in FIG. 2). The rod was then bent in the opposite direction at room temperature so that its longitudinal axis described a radius of + 35 mm.
  • Example I A test bar of the same dimensions and the same composition as in Example I was subjected to solution annealing at 850 ° C. for 10 minutes in the flat (stretched) state and then quenched in cold water. The rod was then bent to a radius of 22 mm at room temperature, which corresponded to an outermost fiber elongation of 5.4%. The bent rod was then held at a temperature of 300 ° C for 30 minutes under load. The load was removed while still warm and the relieved rod was slowly cooled to room temperature. The test was carried out in the same manner as in Example I. With this material without "martensite stabilization, larger scatterings and less two-way effects were shown than with the stabilized one according to example I.
  • a torsion bar of the same composition as in Example I was subjected to a corresponding treatment and test.
  • the rod had a round cross-section, with a diameter of 3 mm and a measuring length of 24.mm. It was first solution annealed at a temperature of 850 ° C for 10 minutes and then quenched in cold water. The rod was heated to 100 ° C and twisted (twisted) at this temperature by a total angle 0 of 80 ° in relation to the circular cross sections at the ends of the measuring length.
  • the twist angle ⁇ of the outermost fiber of the helix with the cylinder-generating line (pitch angle) was approximately 5 °, which corresponded to an elongation of 6% in the main stress directions (tension and compression).
  • the rod was held in this tensioned position and heated to a temperature of 300 ° C. This state was maintained for 20 minutes. Then the rod was relieved and slowly cooled to room temperature. the twoway effect on torsion was then determined by going through a temperature cycle of 0 to 250 ° C.
  • the achievable reversible angle difference 6 of the circular cross sections at both ends of the measuring length was 9 °, which corresponded to a twist angle a (pitch angle) of 34 '.
  • the equivalent of the strains in the two main stress directions (tension and compression) was thus about 0.7%.
  • a tensile bar with the same composition and the same dimensions as the torsion bar according to Example 111 was subjected to a corresponding treatment and test. It was first subjected to solution annealing at a temperature of 850 ° C. for 15 minutes and then quenched in cold water. Then the rod was subjected to tensile stress in its longitudinal axis at room temperature and stretched (stretched) by an amount of 4%. While maintaining the applied load (tensile stress), the rod was heated to 300 ° C. and held in this state for 20 minutes. The load was then removed and the rod slowly cooled to room temperature. The two-way effect measured on various test specimens in the temperature interval from 0 to 200 ° C. was 0.2 to 0.5%. It could be significantly improved by the martensite stabilization treatment according to 9 in FIG. 2 and kept within narrow limits.
  • any memory alloy of the ⁇ -brass type which shows a well-known one-way effect in the natural state (i.e. after conventional treatment) but a negligible two-way effect, can be brought into a state according to the new method, where it has a clear, suitable for practical use Has two-way effect.
  • These include above all the alloys of the types Cu / AI / Ni and Cu / Al.
  • solution annealing can be carried out at different temperatures (usually between 850 and 950 ° C).
  • the decisive process step corresponding to the shape stabilization can be carried out in the temperature range from 150 to 425 ° C. for 0.5 to 180 min, the shorter times applying to the higher temperatures.
  • the load to be applied at the same time must be dimensioned so that a tension (tension, pressure or thrust) is generated which corresponds to an elongation of at least 1%. In the case of thrust, this means that the displacement angle a (pitch angle for torsion) must be at least 50 '.
  • the martensite stabilization can be carried out in the temperature range between 200 and 400 ° C for 1 min to 4 h.
  • the zero point stabilization of the two-way effect is advantageously carried out at a temperature which corresponds to the later maximum operating temperature (in our case approx. 200 ° C.).
  • the duration of the heating should be at least 1 min.
  • the present new method has shown the way for the first time how a two-way effect that can be used in practice can be achieved with memory alloys of the ß-brass type, which normally only show a pronounced one-way effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Heat Treatment Of Articles (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Heat Treatment Of Steel (AREA)

Description

  • Die Erfindung geht aus von einem Verfahren zur Erzeugung und Stabilisierung eines Zweiweg-Gedächtniseffekts nach der Gattung des Oberbegriffs des Anspruchs 1.
  • Bei den Gedächtnislegierungen kann man im allgemeinen einem sog. Zweiwegeffekt von einem Einwegeffekt unterscheiden. Während letzterer in der Regel ausgeprägter und bekannter ist (Ni/Ti-Legierungen, β-Messinge) und auch zu zahlreichen Anwendungen geführt hat, ist der Zweiwegeffekt problematischer und schwieriger zu beherrschen. Doch besteht in der Technik ein allgemeines Bedürfnis nach Bauelementen, welche einen quantitativ genügend grossen Zweiwegeffekt zeigen, um ein weiteres interessantes Anwendungsgebiet zu erschliessen. Meist liegt nun jedoch der Punkt der martensitischen Umwandlung der klassischen Zweiwegeffekt-Legierungen in. einem ungünstigen Temperaturbereich. Es gibt jedoch eine Anzahl von Gedächtnislegierungen, vorab die dem β-Messingtyp angehörenden klassischen Cu/AI/Ni- und Cu/AI-Legierungen, deren Umwandlungspunkt günstig liegt, die zwar wohl einen deutlichen Einweg- aber kaum einen namhaften Zweiwegeffekt zeigen. Als Stand der Technik können u. a. folgende Dokumente angeführt werden :
    • R. Haynes, Some Observations on Isothermal Transformations of Eutectoid Aluminium Bronzes Below Their Ms Temperatures, Journal of the Institute of Metals 1954-55, Vol. 83, Seiten 357-358 ; W. A. Rachinger, A « super-elastic » single Crystal calibration bar, British Journal of Applied Physics, Vo. 9, Juni 1958, Seiten 250-252; R.P. Jewett, D.J. Mack. Further Investigation of Copper-Aluminium Alloys in the Temperature Range belowthe ß a + γ2 Eutectoid,Journal of the Institute of Metals 1963-64, Vol. 92, Seiten 59-61 ; K. Otsuka and K. Shimizu, Memory Effect and Thermoelastic Martensite Transformation in Cu- AI-Ni Alloy, Scripta Metallurgia, Vol. 4,1970 Pergamon Press Inc., Seiten-469-472 ; Kazuhiro Otsuka, Origin of Memory Effect in Cu-AI-Ni Alloy, Japanese Journal of Applied Physics, Vol. 10, No. 5, May 1971, Seiten 571-579.
  • Es besteht daher ein Bedürfnis nach Bauelementen aus Gedächtnislegierungen des β-Messingtyps, welche bei für gewisse Anwendungen günstig liegender Umwandlungstemperatur einen namhaften Zweiwegeffekt aufweisen.
  • Der Erfindung liegt die Aufgabe zugrunde, für Cu/AI/Ni- und Cu/AI-Legierungen ein Verfahren anzugeben, um in diesen Stoffen einen beträchtlichen reversiblen Zweiweg-Gedächtniseffekt zu induzieren und gegebenenfalls diesen Effekt derart zu stabilisieren, dass aus den besagten Legierungen für die Praxis brauchbare Bauelemente hergestellt werden können.
  • Diese Aufgabe wird durch die im kennzeichnenden Teil des Anspruchs 1 sowie zusätzlich in bevorzugter Weise durch die im kennzeichnenden Teil des Anspruchs 2 angegebenen Merkmale gelöst.
  • Die Erfindung wird anhand der nachfolgenden, durch Figuren erläuterten Ausführungsbeispiele beschrieben.
  • Dabei zeigt :
    • Figur 1 ein Fliessdiagramm des Verfahrens,
    • Figur 2 ein Zeit/Temperatur-Diagramm des Ablaufs der einzelnen Verfahrensschritte,
    • Figur 3 ein Diagramm des Zweiweg-Gedächtniseffekts am Beispiel eines Biegestabes,
    • Figur 4 das Schema einer Versuchseinrichtung für Biegestäbe.
  • Fig. 1 zeigt das Fliessdiagramm des Verfahrens in einzelnen Schritten in Blockdarstellung. Die entscheidenden thermomechanischen bzw. Wärmebehandlungen sind durch Umrahmung hervorgehoben. Im übrigen bedarf das Diagramm keiner weiteren Erklärung. Verfahrensbeispiel in Klammern gesetzt.
  • In Fig. 2 ist ein dem Fliessdiagramm von Fig. 1 entsprechendes Zeit/Temperatur-Diagramm des Ablaufs der einzelnen Verfahrensschritte dargestellt. 1 stellt die übliche Lösungsglühung meist bei ca. 850 °C, d. h. die Ueberführung der Legierung in den Gefügezustand des β-Mischkristalls, 2 die nachfolgende Wasserabschreckung zur Verschleppung des metastabilen Zustandes auf Raumtemperatur dar. 3 ist der zur Erreichung eines Gedächtniseffekts und zur Formgebung des Bauelements notwendige kritische Verformungsschritt, welcher bei Raumtemperatur oder prinzipiell bei jeder unterhalb 300 °C liegenden Temperatur durchgeführt werden kann. Nach dieser Verformung muss das Werkstück nicht unbedingt entlastet werden. Im Falle der Verformung oberhalb Raumtemperatur kann es abgekühlt werden. 5 ist der Schritt der Formstabilisierung, die bei 150 bis 425 °C (im vorliegenden Fall 300 °C) unter Spannung, d. h. unter gleichzeitiger Aufbringung einer Last zu erfolgen hat. Anschliessend kann gemäss 6 langsam abgekühlt werden. Von Schritt 3 kann wahlweise auch via Schritt 4 (Halten der Temperatur) der Zustand gemäss Schritt 5 erreicht werden. 7 und 8 stellen eine fakultative Einwegeffekt-Behandlung mit nachfolgender langsamer Abkühlung dar. Diese Schritte können jedoch auch weggelassen werden. Der zusätzliche vorteilhafte Schritt der Martensitstabilisierung mit darauffolgender langsamer Abkühlung ist in den Abschnitten 9 und 10 dargestellt. Zum Schluss kommt noch die fakultative, jedoch vorteilhafte Zweiwegeffekt-Nullpunkstabilisierung gemäss Abschnitt 1 und die langsame Abkühlung 12.
  • Fig. 3 zeigt ein Diagramm des Zweiwegeffekts am Beispiel eines Biegestabes. Dabei ist die Auslenkung (Durchbiegung) in mm in Funktion der Temperatur T in °C aufgetragen. Durchläuft man einen Temperaturzyklus etwa zwischen Raumtemperatur und 200 °C, wird die gemäss Hysteresiskurven verlaufende reversible Auslenkung erzielt. Kurve 13 entspricht dem Effekt ohne, Kurve 14 demjenigen mit Martensitstabilisierung. Die quantitative Verbesserung durch die Martensitstabilisierung tritt deutlich hervor Die maximal erzielbare Auslenkungsdifferenz von ca. 5 mm zwischen der Hoch- und Tieftemperaturphase entspricht im vorliegenden Fall einer Dehnung e von ca. 1,3 %. In Fig. 4 ist eine Versuchseinrichtung für Biegestäbe schematisch dargestellt. 15 ist der Biegestab aus Gedächtnislegierung. 16 stellt eine Einspannvorrichtung für den Biegestab, also den sog. Fixpunkt dar. 17 ist eine Schnur, welche über eine Seilrolle 18 geführt und mittels eines Gegengewichts 19 leicht gespannt ist. Die Schnur 17 ist am beweglichen Ende des Biegestabes 15 befestigt. Das Gegengewicht 19 ist so bemessen, dass es nur gerade mit Sicherheit die Reibungskräfte beim Bewegungs vorgang überwindet. Der Pfeil stellt die Bewegungsrichtung der Auslenkung des Biegestabes 15 dar, welcher bei voller Auslenkung (Durchbiegung) mit seiner Achse die Stellung gemäss 21 erreicht. Die Bewegungen können an einem auf der Rolle 18 angebrachten Messwertgeber (nicht gezeichnet) abgelesen bzw. registriert werden.
  • Ausführungsbeispiel I
  • Zur Erzeugung und Messung eines Zweiweg-Gedächtniseffekts wurde ein Biegestab der folgenden Zusammensetzung verwendet:
    Figure imgb0001
  • Der Stab hatte einen quadratischen Querschnitt von 2,5 x 2,5 mm und eine Länge von 35 mm. Er wurde ähnlich dem Verfahrensablauf gemäss Fig. 1 and 2. behandelt. Zunächst wurde der Stab bei einer Temperatur von 900 °C derart vorgeformt (vorgebogen), dass seine Längsachse einen Kreisbogen mit einem Radius von -37 mm (negatives Vorzeichen, da Krümmung in umgekehrter Richtung in Bezug auf die spätere definitive Form) beschrieb. Hierauf wurde der vorgebogene Stab während 15 min einer Lösungsglühung bei einer Temperatur von 950 °C und einer darauffolgenden Abschreckung in kaltem Wasser unterworfen (ähnlich 1 und 2 in Fig. 2). Dann wurde der Stab bei Raumtemperatur in umgekehrter Richtung gebogen, so dass seine Längsachse einen Radius von + 35 mm beschrieb. Dies entsprach einer Dehnung der äussersten Faser von 6,88 % (ähnlich 3 in Fig. 2). Daraufhin wurde der Stab unter Spannung einer Formstabilisierung unterworfen, indem er während 30 min auf eine Temperatur von 300 °C derart unter.Last erhitzt wurde, dass durch die Einspannung dafür gesorgt wurde, dass der Radius seiner Längsachse auf + 35 mm gehalten wurde (ähnlich 5 in Fig. 2). Nach langsamer Abkühlung wurde der Biegestab von der zuvor aufgebrachten Last befreit. Zum Schluss wurde der Stab einer Martensitstabilisierung bei 300 °C während 30 min (ähnlich 9 in Fig. 2) unterworfen. Nach langsamer Abkühlung wurde der Stab in der Anordnung gemäss Fig. 4 geprüft. Das Verhalten entsprach im Mittel ungefähr der Kurve 14 in Fig. 3. Die in einem Temperaturzyklus durchlaufene Differenz der Auslenkung (Durchbiegung) an mehreren Probestäben schwankte zwischen 4,4 mm und 5,9 mm, was einer Dehnung von 1,15 % bis 1,53 % entsprach. Im Mittel betrugen die entsprechenden Werte 4,94 mm und 1,28 %. Die untere Umwandlungstemperatur betrug im Mittel ca. 160 °C, die obere ca. 177°C, die Hysteresisbreite somit ca. 17 °C.
  • Ausführungsbeispiel II
  • Ein Probestab der gleichen Abmessungen und der gleichen Zusammensetzung wie unter Beispiel I wurde im ebenen (gestreckten) Zustand während 10 min einer Lösungsglühung bei 850 °C unterworfen und anschliessend in kaltem Wasser abgeschreckt. Dann wurde der Stab bei Raumtemperatur auf einen Radius von 22 mm gebogen, was einer Dehnung der äussersten Faser von 5,4 % entsprach. Daraufhin wurde der gebogene Stab während 30 min unter Last bei einer Temperatur von 300 °C gehalten. Die Last wurde noch im warmen Zustand weggenommen und der entlastete Stab langsam auf Raumtemperatur abgekühlt. Die Prüfung wurde in der gleichen Weise wie unter Beispiel I durchgeführt. Es zeigten sich bei diesem Material ohne « Martensitstabilisierung grössere Streuungen und geringere Zweiwegeffekte als beim stabilisierten gemäss Beispiel I. Die in einem Temperaturzyklus durchlaufene Differenz der Auslenkung an mehreren Probestäben schwankte zwischen 2,6 mm und 5,8 mm, was einer Dehnung von 0,70% bis 1,32% entsprach. Im Mittel betrugen die entsprechenden Werte 4,20 mm und 1,08 %. Die untere Umwandlungstemperatur betrug im Mittel ca. 107 °C, die obere ca. 150 °C die Hysteresisbreite somit ca. 43 °C.
  • Ausführungsbeispiel 111
  • Ein Torsionsstab der gleichen Zusammensetzung wie in Beispiel I wurde einer entsprechenden Behandlung und Prüfung unterzogen. Der Stab hatte runden Querschnitt, mit einem Durchmesser von 3 mm und einer Messlänge von 24.mm. Er wurde zunächst bei einer Temperatur von 850 °C während 10 min lösungsgeglüht und danach in kaltem Wasser abgeschreckt. Der Stab wurde auf 100 °C erwärmt und bei dieser Temperatur um einen totalen Winkel 0 von 80° bezogen auf die Kreisquerschnitte an den Enden der Messlänge verdreht (verdrillt). Der Verdrillungswinkel a der äussersten Faser der Schraubenlinie mit der Zylindererzeugenden (Steigungswinkel) betrug dabei ca. 5°, was etwa einer Dehnung von 6 % in den Hauptspannungsrichtungen (Zug und Druck) entsprach. Der Stab wurde in dieser gespannten Lage festgehalten und auf eine Temperatur von 300 °C erwärmt. Dieser Zustand wurde während 20 min gehalten. Dann wurde der Stab entlastet und langsam auf Raumtemperatur abgekühlt. hierauf wurde der Zweiwegeffekt bezüglich Torsion bestimmt, indem ein Temperaturzyklus von 0 bis 250°C durchlaufen wurde. Der erzielbare reversible Winkelunterschieds 6 der Kreisquerschnitte an beiden Enden der Messlänge betrug 9°, was einem Verdrillungswinkel a (Steigungswinkel) von 34' entsprach. Das Aequivalent der Dehnungen in den beiden Hauptspannungsrichtungen (Zug und Druck) betrug somit ca. 0,7 %.
  • Ausführungsbeispiel IV
  • Ein Zugstab der gleichen Zusammensetzung und der gleichen Abmessungen wie der TorSionsstab gemäss Beispiel 111 wurde einer entsprechenden Behandlung und Prüfung unterzogen. Er wurde zunächst bei einer Temperatur von 850 °C während 15 min einer Lösungsglühung unterworfen und anschliessend in kaltem Wasser abgeschreckt. Dann wurde der Stab bei Raumtemperatur in seiner Längsachse einer Zugbeanspruchung unterworfen und um einen Betrag von 4 % gedehnt (gereckt). Unter Beibehaltung der aufgebrachten Last (Zugspannung) wurde der Stab auf 300 °C erwärmt und in diesem Zustand während 20 min festgehalten. Danach wurde die Last weggenommen und der Stab langsam auf Raumtemperatur abgekühlt. Der an verschiedenen Probekörpern gemessene Zweiwegeffekt im Temperaturintervall von 0 bis 200 °C betrug 0,2 bis 0,5 %. Er könnte durch die Martensitstabilisierungsbehandlung gemäss 9 in Fig. 2 noch wesentlich verbessert und in engeren Grenzen gehalten werden.
  • Die Erfindung erschöpft sich keineswegs in den oben genannten Ausführungsbeispielen. Prinzipiell kann jede Gedächtnislegierung des β-Messingtyps, welche im natürlichen Zustand (d. h. nach herkömmlicher Behandlung) einen namhaften Einwegeffekt, jedoch einen verschwindend geringen Zweiwegeffekt zeigt, nach dem neuen Verfahren in einen Zustand gebracht werden, wo sie einen deutlichen, für die praktische Verwendung geeigneten Zweiwegeffekt aufweist. Dazu gehören vor allem die Legierungen des Typs Cu/AI/Ni und Cu/Al.
  • Die Lösungsglühung kann je nach Legierung und Grösse des Werkstücks bei verschiedenen Temperaturen (meist zwischen 850 und 950 °C) durchgeführt werden. Der der Formstabilisierung entsprechende entscheidende Verfahrensschritt kann im Temperaturbereich von 150 bis 425 °C während 0,5 bis 180 min durchgeführt werden, wobei die kürzeren Zeiten für die höheren Temperaturen gelten. Die gleichzeitig aufzubringende Last ist so zu bemessen, dass eine Spannung (Zug, Druck oder Schub) erzeugt wird, die eine Dehnung von mindestens 1 % entspricht. Bei Schub bedeutet dies, dass der Verschiebungswinkel a (Steigungswinkel bei Torsion) mindestens 50' betragen muss. Die Martensitstabilisierung kann im Temperaturbereich zwischen 200 und 400 °C während 1 min bis 4 h durchgeführt werden. Die Nullpunktstabilisierung des Zweiwegeffekts wird vorteilhafterweise bei einer Temperatur vorgenommen, welche der späteren maximalen Betriebstemperatur entspricht (in unserem Fall ca. 200 °C). Die Dauer der Erwärmung soll mindestens 1 min betragen.
  • Durch das vorliegende neue Verfahren wurde erstmals der Weg gewiesen, wie man bei Gedächtnislegierungen des ß-Messingtyps, welche normalerweise nur einen ausgeprägten Einwegeffekt zeigen, zu einem für die Praxis brauchbaren Zweiwegeffekt kommen kann.

Claims (3)

1. Verfahren zur Erzeugung und Stabilisierung eines reversiblen Zweiweg-Gedächtniseffekts in einer Cu/AI/Ni- oder einer Cu/AI-Legierung, wobei die schmelzmetallurgisch oder pulvermetallurgisch hergestellte Legierung zunächst einer Lösungsglühung im Temperaturgebiet des β-Mischkristalls mit anschliessendem Abschrecken in Wasser unterzogen wird, worauf die Legierung einer Verformung unterworfen wird, dadurch gekennzeichnet, dass die Legierung nach der Verformung zur Formstabilisierung einer Wärmebehandlung im Temperaturbereich von 150 bis 425 °C während 0,5 bis 180 min, wobei die kürzeren Zeiten für die höheren Temperaturen gelten, unter gleichzeitiger Aufbringung einer Last zur Erzeugung einer Zug-, Druck- oder Schubspannung entsprechend einer Dehnung von mindestens 1 % unterworfen, langsam auf Raumtemperatur abgekühlt und entlastet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als weiterer Verfahrensschritt nach der langsamen Abkühlung und Entlastung die Legierung zur Martensitstabilisierung einer Wärmebehandlung im Temperaturbereich von 200 bis 400 °C während 1 min bis 4 h und einer langsamen Abkühlung auf Raumtemperatur unterworfen wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass als zusätzlicher Verfahrensschritt nach der Wärmebehandlung zur Martensitstabilisierung die Legierung zur Nullpunkstabilisierung des Zweiweg-Gedächtniseffekts einer Wärmebehandlung bei der der maximalen Betreibstemperatur des Bauteils entsprechenden Temperatur während mindestens 1 min und einer langsamen Abkühlung auf Raumtemperatur unterworfen wird.
EP83200130A 1982-02-05 1983-01-26 Verfahren zur Erzeugung und Stabilisierung eines reversiblen Zweiweg-Gedächtnisseffektes in einer Cu/Al/Ni- oder einer Cu/Al-Legierung Expired EP0086014B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83200130T ATE23570T1 (de) 1982-02-05 1983-01-26 Verfahren zur erzeugung und stabilisierung eines reversiblen zweiweg-gedaechtnisseffektes in einer cu/al/ni- oder einer cu/al-legierung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH70782 1982-02-05
CH707/82 1982-02-05

Publications (2)

Publication Number Publication Date
EP0086014A1 EP0086014A1 (de) 1983-08-17
EP0086014B1 true EP0086014B1 (de) 1986-11-12

Family

ID=4193293

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83200130A Expired EP0086014B1 (de) 1982-02-05 1983-01-26 Verfahren zur Erzeugung und Stabilisierung eines reversiblen Zweiweg-Gedächtnisseffektes in einer Cu/Al/Ni- oder einer Cu/Al-Legierung

Country Status (5)

Country Link
US (1) US4416706A (de)
EP (1) EP0086014B1 (de)
JP (1) JPS58147548A (de)
AT (1) ATE23570T1 (de)
DE (1) DE3367626D1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3319395A1 (de) * 1983-05-28 1984-11-29 G. Rau GmbH & Co, 7530 Pforzheim Formstueck aus einem verbundwerkstoff und herstellungsverfahren hierzu
US4887430A (en) * 1988-12-21 1989-12-19 Eaton Corporation Bistable SME actuator with retainer
FR2681331B1 (fr) * 1991-09-17 1993-11-12 Imago Procede de modification des temperatures caracteristiques de transformation d'un alliage metallique a memoire de forme.
ES2116149B1 (es) * 1994-04-11 1999-08-01 Uni Politenica De Catalunya Procedimiento para la obtencion de efecto doble memoria de forma en aleaciones inteligentes con memoria de forma.. n
US5842312A (en) * 1995-03-01 1998-12-01 E*Sorb Systems Hysteretic damping apparati and methods
US6149742A (en) * 1998-05-26 2000-11-21 Lockheed Martin Corporation Process for conditioning shape memory alloys
US20040201444A1 (en) * 2000-12-20 2004-10-14 Byong-Ho Park Shape memory alloy actuators activated by strain gradient variation during phase transformation
US8409372B1 (en) 2010-09-02 2013-04-02 The United States of America as Represented by the Administraton of National Aeronautics and Space Administration Thermomechanical methodology for stabilizing shape memory alloy (SMA) response

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2711576A1 (de) * 1976-03-18 1977-09-22 Raychem Corp Neue legierungen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53925B2 (de) * 1974-05-04 1978-01-13
SU606894A1 (ru) * 1977-01-03 1978-05-15 Институт Металлофизики Ан Украинской Сср Способ изготовлени температурочуствительных элементов из сплавав, обладающих эффектом пам ти формы
DE3065930D1 (en) * 1980-03-03 1984-01-26 Bbc Brown Boveri & Cie Memory alloy based on cu-al or on cu-al-ni and process for the stabilisation of the two-way effect

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2711576A1 (de) * 1976-03-18 1977-09-22 Raychem Corp Neue legierungen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Journal of Metals", December 1982, S. 14-20; "Acta metallurgica", Vol. 31, No. 7, 1983, S. 1013-1018 *
METALLURGICAL TRANSACTIONS A, Band 8A, Juni 1977, Seiten 955-962. N. Y. C. YANG et al.: "The cyclic stress-strain reponse of polycrystalline, pseudoelastic Cu-14,5 Wt Pct Al-3 Wt Pct Ni alloy" *

Also Published As

Publication number Publication date
JPH0123546B2 (de) 1989-05-02
US4416706A (en) 1983-11-22
JPS58147548A (ja) 1983-09-02
DE3367626D1 (en) 1987-01-02
EP0086014A1 (de) 1983-08-17
ATE23570T1 (de) 1986-11-15

Similar Documents

Publication Publication Date Title
DE69511037T2 (de) Verfahren zur Herstellung von Formgedächtnislegierungen mit hoher Umwandlungstemperatur
DE69916435T2 (de) Verfahren zur verbesserung der ductilität von nitinol
DE2603911A1 (de) Verfahren zum erweitern der hystereseschleife einer metallischen zusammensetzung mit einem reversiblen uebergang zwischen austenitischem und martensitischem zustand
EP0086011B1 (de) Verfahren zur Erzeugung eines reversiblen Zweiweg-Gedächtniseffektes in einem Bauteil aus einer einen Einwegeffekt zeigenden Legierung
DE2459636B2 (de) Verfahren zur erhoehung der zugfestigkeit und bestaendigkeit gegenueber kriechen bei zyklischen martensitischen umwandlungen einer nickel-titan-legierung
EP0086014B1 (de) Verfahren zur Erzeugung und Stabilisierung eines reversiblen Zweiweg-Gedächtnisseffektes in einer Cu/Al/Ni- oder einer Cu/Al-Legierung
DE3421623C2 (de) Thermisch betätigte Vorrichtung mit einer Memory-Legierung
EP0086012B1 (de) Verfahren zur Erzeugung eines reversiblen Zweiweg-Gedächtniseffektes in einem Bauteil aus einer einen Einwegeffekt zeigenden Legierung
DE2021348C3 (de) Verfahren zur Herstellung von Gegenständen aus binären Memory-Legierungen
CH637161A5 (de) Verfahren zur erhoehung der mechanischen festigkeiten von stahl.
CH492796A (de) Verfahren zum Warmverformen einer besonders leicht verformbaren Zink-Legierung
EP0035069B1 (de) Formgedächtnislegierung auf der Basis von Cu/Al oder Cu/Al/Ni und Verfahren zur Stabilisierung des Zweiwegeffektes
DE1909176A1 (de) Verfahren zum Stabilisieren von Legierungen
DE4023816A1 (de) Thermomechanisches verfahren zur behandlung von titanaluminiden auf der basis ti(pfeil abwaerts)3(pfeil abwaerts)al
DE1180955B (de) Verfahren zur Herstellung einer supraleitenden Niob-Zirkonium-Legierung
DE4000270C2 (de) Verfahren zum Kaltverformen von unlegiertem Titan
DE1290727B (de) Verfahren zur Herstellung von Nioblegierungen hoher Festigkeit
DE1458464C3 (de) Anwendung eines Wärmebehandlungsund Reckalterungs verfahrens auf einen Stahl
DE2429754B2 (de) Verfahren zur verbesserung der kriechfestigkeit und spannungsrelaxation von federn aus kupferlegierungen
CH621150A5 (en) Process for treating an object to extend the austenitic-martensitic hysteresis loop of the metallic composition
DE2219295A1 (de)
DE805533C (de) Erzeugung erhoehter gleichmaessiger Guete von Staeben und Profilen aus weichen, unlegierten Staehlen
DE4217031C2 (de) Verfahren zur Einstellung des pseudoelastischen Effektes in Fe-Ni-Co-Ti-Legierungen
AT396073B (de) Verfahren zum warmwalzen und waermebehandeln von stabfoermigem material
DE2235699C3 (de) Verfahren zur Wärmebehandlung einer Zink-Aluminium-Knetlegierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB LI SE

17P Request for examination filed

Effective date: 19840119

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB LI SE

REF Corresponds to:

Ref document number: 23570

Country of ref document: AT

Date of ref document: 19861115

Kind code of ref document: T

BECN Be: change of holder's name

Effective date: 19861112

REF Corresponds to:

Ref document number: 3367626

Country of ref document: DE

Date of ref document: 19870102

ET Fr: translation filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BBC BROWN BOVERI AG

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19901217

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19901221

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19901227

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19901228

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910321

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910422

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920126

Ref country code: AT

Effective date: 19920126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19920131

Ref country code: LI

Effective date: 19920131

Ref country code: CH

Effective date: 19920131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920730

Year of fee payment: 10

BERE Be: lapsed

Owner name: BBC BROWN BOVERI A.G.

Effective date: 19920131

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19921001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 83200130.9

Effective date: 19920806