EP0085333A2 - Dérivés éthérifiés d'azoles 1-hydroxyalkyle substitués, leur procédé de préparation et leur application comme fongicides et agents régulateurs de croissance des plantes - Google Patents

Dérivés éthérifiés d'azoles 1-hydroxyalkyle substitués, leur procédé de préparation et leur application comme fongicides et agents régulateurs de croissance des plantes Download PDF

Info

Publication number
EP0085333A2
EP0085333A2 EP83100337A EP83100337A EP0085333A2 EP 0085333 A2 EP0085333 A2 EP 0085333A2 EP 83100337 A EP83100337 A EP 83100337A EP 83100337 A EP83100337 A EP 83100337A EP 0085333 A2 EP0085333 A2 EP 0085333A2
Authority
EP
European Patent Office
Prior art keywords
optionally substituted
alkyl
substituted
formula
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83100337A
Other languages
German (de)
English (en)
Other versions
EP0085333A3 (en
EP0085333B1 (fr
Inventor
Graham Dr. Holmwood
Erik Ing.-Grad. Regel
Gerhard Dr. Jäger
Karl Heinz Prof. Dr. Büchel
Paul-Ernst Dr. Frohberger
Wilhelm Dr. Brandes
Klaus Dr. Lürssen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6154046&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0085333(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bayer AG filed Critical Bayer AG
Priority to AT83100337T priority Critical patent/ATE18217T1/de
Publication of EP0085333A2 publication Critical patent/EP0085333A2/fr
Publication of EP0085333A3 publication Critical patent/EP0085333A3/de
Application granted granted Critical
Publication of EP0085333B1 publication Critical patent/EP0085333B1/fr
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/12Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/501,3-Diazoles; Hydrogenated 1,3-diazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/647Triazoles; Hydrogenated triazoles
    • A01N43/6531,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles

Definitions

  • the present invention relates to new ether derivatives of substituted 1-hydroxyalkyl azoles, a process for their preparation and their use as fungicides and plant growth regulators.
  • biphenylylhydroxyalkyl azole derivatives such as, for example, 2- (4-biphenylyl) -1- (2,4-dichlorophenyl) - or -phenyl-3- (1,2,4- triazol-1-yl) -2-propanol and 4-biphenylyl-2-chloro- or
  • the compounds of formula (I) have an asymmetric carbon atom and can therefore be obtained in the two optical isomer forms.
  • the ether derivatives of the formula (I) according to the invention have better fungicidal and better plant growth-regulating effects than the above-mentioned triazolyl derivatives known from the prior art.
  • the active compounds according to the invention thus represent an enrichment of the technology.
  • Preferred compounds according to the invention are also addition products of acids and those ether derivatives of substituted 1-hydroxyalkyl-azoles of the formula (I) in which the substituents A, B, R 1 , R 2 and Z have the meanings which are already preferred for these Substituents were called.
  • the acids that can be added preferably include hydrohalic acids, e.g. hydrochloric acid and hydrobromic acid, especially hydrochloric acid, also phosphoric acid, nitric acid, mono- and bifunctional carboxylic acids and hydroxycarboxylic acids, e.g. Acetic acid, maleic acid, succinic acid, fumaric acid, tartaric acid, citric acid, salicylic acid, sorbic acid and lactic acid, as well as sulfonic acids, e.g. p-toluenesulfonic acid and 1,5-naphthalenedisulfonic acid.
  • hydrohalic acids e.g. hydrochloric acid and hydrobromic acid, especially hydrochloric acid, also phosphoric acid, nitric acid, mono- and bifunctional carboxylic acids and hydroxycarboxylic acids, e.g. Acetic acid, maleic acid, succinic acid, fumaric acid, tartaric acid, citric acid, salicylic acid, sorbic acid
  • preferred compounds according to the invention are addition products from salts of metals of the II. To IV. Main group and of I. and II. And IV. To VIII. Subgroup and those ether derivatives of substituted 1-hydroxyalkyl-azoles of the formula (I ), in which the substituents A, B, R 1 , R 2 and Z have the meanings which have preferably already been mentioned for these substituents.
  • Salts of copper, zinc, manganese, magnesium, tin, iron and nickel are particularly preferred.
  • Anions of these salts are those which are derived from acids which lead to physiologically tolerable addition products.
  • Particularly preferred such acids in this connection are the hydrohalic acids, e.g. hydrochloric acid and hydrobromic acid, as well as phosphoric acid, nitric acid and sulfuric acid.
  • the alcoholates of 1-hydroxyalkylazoles to be used as starting materials in carrying out the process according to the invention are generally defined by the formula (II).
  • A, B, R 1 , Z and the index m preferably represent the meanings which already in connection with the description of the substances of the formula (I) according to the invention were preferably mentioned for these substituents or for the index m.
  • M preferably represents the alkali metals lithium, sodium and potassium.
  • M also preferably represents the following quaternary ammonium groups: tetrabutylammonium, N-benzyl-N, N, N-trimethylammonium, hexadecyltrimethylammonium, tetraethylammonium, tetramethylammonium, methyltrioctylammonium, N-phenyl-N, N, N-trimethylammonium,
  • the oxiranes of the formula (V) obtained in this way can optionally be reacted directly without isolation.
  • ketones of the formula (IX) required as starting materials in the preparation of the oxiranes of the formula (V) are known (compare, for example, DE-PS 22 01 063 [LeA 14 118], DE - OS 26 32 603 [LeA 17 273], DE -OS 26 32 602 [LeA 17 274], DE-OS 26 35 664 [LeA 17 321], DE-OS 26 35 666 [LeA 17 324], DE-OS 27 05 678 [LeA 17 831], DE-DS 29 18 894 [LeA 19 618], DE-OS 29 18 893 [LeA 19 619], DE-PS 22 01 063, DE-OS 27 05 678, DE-OS 27 37 489), or they are the subject of their own older Patent applications that have not yet been published (see German patent applications P 30 21 551 dated June 7, 1980 [LeA 20 356], P 31 19 390 dated May 15, 1981 [LeA 21 032], P 31 01 143 dated January 16, 1981 [LeA 20 814]), or they can
  • dimethyloxosulfonium methylide of the formula (X) required in process variant (a) is also known (see J.Am.Chem.Soc. 87, 1363-1364 (1965)). It is processed in the freshly prepared state in the above reaction by producing it in situ by reacting trimethylsulfoxosulfonium iodide with sodium hydride or sodium amide in the presence of a diluent.
  • the trimethylsulfonium methyl sulfate of the formula (XI) required in process variant ( ⁇ ) is also known (cf. Heterocycles 8, 397 (1977)). It is also used in the freshly prepared state in the above reaction by generating it in situ by reacting dimethyl sulfide with dimethyl sulfate.
  • the azolo ketones of the formula (XII) are known (compare DE-OS 24 31 407 [LeA 15 735], DE-OS 26 38 470, DE-OS 28 20 361 [LeA 18 843]) or they are the subject of a own older patent application, which has not yet been published (compare German patent application P 30 48 266 dated 20.12.1980 [LeA 20 763]), or they can be produced by methods known in principle.
  • the azoles of the formula (VI) or (thio) phenols of the formula (VII) which are also to be used as starting materials for the preparation of the 1-hydroxyalkyl azoles of the formula (IV) are generally known compounds of organic chemistry.
  • halides to be used as starting materials for the process according to the invention are generally defined by the formula (III).
  • R 2 preferably represents the meanings which have already been mentioned for these substituents in connection with the description of the substances of the formula (I) according to the invention.
  • Hal is preferably chlorine, bromine or iodine.
  • the halides of the formula (III) are generally known compounds of organic chemistry.
  • Inert organic solvents are suitable as diluents for the reaction according to the invention.
  • ethers such as diethyl ether or dioxane
  • aromatic hydrocarbons such as benzene
  • chlorinated hydrocarbons such as chloroform, methylene chloride or carbon tetrachloride
  • hexamethylphosphoric triamide preferably include ethers such as diethyl ether or dioxane; aromatic hydrocarbons such as benzene; in some cases also chlorinated hydrocarbons, such as chloroform, methylene chloride or carbon tetrachloride; and hexamethylphosphoric triamide.
  • reaction temperatures can be varied within a substantial range when carrying out the process according to the invention. In general, between 0 and 120 ° C, preferably between 20 and 100 ° C.
  • reaction mixture is freed from the solvent and the residue is mixed with water and an organic solvent.
  • organic phase is separated off, worked up and purified in a conventional manner.
  • the procedure is expediently started from a substituted 1-hydroxyalkyl azole derivative of the formula (IV), the latter in a suitable organic solvent using alkali metal hydride or alkali metal amide in the alkali metal alcoholate of the formula (II) is transferred and the latter is immediately reacted with a halide of the formula (III) without isolation, the compounds of the formula (I) according to the invention being obtained in one operation with the emergence of alkali halide.
  • the preparation of the alcoholates of the formula (II) and the reaction according to the invention are advantageously carried out in a two-phase system, such as, for example, aqueous sodium hydroxide solution or potassium hydroxide solution / toluene or methylene chloride, with the addition of 0.01-1 mol of a phase transfer Catalyst, such as ammonium or phosphonium compounds, carried out, the alcoholates being reacted with the halides in the organic phase in the organic phase or at the interface.
  • a phase transfer Catalyst such as ammonium or phosphonium compounds
  • the following acids are preferably suitable for the preparation of physiologically compatible acid addition salts of the compounds of formula (I):
  • the hydrohalic acids such as e.g. hydrochloric acid and hydrobromic acid, especially hydrochloric acid, also phosphoric acid, nitric acid, sulfuric acid, mono- and bifunctional carboxylic acids and hydroxycarboxylic acids, e.g. Acetic acid, maleic acid, succinic acid, fumaric acid, tartaric acid, citric acid, salicylic acid, sorbic acid, lactic acid, as well as sulfonic acids, e.g. p-toluenesulfonic acid and 1,5-naphthalenedisulfonic acid.
  • sulfonic acids e.g. p-toluenesulfonic acid and 1,5-naphthalenedisulfonic acid.
  • the acid addition salts of the compounds of formula (I) can be easily obtained by conventional salt formation methods, e.g. by dissolving a compound of formula (I) in a suitable inert solvent and adding the acid, e.g. Hydrochloric acid can be obtained and in a known manner, e.g. by filtration, isolated and, if necessary, cleaned by washing with an inert organic solvent.
  • salts of metals preference is given to salts of metals from the II. To IV. Main group and from I. to II. And IV. To VIII. Subgroup, copper, zinc, manganese, magnesium , Tin, iron and nickel may be mentioned as examples.
  • Anions of the salts are those which are preferably derived from the following acids: hydrohalic acids, e.g. hydrochloric acid and hydrobromic acid, as well as phosphoric acid, nitric acid and sulfuric acid.
  • the metal salt complexes of compounds of formula (I) can be obtained in a simple manner by conventional methods, e.g. by dissolving the metal salt in alcohol, e.g. Ethanol and addition to the compounds of formula (I).
  • Metal salt complexes can be prepared in a known manner, e.g. by filtering, isolating and, if necessary, cleaning by recrystallization.
  • the active substances which can be used according to the invention intervene in the metabolism of the plants and can therefore be used as growth regulators.
  • Plant growth regulating substances can be used, for example, to inhibit the vegetative growth of the plants.
  • Such inhibition of growth is of economic interest, among other things, for grasses, since it can reduce the frequency of grass cuts in ornamental gardens, parks and sports facilities, on the side of roads, at airports or in orchards. It is also important to inhibit the growth of herbaceous and woody plants on the side of the road and in the vicinity of pipelines or overland lines or in general in areas where a strong growth of the plants is undesirable.
  • growth regulators it is also important to use growth regulators to inhibit the longitudinal growth of cereals. This reduces or completely eliminates the risk of the plants twisting ("storing") before harvesting. In addition, growth regulators in cereals can cause stalk reinforcement, which also counteracts storage. The use of growth regulators for stalk shortening and stalk reinforcement makes it possible to apply higher amounts of fertilizer in order to increase the yield without the risk of the grain being stored.
  • An inhibition of vegetative growth enables denser planting in many crops, so that additional yields can be achieved based on the soil area.
  • An advantage of the small so obtained Another plant is that the crop can be processed and harvested more easily.
  • Inhibiting the vegetative growth of the plants can also lead to increased yields in that the nutrients and assimilates benefit the bloom and fruit formation to a greater extent than the vegetative parts of the plants.
  • Growth regulators can often also be used to promote vegetative growth. This is of great benefit when the vegetative parts of the plant are harvested. A promotion of vegetative growth can also lead to a promotion of generative growth at the same time, in that more assimilates are formed, so that more or larger fruits are formed.
  • increases in yield can be achieved by intervening in plant metabolism without any changes in vegetative growth being noticeable.
  • growth regulators can be used to change the composition of the plants, which in turn can lead to an improvement in the quality of the harvested products. For example, it is possible to increase the sugar content in sugar beets, sugar cane, pineapple and citrus fruits, or to increase the protein content in soybeans or cereals. It is also possible, for example, to break down desired ingredients, e.g. To inhibit sugar in sugar beets or cane, using growth regulators before or after harvest.
  • the production or outflow of secondary plant substances can be positively influenced.
  • One example is the stimulation of latex flow in rubber trees.
  • Parthenocarpic fruits can develop under the influence of growth regulators.
  • the gender of the flowers can also be influenced.
  • Sterility of the pollen can also be produced, which is of great importance in the cultivation and production of hybrid seeds.
  • the branching of the plants can be controlled by using growth regulators.
  • the development of side shoots can be promoted by breaking the apical dominance, which can be very desirable, especially in ornamental plant growing, in connection with growth inhibition.
  • the number of leaves in the plants can be controlled in such a way that defoliation of the plants is achieved at a desired time.
  • defoliation plays a major role in the mechanical harvesting of cotton, but is also found in other crops such as of interest in viticulture to facilitate harvesting.
  • Defoliation of the plants can also be carried out in order to reduce the transpiration of the plants before transplanting.
  • the crop fall can also be controlled with growth regulators. On the one hand, premature fruit fall can be prevented. On the other hand, the fall of fruit or even the falling of the flowers can be promoted to the desired extent ("thinning") in order to break the alternation. Alternance is the peculiarity of some types of fruit, which endogenously produce very different yields from year to year. Finally, it is possible to use growth regulators at the time of harvest to reduce the forces required to detach the fruit in order to enable mechanical harvesting or to facilitate manual harvesting.
  • growth regulators it is also possible to accelerate or delay the ripening of the crop before or after the harvest. This is particularly advantageous because it can be optimally adapted to the needs of the market. Furthermore, growth regulators can improve fruit coloration in some cases. In addition, growth regulators can also be used to concentrate maturity over time. This creates the conditions for, for example, tobacco, Tomatoes or coffee a full mechanical or manual harvest can be done in one operation.
  • growth regulators can also influence the seed or bud rest of the plants, so that the plants, e.g. Pineapples or ornamental plants in nurseries, germinate, sprout or bloom at a time when they are usually not ready to do so. Delaying bud budding or seed germination with the help of growth regulators may be desirable in frost-prone areas to avoid damage from late frosts.
  • growth regulators can induce plant resistance to frost, drought or high salinity in the soil. This makes it possible to cultivate plants in areas that are normally unsuitable for this.
  • the active compounds according to the invention have a strong microbicidal action and can be used practically to combat unwanted microorganisms.
  • the active ingredients are suitable for use as pesticides.
  • Fungicidal agents in crop protection are used to control Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes, Deuteromycetes.
  • the active ingredients used according to the invention can be used as crop protection agents with particularly good success in combating those fungi which cause real mildew diseases; to combat Erysiphe species, e.g. against the pathogen of barley or cereal powdery mildew (Erysiphe graminis), of Podosphaera species, e.g. against the pathogen of apple mildew (Podosphaera leucotricha) and of Sphaerotheca species, e.g. against the causative agent of cucumber mildew (Sphaerotheca fuligenea), as well as for controlling Puccinia species, e.g. against the pathogen of brown rust on wheat (Puccinia recondita). It should be noted that the substances according to the invention also have a broad fungicidal activity in vitro.
  • the active compounds according to the invention When applied in appropriate amounts, the active compounds according to the invention also have herbicidal properties.
  • the active compounds can be converted into the customary formulations, such as solutions, emulsions, suspensions, powders, foams, pastes, granules, aerosols, very fine encapsulations in polymeric substances and in coating compositions for seeds, and ULV formulations.
  • formulations are prepared in a known manner, for example by mixing the active ingredients with extenders, that is to say liquid solvents, pressurized liquefied gases and / or solid carriers, if appropriate using surface-active agents, that is to say emulsifiers and / or dispersants and / or foam-generating agents. If water is used as an extender, organic solvents can, for example, also be used as auxiliary solvents.
  • extenders that is to say liquid solvents, pressurized liquefied gases and / or solid carriers, if appropriate using surface-active agents, that is to say emulsifiers and / or dispersants and / or foam-generating agents.
  • surface-active agents that is to say emulsifiers and / or dispersants and / or foam-generating agents.
  • organic solvents can, for example, also be used as auxiliary solvents.
  • aromatics such as xylene, toluene, or alkylnaphthalenes
  • chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chlorethylenes or methylene chloride
  • aliphatic hydrocarbons such as cyclohexane or paraffins, for example petroleum fractions
  • alcohols such as butanol or glycol and their ethers and esters
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone
  • strongly polar solvents such as dimethylformamide and dimethyl sulfoxide, and water.
  • Liquefied gaseous extenders or carriers mean liquids which are gaseous at normal temperature and under normal pressure, for example aerosol propellants such as halogenated hydrocarbons and butane, propane, nitrogen and carbon dioxide.
  • aerosol propellants such as halogenated hydrocarbons and butane, propane, nitrogen and carbon dioxide.
  • solid carriers for example, natural rock powders such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and synthetic rock powders such as highly disperse silica, aluminum oxide and silicates.
  • Possible solid carriers for granules are: e.g.
  • emulsifying and / or foam-generating agents are: for example nonionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkyl sulfonates, alkyl sulfates, aryl sulfonates and Protein hydrolysates.
  • Possible dispersants are: eg lignin sulfite waste liquor and methyl cellulose.
  • Adhesives such as carboxymethyl cellulose and natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol and polyvinyl acetate, can be used in the formulations.
  • Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc can be used.
  • the formulations generally contain between 0.1 and 95% by weight of active compound, preferably between 0.5 and 90%.
  • the active compounds according to the invention can be present in the formulations in a mixture with other known active compounds, such as fungicides, insecticides, acaricides and herbicides, and also in mixtures with fertilizers and other growth regulators.
  • the active compounds can be used as such, in the form of their formulations or the use forms prepared therefrom, such as ready-to-use solutions, emulsifiable concentrates, emulsions, foams, suspensions, wettable powders, pastes, soluble powders, dusts and granules. They are used in the usual way, e.g. by watering, spraying, atomizing, scattering, dusting, foaming, brushing, etc. It is also possible to apply the active ingredients using the ultra-low-volume process or to inject the active ingredient preparation or the active ingredient into the soil itself. The seeds of the plants can also be treated.
  • the application rates can be varied within a substantial range.
  • 0.01 to 50 kg, preferably 0.05 to 10 kg, of active ingredient are used per hectare of soil.
  • the application is carried out in a preferred period, the exact delimitation of which depends on the climatic and vegatative conditions.
  • the application rate can be varied within a substantial range depending on the type of application.
  • the active substance concentrations in the treatment of parts of plants in the use forms are generally between 1 and 0.0001% by weight, preferably between 0.5 and 0.001%.
  • amounts of active ingredient of 0.001 to 50 g per kilogram of seed, preferably 0.01 to 10 g are generally required.
  • active ingredient concentrations of 0.00001 to 0.1% by weight, preferably 0.0001 to 0.02% are required at the site of action.
  • Emulsifier 0.3 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with water to the desired concentration.
  • the plants are then placed in a greenhouse at 23 to 24 ° C and at a relative humidity of approx. 75%.
  • Evaluation is carried out 10 days after the inoculation.
  • Emulsifier 0.3 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with water to the desired concentration.
  • the plants are then placed in a greenhouse at 23 ° C. and a relative humidity of approx. 70%.
  • Evaluation is carried out 9 days after the inoculation.
  • Emulsifier 0.25 parts by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with water to the desired concentration.
  • the plants are placed in a greenhouse at a temperature of approx. 20 ° C and a relative humidity of approx. 80% in order to favor the development of mildew pustules.
  • Evaluation is carried out 7 days after the inoculation.
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with water to the desired concentration.
  • the plants are placed in a greenhouse at a temperature of approx. 20 ° C and a relative humidity of approx. 80% in order to promote the development of rust pustules.
  • Evaluation is carried out 10 days after the inoculation.
  • the active ingredients are used as dry pickling agents. They are prepared by stripping the respective active ingredient with rock flour to form a fine powder mixture that ensures an even distribution on the seed surface.
  • the barley is sown with 3 x 12 seeds 2 cm deep in a standard soil. 7 days after sowing, when the young plants have developed their first leaf, they are covered with spores from Erysiphe graminis f. sp. hordei pollinated.
  • the plants are placed in a greenhouse at a temperature of approx. 20 ° C and a relative air humidity of approx. 80% in order to promote the development of mildew pustules.
  • Evaluation is carried out 7 days after the inoculation.
  • Emulsifier 1 part by weight of polyoxyethylene sorbitan monolaurate
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the mixture is made up to the desired concentration with water.
  • Sugar beets are grown in the greenhouse until the cotyledons have fully developed. At this stage, the plants are sprayed dripping wet with the preparation of the active ingredient. After 14 days, the growth of the plants is measured and the influence on growth is calculated as a percentage of the growth of the control plants. 0% influence on growth means growth corresponding to that of the control plants. Negative values indicate inhibition of growth, positive values promote growth compared to the control plants.
  • the active substances 2, 1, 3 and 4 according to the invention show a greater influence on growth than the compounds (B), (D) and (E) known from the prior art.
  • Solvent 30 parts by weight of dimethylformamide emulsifier: 1 part by weight of polyoxyethylene sorbitan monolaurate
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the mixture is made up to the desired concentration with water.
  • Cotton plants are grown in the greenhouse until the 5th leaf is fully developed. At this stage, the plants are sprayed dripping wet with the active ingredient preparations. After 3 weeks, the growth of the plants is measured and the growth inhibition is calculated as a percentage of the growth of the control. 100% growth inhibition means that growth has stopped and 0% means growth corresponding to that of the control plants.
  • the active compounds 2, 3 and 1 according to the invention show better growth inhibition than the compounds (B), (D) and (E) known from the prior art.
  • Solvent 30 parts by weight of dimethylformamide emulsifier: 1 part by weight of polyoxyethylene sorbitan monolaurate
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the mixture is made up to the desired concentration with water.
  • Soybean plants are grown in the greenhouse until the first subsequent leaf is fully developed. At this stage, the plants are sprayed dripping wet with the active ingredient preparations. After 3 weeks, the growth of all plants is measured and the growth inhibition is calculated as a percentage of the growth of the control plants. 100% growth inhibition means that growth has stopped and 0% means growth corresponding to that of the control plants.
  • the active compounds 2, 1, 3 and 4 according to the invention show a greater inhibition of growth than the compounds (A), (B) and (D) known from the prior art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Environmental Sciences (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Zoology (AREA)
  • Pest Control & Pesticides (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
EP83100337A 1982-01-27 1983-01-17 Dérivés éthérifiés d'azoles 1-hydroxyalkyle substitués, leur procédé de préparation et leur application comme fongicides et agents régulateurs de croissance des plantes Expired EP0085333B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83100337T ATE18217T1 (de) 1982-01-27 1983-01-17 Ether-derivate von substituierten 1-hydroxyalkyl- azolen, verfahren zu ihrer herstellung sowie ihre verwendung als fungizide und pflanzenwachstumsregulatoren.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3202604 1982-01-27
DE19823202604 DE3202604A1 (de) 1982-01-27 1982-01-27 Ether-derivate von substituierten 1-hydroxyalkyl-azolen, verfahren zu ihrer herstellung sowie ihre verwendung als fungizide und pflanzenwachstumsregulatoren

Publications (3)

Publication Number Publication Date
EP0085333A2 true EP0085333A2 (fr) 1983-08-10
EP0085333A3 EP0085333A3 (en) 1983-08-31
EP0085333B1 EP0085333B1 (fr) 1986-02-26

Family

ID=6154046

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83100337A Expired EP0085333B1 (fr) 1982-01-27 1983-01-17 Dérivés éthérifiés d'azoles 1-hydroxyalkyle substitués, leur procédé de préparation et leur application comme fongicides et agents régulateurs de croissance des plantes

Country Status (20)

Country Link
US (2) US5141553A (fr)
EP (1) EP0085333B1 (fr)
JP (1) JPS58128379A (fr)
AT (1) ATE18217T1 (fr)
AU (1) AU552373B2 (fr)
BR (1) BR8300378A (fr)
CA (1) CA1195989A (fr)
CS (1) CS237335B2 (fr)
DD (1) DD206526A5 (fr)
DE (2) DE3202604A1 (fr)
DK (1) DK30883A (fr)
ES (1) ES519283A0 (fr)
GR (1) GR78196B (fr)
HU (1) HU188833B (fr)
IL (1) IL67740A (fr)
NZ (1) NZ203083A (fr)
PL (1) PL133357B1 (fr)
PT (1) PT76100B (fr)
TR (1) TR22232A (fr)
ZA (1) ZA83497B (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0111711A2 (fr) * 1982-11-15 1984-06-27 Bayer Ag Dérivés hydroxyalkyl-azolyles substitués par des hétérocycles
EP0257375A2 (fr) * 1986-08-14 1988-03-02 Bayer Ag Procédé de préparation de dérivés de 2-hydroxyéthylazoles optiquement actifs

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE66676T1 (de) * 1983-05-19 1991-09-15 Ciba Geigy Ag Verfahren zur herstellung von 1triazolylethylether-derivaten, sowie mikrobizide mittel enthaltende neue 1-triazolyl- phenoxyphenylethylether-derivate als wirkstoffe und deren verwendung.
GB8322983D0 (en) * 1983-08-26 1983-09-28 Pfizer Ltd Triazole antifungal agents
DE3342692A1 (de) * 1983-11-25 1985-06-05 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von ss-hydroxyethyl-(1,2,4-triazol)-derivaten
US5023258A (en) * 1989-06-20 1991-06-11 Pfizer Inc. Triazole antifungal agents
US5358939A (en) * 1992-06-25 1994-10-25 Rohm And Haas Company Fungicidal 2-aryl-2,2-disubstituted ethyl-1,2,4-triazoles
EP0986965A1 (fr) * 1998-09-18 2000-03-22 Janssen Pharmaceutica N.V. Enrobage anti-fungique
CZ296871B6 (cs) * 1998-11-12 2006-07-12 Bayer Corporation Fungicidní prostredek ve forme suspenze a pouzití
EP2746257A1 (fr) * 2012-12-21 2014-06-25 Basf Se Composés de [1,2,4]triazole et d'imidazole substitués
BR112015025679A8 (pt) 2013-04-12 2020-02-11 Bayer Cropscience Ag novos derivados de triazol
WO2014167008A1 (fr) 2013-04-12 2014-10-16 Bayer Cropscience Ag Nouveaux dérivés triazolinthione
CN105308032B (zh) 2013-04-12 2017-05-24 拜耳作物科学股份公司 新的三唑衍生物
JP2017531636A (ja) 2014-10-02 2017-10-26 バイエル・クロップサイエンス・アクチェンゲゼルシャフト 殺菌剤として有用な新規トリアゾール誘導体
CN107660203A (zh) 2015-04-02 2018-02-02 拜耳作物科学股份公司 作为杀真菌剂的三唑衍生物
US10231453B2 (en) 2015-04-02 2019-03-19 Bayer Cropscience Aktiengesellschaft 5-substituted imidazole derivatives
WO2016156282A1 (fr) 2015-04-02 2016-10-06 Bayer Cropscience Aktiengesellschaft Nouveaux composés de triazole pour contrôler des champignons nocifs phytopathogènes
EP3512338A1 (fr) 2016-09-13 2019-07-24 Bayer CropScience Aktiengesellschaft Combinaisons de composés actifs comprenant un dérivé d'imidazole substitué en position 5
WO2018050535A1 (fr) 2016-09-13 2018-03-22 Bayer Cropscience Aktiengesellschaft Combinaisons de composés actifs
TW201825448A (zh) 2016-09-29 2018-07-16 德商拜耳作物科學股份有限公司 新穎之三唑衍生物
US20190218187A1 (en) 2016-09-29 2019-07-18 Bayer Cropscience Aktiengesellschaft Novel 5-substituted imidazolylmethyl derivatives
EP3519408A1 (fr) 2016-09-29 2019-08-07 Bayer CropScience Aktiengesellschaft Dérivés de 1 -[2- (1 -chlorocyclopropyl)-2-hydroxy-3-(3-phényl -1,2-oxazol-5-yl) propyl]-1 h-imidazole-5-carbonitrile et composés apparentés en tant que fongicides pour la protection des cultures
AR109545A1 (es) 2016-09-29 2018-12-19 Bayer Cropscience Ag Derivados de triazol
WO2018060076A1 (fr) 2016-09-29 2018-04-05 Bayer Cropscience Aktiengesellschaft Nouveaux dérivés triazole
CR20190165A (es) 2016-09-29 2019-07-09 Bayer Ag Novedosos derivados de imidazolilmetilo 5-sustituidos
BR112019006450A2 (pt) 2016-09-29 2019-06-25 Bayer Cropscience Ag novos derivados de imidazolilmetila substituídos na posição 5
BR112019016240A2 (pt) 2017-02-08 2020-04-07 Bayer Ag derivados de triazoletiona
WO2019091898A1 (fr) 2017-11-09 2019-05-16 Bayer Aktiengesellschaft Procédé de préparation de dérivés d'imidazole à substitution en position 5 et composés de manganèse utiles à cet effet
WO2019092086A1 (fr) 2017-11-13 2019-05-16 Bayer Aktiengesellschaft Dérivés de tétrazolylpropyle et leur utilisation en tant que fongicides
WO2019162228A1 (fr) 2018-02-21 2019-08-29 Bayer Aktiengesellschaft Dérivés de 1-(imidazol-1-yl à substitution en position 5)but-3-ène et leur utilisation en tant que fongicides

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2737489A1 (de) * 1976-08-19 1978-02-23 Ici Ltd Triazol- und imidazolverbindungen
US4123542A (en) * 1977-01-19 1978-10-31 Syntex (U.S.A.) Inc. Derivatives of N-alkyl imidazoles
EP0052424A2 (fr) * 1980-11-19 1982-05-26 Imperial Chemical Industries Plc Triazoles dérivés, leur préparation et emploi comme fongicides et fongicides les contenant
EP0061835A1 (fr) * 1981-03-18 1982-10-06 Imperial Chemical Industries Plc Composés de triazole , procédé pour leur préparation, leur utilisation comme fongicides de plantes et leurs compositions fongicides

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4085209A (en) * 1975-02-05 1978-04-18 Rohm And Haas Company Preparation and safening effect of 1-substituted imidazole metal salt complexes
NZ181916A (en) * 1975-09-10 1979-01-11 Ici Ltd 1-substituted-1,2,4-triazoles and fungicidal compositions
DE2720868A1 (de) * 1977-05-10 1978-11-23 Bayer Ag Antimikrobielle mittel
US4277475A (en) * 1979-01-11 1981-07-07 Syntex (U.S.A.) Inc. Contraceptive methods employing 1-substituted imidazole derivatives
AU542623B2 (en) * 1980-05-16 1985-02-28 Bayer Aktiengesellschaft 1-hydroxyethyl-azole derivatives
DE3018866A1 (de) * 1980-05-16 1981-11-26 Bayer Ag, 5090 Leverkusen 1-hydroxyethyl-azol-derivate, verfahren zu ihrer herstellung sowie ihre verwendung als pflanzenwachstumsregulatoren und fungizide
DE3018865A1 (de) * 1980-05-16 1981-11-26 Bayer Ag, 5090 Leverkusen Antimikrobielle mittel
ZA817473B (en) * 1980-11-19 1982-10-27 Ici Plc Triazole and imidazole compounds
JPS57165370A (en) * 1981-03-18 1982-10-12 Ici Ltd Triazole or imidazole compounds, manufacture and fungicidal or plant growth regulant agent
DE3365739D1 (en) * 1982-01-15 1986-10-09 Ciba Geigy Ag Fungicidal and plant-growth regulating tri-azolcarbinol derivatives

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2737489A1 (de) * 1976-08-19 1978-02-23 Ici Ltd Triazol- und imidazolverbindungen
US4123542A (en) * 1977-01-19 1978-10-31 Syntex (U.S.A.) Inc. Derivatives of N-alkyl imidazoles
EP0052424A2 (fr) * 1980-11-19 1982-05-26 Imperial Chemical Industries Plc Triazoles dérivés, leur préparation et emploi comme fongicides et fongicides les contenant
EP0061835A1 (fr) * 1981-03-18 1982-10-06 Imperial Chemical Industries Plc Composés de triazole , procédé pour leur préparation, leur utilisation comme fongicides de plantes et leurs compositions fongicides

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0111711A2 (fr) * 1982-11-15 1984-06-27 Bayer Ag Dérivés hydroxyalkyl-azolyles substitués par des hétérocycles
EP0111711A3 (en) * 1982-11-15 1984-10-03 Bayer Ag Heterocyclically substituted hydroxyalkyl-azolyl derivatives
US4639462A (en) * 1982-11-15 1987-01-27 Bayer Aktiengesellschaft Heterocyclo-hydroxyalkyl-azolyl derivatives and use as fungicides
EP0257375A2 (fr) * 1986-08-14 1988-03-02 Bayer Ag Procédé de préparation de dérivés de 2-hydroxyéthylazoles optiquement actifs
EP0257375A3 (en) * 1986-08-14 1988-07-20 Bayer Ag Process for the preparation of optically active 2-hydroxyethyl azole derivatives
US4855438A (en) * 1986-08-14 1989-08-08 Bayer Aktiengesellschaft Process for the preparation of optically active 2-hydroxyethylazole derivatives

Also Published As

Publication number Publication date
TR22232A (tr) 1986-10-09
JPS58128379A (ja) 1983-07-30
ZA83497B (en) 1983-10-26
DK30883D0 (da) 1983-01-26
ES8400101A1 (es) 1983-10-16
IL67740A (en) 1987-02-27
CS49083A2 (en) 1984-12-14
DD206526A5 (de) 1984-02-01
PT76100B (en) 1985-11-11
HU188833B (en) 1986-05-28
PT76100A (en) 1983-02-01
EP0085333A3 (en) 1983-08-31
US4868196A (en) 1989-09-19
DE3362222D1 (en) 1986-04-03
EP0085333B1 (fr) 1986-02-26
GR78196B (fr) 1984-09-26
CA1195989A (fr) 1985-10-29
AU1003483A (en) 1983-08-04
ATE18217T1 (de) 1986-03-15
US5141553A (en) 1992-08-25
PL240282A1 (en) 1983-10-10
PL133357B1 (en) 1985-05-31
DE3202604A1 (de) 1983-08-04
CS237335B2 (en) 1985-07-16
BR8300378A (pt) 1983-10-25
DK30883A (da) 1983-07-28
ES519283A0 (es) 1983-10-16
NZ203083A (en) 1985-10-11
AU552373B2 (en) 1986-05-29
IL67740A0 (en) 1983-05-15

Similar Documents

Publication Publication Date Title
EP0085333B1 (fr) Dérivés éthérifiés d'azoles 1-hydroxyalkyle substitués, leur procédé de préparation et leur application comme fongicides et agents régulateurs de croissance des plantes
EP0084834B1 (fr) Dérivés 1-hydroxyalkyl-azolyles substitués, leur procédé de préparation et leur application comme fongicide et agents régulateurs de croissance des plantes
EP0297345B2 (fr) Dérivés ayant des groupes azolylméthyl-cyclopropyles
EP0072580B1 (fr) Dérivés 1-hydroxyéthyl-azoles, leur procédé de préparation et leur application comme agents régulateurs de croissance des plantes et fongicides
EP0180136B1 (fr) Dérivés d'azolylméthyl-cyclopropyl carbinol substitués
EP0015387B1 (fr) Dérivés du 1-vinyltriazole, procédé pour leur préparation ainsi que leur utilisation comme régulateurs de croissance et fongicides
EP0055833B1 (fr) 1-Azolyl-2-ol-butanes substitués, procédé pour leur préparation et leur application comme agents protecteurs de plantes, et comme intermédiaires
EP0032200B1 (fr) Triazolylméthyl-tert.-butyl-carbinols substitués, procédé pour leur synthèse et leur utilisation comme agents protecteurs des plantes et comme intermédiaires
EP0291797A2 (fr) Dérivés d'hydroxyalkyl-triazoles
EP0044425B1 (fr) Dérivés triazolylvinyl-céto- et -carbinol-halogénés, leur procédé de préparation et leur application comme fongicides et régulateurs de croissance des plantes
EP0031911B1 (fr) Triazolylméthyl-tert.-butyl-cétones substituées, procédé pour leur préparation ainsi que leur utilisation comme agents protecteurs des plantes et comme intermédiaires
EP0079006A1 (fr) Azolyl-alkénones et -ols, leur procédé de préparation et leur application comme agents régulateurs de croissance des plantes et fongicides
EP0059894B1 (fr) Triazolylalkylthio éthers, procédé pour leur préparation et leur application comme agent régulateur de la croissance des plantes et comme agent fongicide
EP0086901B1 (fr) Dérivés éthérifiés d'azolyl thioéthers, leur procédé de préparation et leur application comme fongicides et comme agents régulateurs de croissance des plantes
EP0180838A2 (fr) Dérivés d'azolylcyclopropyl-azolylméthyl-carbinol substitués
EP0094572B1 (fr) Dérivés de l'1-azolyl-2-oximino-butane, leur procédé de fabrication et leur application comme fongicides et agents régulateurs de croissance des plantes
DE3522440A1 (de) Substituierte azolylmethyl-cyclopropyl-carbinol-derivate
EP0065107B1 (fr) Dérivés d'azolylpropyl-oximino, procédé pour leur préparation et leur application comme fongicide et agent de régulation de la croissance des plantes
EP0298300A1 (fr) Dérivés d'azolyl-tétrahydropyranne
EP0291798B1 (fr) Dérivés d'hydroxyalkyl-triazoles
DE3106076A1 (de) 1-hydroxyethyl-azol-derivate, verfahren zu ihrer herstellung sowie ihre verwendung als pflanzenwachstumsregulatoren und fungizide
DE3534310A1 (de) Substituierte azolylmethyl-cyclopropyl-carbinol-derivate
EP0093925A1 (fr) Azolyl butynes, leur procédé de préparation et leur application comme fongicides et agents régulateurs de croissance des plantes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

17P Request for examination filed

Effective date: 19830117

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 18217

Country of ref document: AT

Date of ref document: 19860315

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3362222

Country of ref document: DE

Date of ref document: 19860403

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19870112

Year of fee payment: 5

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19890117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19890118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931213

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940107

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940114

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940125

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940126

Year of fee payment: 12

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940131

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950117

EUG Se: european patent has lapsed

Ref document number: 83100337.1

Effective date: 19891205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19950131

Ref country code: LI

Effective date: 19950131

Ref country code: CH

Effective date: 19950131

BERE Be: lapsed

Owner name: BAYER A.G.

Effective date: 19950131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950929

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19950801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951003

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST