EP0083445A1 - Procédé et appareil pour le triage de mélanges conducteurs non-ferromagnétiques - Google Patents

Procédé et appareil pour le triage de mélanges conducteurs non-ferromagnétiques Download PDF

Info

Publication number
EP0083445A1
EP0083445A1 EP82112033A EP82112033A EP0083445A1 EP 0083445 A1 EP0083445 A1 EP 0083445A1 EP 82112033 A EP82112033 A EP 82112033A EP 82112033 A EP82112033 A EP 82112033A EP 0083445 A1 EP0083445 A1 EP 0083445A1
Authority
EP
European Patent Office
Prior art keywords
pole
wheel cylinder
cylinder
magnet wheel
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP82112033A
Other languages
German (de)
English (en)
Inventor
Erwin Barth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Steinert Elektromagnetbau GmbH
Original Assignee
Steinert Elektromagnetbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Steinert Elektromagnetbau GmbH filed Critical Steinert Elektromagnetbau GmbH
Publication of EP0083445A1 publication Critical patent/EP0083445A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/23Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp
    • B03C1/24Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields
    • B03C1/247Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields obtained by a rotating magnetic drum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/20Magnetic separation of bulk or dry particles in mixtures

Definitions

  • the invention relates to a method and a device for sorting conductive, non-ferromagnetic mixtures which contain non-ferrous metals of different conductivity. This can be scrap, for example.
  • the invention is therefore based on the object of providing a method and a device with which a sorting of metallic, non-ferromagnetic materials or batches is possible by means of a robust and simple system with a high throughput.
  • this object is achieved in that the mixture is guided in a circular cylinder flow around a vertical, rotating magnet wheel cylinder with pole strips which extend on the circumference parallel to the cylinder axis and whose polarity alternates in the circumferential direction.
  • a radial and a tangential force component is generated in the metal part to be deposited, and this leads to various deflections of these parts depending on the frequency and excitation.
  • the non-ferrous metals to be sorted are exposed to tangential and radial forces in their path of movement along the magnet wheel cylinder due to eddy current influences, which produce different deflections of the various non-ferrous metals depending on the frequency and excitation.
  • the required frequency can be set by the angular velocity and the number of poles and the distribution of the pole bars around the circumference of the rotating magnet wheel cylinder. It is thus possible to adapt the piece sizes to be sorted in each case by means of an angular velocity to be selected in each case. This adjustment can be achieved in the simplest way by adjusting or changing the speed.
  • a device which has a rotatable, perpendicularly positioned electromagnetic or permanent magnetic magnet wheel cylinder, which has pole strips which extend on the circumference parallel to the cylinder axis and whose polarity alternates in the circumferential direction, and above the magnet wheel cylinder there is a feed for the batch arranged coaxially to the cylinder axis of the magnet wheel cylinder, and below the magnet wheel cylinder a cylindrical collecting container with a central cylindrical container and at least one annular container surrounding it is arranged coaxially to the cylinder axis of the magnet wheel cylinder.
  • the central cylindrical container and the annular containers surrounding the collecting container take up the different fractions of the batch, the number of annular containers plus the central container corresponding to the number of different components of the batch.
  • the poles are formed by pole strips, which generate a tangentially oriented alternating magnetic field in the circumferential direction.
  • the magnet wheel cylinder can advantageously be surrounded by a magnetically permeable protective cylinder, the upper end of which is closed by a guide cone. In this way, that Gemen ewel g is prevented from coming by Polradzylinder into contact. It can be advantageous that the diameter of the feed is larger than that of the protective cylinder, so that a circular g- shaped sheath current can be passed around the magnet wheel cylinder through the guide cone and this dimensioning. It is also advantageous if the diameter of the central cylindrical container of the Collecting container is larger than that of the protective cylinder. Dimensions of the collecting cylinder in the radial direction and the subdivision of the annular containers correspond to the deflection of the components of the batch to be sorted.
  • the pole wheel cylinder is particularly advantageous for the pole wheel cylinder to consist of a plurality of pole disks arranged one above the other with coaxial to the cylinder axis, the polarity of which alternates in the axial direction and which is star-shaped, the radially projecting sections of the alternating pole disks being circumferentially offset in such a way that the projecting sections of the same polarity alternating pole disks are aligned in the axial direction and each of these aligned, radially projecting sections of the same polarity carry a pole strip and by means of . , these are connected.
  • poles of the pole wheel cylinder are thus formed by pole strips which orient the field of the pole disks of the same polarity into a tangentially oriented field, so that the alternating radial polarity of the pole disks is aligned in an alternating polarity on the circumference of the pole cylinder.
  • the pole strips can be exchangeable with particular advantage, in order thereby to create a further possibility of influencing the process parameters.
  • the poles can have different lengths. This makes it possible to vary the induction frequencies along the rotor to pieces of different weights to influence differently. This influence is possible, for example, by arranging only a few pole strips over the entire length of the rotor, while others placed in between extend only over part of the length. In this intermediate area, the induction frequency then increases in accordance with the increased number of pole bars.
  • the star-shaped pole disks can be symmetrical, so that their radially projecting sections are distributed at the same distance from one another around the circumference of the pole disk. But it is also possible that the star-shaped pole disks are asymmetrical, so that their projecting sections are closer together in certain circumferential sections than in others and the pole wheel cylinder thus carries a larger number of pole strips in certain circumferential sections than in others.
  • pole strips are arranged in certain circumferential sections with a symmetrical configuration of the pole disks than in others.
  • the pole disks can be permanent magnets. But they can also be poles of electromagnets. If the pole disks are poles of electromagnets, the pole disks have longer diameter hubs, so that between these pole disks there are annular recesses in the magnet wheel cylinder in which round coils that can be fed with excitation current are arranged. A structure corresponding to the production of tape rolls is achieved.
  • FIG. 1 shows a magnet wheel cylinder 3 with a vertical cylinder axis 4.
  • This magnet wheel cylinder 3 is rotatably supported in bearings 23 by means of stub axles 24 and can be rotated at adjustable speeds by means of a drive (not shown), for example by means of an electromotive drive.
  • This The pole wheel cylinder 3 has pole strips 5 which extend parallel to the cylinder axis 4 on its circumference. The polarity of these pole strips 5 alternates around the circumference, so that the field line images 25 of alternating polarity shown schematically in FIG. 4 are formed by these pole strips.
  • a feed pipe 11 for the batch 1 is arranged above this pole wheel cylinder 3.
  • the batch 1 consists of the different non-ferrous metals 6 and 7, which have different conductivity.
  • the magnet wheel cylinder 3 is surrounded by a protective jacket 13 made of magnetically permeable material, and this protective jacket 13 is closed at the top by a guide cone 14.
  • the guide cone 14 extends into the feed pipe 11, which has a larger diameter than the protective cylinder 13.
  • a collecting container 12 for the various non-ferrous metals separated from one another is arranged under the magnet wheel cylinder 3.
  • This collecting container 12 has a central cylindrical container 9, the diameter of which is larger than the diameter of the protective cylinder 13.
  • an annular container 10 is arranged around this cylindrical container.
  • the two containers are separated from one another by an annular partition wall 26.
  • the number of annular containers plus the middle container corresponds to the number of non-ferrous metals 6, 7 present in batch 1.
  • it is a batch 1 with two different non-ferrous metals 6, 7, so that in addition to the central cylinder only an annular container 10 is provided.
  • the number of circular containers and the geometric arrangement can be modified in accordance with the number and type of non-ferrous metals in batch 1.
  • the batch 1 is passed around via the feed 11 on the magnet wheel cylinder 3 in the form of a cylindrical jacket flow.
  • a large throughput is possible by feeding around the entire circumference of the magnet wheel cylinder.
  • the pole wheel cylinder 3 consists of pole disks 15, 16 arranged one above the other. These pole disks 15, 16 have different polarities in the axial direction, and these pole disks, as shown in particular in FIGS. 3 and 4, are formed in a string shape. As a result of this star-shaped design, the pole disks 15, 16 have radially projecting sections 17, 18. As shown in FIG. 4 in particular, these radially projecting sections 17, 18 are offset in the circumferential direction in such a way that projections of the same polarity are aligned with one another. The projections of the same polarity each carry a pole strip which extends in the axial direction and are connected to one another by these pole strips.
  • the parts to be separated can be acted on differently.
  • the required frequency can be changed by the angular velocity and the number of poles of the rotating magnet wheel cylinder.
  • the frequency can be varied almost as desired, and simple adaptation to the piece sizes to be cut off in each case is possible, for example by adjusting the speed.
  • FIG. 7 shows a further possibility of influencing the process parameters.
  • the induction frequency is changed along the magnet wheel cylinder 3.
  • 3 pole strips 5, 19 are arranged along the pole wheel cylinder, which have a different length.
  • the pole bars 19 are shorter than the pole bars.
  • a corresponding choice of the lengths of the pole strips and the arrangement of this pole strip length can thus generate an effective range with different induction frequencies and thus influence the process parameters.
  • pole strips 5 can be arranged over a circumferential section of the magnet wheel cylinder 3 than in other circumferential regions.
  • the star-shaped pole disks 15, 16 are preferably of symmetrical design. In the illustrated embodiment, four radially projecting sections 17, 18 are provided. But there can also be more. As shown in FIG. 4, the pole disks are designed and arranged in such a way that these pole disks have recesses 26 in the area of the pole bars of different polarity in order to limit the stray fluxes present there.
  • pole disks asymmetrically in such a way that in certain circumferential sections the radially projecting sections 17, 18 are closer together than in other circumferential sections.
  • the pole disks 15, 16 can be permanent magnets.
  • the pole disks 15a, 16a it is also possible for the pole disks 15a, 16a to be poles of electromagnets.
  • the pole disks 15a, 16a carry axially extending hubs 20 which have a smaller diameter than the pole disks 15a, 16a, so that when the pole wheel cylinder 3 is assembled from these pole disks 15a, 16a, there are recesses 21 between these pole disks .
  • These cutouts 21 accommodate round coils 22 that can be fed with an excitation current.

Landscapes

  • Sorting Of Articles (AREA)
  • Processing Of Solid Wastes (AREA)
  • Specific Conveyance Elements (AREA)
EP82112033A 1982-01-05 1982-12-27 Procédé et appareil pour le triage de mélanges conducteurs non-ferromagnétiques Withdrawn EP0083445A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19823200143 DE3200143A1 (de) 1982-01-05 1982-01-05 Verfahren und vorrichtung zum sortieren von leitenden nichtferromagnetischen gemengen
DE3200143 1982-01-05

Publications (1)

Publication Number Publication Date
EP0083445A1 true EP0083445A1 (fr) 1983-07-13

Family

ID=6152639

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82112033A Withdrawn EP0083445A1 (fr) 1982-01-05 1982-12-27 Procédé et appareil pour le triage de mélanges conducteurs non-ferromagnétiques

Country Status (3)

Country Link
EP (1) EP0083445A1 (fr)
JP (1) JPS58131144A (fr)
DE (1) DE3200143A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2153707A (en) * 1984-02-10 1985-08-29 Frederick Thomas Barwell Electromagnetic rotary separator
GB2183508A (en) * 1985-12-10 1987-06-10 Gec Elliott Mech Handling Magnetic separators
EP0305881A1 (fr) * 1987-09-04 1989-03-08 Huron Valley Steel Corporation Méthode et appareil pour trier des pièces de métal non ferreux
EP0812624A1 (fr) * 1996-06-12 1997-12-17 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Séparateur à courants de Foucault
US5931308A (en) * 1997-07-30 1999-08-03 Huron Valley Steel Corporation Eddy current separator and separation method having improved efficiency
WO2006111636A1 (fr) * 2005-04-21 2006-10-26 Magpro Separateur magnetique d’elements conducteurs en metal non ferreux et installation de tri selectif comprenant de tels separateurs
CN105944830A (zh) * 2016-07-11 2016-09-21 成都华矿科技有限公司 一种磁选机

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3416504A1 (de) * 1984-05-04 1985-11-07 Wagner Kg, Fabrik Elektromagnetischer Apparate, 8941 Heimertingen Verfahren und vorrichtung zum trennen von gemengen von stoffen mit unterschiedlichen elektrischen leitfaehigkeiten
DE4217480C2 (de) * 1992-05-22 1995-03-23 Noell Abfall & Energietech Verfahren und Vorrichtung zur Sortierung von Gewerbemüll
DE4317640A1 (de) * 1993-05-27 1994-12-08 Nsm Magnettechnik Gmbh Einrichtung zur Lagebeeinflussung von Teilen aus elektrisch leitenden, nicht-ferromagnetischen Materialien, insbesondere zum Transportieren und/oder Sortieren von solchen Teilen
DE19629110C1 (de) * 1996-07-19 1997-03-06 Wester Tonbergbau Kg Verfahren und Vorrichtung zum Trennen von feinteiligen Stoffgemischen mittels eines magnetischen Feldes
AT518730B1 (de) * 2016-06-08 2019-03-15 Univ Graz Tech Vorrichtung zum Trennen von Teilchen unterschiedlicher Leitfähigkeit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE297585C (fr) *
DE2059655A1 (de) * 1969-12-08 1971-06-09 Univ Vanderbilt Verfahren und Anordnung zur Trennung von Teilchen mit unterschiedlichen elektrischen Leitfaehigkeiten
DE2129002A1 (de) * 1970-06-15 1971-12-23 Univ Vanderbilt Verfahren und Vorrichtung zur Trennung von Teilchen mit unterschiedlichen elektrischen Leitfähigkeiten

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE297585C (fr) *
DE2059655A1 (de) * 1969-12-08 1971-06-09 Univ Vanderbilt Verfahren und Anordnung zur Trennung von Teilchen mit unterschiedlichen elektrischen Leitfaehigkeiten
DE2129002A1 (de) * 1970-06-15 1971-12-23 Univ Vanderbilt Verfahren und Vorrichtung zur Trennung von Teilchen mit unterschiedlichen elektrischen Leitfähigkeiten

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2153707A (en) * 1984-02-10 1985-08-29 Frederick Thomas Barwell Electromagnetic rotary separator
GB2183508A (en) * 1985-12-10 1987-06-10 Gec Elliott Mech Handling Magnetic separators
GB2183508B (en) * 1985-12-10 1990-01-24 Gec Elliott Mech Handling Magnetic separators
EP0305881A1 (fr) * 1987-09-04 1989-03-08 Huron Valley Steel Corporation Méthode et appareil pour trier des pièces de métal non ferreux
EP0812624A1 (fr) * 1996-06-12 1997-12-17 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Séparateur à courants de Foucault
NL1003325C2 (nl) * 1996-06-12 1997-12-17 Tno Inrichting voor het door middel van wervelstromen (Eddy-currents) uit een deeltjesstroom afscheiden van non-ferrometalen c.q. het op samenstelling, grootte, vorm of dichtheid van elkaar scheiden van deeltjes uit non-ferrometaal.
US5931308A (en) * 1997-07-30 1999-08-03 Huron Valley Steel Corporation Eddy current separator and separation method having improved efficiency
WO2006111636A1 (fr) * 2005-04-21 2006-10-26 Magpro Separateur magnetique d’elements conducteurs en metal non ferreux et installation de tri selectif comprenant de tels separateurs
FR2884735A1 (fr) * 2005-04-21 2006-10-27 Magpro Sarl Separateur magnetique d'elements conducteurs en metal non ferreux et installation de tri selectif comprenant de tels separateurs
CN105944830A (zh) * 2016-07-11 2016-09-21 成都华矿科技有限公司 一种磁选机
CN105944830B (zh) * 2016-07-11 2018-08-03 成都华矿科技有限公司 一种磁选机

Also Published As

Publication number Publication date
DE3200143A1 (de) 1983-09-22
JPS58131144A (ja) 1983-08-04

Similar Documents

Publication Publication Date Title
EP0898496B1 (fr) Procede et dispositif de separation de particules avec un systeme magnetique rotatif
DE3906422C1 (fr)
DE2653373C2 (de) Vorrichtung zum Sortieren elektrisch leitfähiger Materialstücke aus einem Gemengestrom
DE1257701B (de) Trommelmagnetscheider
EP0083445A1 (fr) Procédé et appareil pour le triage de mélanges conducteurs non-ferromagnétiques
DE3416504A1 (de) Verfahren und vorrichtung zum trennen von gemengen von stoffen mit unterschiedlichen elektrischen leitfaehigkeiten
DE2606408C2 (de) Starkfeldmagnetscheider zur Naßaufbereitung magnetisierbarer Feststoffteilchen
DE102009056717A1 (de) Vorrichtung und Verfahren zur Trennung von unterschiedlich elektrisch leitfähigen Partikeln
DE69006710T2 (de) Magnetscheider für Nichteisenmetall-Teilchen oder -Stücke.
WO2014094989A1 (fr) Dispositif d'enroulement pour matériau à enrouler en forme de corde
DE19737161A1 (de) Verfahren, Anlage und Vorrichtungen zum trockenen Abtrennen von Metallen aus zerkleinerten Schüttgütern, insbesondere Schrottgemischen
EP0550867B1 (fr) Appareil pour la séparation de métaux non-magnétisables à partir d'un mélange de solides
DE2509638A1 (de) Abtrennungsverfahren und vorrichtung zur durchfuehrung
DE4223812C1 (fr)
DE4317640A1 (de) Einrichtung zur Lagebeeinflussung von Teilen aus elektrisch leitenden, nicht-ferromagnetischen Materialien, insbesondere zum Transportieren und/oder Sortieren von solchen Teilen
DE19634802A1 (de) Vorrichtung und Verfahren zur Teilchenseparation mit einem rotierenden Magnetsystem
AT520710A1 (de) Magnetscheider
DE3810715C2 (fr)
DE2832275C2 (de) Magnetscheider
DE4238988C2 (de) Vorrichtung zum Abtrennen von Metallen aus einem durch ein Magnetfeld geführten Gemisch
DE2749661A1 (de) Magnetscheider
DE2611264B2 (de) Vorrichtung zum Trennen von nichtmagnetischen, jedoch elektrisch leitfähigen Teilchen aus einem Gemisch oder Gemenge
DE442643C (de) Magnettrommelscheider
DE685772C (de) Magnet-Trommelscheider
DE4203446C2 (de) Einrichtung zum Abscheiden von ferromagnetischen Teilchen aus einer von diesen zu reinigenden Suspension

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19831222

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19850712

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BARTH, ERWIN