EP0082764A1 - Circuit frigorifique à motocompresseur, et pompe à chaleur munie d'un tel circuit - Google Patents

Circuit frigorifique à motocompresseur, et pompe à chaleur munie d'un tel circuit Download PDF

Info

Publication number
EP0082764A1
EP0082764A1 EP82402289A EP82402289A EP0082764A1 EP 0082764 A1 EP0082764 A1 EP 0082764A1 EP 82402289 A EP82402289 A EP 82402289A EP 82402289 A EP82402289 A EP 82402289A EP 0082764 A1 EP0082764 A1 EP 0082764A1
Authority
EP
European Patent Office
Prior art keywords
evaporator
circuit
compressor
heat exchanger
pump according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP82402289A
Other languages
German (de)
English (en)
Inventor
Christian Bianic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thomson-Brandt SA
Original Assignee
Thomson-Brandt SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson-Brandt SA filed Critical Thomson-Brandt SA
Publication of EP0082764A1 publication Critical patent/EP0082764A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0016Ejectors for creating an oil recirculation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/071Compressor mounted in a housing in which a condenser is integrated

Definitions

  • the present invention relates to a refrigeration circuit with a compressor, and a heat pump provided with such a refrigeration circuit.
  • Refrigerant circuits with a motor-compressor usually comprise in a closed circuit, mainly, a motor-compressor, a condenser and an evaporator.
  • the structure and operation of wet type evaporator circuits are different from that of dry type evaporator circuits.
  • the evaporator is directly and partially filled with refrigerant in the form of a liquid, and this liquid refrigerant evaporates there to give cold.
  • a wet type evaporator refrigeration circuit generally comprises a large capacity evaporator with a large heat exchange surface, and a means which ensures the passage of the liquid refrigerant in the evaporator and the adjustment of the filling level of the latter in liquid refrigerant.
  • This means is usually constituted by a valve of the float type for example.
  • the evaporator is supplied with refrigerant in the form of mist or fine droplets.
  • a dry-type evaporator refrigeration circuit frequently includes an anti-blow bottle placed between this evaporator and the motor-compressor.
  • This anti-blow bottle although it increases the price of the circuit prevents the residual liquid refrigerant from entering directly into the motor-compressor and causing mechanical damage.
  • the gaseous refrigerant discharged by the motor-compressor usually carries with it lubricant intended for the latter. This wandering lubricant is often trapped in the low pressure part of the circuit, especially in the downstream part of the evaporator and stays there.
  • this refrigeration circuit is associated, through a heat exchanger, with a circuit of heat transfer liquid.
  • the refrigeration circuit of the heat pump is in this case either organized in its arrangement in two parts, one remaining inside the premises mainly comprising a motor-compressor, a condenser and a heat exchanger and the other installed at the exterior of these premises mainly comprising an evaporator is organized in a compact arrangement, in a single block, suitable for being installed outside the premises.
  • the refrigeration circuit of such a heat pump must have safety, resistance to mechanical and weathering characteristics, acoustics, efficiency, bulk, etc.
  • the present invention makes it possible to produce an improved refrigeration circuit with an evaporator of the dry, economical type which has excellent characteristics in its application to a heat pump and in particular to that contributing to the heating of premises, and does not have the drawbacks mentioned in of the previous paragraphs.
  • the invention also relates to the production of an economical, solid heat pump, effective in its contribution to space heating.
  • the refrigerant circuit with a motor-compressor having in closed circuit mainly a condenser, an expansion valve, a dry-type evaporator, a suction manifold disposed between this evaporator and the motor-compressor, comprises in the interval between the regulator and the compressor, a connection pipe, a vertical composite suction manifold and an evaporator divided into several vertically spaced sections, mounted in parallel between this composite suction manifold and this pressure reducer, this vertical composite suction manifold also playing its role as an evaporator collector, the role of an anti-blow bottle and that of a pump-sprayer providing a return to the motor-compressor and without damage to the latter, lubricant and liquid refrigerant trapped in the circuit.
  • a refrigeration circuit 1 produced according to the invention comprises in closed circuit mainly a motor-compressor 2, a condenser 3, a capillary 4 serving as an expansion valve and an evaporator of the dry type 5.
  • the gaseous refrigerant is compressed by the motor-compressor 2, discharged into the condenser 3 where the refrigerant condenses in the form of liquid and gives off heat.
  • This liquid refrigerant passes through a pressure reducer constituted by a capillary 4, expands in the form of mist or fine droplets in the evaporator 5 where it evaporates by absorbing heat in other words produces cold before returning to the motor-compressor 2 under the suction action of the latter. Practically the residual liquid refrigerant remaining in the evaporator 5 is insignificant or weak.
  • the evaporator 5 is thus called the dry type evaporator.
  • a vertical composite suction manifold 6 is mounted in this refrigeration circuit 1, between the motor-compressor 2 and the evaporator 5.
  • the evaporator 5 is divided into several vertically spaced sections, mounted in parallel between the regulator 4 and the vertical composite manifold suction 6.
  • the outlet ends of these sections lead respectively to different points of the height of this composite suction manifold 6.
  • the number of these sections is greater than or equal to two.
  • the evaporator 5 comprises three superimposed sections 5a, 5b, 5c mounted in parallel. The capacity of the evaporator and consequently that of its superimposed sections mounted in parallel are determined so that in the operation of the refrigeration circuit 1, the residual liquid refrigerant only fills one of these sections of the evaporator 5 as much as possible. , the lowest section 5a, and the lower part of the composite manifold 6.
  • the vertical composite manifold 6 plays, in addition to its proper role as an intake manifold, the role of an anti-blow bottle and that of a sprayer-pump producing without damage to the compressor 2, the return to the latter of the lubricant and residual liquid refrigerant trapped in the circuit.
  • the gaseous refrigerant expanded in the evaporator 5 borrows the vertical suction manifold 6 to return to the motor-compressor 2, through a connection pipe 7.
  • the lubricant part of the compressor 2, driven by the coolant stream, and the residual liquid coolant tend, at the outlet of the evaporator 5, to separate from the gaseous coolant and fall down into the lower part 8 of the manifold vertical 6.
  • the manifold 6 thus allows the gaseous refrigerant to get rid of the liquid refrigerant beforehand and to return alone in gaseous form to the motor compressor 2. Mechanical damage liable to be caused by a liquid penetrating into the compressor are thereby avoided.
  • the vertical composite suction manifold 6 thus plays, apart from its proper role of suction manifold, also the role of an anti-blow bottle and advantageously replaces it.
  • the vertical composite manifold 6 comprises on the one hand an elongated body 9 having a cross section larger than that of the connecting pipe 7, closed at its lower end 8, narrowed at its upper end 10 at the level of its connection to this connecting pipe 7 and in communication at several points on its side wall with the evaporator 5 and on the other hand within the enclosure of this body 9 and over almost the entire length of the latter, a capillary 11, the lower end of which is immersed in the mass of lubricant and liquid coolant trapped in the lower end 8 of the manifold 6 and the upper end disposed coaxially in the narrowed portion 10 of the upper end of this manifold.
  • the narrowed part 10 of the upper end of the manifold 6 and the upper end of the capillary 11 create during the passage of the gaseous refrigerant called by the motor compressor 2, a venturi which sucks in lubricant and liquid refrigerant, trapped in the part 8 of the collector 6, pulverizes them and mixes them with the gaseous refrigerant stream returning to the compressor 2.
  • This return of sprayed liquid refrigerant and lubricant does not damage the compressor 2 but also eliminates the defect or insufficient lubrication of the compressor encountered in the known refrigeration circuits.
  • the refrigeration circuit 1 comprises a condenser 3 which form with an independent heat transfer fluid circuit 14, a heat exchanger 13 indicated by a rectangle in broken lines.
  • the heat exchanger 13 is according to the invention preferably constituted by two separate coaxial circuits 3 and 14 of two different fluids, one of which is the hot compressed refrigerant discharged by the compressor 2 and the other is a heat transfer fluid consisting of l for example.
  • the heat transfer fluid circuit 14 is constituted (FIG. 4) by a pipe 15 mounted coaxially in a pipe 16 forming the condenser 3.
  • the pipe 15 in which the heat transfer fluid circulates is, in this exchanger 13, completely surrounded by hot compressed refrigerant evolving in the pipe 16 of the condenser 3.
  • the heat exchange between these two fluids can thus be done in an efficient manner. This efficiency is enhanced when the stream 17 of heat transfer fluid and the stream of hot compressed refrigerant indicated by the arrows 18 are directed in opposite directions.
  • the exchanger 13 then constitutes a counter-current exchanger.
  • the heat transfer fluid circuit 14 is connected, through two valves 19 and 20, by its two ends to the inlet and to the outlet of a valve 21 of a space heating circuit. 22.
  • the heating circuit 22 comprises, for example, a known heating plant 23 which sends heated heat transfer fluid, via supply pipes 24 and return pipes 25 to a network of radiators 26.
  • the heat transfer fluid coming from the network of radiators 26 can pass through both the heat exchanger 13 of the heat pump 12 and the heating plant 23 to have a double intake of calories, before returning to the radiators 26.
  • the heat pump 12 can provide heating only and when the heat pump 12 is at rest, the central unit 23 can also provide heating only.
  • the circuit of the heat pump exchanger 13 can be isolated by closing the valves 19 and 20, the valve 21 then being open to allow the circuit to heating 22 to operate normally with the central 23.
  • Circulators 27 and 28 can be mounted on the circuits of the exchanger 13 and heating 22 to accelerate the circulation of the heat transfer fluid.
  • the heat pump 12 preferably comprises two modular elements 47, 48 either mountable in a two-part arrangement ( Figure 6) or assembled in a compact arrangement, in a single block ( Figure 5).
  • the modular element 47 comprises the compressor 2 and the exchanger 13, mounted on a thermally insulating base 34 and hermetically closed by a thermally insulating bell 43.
  • the exchanger 13 is preferably arranged around the compressor 2 and applied against its carcass. According to this structure, all the heat coming from the mechanical work of the motor-compressor 2 and from the compression of gaseous refrigerant is kept captive in the insulating enclosure defined by these base 34 and bell 43 to increase the potential for heat exchange with the fluid. coolant circulating in the heat exchanger 13.
  • the modular element 48 comprises the evaporator 5 forming a perforated tubular wall, protected at its external lateral surface by a protective grid or fins 42, a fan 30 arranged in the upper part of the evaporator 5 to generate a current of air 31, 32 which passes through this evaporator so as to promote an intense heat exchange between the air and the refrigerant stream in the evaporator 5.
  • the evaporator 5 is heated by the air stream 31, 32.
  • the refrigerant current in the evaporator 5 draws heat from this air to evaporate.
  • the air is moved laterally along the arrows 31 and discharged axially upwards according to the arrows 32 or in the opposite direction to these arrows 31 and 32.
  • the fan 30 is protected by a grid 39 which closes the upper end of the evaporator 5.
  • This evaporator 5 rests on a bottom plate 37.
  • the modular elements 47 and 48 distant from each other and forming part of the same refrigeration circuit 1 are interconnected in a known manner by pipes not shown, intended for the circulation of the refrigerant.
  • the heat transfer fluid circuit 14 of the exchanger 13 of the modular element 47 is also connected in a known manner to the space heating circuit 22 by pipes not shown.
  • the modular element 48 is fixed on top of the modular element 47 (FIG. 5).
  • the modular elements 47 and 48 are interconnected by pipes not shown in the common refrigeration circuit 1 while the heat transfer fluid circuit 14 of the heat exchanger 13 of the modular element 47 is connected to the heating circuit 22 by pipes not shown.
  • connection of these pipes can be advantageously carried out with quick couplers of known type not shown.
  • the runoff which, entering the modular element 48 collects on the bottom plate 37 of the latter is evacuated by means of grooves not shown, formed in the upper surface of this plate 37. These grooves are oriented so as to bring the run-off water either to the peripheral edge of the bottom plate 37 to evacuate it by spillage or to a passage hole 41 opening into a discharge pipe 46 formed in the thickness of the vertical wall of the insulating bell 43 of the modular element 47.
  • the mechanical fixing connection between the modular elements 47 and 48 is obtained according to a known technique not described and with known fixing means not shown.
  • the evaporator 5 is heated by a stream of liquid.
  • This heating liquid can be river, borehole or natural water, recovered waste water, or a heating liquid forming part of a closed underground circuit.
  • the evaporator 5 and the heating liquid circuit constitutes a heat exchanger 44 produced in a similar manner to that of the heat exchanger 13 with, for example, pipes similar to those shown in FIG. 4, mounted coaxially with one another. the other.
  • the central pipe 51 intended for the circulation of the expanded refrigerant constitutes an evaporator circuit 51 while the external pipe 52, reserved for the flow of the heating liquid, constitutes a heating circuit 52.
  • the heat pump 12 also comprises two modular elements 49, 50 which can be mounted in a two-part arrangement (FIG. 8) or which can be assembled in a compact arrangement, in a single block or in one piece (FIG. 7).
  • the modular element 49 comprises a structure similar or preferably identical to that of the modular element 47 in FIGS. 5 and 6, namely the motor-compressor 2, the heat exchanger 13, the insulating base 34 and the insulating bell 43.
  • the modular element 50 comprises a heat exchanger 44 mounted on a base plate 46 and protected by a bell 45.
  • the protective bell 45 can have either an openwork and non-thermally insulating wall or a solid and thermally insulating wall.
  • the protective cover 45 is formed from a solid and thermally insulating wall, only the heating fluid constitutes the heat source for the refrigerant.
  • the protective cover 45 is perforated, the heat of the surrounding medium is added to the heating fluid to constitute the heat sources to the refrigerant of the evaporator 5 of the refrigeration circuit 1.
  • Grooves not shown are also formed in the base plate 46 for discharging the runoff entering the modular element 50.
  • the heat pump 12 thus constructed is solid and can resist mechanical and weathering attack while achieving excellent performance in its operation, and remaining economical in its manufacture by the simplicity of its structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

Circuit frigorifique à motocompresseur comprenant un collecteur composite vertical d'aspiration (6) jouant en plus de son rôle propre de collecteur d'aspiration, le rôle d'une bouteille anti-coup et celui d'un pulvérisateur-pompe réalisant sans dommages au motocompresseur (2) le retour à ce dernier, du lubrifiant et du réfrigérant liquide piégés dans le circuit et un évaporateur (5) divisé en plusieurs sections verticalement espacées, montées en parallèle entre ce collecteur (6) et le détendeur. Ce collecteur composite vertical d'aspiration (6) est constitué par un corps allongé (9) pourvu dans son enceinte d'un capillaire (11) dont le bout inférieur est immergé dans la masse de réfrigérant liquide et de lubrifiant piégés, et le bout supérieur forme avec la partie rétrécie (10) du corps allongé (9) un venturi, qui durant le passage du réfrigérant gazeux appelé par le motocompresseurs (2), aspire et pulvérise les lubrifiant et réfrigérant liquide piéges. Application à une pompe à chaleur dans laquelle le condenseur forme avec un circuit independant de fluide caloporteur, un échangeur thermique.

Description

  • La présente invention concerne un circuit frigorifique à motocompresseur, et une pompe à chaleur munie d'un tel circuit frigorifique.
  • Les circuits frigorifiques à motocompresseur comprennent habituellement en circuit fermé, principalement, un motocompresseur, un condenseur et un évaporateur. Cependant dans ces circuits frigorifiques à motocompresseur on distingue ceux qui ont un évaporateur du type humide et ceux qui sont pourvus d'un évaporateur du type à sec. La structure et le fonctionnement des circuits à évaporateur du type humide sont différents de ceux des circuits à évaporateur du type à sec. Dans un circuit frigorifique à évaporateur du type humide, l'évaporateur est directement et partiellement rempli de réfrigérant sous forme de liquide, et ce réfrigérant liquide s'y évapore pour donner du froid. En plus de la température du milieu environnant, la vitesse d'évaporation du réfrigérant liquide dans cet évaporateur de type humide dépend en particulier de l'importance de la surface développée par cet évaporateur. Ainsi un circuit frigorifique à évaporateur du type humide comprend généralement un évaporateur à grande capacité et à grande surface d'échange thermique, et un moyen qui assure le passage du réfrigérant liquide dans l'évaporateur et le réglage du niveau de remplissage de ce dernier en réfrigérant liquide. Ce moyen est habituellement constitué par un robinet du type à flotteur par exemple. Dans un circuit frigorifique à évaporateur du type à sec, l'évaporateur est alimenté en réfrigérant sous forme de brouillard ou fines gouttelettes. Ce réfrigérant sous forme de brouillard entrant en contact avec la paroi de l'évaporateur s'évapore rapidement et produit du froid. Il en résulte que dans un circuit frigorifique à évaporateur du type à sec, l'évaporateur a habituellement une capacité et une surface d'échange thermique relativement moyennes, et que le réfrigérant résiduel sous forme de liquide qui se trouve dans cet évaporateur est généralement en quantité insignifiante ou faible.
  • Un circuit frigorifique à évaporateur du type à sec comprend fréquemment une bouteille anti-coup disposée entre cet évaporateur et le motocompresseur. Cette bouteille anti-coup bien qu'elle augmente le prix du circuit empêche le réfrigérant liquide résiduel d'entrer directement dans le motocompresseur et d'y provoquer des dommages mécaniques.
  • Dans un circuit frigorifique, le réfrigérant gazeux refoulé par le motocompresseur entraîne habituellement avec lui du lubrifiant destiné à ce dernier. Ce lubrifiant vagabond est souvent piégé dans la partie basse pression du circuit, notamment dans celle en aval de l'évaporateur et y reste.
  • Il en résulte qu'après un certain temps de fonctionnement, le motocompresseur devient insuffisamment lubrifié.
  • Dans une application à une pompe à chaleur notamment celle destinée au chauffage de locaux, ce circuit frigorifique est associé, à travers un échangeur thermique, à un circuit de liquide caloporteur. Le circuit frigorifique de la pompe à chaleur est dans ce cas soit organisé dans sa disposition en deux parties, l'une restant à l'intérieur des locaux comprenant principalement un motocompresseur, un condenseur et un échangeur thermique et l'autre installée à l'extérieur de ces locaux comprenant principalement un évaporateur soit organisé suivant une disposition compacte, en un seul bloc, propre à être installé à l'extérieur des locaux. Le circuit frigorifique d'une telle pompe à chaleur doit présenter des caractéristiques de sécurité, de résistance aux agressions mécaniques et d'intempéries, d'acoustique, d'efficacité, d'encombrement etc..
  • La présente invention permet de réaliser un circuit frigorifique perfectionné à évaporateur du type à sec, économique qui présente d'excellentes caractéristiques dans son application à une pompe à chaleur et notamment à celle contribuant au chauffage des locaux, et ne comporte pas des inconvénients rappelés dans des paragraphes précédents. L'invention a également pour objet la réalisation d'une pompe à chaleur économique, solide, efficace dans sa contribution à un chauffage des locaux.
  • Selon l'invention, le circuit frigorifique à motocompresseur ayant en circuit fermé, principalement un condenseur, un détendeur, un évaporateur du type à sec, un collecteur d'aspiration disposé entre cet évaporateur et le motocompresseur, comprend dans l'intervalle entre le détendeur et le motocompresseur, une conduite de liaison, un collecteur composite vertical d'aspiration et un évaporateur divisé en plusieurs sections verticalement espacées, montées en parallèle entre ce collecteur composite d'aspiration et ce détendeur, ce collecteur composite vertical d'aspiration jouant en plus de son rôle de collecteur d'évaporateur, le rôle d'une bouteille anti-coup et celui d'un pulvérisateur-pompe réalisant un retour au motocompresseur et sans dommages à ce dernier, du lubrifiant et du réfrigérant liquide piégés dans le circuit.
  • Pour mieux faire comprendre l'invention, on décrit ci-après un certain nombre d'exemples de réalisation, illustrés par des dessins ci-annexés dont
    • - la figure 1 représente une vue schématique d'un circuit frigorifique à évaporateur du type à sec réalisé selon l'invention,
    • - la figure 2 représente une vue schématique d'une partie du circuit de la figure 1,
    • - la figure 3 représente une vue schématique du circuit frigorifique de la figure 1 appliqué à une pompe à chaleur réalisée selon l'invention,
    • - la figure 4 représente une vue schématique et partielle d'une coupe longitudinale d'une partie de l'échangeur thermique de la pompe à chaleur indiquée dans la figure 3,
    • - la figure 5 représente une vue schématique et partielle d'une coupe verticale de la pompe à chaleur indiquée dans la figure 3, dans sa disposition compacte en un seul bloc,
    • - la figure 6 représente à une autre échelle une vue schématique et partielle d'une coupe verticale de la pompe à chaleur indiquée dans la figure 3, dans sa disposition en deux parties,
    • - la figure 7 représente à une autre échelle une vue schématique et partielle d'une coupe verticale d'une variante de réalisation de la pompe à chaleur indiquée dans la figure 3, dans sa disposition compacte, en un seul bloc, et
    • - la figure 8 représente à une autre échelle une vue schématique et partielle d'une coupe verticale de la variante de réalisation de la figure 7, dans sa disposition en deux parties.
  • Un circuit frigorifique 1 réalisé selon l'invention comprend en circuit fermé principalement un motocompresseur 2, un condenseur 3, un capillaire 4 servant de détendeur et un évaporateur du type à sec 5.
  • Dans ce circuit frigorifique, le réfrigérant gazeux est comprimé par le motocompresseur 2, refoulé dans le condenseur 3 où le réfrigérant se condense sous forme de liquide et cède de la chaleur.
  • Ce réfrigérant liquide traverse un détendeur constitué par un capillaire 4, se détend sous forme de brouillard ou fines gouttelettes dans l'évaporateur 5 où il s'évapore en absorbant de la chaleur autrement dit produit du froid avant de retourner au motocompresseur 2 sous l'action d'aspiration de ce dernier. Pratiquement le réfrigérant liquide résiduel restant dans l'évaporateur 5 est insignifiant ou faible. L'évaporateur 5 est ainsi appelé évaporateur du type à sec.
  • Selon une caractéristique importante de l'invention, un collecteur composite vertical d'aspiration 6 est monté dans ce circuit frigorifique 1, entre le motocompresseur 2 et l'évaporateur 5.
  • Selon une autre caractéristique de l'invention, l'évaporateur 5 est divisé en plusieurs sections verticalement espacées, montées en parallèle entre le détendeur 4 et le collecteur composite vertical d'aspiration 6. Les extrémités de sortie de ces sections débouchent respectivement sur différents points de la hauteur de ce collecteur composite d'aspiration 6. Le nombre de ces sections est supérieur ou égal à deux. Dans l'exemple illustré (figures 1 et 2) l'évaporateur 5 comprend trois sections superposées 5a, 5b, 5c montées en parallèle. La capacité de l'évaporateur et par conséquent celle de ses sections superposées et montées en parallèle sont déterminées de manière que dans le fonctionnement du circuit frigorifique 1, le réfrigérant liquide résiduel ne remplisse qu'au maximum une de ces sections de l'évaporateur 5, la section la plus basse 5a, et la partie inférieure du collecteur composite 6. De ce fait, une importante partie de l'évaporateur 5 reste constamment disponible pour la réception du brouillard de réfrigérant et pour l'évaporation de ce dernier. Le risque d'un retour du réfrigérant liquide dans le motocompresseur est ainsi efficacement évité. Un tel risque peut se produire plus facilement dans un circuit frigorifique à évaporateur du type humide dont une grande partie est remplie justement de réfrigérant sous forme de liquide.
  • Le collecteur composite vertical 6 joue en plus de son rôle propre de collecteur d'aspiration, le rôle d'une bouteille anti-coup et celui d'un pulvérisateur-pompe réalisant sans dommage au motocompresseur 2, le retour à ce dernier, du lubrifiant et du réfrigérant liquide résiduel piégés dans le circuit.
  • En effet, le réfrigérant gazeux détendu dans l'évaporateur 5, emprunte le collecteur vertical d'aspiration 6 pour retourner au motocompresseur 2, à travers une conduite de liaison 7.
  • La partie de lubrifiant du motocompresseur 2, entraînée par le courant de réfrigérant, et le réfrigérant liquide résiduel tendent, à la sortie de l'évaporateur 5, à se séparer du réfrigérant gazeux et à tomber vers le bas dans la partie inférieure 8 du collecteur vertical 6. Le collecteur 6 permet ainsi au réfrigérant gazeux de se débarrasser préalablement de réfrigérant liquide et de retourner seul sous forme gazeuse au motocompresseur 2. Les dommages mécaniques risquant d'être provoqués par un liquide pénétrant dans le compresseur sont de ce fait évités. Le collecteur composite vertical d'aspiration 6 joue ainsi en dehors de son rôle propre de collecteur d'aspiration, également le rôle d'une bouteille anti-coup et la remplace avantageusement.
  • Selon l'invention, le collecteur composite vertical 6 comprend d'une part un corps allongé 9 ayant une section transversale plus grande que celle de la conduite de liaison 7, fermé à son extrémité inférieure 8, rétréci à son extrémité supérieure 10 au niveau de son raccordement à cette conduite de liaison 7 et en communication en plusieurs points de sa paroi latérale avec l'évaporateur 5 et d'autre part dans l'enceinte de ce corps 9 et sur la presque totalité de la longueur de ce dernier, un capillaire 11 dont le bout inférieur est immergé dans la masse de lubrifiant et de réfrigérant liquide piégés dans l'extrémité inférieure 8 du collecteur 6 et le bout supérieur disposé coaxialement dans la partie rétrécie 10 de l'extrémité supérieure de ce collecteur. La partie rétrécie 10 de l'extrémité supérieure du collecteur 6 et le bout supérieur du capillaire 11 créent durant le passage du réfrigérant gazeux appelé par le motocompresseur 2, un venturi qui aspire du lubrifiant et du réfrigérant liquide, piégés dans la partie 8 du collecteur 6, les pulvérise et les mélange au courant de réfrigérant gazeux retournant au motocompresseur 2. Ce retour de réfrigérant liquide et de lubrifiant pulvérisés n'endommage pas le motocompresseur 2 mais élimine par ailleurs le défaut ou l'insuffisance de lubrification du motocompresseur rencontré dans les circuits frigorifiques connues.
  • Dans un circuit frigorifique à évaporateur du type humide, l'utilisation d'un tel pulvérisateur-pompe pour évacuer du réfrigérant liquide et du lubrifiant piégé n'est pratiquement pas envisageable étant donné que l'évaporateur de ce type est prévu justement pour être directement alimenté en réfrigérant sous forme de liquide dont l'évaporation produit du froid.
  • Dans son application à une pompe à chaleur 12 représentée à la figure 5 et indiquée par un rectangle en traits discontinus dans la figure 3, le circuit frigorifique 1 comprend un condenseur 3 qui forme avec un circuit indépendant de fluide caloporteur 14, un échangeur thermique 13 indiqué par un rectangle en traits discontinus. L'échangeur thermique 13 est selon l'invention constitué de préférence par deux circuits coaxiaux distincts 3 et 14 de deux fluides différents dont l'un est le réfrigérant comprimé chaud refoulé par le motocompresseur 2 et l'autre est un fluide caloporteur constitué de l'eau par exemple. Le circuit de fluide caloporteur 14 est constitué (figure 4) par une canalisation 15 montée coaxialement dans une conduite 16 formant le condenseur 3. La canalisation 15 dans laquelle circule le fluide caloporteur est, dans cet échangeur 13, entourée complètement par du réfrigérant comprimé chaud évoluant dans la conduite 16 du condenseur 3. L'échange thermique entre ces deux fluides peut ainsi se faire d'une manière efficace. Cette efficacité est renforcée quand le courant 17 de fluide caloporteur et le courant de réfrigérant comprimé chaud indiqué par les flèches 18 se dirigent dans des direction opposés. L'échangeur 13 constitue alors un échangeur à contre courants.
  • Dans une contribution à un chauffage des locaux le circuit de fluide caloporteur 14 est raccordé, à travers deux vannes 19 et 20, par ses deux extrémités à l'entrée et à la sortie d'une vanne 21 d'un circuit de chauffage de locaux 22. Le circuit de chauffage 22 comprend par exemple une centrale connue de chauffage 23 qui envoie du fluide caloporteur chauffé, par des canalisations d'aller 24 et de retour 25 à un réseau de radiateurs 26.
  • Quand la vanne 21 est fermée et les deux vannes 19 et 20 sont ouvertes, le fluide caloporteur venant du réseau des radiateurs 26 peut traverser à la fois l'échangeur 13 de la pompe à chaleur 12 et la centrale de chauffage 23 pour avoir un double apport de calories, avant de retourner aux radiateurs 26. Si la centrale 23 est au repos, la pompe à chaleur 12 peut assurer seule le chauffage et quand la pompe à chaleur 12 est au repos, la centrale 23 peut également assurer seule le chauffage. L'isolement du circuit de l'échangeur 13 de la pompe à chaleur peut être réalisé en fermant les vannes 19 et 20, la vanne 21 étant alors ouverte pour permettre au circuit de chauffage 22 de fonctionner normalement avec la centrale 23. Des circulateurs 27 et 28 peuvent être montés sur les circuits de l'échangeur 13 et de chauffage 22 pour accélérer la circulation du fluide caloporteur.
  • La pompe à chaleur 12 comprend de préférence deux éléments modulaires 47, 48 soit montables suivant une disposition en deux parties (figure 6) soit assemblables suivant une disposition compacte, en un seul bloc (figure 5).
  • L'élément modulaire 47 comprend le motocompresseur 2 et l'échangeur 13, montés sur un socle thermiquement isolant 34 et fermés hermétiquement par une cloche thermiquement isolante 43. L'échangeur 13, est de préférence, disposé autour du motocompresseur 2 et appliqué contre sa carcasse. Selon cette structure toute la chaleur provenant du travail mécanique du moto- .compresseur 2 et de la compression de réfrigérant gazeux est maintenue prisonnière dans l'enceinte isolante définie par ces socle 34 et cloche 43 pour augmenter le potentiel d'échange thermique avec le fluide caloporteur circulant dans l'échangeur thermique 13.
  • L'élément modulaire 48 comprend l'évaporateur 5 formant une paroi tubulaire ajourée, protégée au niveau de sa surface latérale extérieure par une grille ou ailettes de protection 42, un ventilateur 30 disposé dans la partie supérieure de l'évaporateur 5 pour engendrer un courant d'air 31, 32 qui traverse cet évaporateur de manière à favoriser un intense échange thermique entre l'air et le courant de réfrigérant dans l'évaporateur 5. L'évaporateur 5 est réchauffé par le courant d'air 31, 32. Le courant de réfrigérant dans l'évaporateur 5 puise de la chaleur dans cet air pour s'évaporer. L'air est déplacé latéralement suivant les flèches 31 et refoulé axialement vers le haut suivant les flèches 32 ou dans le sens inverse de ces flèches 31 et 32. Le ventilateur 30 est protégé par une grille 39 qui ferme l'extrémité supérieure de l'évaporateur 5.
  • L'extrémité inférieure de cet évaporateur 5 repose sur une plaquette de fond 37.
  • Dans une disposition en deux parties représentées schématiquement et partiellement dans la figure 6, les éléments modulaires 47 et 48 distants l'un de l'autre et faisant partie d'un même circuit frigorifique 1 sont reliés entre eux d'une manière connue par des canalisations non représentées, destinées à la circulation du réfrigérant. Le circuit de fluide caloporteur 14 de l'échangeur 13 de l'élément modulaire 47 est également raccordé d'une manière connue, au circuit de chauffage de locaux 22 par des canalisations non représentées.
  • Dans une disposition compacte, en un seul bloc ou monobloc, l'élément modulaire 48 est fixé sur le dessus de l'élément modulaire 47 (figure 5). Comme dans une dispositiôn en deux parties, les éléments modulaires 47 et 48 sont reliés entre eux par des canalisations non représentées du circuit frigorifique commun 1 tandis que le circuit de fluide caloporteur 14 de l'échangeur thermique 13 de l'élément modulaire 47 est raccordé au circuit de chauffage 22 par des canalisations non représentées.
  • Le raccordement de ces canalisations peut être avantageusement réalisé avec des coupleurs rapides de type connu non représentés.
  • Les eaux de ruissellement qui, pénétrant dans l'élément modulaire 48 se rassemblent sur la plaquette de fond 37 de ce dernier sont évacuées au moyen de gorges non représentées, formées dans la surface supérieure de cette plaquette 37. Ces gorges sont orientées de manière à amener les eaux de ruissellement soit jusqu'au bord périphérique de la plaquette de fond 37 pour les évacuer par déversement soit jusqu'à un trou de passage 41 débouchant dans une conduite d'évacuation 46 formée dans l'épaisseur de la paroi verticale de la cloche isolante 43 de l'élément modulaire 47.
  • La liaison mécanique de fixation entre les éléments modulaires 47 et 48 est obtenue selon une technique connue non décrite et avec des moyens de fixation connus non représentés.
  • Dans une variante de réalisation représentée schématiquement et partiellement aux figures 7 et 8, l'évaporateur 5 est réchauffé par un courant de liquide. Ce liquide réchauffeur peut être une eau de rivière, de forage ou d'une nappe naturelle, une eau usée récupérée, ou un liquide réchauffeur faisant partie d'un circuit fermé enterré. L'évaporateur 5 et le circuit de liquide réchauffeur constitue un échangeur de chaleur 44 réalisé de manière analogue à celle de l'échangeur thermique 13 avec par exemple des canalisations semblables à celles représentées à la figure 4, montées coaxialement l'une par rapport à l'autre. Dans cet échangeur de chaleur 44 la canalisation centrale 51 destinée à la circulation du réfrigérant détendu, constitue un circuit évaporateur 51 tandis que la canalisation extérieure 52, réservée à l'écoulement du liquide réchauffeur, constitue un circuit réchauffeur 52.
  • Dans cette variante de réalisation, la pompe à chaleur 12 comprend également deux éléments modulaires 49, 50 montables suivant une disposition en deux parties (figure 8) ou assemblables suivant une disposition compacte, en un seul bloc ou monobloc (figure 7).
  • L'élément modulaire 49 comprend une structure analogue ou de préférence identique à celle de l'élément modulaire 47 des figures 5 et 6, à savoir le motocompresseur 2, l'échangeur thermique 13, le socle isolant 34 et la cloche isolante 43.
  • L'élément modulaire 50 comprend un échangeur de chaleur 44 monté sur une plaquette de base 46 et protégé par une cloche 45. La cloche de protection 45 peut avoir soit une paroi ajourée et non thermiquement isolante soit une paroi pleine et thermiquement isolante. Quand la cloche de protection 45 est formée d'une paroi pleine et thermiquement isolante, seul le fluide réchauffeur constitue la source de chaleur pour le réfrigérant. Quand la cloche de protection 45 est ajourée, la chaleur du milieu environnant s'ajoute au fluide réchauffeur pour constituer les sources de chaleur au réfrigérant de l'évaporateur 5 du circuit frigorifique 1. Des gorges non représentées sont également formées dans la plaque de base 46 pour évacuer les eaux de ruissellement pénétrant dans l'élément modulaire 50.
  • La pompe à chaleur 12 ainsi construite est solide et peut résister aux agressions mécaniques et d'intempéries tout en réalisant une excellente performance dans son fonctionnement, et restant économique dans sa fabrication par la simplicité de sa structure.

Claims (12)

1. Circuit frigorifique à motocompresseur, ayant en circuit fermé principalement un condenseur (3), un détendeur (4), un évaporateur (5) du type à sec, une bouteille anticoup et le motocompresseur (2), caractérisé en ce qu'il comprend dans l'intervalle entre le détendeur (4) et le motocompresseur (2), une conduite de liaison (7), un collecteur composite vertical d'aspiration (8) et un évaporateur (5), divisé en plusieurs sections (5a, 5b, 5c) verticalement espacées, montées en parallèle entre ce collecteur composite d'aspiration (6) et ce détendeur (4), ce collecteur composite vertical d'aspiration (6) jouant en plus de son rôle de collecteur d'évaporateur, le rôle d'une bouteille anti- coup et celui d'un pulvérisateur-pompe réalisant un retour au motocompresseur (2) et sans dommages à ce dernier, du lubrifiant et du réfrigérant liquide piégés dans le circuit.
2. Pompe à chaleur caractérisée en ce qu'elle comprend un circuit frigorifique de la revendication l, dans lequel le condenseur (3) forme avec un circuit indépendant de fluide caloporteur (14), un échangeur thermique (13).
3. Pompe selon la revendication 2, caractérisée en ce qu'elle comprend dans l'échangeur thermique (13), un circuit indépendant de fluide caloporteur (14) constitué par une canalisation (15) montée coaxialement dans une conduite (16) formant le condenseur (3).
4. Pompe selon l'une des revendications 2 et 3, caractérisée en ce qu'elle comprend deux éléments modulaires (47, 48) montables suivant une disposition en deux parties et assemblables suivant une disposition compacte, en un seul bloc dont le premier (47) est pourvu du motocompresseur (2) et de l'échangeur thermique (13), et le deuxième (48) est muni de l'évaporateur (5) et d'un ventilateur (30).
5. Pompe selon l'une des revendications 2 et 3, caractérisée en ce qu'elle comprend deux éléments modulaires (49, 50) montables suivant une disposition en deux parties et assemblables suivant une disposition compacte, en un seul bloc dont le premier (49) est pourvu du motocompresseur (2) et de l'échangeur thermique (13), et le deuxième (50) est muni d'un échangeur de chaleur (44) constitué d'un circuit évaporateur (-51) et un circuit réchauffeur (52).
6. Pompe selon l'une des revendications 4 et 5, caractérisée en ce que dans le premier élément modulaire (47 ou 49) le motocompresseur (2) et l'échangeur thermique (13) sont montés sur un socle thermiquement isolant (34) et fermés hermétiquement par une cloche thermiquement isolante (43).
7. Pompe selon l'une des revendications 4, 5 et 6, caractérisée en ce que dans le deuxième élément modulaire (48), l'évaporateur (5) forme une paroi tubulaire ajourée dont la surface latérale extérieure est protégée par une grille ou aillettes de protection (42) et les extrémités supérieure et inférieure sont respectivement fermées par une grille de protection (39) et une plaquette de fond (37).
8. Pompe selon la revendication 7, caractérisée en ce que dans le deuxième élément modulaire (48) la plaquette de fond (37) fermant l'extrémité inférieure de l'évaporateur (5) est munie, dans sa surface, de gorges d'évacuation des eaux de ruissellement.
9. Pompe selon la revendication 8, caractérisée en ce que dans l'évacuation des eaux de ruissellement pénétrant dans le deuxième élément modulaire (48), elle comprend dans le premier élément modulaire (47) une conduite d'évacuation (46) formée dans l'épaisseur de la paroi verticale de sa cloche isolante (43) et dans le deuxième élément (48) au point d'aboutissement des gorges d'évacuation un trou (41) formé dans la plaque de fond (37) débouchant dans cette conduite d'évacuation (46) du premier élément modulaire (47).
10. Pompe selon l'une des revendications 4, 5 et 6, caractérisée en ce que dans le deuxième élément modulaire (50), l'échangeur de chaleur (44) est monté sur une plaquette de base (46) et protégé par une cloche de protection (45).
11. Pompe selon la revendication 10, caractérisée en ce que dans le deuxième élément modulaire (50) la cloche de protection (45) de l'échangeur de chaleur (44) a une paroi ajourée.
12. Pompe selon la revendication 10, caractérisée en ce que dans le deuxième élément modulaire (50) la cloche de protection (45) de l'échangeur de chaleur (44) a une paroi pleine et thermiquement isolante.
EP82402289A 1981-12-18 1982-12-14 Circuit frigorifique à motocompresseur, et pompe à chaleur munie d'un tel circuit Withdrawn EP0082764A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8123738 1981-12-18
FR8123738A FR2518720A1 (fr) 1981-12-18 1981-12-18 Circuit frigorifique a motocompresseurs, et pompe a chaleur munie d'un tel circuit

Publications (1)

Publication Number Publication Date
EP0082764A1 true EP0082764A1 (fr) 1983-06-29

Family

ID=9265192

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82402289A Withdrawn EP0082764A1 (fr) 1981-12-18 1982-12-14 Circuit frigorifique à motocompresseur, et pompe à chaleur munie d'un tel circuit

Country Status (2)

Country Link
EP (1) EP0082764A1 (fr)
FR (1) FR2518720A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2644357A1 (fr) * 1989-03-14 1990-09-21 Selnor Electromenager Nord Separateur liquide-gaz et dispositif comportant un tel separateur
WO2013023630A3 (fr) * 2011-08-16 2013-05-23 Ixetic Bad Homburg Gmbh Module de chauffage/refroidissement compact et utilisation d'un module de chauffage/refroidissement compact
WO2013113308A1 (fr) * 2012-02-02 2013-08-08 Ixetic Bad Homburg Gmbh Ensemble compresseur/échangeur de chaleur pour un module de chauffage/refroidissement pour un véhicule automobile
CN104236164A (zh) * 2014-09-15 2014-12-24 美意(浙江)空调设备有限公司 一种超高温复叠式水源热泵系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109677236B (zh) * 2018-12-26 2021-10-15 四川赛特制冷设备有限公司 电动车空调系统

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR830861A (fr) * 1936-12-17 1938-08-11 Thomson Houston Comp Francaise Perfectionnements aux systèmes réfrigérants
US2362698A (en) * 1934-10-24 1944-11-14 Gen Motors Corp Refrigerating apparatus
US2516094A (en) * 1949-05-17 1950-07-18 V C Patterson & Associates Inc Heat pump water heater
DE1102187B (de) * 1957-03-05 1961-03-16 Heat Pump & Refrigeration Ltd Waermepumpenanlage
GB891573A (en) * 1960-05-31 1962-03-14 Heat Pump & Refrigeration Ltd Improvements in or relating to heat pump systems
US3512374A (en) * 1968-05-03 1970-05-19 Parker Hannifin Corp Suction accumulator for refrigeration systems
US3513663A (en) * 1968-05-08 1970-05-26 James B Martin Jr Apparatus for heating and cooling liquids
FR2191089A1 (fr) * 1972-07-03 1974-02-01 Ciat Sa
FR2320511A1 (fr) * 1975-08-05 1977-03-04 Commissariat Energie Atomique Perfectionnement aux pompes a chaleur
DE2604942A1 (de) * 1976-02-09 1977-08-11 Karl Dr Ing Schmidt Waermepumpe
DE2624482A1 (de) * 1976-06-01 1977-12-15 Babcock Ag Vorrichtung zum entfernen von unerwuenschten gasfoermigen bestandteilen aus einem abgas
US4138859A (en) * 1977-11-02 1979-02-13 General Electric Company Split heat pump outdoor fan arrangement
DE2841711A1 (de) * 1978-09-25 1980-04-03 Dieter Dipl Ing Fleischer Verdampfer fuer den betrieb mit ueberhitzungsregler
EP0009786A1 (fr) * 1978-10-02 1980-04-16 Küppersbusch Aktiengesellschaft Système de chauffage avec une pompe à chaleur
FR2455254A1 (fr) * 1979-04-27 1980-11-21 Bracht Armand Pompe a chaleur
FR2475686A1 (fr) * 1980-02-09 1981-08-14 Viessmann Hans Bati pour pompe a chaleur
FR2487056A1 (fr) * 1980-07-18 1982-01-22 Froid Ste Toulousaine Procede permettant de refroidir ou de rechauffer un liquide contenu dans une citerne mobile et equipement destine a mettre en oeuvre un tel procede
US4320630A (en) * 1980-11-06 1982-03-23 Atlantic Richfield Company Heat pump water heater
GB2092731A (en) * 1981-02-10 1982-08-18 Bosch Siemens Hausgeraete Heat pump
DE3103362A1 (de) * 1981-01-28 1982-08-19 Harry 2351 Großenaspe Haase Waermegewinnungsanlage nach dem prinzip der waermepumpe

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH135573A (de) * 1928-06-16 1929-09-30 Escher Wyss Maschf Ag Verdampfer für Kälteerzeugungsanlagen, der ein oder mehrere Schlangenbündel aufweist.
US2042812A (en) * 1934-02-23 1936-06-02 Westinghouse Electric & Mfg Co Refrigeration apparatus
US2700279A (en) * 1952-06-12 1955-01-25 Gen Motors Corp Refrigerating apparatus and water heater
DE1051295B (de) * 1957-02-16 1959-02-26 Wilhelm Bock Verfluessiger-Aggregat fuer Kaeltemaschinen
US3483714A (en) * 1968-07-05 1969-12-16 Virginia Chemicals Inc Liquid trapping device
DE2452346A1 (de) * 1974-11-05 1976-05-06 Virginia Chemicals Inc Fluessigkeitssaugspeicher
DE7601884U1 (de) * 1976-01-21 1984-03-08 Erich Schultze KG, 1000 Berlin Fluessigkeitsabscheider mit absaugduese
DE2634482A1 (de) * 1976-07-31 1978-02-02 Goetzewerke Waermepumpe

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2362698A (en) * 1934-10-24 1944-11-14 Gen Motors Corp Refrigerating apparatus
FR830861A (fr) * 1936-12-17 1938-08-11 Thomson Houston Comp Francaise Perfectionnements aux systèmes réfrigérants
US2516094A (en) * 1949-05-17 1950-07-18 V C Patterson & Associates Inc Heat pump water heater
DE1102187B (de) * 1957-03-05 1961-03-16 Heat Pump & Refrigeration Ltd Waermepumpenanlage
GB891573A (en) * 1960-05-31 1962-03-14 Heat Pump & Refrigeration Ltd Improvements in or relating to heat pump systems
US3512374A (en) * 1968-05-03 1970-05-19 Parker Hannifin Corp Suction accumulator for refrigeration systems
US3513663A (en) * 1968-05-08 1970-05-26 James B Martin Jr Apparatus for heating and cooling liquids
FR2191089A1 (fr) * 1972-07-03 1974-02-01 Ciat Sa
FR2320511A1 (fr) * 1975-08-05 1977-03-04 Commissariat Energie Atomique Perfectionnement aux pompes a chaleur
DE2604942A1 (de) * 1976-02-09 1977-08-11 Karl Dr Ing Schmidt Waermepumpe
DE2624482A1 (de) * 1976-06-01 1977-12-15 Babcock Ag Vorrichtung zum entfernen von unerwuenschten gasfoermigen bestandteilen aus einem abgas
US4138859A (en) * 1977-11-02 1979-02-13 General Electric Company Split heat pump outdoor fan arrangement
DE2841711A1 (de) * 1978-09-25 1980-04-03 Dieter Dipl Ing Fleischer Verdampfer fuer den betrieb mit ueberhitzungsregler
EP0009786A1 (fr) * 1978-10-02 1980-04-16 Küppersbusch Aktiengesellschaft Système de chauffage avec une pompe à chaleur
FR2455254A1 (fr) * 1979-04-27 1980-11-21 Bracht Armand Pompe a chaleur
FR2475686A1 (fr) * 1980-02-09 1981-08-14 Viessmann Hans Bati pour pompe a chaleur
FR2487056A1 (fr) * 1980-07-18 1982-01-22 Froid Ste Toulousaine Procede permettant de refroidir ou de rechauffer un liquide contenu dans une citerne mobile et equipement destine a mettre en oeuvre un tel procede
US4320630A (en) * 1980-11-06 1982-03-23 Atlantic Richfield Company Heat pump water heater
DE3103362A1 (de) * 1981-01-28 1982-08-19 Harry 2351 Großenaspe Haase Waermegewinnungsanlage nach dem prinzip der waermepumpe
GB2092731A (en) * 1981-02-10 1982-08-18 Bosch Siemens Hausgeraete Heat pump

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2644357A1 (fr) * 1989-03-14 1990-09-21 Selnor Electromenager Nord Separateur liquide-gaz et dispositif comportant un tel separateur
WO2013023630A3 (fr) * 2011-08-16 2013-05-23 Ixetic Bad Homburg Gmbh Module de chauffage/refroidissement compact et utilisation d'un module de chauffage/refroidissement compact
WO2013113308A1 (fr) * 2012-02-02 2013-08-08 Ixetic Bad Homburg Gmbh Ensemble compresseur/échangeur de chaleur pour un module de chauffage/refroidissement pour un véhicule automobile
US9551516B2 (en) 2012-02-02 2017-01-24 Magna Powertrain Bad Homburg GmbH Compressor-heat exchanger unit for a heating-cooling module for a motor vehicle
CN104236164A (zh) * 2014-09-15 2014-12-24 美意(浙江)空调设备有限公司 一种超高温复叠式水源热泵系统

Also Published As

Publication number Publication date
FR2518720A1 (fr) 1983-06-24
FR2518720B1 (fr) 1984-09-14

Similar Documents

Publication Publication Date Title
EP0046716B1 (fr) Appareil de production de froid comportant un panneau rayonnant et un panneau évaporateur
EP0774102B1 (fr) Condenseur a reservoir integre pour installation de climatisation de vehicule automobile
FR2765956A1 (fr) Condenseur refrigerant incluant une partie de super-refroidissement
EP2633245B1 (fr) Système d'échange thermique entre de l'air situé à l'intérieur d'un espace et de l'air situé à l'extérieur de l'espace et procédé de réalisation d'échange thermique mettant en oeuvre un tel système
EP0082764A1 (fr) Circuit frigorifique à motocompresseur, et pompe à chaleur munie d'un tel circuit
FR2465979A1 (fr) Condenseur a caracteristiques de transfert de chaleur
FR2724220A1 (fr) Refrigerant atmospherique humide a dispositif antigel
EP0320379B1 (fr) Installation de climatisation par absorption
FR2505999A1 (fr) Procede et appareil de condensation de vapeur pour extraire de facon continue un condensat a partir d'un courant de gaz comprime
FR2548769A1 (fr) Installation de chauffage a pompes a chaleur et a capteurs d'energie atmospherique
EP0187571B1 (fr) Capteur d'énergie thermique et dispositif incluant un tel capteur
FR2505465A1 (fr) Systeme de degivrage ameliore pour pompes a chaleur a cycle reversible
EP0229410A1 (fr) Machine frigorifique
FR2487488A1 (fr) Pompe a chaleur
CH615268A5 (en) Heat installation with refrigerant fluid
FR2850122A1 (fr) Dispositif d'extraction de l'eau presente dans l'air par condensation
FR2524126A1 (fr) Dispositif de stockage de chaleur et source froide pour pompe a chaleur comportant un tel dispositif
FR2792965A1 (fr) Equipement d'echange thermique pour vehicule automobile
LU86935A1 (fr) Procede pour la conservation de fleurs et/ou de plantes disposees dans un local et dispositif utilise pour ce procede
FR2706531A1 (fr) Vase d'expansion pour circuit de refroidissement de moteur thermique.
FR2672114A1 (fr) Unites de refrigeration pour enceintes refrigerees et installation de refrigeration utilisant de telles unites.
FR2570172A1 (fr) Echangeur perfectionne a tubes multiples
FR2721697A1 (fr) Chariot pour meuble réfrigéré.
FR2677113A1 (fr) Echangeur de chaleur tubulaire a ailettes pour rechauffer un fluide liquide par des gaz chauds.
FR2488682A1 (fr) Systeme de chauffage solaire

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19831117

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19850623

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BIANIC, CHRISTIAN