EP0072118A1 - Elément de construction destiné à l'usage des fondations sur pieux - Google Patents

Elément de construction destiné à l'usage des fondations sur pieux Download PDF

Info

Publication number
EP0072118A1
EP0072118A1 EP82303830A EP82303830A EP0072118A1 EP 0072118 A1 EP0072118 A1 EP 0072118A1 EP 82303830 A EP82303830 A EP 82303830A EP 82303830 A EP82303830 A EP 82303830A EP 0072118 A1 EP0072118 A1 EP 0072118A1
Authority
EP
European Patent Office
Prior art keywords
portions
piling
structure according
piling structure
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP82303830A
Other languages
German (de)
English (en)
Other versions
EP0072118B1 (fr
Inventor
Robin Dawson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dawson Construction Plant Ltd
Original Assignee
Dawson Construction Plant Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=10523618&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0072118(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dawson Construction Plant Ltd filed Critical Dawson Construction Plant Ltd
Publication of EP0072118A1 publication Critical patent/EP0072118A1/fr
Application granted granted Critical
Publication of EP0072118B1 publication Critical patent/EP0072118B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C3/06Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal with substantially solid, i.e. unapertured, web
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/02Sheet piles or sheet pile bulkheads
    • E02D5/03Prefabricated parts, e.g. composite sheet piles
    • E02D5/04Prefabricated parts, e.g. composite sheet piles made of steel
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/02Sheet piles or sheet pile bulkheads
    • E02D5/03Prefabricated parts, e.g. composite sheet piles
    • E02D5/04Prefabricated parts, e.g. composite sheet piles made of steel
    • E02D5/08Locking forms; Edge joints; Pile crossings; Branch pieces
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0408Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section
    • E04C2003/0413Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section being built up from several parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0408Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section
    • E04C2003/0421Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by assembly or the cross-section comprising one single unitary part
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0426Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by material distribution in cross section
    • E04C2003/0434Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by material distribution in cross section the open cross-section free of enclosed cavities
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0426Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by material distribution in cross section
    • E04C2003/0439Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by material distribution in cross section the cross-section comprising open parts and hollow parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0443Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
    • E04C2003/0452H- or I-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0443Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
    • E04C2003/046L- or T-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0404Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects
    • E04C2003/0443Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal beams, girders, or joists characterised by cross-sectional aspects characterised by substantial shape of the cross-section
    • E04C2003/0473U- or C-shaped

Definitions

  • This invention relates to a structural member for use in piling.
  • the invention has particular application to piling having greater rigidity than conventional piling, but is not limited to high rigidity piling.
  • the structural members 1 and 2 have lips 3 formed thereon for engagement by the interlock 4.
  • the lips 3 are formed during the hot-rolling process in which the structural members themselves are formed. Rolling the lips 3 is very difficult, as in order to produce an even lip on each edge it is essential to prevent any "float" in the rolls. If any such float occurs the lips are uneven and connect poorly with the interlock 4.
  • an elongate structural member for use in the construction of piling, the said member having at least one longitudinal flange having, on a longitudinal edge thereof, a first plurality of portions deformed out of the plane of the remainder of the flange, the said deformed portions alternating with a second plurality of portions which are undeformed or are deformed to a different extent.
  • the expression "deformed to a different extent” is intended to cover not only deformation through a different angle but also deformation in the opposite direction.
  • the term "flange” as used herein is intended to cover any free edge portion which can be deformed as aforesaid.
  • FIG 2 shows an I-section beam 5 having a pair of flanges 6a and 6b and an opposed pair of flanges 6c and 6d.
  • the edges of the flanges have portions 7 which are deformed out of the plane of the remainder of the flange, alternating with portions 8 which are not deformed in this way.
  • the deformed portions are referred to below as crimps, since the process by which they can most conveniently be formed is analogous to crimping.
  • the crimps are indicated only along part of the length of the flanges 6c and 6d, but it is to be understood that in practice they would be present along the whole length of each of these flanges as well as along the whole length of each of flanges 6a and 6b if interlocking is required on both flanges.
  • the angle of crimping that is to say the angle between the planes of the portions 7 and 8, may vary according to circumstances, but can conveniently be from 15 to 45 degrees, preferably from 20 to 30 degrees.
  • the length of the portions 7 and 8 can also vary, but each of these may conveniently be, for example, from 25 to 100 mm, preferably 75 mm.
  • the pitch length of the crimping i.e. the distance between the centres of adjacent crimped portions is preferably from 100 to 300 mm.
  • the crimps 7 can be formed in a cold process, for example, by use of a hydraulically operated ram acting on a beam held in an appropriate jig.
  • the formation of the crimps is not an integral part of the process of the formation of the beam itself and the crimps can be formed on the flanges of any flanged beam which it may be desired to use in the formation of piling. Accordingly, it is a straightforward matter to produce structural members with crimps formed thereon in a very wide variety of sizes and shapes, according to particular requirements of a customer.
  • the versatility of the present invention is illustrated later on in this description by reference to some of the types of piling which can be produced using the invention.
  • each flange has the appearance, as viewed end on, of a divergent wedge.
  • Figure 3 also shows a locking bar 9 for locking together two flanges.
  • the two flanges have been shown as being of different thicknesses, the left hand flange being thicker than the right hand flange, though it will be appreciated that in normal operation the two flanges joined by a given locking bar would be of the same thickness, though they need not be.
  • the locking bar 9 has the general shape of an H, with the inner faces lOa and lla of two of the arms 10 and 11 running generally perpendicular to the cross piece 12, and the inner faces 13a and 14a of the remaining two arms 13 and 14 being angled towards the arms 10 and 11.
  • the arms thus define a pair of slots whose width decreases outwardly. The strength of the crimps is sufficient to prevent the flanges being pulled laterally out of the locking bar except in extreme conditions of pile driving in hard ground.
  • Figure 4 shows a section of piling formed from I-beams 5 with crimped flanges, and locking bars 9. It will be seen that the piling consists of a succession of hollow box-shaped portions.
  • Figure 4a is similar to Figure 4 except that it uses deeper I-beams 5', alternating with T-beams 5". The structure of Figure 4a uses less steel than that of Figure 4 whilst having comparable strength.
  • Figure 5 shows piling similar to Figure 4, but arranged to follow a curve. This is achieved by cutting off the edges of the flanges 6a and 6b, for example by a plasma cutter, before the crimps are formed thereon.
  • FIG. 6 shows yet another form of piling, this time a form in which there is a right angle.
  • This is achieved by the use of an angle iron 15 on the edges of which are formed crimps similar to those described above with reference to Figure 2.
  • the angle iron 15 forms the inside of the corner, and the outside of the corner is formed by a section 16 which has a central portion 17 and two outer portions 18 directed at 45° to the portion 17.
  • the outer edges of the portions 18 are formed with crimps in the same manner as the angle iron 15.
  • Figure 7 illustrates a locking bar 9' which is arranged to enable the production of piling having a substantially flush surface.
  • the flanges which are engaged by the locking member 9' have crimps 7' alternating with crimps 7" which take the place of the uncrimped portions 8 in Figure 2.
  • the crimps 7' have a larger crimping angle than the crimps 7" so as to produce the wedge effect described above.
  • the piling thus formed has a substantially flush face 19. This is particularly desirable in certain applications.
  • FIG. 9 shows I-beams 5 interconnected by a complete Larssen pile 20 and two half-Larssen piles 21 formed by cutting a complete Larssen pile longitudinally down the middle.
  • the piles 20 and 21 interlock with one another by means of the conventional Larssen interlock, whilst the half-Larssen piles 21 interlock with the I-beams 5 by means of crimps formed on the edges thereof and engaged by locking bars 9.
  • Figure 10 shows a piling structure which comprises a plurality of structural members 22 which are in the form of right-angled angle irons, adjacent angle irons being turned through 180° with respect to one another.
  • the free edge portions of the angle irons 22 have crimps 23 formed thereon.
  • the crimps extend outwardly on both sides of the plane of free edge portions. In practice this can be achieved by deforming adjacent sections of the edge in opposite directions, for example, +15° and -15° as shown.
  • the free edge portions are held together by locking bars 24 which are shaped to receive the particular form of crimping used.
  • Figure 11 shows a piling structure which is similar to that of Figure 10 except that it uses U-shaped channel sections 25 instead of angle irons.
  • piling can be constructed by forming crimps on the edges of appropriate steel sections.
  • Figures 12 and 13 show a machine for deforming the flanges of a beam to produce a structural member according to the invention.
  • the machine comprises a main frame 30 which carries a pair of hydraulic rams 31.
  • a thrust transmitting member 32 is secured to the lower end of each ram 31.
  • Each thrust transmitting member 32 has a part-spherical lower surface 33 which bears against a corresponding upper surface 34 of a thrust receiving member 35.
  • Each thrust transmitting member 32 is surrounded by a respective collar 40 which serves to raise and hold up the top die block 36 off the beam 4 after the crimping as the hydraulic rams 31 retract.
  • the thrust receiving members 35 are mounted on top of an upper die holder 36 which carries a pair of dies 37.
  • a pair of opposite lower die holders 38 carry a pair of dies 39.
  • the dies are horizontally adjustable in their respective holders, this adjustability being necessary to allow for beams of different widths and different flange thickness.
  • FIG. 12 shows part of an I-section beam 5 having flanges 6a and 6b on which crimps are to be formed.
  • the process can be speeded up by having a plurality of pairs of longitudinally spaced dies in a given machine so that a plurality of crimps can be formed simultaneously on each flange.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Paleontology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)
EP82303830A 1981-07-31 1982-07-21 Elément de construction destiné à l'usage des fondations sur pieux Expired EP0072118B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8123543 1981-07-31
GB8123543 1981-07-31

Publications (2)

Publication Number Publication Date
EP0072118A1 true EP0072118A1 (fr) 1983-02-16
EP0072118B1 EP0072118B1 (fr) 1986-05-28

Family

ID=10523618

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82303830A Expired EP0072118B1 (fr) 1981-07-31 1982-07-21 Elément de construction destiné à l'usage des fondations sur pieux

Country Status (6)

Country Link
EP (1) EP0072118B1 (fr)
JP (1) JPS5826112A (fr)
AU (1) AU8603582A (fr)
DE (1) DE3271352D1 (fr)
GB (1) GB2103263B (fr)
ZA (1) ZA824897B (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996009442A1 (fr) * 1994-09-19 1996-03-28 Dawson Construction Plant Limited Procede de deformation secondaire
WO1997039193A1 (fr) * 1996-04-17 1997-10-23 Profilarbed S.A. Procede pour raccorder une palplanche a une poutrelle
BE1011054A3 (nl) * 1997-03-21 1999-04-06 B A Olivier Betonfabriek En Fu Beschoeiingswand en daarbij gebruikte beschoeiingsplaten.
DE10318769A1 (de) * 2003-02-19 2004-09-23 Georg Wall Kombi-Spundwand
LU91043B1 (fr) 2003-10-14 2005-04-15 Profilarbed Sa Poutrelle pour un rideau de soutènement.
EP1688544A1 (fr) 2005-02-02 2006-08-09 PilePro LLC Profilé de liaison des palplanches et cloison à structure mixte avec tel profilé
KR20060110138A (ko) * 2005-04-19 2006-10-24 박종수 에이치 파일을 이용한 벽체 구조물 및 시공방법
FR2889215A1 (fr) * 2005-07-26 2007-02-02 Filtaro Sarl Mur de quai, destine notamment a proteger les berges d'un bord cotier
US7387471B2 (en) 2005-02-02 2008-06-17 Pilepro, Llc Combination pile wall
DE202005022056U1 (de) 2005-02-02 2012-12-12 Pilepro Llc Verbindungsprofil und Kombi-Spundwand mit einem derartigen Verbindungsprofil
DE202005022065U1 (de) 2005-02-02 2013-02-20 Pilepro Llc Kombi-Spundwand
CN103649417A (zh) * 2011-07-14 2014-03-19 新日铁住金株式会社 组合钢板桩、地下连续壁以及组合钢板桩的再利用方法
RU2517303C2 (ru) * 2012-04-27 2014-05-27 Сергей Эдуардович Воронин Способ контроля расхождения замкового соединения металлических шпунтовых свай и устройство для его осуществления

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025735A (ja) * 1996-07-11 1998-01-27 Yoshihiro Kizu 土留用鋼材
JP5737058B2 (ja) * 2011-08-19 2015-06-17 Jfeスチール株式会社 H形鋼矢板

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB315402A (en) * 1928-07-13 1930-01-16 Karl Nolte Improvements relating to sheet piling
DE571029C (de) * 1930-09-10 1933-02-23 Fried Krupp Akt Ges Friedrich Schlossverriegelung fuer Spundwandeisen gegen Laengsverschiebung beim Rammen
DE593825C (de) * 1932-12-07 1934-03-05 Fried Krupp Akt Ges Friedrich Aus Stahlbohlen von durchlaufend gleicher Wandstaerke gebildete Spundwaende
US2018625A (en) * 1933-07-31 1935-10-22 Grave Otto Piling
US2043891A (en) * 1933-07-31 1936-06-09 Grave Otto Piling
GB449454A (en) * 1935-03-07 1936-06-26 Krupp Ag Improvements in and relating to z-section sheet metal piles
FR1413209A (fr) * 1964-08-28 1965-10-08 Lorraine Escaut Sa Palplanches et ensembles obtenus par assemblage de ces palplanches
LU80163A1 (fr) * 1978-05-05 1979-02-12 Salzgitter Peine Stahlwerke Palplanche

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4511228Y1 (fr) * 1965-12-30 1970-05-20
JPS5327790U (fr) * 1976-08-17 1978-03-09

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB315402A (en) * 1928-07-13 1930-01-16 Karl Nolte Improvements relating to sheet piling
DE571029C (de) * 1930-09-10 1933-02-23 Fried Krupp Akt Ges Friedrich Schlossverriegelung fuer Spundwandeisen gegen Laengsverschiebung beim Rammen
DE593825C (de) * 1932-12-07 1934-03-05 Fried Krupp Akt Ges Friedrich Aus Stahlbohlen von durchlaufend gleicher Wandstaerke gebildete Spundwaende
US2018625A (en) * 1933-07-31 1935-10-22 Grave Otto Piling
US2043891A (en) * 1933-07-31 1936-06-09 Grave Otto Piling
GB449454A (en) * 1935-03-07 1936-06-26 Krupp Ag Improvements in and relating to z-section sheet metal piles
FR1413209A (fr) * 1964-08-28 1965-10-08 Lorraine Escaut Sa Palplanches et ensembles obtenus par assemblage de ces palplanches
LU80163A1 (fr) * 1978-05-05 1979-02-12 Salzgitter Peine Stahlwerke Palplanche

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996009442A1 (fr) * 1994-09-19 1996-03-28 Dawson Construction Plant Limited Procede de deformation secondaire
US5921717A (en) * 1994-09-19 1999-07-13 Dawson Construction Plant Limited Structure having deformable flanged member and method of forming the same
WO1997039193A1 (fr) * 1996-04-17 1997-10-23 Profilarbed S.A. Procede pour raccorder une palplanche a une poutrelle
US6092346A (en) * 1996-04-17 2000-07-25 Profilarbed S.A. Method for connecting a sheet pile to a beam
BE1011054A3 (nl) * 1997-03-21 1999-04-06 B A Olivier Betonfabriek En Fu Beschoeiingswand en daarbij gebruikte beschoeiingsplaten.
DE10318769A1 (de) * 2003-02-19 2004-09-23 Georg Wall Kombi-Spundwand
LU91043B1 (fr) 2003-10-14 2005-04-15 Profilarbed Sa Poutrelle pour un rideau de soutènement.
WO2005038148A1 (fr) 2003-10-14 2005-04-28 Profilarbed S.A. Poutrelle pour un rideau de soutenement
EP1689939B2 (fr) 2003-10-14 2016-05-25 ArcelorMittal Belval & Differdange Poutrelle pour un rideau de soutenement
EP2568083A1 (fr) 2005-02-02 2013-03-13 PilePro LLC Profilé de liaison de palplanches et cloison mixte avec un tel profilé
US7387471B2 (en) 2005-02-02 2008-06-17 Pilepro, Llc Combination pile wall
US7857550B2 (en) 2005-02-02 2010-12-28 Pilepro, Llc Profiled connecting element and combination sheet pile wall with a profiled connecting element of this type
DE202005022056U1 (de) 2005-02-02 2012-12-12 Pilepro Llc Verbindungsprofil und Kombi-Spundwand mit einem derartigen Verbindungsprofil
DE202005022065U1 (de) 2005-02-02 2013-02-20 Pilepro Llc Kombi-Spundwand
EP1688544A1 (fr) 2005-02-02 2006-08-09 PilePro LLC Profilé de liaison des palplanches et cloison à structure mixte avec tel profilé
KR20060110138A (ko) * 2005-04-19 2006-10-24 박종수 에이치 파일을 이용한 벽체 구조물 및 시공방법
FR2889215A1 (fr) * 2005-07-26 2007-02-02 Filtaro Sarl Mur de quai, destine notamment a proteger les berges d'un bord cotier
CN103649417A (zh) * 2011-07-14 2014-03-19 新日铁住金株式会社 组合钢板桩、地下连续壁以及组合钢板桩的再利用方法
CN103649417B (zh) * 2011-07-14 2015-10-07 新日铁住金株式会社 组合钢板桩、地下连续壁以及组合钢板桩的再利用方法
RU2517303C2 (ru) * 2012-04-27 2014-05-27 Сергей Эдуардович Воронин Способ контроля расхождения замкового соединения металлических шпунтовых свай и устройство для его осуществления

Also Published As

Publication number Publication date
GB2103263B (en) 1985-09-25
ZA824897B (en) 1983-09-28
DE3271352D1 (en) 1986-07-03
AU8603582A (en) 1983-02-03
EP0072118B1 (fr) 1986-05-28
JPS5826112A (ja) 1983-02-16
GB2103263A (en) 1983-02-16

Similar Documents

Publication Publication Date Title
EP0072118B1 (fr) Elément de construction destiné à l'usage des fondations sur pieux
EP0550578B1 (fr) Elements d'assemblage profiles
DE69909487T2 (de) Metallspundwand
US1098077A (en) Locking-bar and sheeting for constructional work.
DE69631950T2 (de) Assymetrische stahlbohle und verfahren zu deren herstellung
WO1982003574A1 (fr) Procede de pliage
CA1150986A (fr) Methode de production de poutres i a ame ondulee, et paire de rouleaux pour la mise en oeuvre de ladite methode
DE19543414A1 (de) Verfahren zum Walzen von Spundwandbohlen mit Z-förmigem Querschnitt
US4246737A (en) Metal structural members
JPH0342122B2 (fr)
US20120291386A1 (en) Metal Profile Member To Be Used As A Formwork Assisting In The Construction of Metal/Concrete Flooring
US5921717A (en) Structure having deformable flanged member and method of forming the same
WO1992013658A1 (fr) Procede de realisation d'une structure de support a traverses et structure ainsi realisee
EP2043797B1 (fr) Procédé de flexion d'une paroi constituée d'un empilement de tôles
WO1999042669A1 (fr) Rideau de palplanches
AU8332582A (en) Method of effecting bending
JP2571308B2 (ja) 左右非対称継手を有する直線型形鋼およびその製造方法
SU977573A1 (ru) Шпунтова сва
JP2691830B2 (ja) ダブルウオール構造物の構築方法
JPH0484601A (ja) 連続継手型形鋼の圧延方法
RU2072269C1 (ru) Способ изготовления гофрированных изделий из листа
KR820002428Y1 (ko) 만곡 h빔
JPS59166301A (ja) ラルゼン型非対称u形鋼矢板の圧延方法
JPH0547295B2 (fr)
JPS61229054A (ja) 建築用型パネルとその製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR IT LU NL SE

17P Request for examination filed

Effective date: 19830808

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR IT LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19860528

Ref country code: BE

Effective date: 19860528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19860531

REF Corresponds to:

Ref document number: 3271352

Country of ref document: DE

Date of ref document: 19860703

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SALZGITTER AG, BERLIN UND SALZGITTER

Effective date: 19870221

NLR1 Nl: opposition has been filed with the epo

Opponent name: SALZGITTER AG,

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19890407

NLR2 Nl: decision of opposition
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910731

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
EPTA Lu: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980709

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19980720

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980724

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000503

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST