EP0066305B1 - Drahtförmiges Mittel zum Behandeln von Metallschmelzen - Google Patents

Drahtförmiges Mittel zum Behandeln von Metallschmelzen Download PDF

Info

Publication number
EP0066305B1
EP0066305B1 EP82200429A EP82200429A EP0066305B1 EP 0066305 B1 EP0066305 B1 EP 0066305B1 EP 82200429 A EP82200429 A EP 82200429A EP 82200429 A EP82200429 A EP 82200429A EP 0066305 B1 EP0066305 B1 EP 0066305B1
Authority
EP
European Patent Office
Prior art keywords
wire
powder
treatment
component
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82200429A
Other languages
English (en)
French (fr)
Other versions
EP0066305A1 (de
Inventor
Klaus-Jürgen Dr. Best
Karl-Josef Reifferscheid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Publication of EP0066305A1 publication Critical patent/EP0066305A1/de
Application granted granted Critical
Publication of EP0066305B1 publication Critical patent/EP0066305B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • C21C7/0645Agents used for dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/10Making spheroidal graphite cast-iron
    • C21C1/105Nodularising additive agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0056Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using cored wires

Definitions

  • the invention relates to a method for producing a wire-like means for treating cast iron melts.
  • metal melts often receive post-treatment with a metallic or non-metallic treatment agent.
  • the treatment agent can also be supplied to the melt in wire form in a known manner.
  • reactive metal powder is coated with an iron metal.
  • the fine-particle treatment agents for molten iron known from US Pat. No. 4,152,150 are powdery inoculants which are enclosed in a wire-shaped metal jacket.
  • the ferrosilicon or calcium silicon inoculant is coated with an iron sulfide or sodium sulfite inhibitor. The inhibitor is used to delay the reaction between the vaccine and the molten iron.
  • the additive known from DE-OS 22 56 381 for the treatment of iron and steel melts is based on powdered magnesium.
  • the magnesium is embedded in a material that forms a coherent, stable, metal-permeable matrix at the temperature of the molten iron.
  • the material of this matrix can be carbon-containing or metal oxide.
  • the previously known additive can also contain iron powder.
  • the known additive is mainly used in the form of briquettes or tablets.
  • the powdered calcium or magnesium-based filler material is extruded in an iron or steel strip serving as a sheath, with a dense overlap due to a special overlap Envelope and compression is achieved.
  • the powdered filler material is protected against the effects of oxidative moisture and the treatment agent is therefore easy to store and handle.
  • the problem of delaying the reaction of reactive mixtures has not been addressed.
  • a trouble-free, braked reaction sequence is provided in the form of a powdery mixture of at least one of the metals (A) magnesium, calcium and the rare earths and at least one of the metals (B) iron, nickel and manganese, which are provided with a shell is encased in ferrous metal.
  • the invention has for its object to provide a method for producing a wire-shaped agent for treating cast iron melts, with which the treatment process of the melt can be better controlled and varied within wide limits.
  • the invention solves the problem with a method for producing a wire-like agent for treating cast iron melts for producing spheroidal graphite iron, from a powdery mixture coated with iron metal, which contains at least one of the metals (A) magnesium, calcium and rare earths and at least one of the metals ( B) contains iron, nickel and manganese.
  • the method of the aforementioned type is designed according to the invention in such a way that the metal powder (A) for the preparation of a reaction-delaying coating is first premixed with graphite or pearlite powder and then with component (B) and a reaction-inhibiting component C made of expandable silicates and / or graphite is combined to the final mixture, the grain size of the metal powder (A, B) and component (C) 0.02 to 2.0 mm and the composition of the powder mixture 30 to 80 wt .-% (A), 10 to 60% by weight (B), 1 to 15% by weight (C) and the amount of coating being contained in the amount of component (C).
  • the treatment of a molten metal with wire-like treatment agent according to the method of the invention can be varied within wide limits.
  • Graphite or pearlite powder can be considered as a reaction-retarding or reaction-inhibiting coating for the reactive metal (A).
  • the coating can be achieved in a simple manner by dry mixing the materials, for example magnesium powder and graphite powder. However, it may also be expedient to provide a liquid, vaporizable medium in the mixing process, so that the coating is applied more firmly.
  • the liquid medium can be, for example, water or an organic solvent. If appropriate, a small addition of about 2% of an organic or inorganic binder can also be expedient and bring about an adherent, tight coating.
  • the particle size of the coating material is generally between 0.02 and 1.0 mm, a particle size of 0.05 to 0.25 mm being advantageous.
  • the metal components of the powder mixture are of the same grain size. It has proven advantageous here to maintain a grain size of the metal powder of 0.02-2.0 mm. A preferred range is a grain size of 0.05 to 1.5 mm.
  • the reactive metal component to be provided with the reaction-retardant coating is expediently in the form of granules with a particle size of 0.8 to 1.2 mm, in particular with a grain size of 1 mm.
  • the metal component (A) can also be used in the form of an alloy powder, for example Mg / Fe / Si alloys or Ca / Si / Mg alloys, which may also contain rare earth metals.
  • the magnesium content of the alloys is generally between 3 and 50%.
  • the coated powder mixture of the treatment agent produced by the process according to the invention further contains a metallurgically neutral, reaction-inhibiting component (C).
  • metallurgically neutral means that the substance is not absorbed into the melt. Suitable substances for this component are expandable silicates or carbon carriers or mixtures of these components. Quartz porphyry glasses, e.g.
  • Expandable sheet silicates such as vermiculite, are also suitable. While the expandable silicates, due to their low thermal conductivity, produce the strongest reaction-inhibiting effect, if desired, by using coke or graphite alone or in a mixture with the expandable silicates as component (C), less reaction inhibition can be achieved and adapted to the respective local conditions of the treatment process.
  • composition of the powder mixture of the treatment wire produced by the method according to the invention can be varied in a wide range of amounts, it has generally proven to be expedient to provide a composition in preferably the following ranges:
  • a composition according to the powder mixture has proven to be particularly suitable for the treatment of cast iron melts for the production of spheroidal graphite iron.
  • the casing made of ferrous metal enclosing the metal powder generally has a wall thickness of less than 1 mm and is preferably 0.15 to 0.5 mm.
  • the treatment wire itself usually has a diameter of 2 - 6 mm. In some cases of melt treatments, much stronger, albeit less flexible, treatment wires up to 20mm in diameter may be required. Wires with a diameter of 2-6 mm are used in a method of treating the pouring stream of a molten metal, while wires with a diameter larger than 6 mm and up to 20 mm, preferably up to 15 mm, are used in the treatment of molten metals, such as cast iron, in the Pan can be used.
  • the treatment wire produced by the method according to the invention is flexible if the diameters are not too large and can be conveyed with very simple wire feeders. It can be used successfully if a feed speed of the wire drive of> 60 m / min is realized. However, speeds of 110 to about 200 m / min are preferably used in order to ensure that the wire is immersed deeply in the melt, so that optimum output is achieved. Depending on the amount of liquid metal to be treated, one or more wires can be coiled into the melt at the same time. The use of several wires advantageously results in shorter treatment times and lower temperature losses.
  • the treatment wire produced by the process according to the invention is usually wound into the static melt in my pan.
  • the shape of the pan does not play a decisive role in contrast to conventional Mg treatment processes that do not use wires.
  • the treatment wire can also be wound directly into the pouring stream, pouring basin or into the casting mold or immersed in a separate treatment vessel or channel between the furnace and the transport or pouring ladle.
  • a wire-shaped treatment body was produced by deforming and compressing by means of a wire production machine. With an outer diameter of 5 mm of the wire, a sleeve made of mild steel tape (sheath thickness 0.35 mm) enclosed a core made of a metal powder mixture.
  • the powder mixture consisted of 69% metallic magnesium powder, 26% iron powder, both with a particle size of 0.5 mm, and 5% graphite powder with a particle size ⁇ 0.2 mm. Before the powder mixture was prepared, the magnesium metal powder was premixed with part of the graphite powder in order to ensure that the reaction-delaying coating was reliably formed on the magnesium surface.
  • the magnesium content based on the running meter of wire, was 10 g.
  • the treatment wire was introduced into cast iron melts by means of an automatic feed device.
  • a cast iron melt of the following composition was treated in experiments 1 and II:
  • the treatment of the cast iron melt proceeded smoothly and without ejection of melt components.
  • the graphite was more than 90% spherical in cast samples.
  • the treatment reaction also proceeds without eruptions.
  • the silicate component in the treatment wire cleans the melt by binding the reaction products or slag particles dispersed in the melt.
  • the iron melt can be alloyed with the magnesium treatment at the same time, which leads to an increased pearlite content in the basic structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Herstellen eines drahtförmigen Mittels zum behandeln von Gußeisenschmelzen.
  • Metallschmelzen erhalten bekanntlich vielfach eine Nachbehandlung mit einem metallischen oder nichtmetallischen Behandlungsmittel. Das Behandlungsmittel kann der Schmelze in bekannter weise auch in Drahtform zugeführt werden. Bei einem solchen drahtförmigen Mittel zum Behandeln von Metallschmelzen wird reaktives Metallpulver mit einem Eisenmetall ummantelt.
  • Beim Einsatz drahtförmiger Behandlungsmittel ergeben sich in der Praxis in den Fällen gewisse Schwierigkeiten, wenn ein Zusatzstoff bei der Einbringung in die z. B. Eisenschmelelze leicht flüchtig oder verdampfbar ist und ggf auch in relativ größeren Mengen im Mittel vorliegt. Es besteht somit die Möglichkeit, daß eine Komponente des drahtförmigen Behandlungsmittels wie Magnesium, bei einer Temperatur unterhalb des Schelzpunktes einer z. B. Gußeisenschnelle abdampft, bevor der Hülldraht geschmolzen und von der Schmelze aufgenommen ist. Es ist daher zur Überwindung solcher Schwierigkeiten aus DE-OS 25 31 573 ein drahtförmiges Mittel zum Behandeln von Metallschmelzen bekannt, bei dem zwischen Außenmantel aus Eisenmetall und Kernmaterial aus verhältnismäßig leicht flüchtigem Metall, z. B. Magnesium, ein isolierender Werkstoff aus z. B. Eisenpulver oder Magnesium enthaltenden Koks angeordnet ist. Mit den vorbekannten Behandlungsmittel soll die Zugabe des Kernmaterials gleichzeitig mit dem Schmelzen des Mantelwerkstoffs erfolgen und ein frühzeitiges Schmelzen und Verdampfen des Magnesiumkerns verhindert werden. Bei den aus US-PS 4 152 150 bekannten feinteiligen Behandlungsmittel für Eisenschmelzen handelt es sich um ein pulverförmiges Impfmittel, das in einem drahtförmigen Metallmantel eingeschlossen ist. Das Impfmittel aus Ferrosilicium oder Calciumsilicium ist mit einem Inhibitor aus Eisensulfid oder Natriumsulfit überzogen. Der Inhibitor dient der Verzögerung der Reaktion zwischen Impfmittel und Eisenschmelze.
  • Das aus DE-OS 22 56 381 bekannte Additiv für die Behandlung von Eisen und Stahlschmelzen basiert auf pulverförmigem Magnesium. Das Magnesium ist in ein Material eingebettet, das bei der Temperatur der Eisenschmelze eine zusammenhängende, stabile, metalldurchlässige Matrix bildet. Das Material dieser Matrix kann kohlenstoffhaltig oder Metalloxid sein. Das vorbekannte Additiv kann auch zusätzlich Eisenpulver enthalten. Das vorbekannte Additiv wird überwiegend in Form von Briketts oder Tabletten eingesetzt.
  • Gemäß dem aus DE-AS 26 03 412 bekannten Verfahren zum Herstellen eines drahtförmigen Verbundzusatzwerkstoffes zur Behandlung von Eisen- oder Stahlschmelzen wird der pulverförmige Zusatzwerkstoff auf Calcium- oder Magnesiumbasis in einem als Hülle dienenden Eisen- oder Stahlband extrudiert, wobei durch eine spezielle Überlappung eine dichte Einhüllung und Komprimierung erzielt wird. Der pulverförmige Zusatzwerkstoff ist gegen oxidative Feuchtigkeitseinflüsse gesichert und das Behandlungsmittel daher auch leicht zu lagern und zu handhaben. Das Problem der Reaktionsverzögerung reaktiver Mischungen ist jedoch nicht angesprochen.
  • Zwecks Erhöhung der Reaktionsausbeute und zur Erzielung eines? störungsfreien gebremsten Reaktionsablaufs wird gemäß der Druckschrift EP - A2 - 030 043 eine pulverförmige Mischung aus mindestens einem der Metalle (A) Magnesium, Calcium und der Seltenen Erden sowie mindestens einem der Metalle (B) Eisen, Nickel und Mangan vorgesehen, die mit einer Hülle aus Eisenmetall ummantelt ist.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Herstellen eines drahtförmigen Mittels zum Behandeln von Gußeisenschmelzen anzugeben, mit welchem sich der Behandlungsablauf der Schmelze in weiten Grenzen besser steuern und variieren läßt.
  • Die Erfindung löst die Aufgabe mit einem Verfahren zum Herstellen eines drahtförmigen Mittels zum Behandeln von Gußeisenschmelzen zur Herstellung von Kugelgraphiteisen, aus einer mit Eisenmetall ummantelten pulverförmigen Mischung, die mindestens eines der Metalle (A) Magnesium, Calcium und Seltene Erden sowie mindestens eines der Metalle (B) Eisen, Nickel und Mangan enthält. Das Verfahren der vorgenannten Art wird gemäß der Erfindung in der Weise ausgestaltet, daß das Metallpulver (A) zur Herstellung eines reaktionsverzögernden überzuges zuerst mit Graphit- oder Perlitpulver vorgemischt und danach mit der Komponente (B) und einer reaktionshemmenden Komponente C aus blähbaren Silikaten und/oder Graphit zur endgültigen Mischung vereinigt wird, wobei die Korngröße der Metallpulver (A, B) und der Komponente (C) 0,02 bis 2,0 mm und die Zusammensetzung der Pulvernischung 30 bis 80 Gew.-% (A), 10 bis 60 Gew.-% (B), 1 bis 15 Gew.-% (C) beträgt und wobei die Überzugsmenge in der Menge der Komponente (C) enthalten ist.
  • Da sowohl die Schichtdicke und Teilchengröße des Oberflächenüberzuges des reaktiven Metalls (A) als auch die reaktionshemmende Komponente (C) nach Art und Menge stark variiert werden kann, kann die Behandlung einer Metallschmelze mit drahtförmigem Benandlungsmittel gemäß dem Verfahren der Erfindung in weiten Grenzen variiert werden.
  • Als reaktionsverzögernder oder reaktionshemmender Überzug für das reaktive Metall (A) kommen Graphit-oder Perlitpulver in Betr acht.
  • Der Überzug kann in einfacher Weise durch trockenes Mischen der Stoffe, z.B. Magnesiumpulver und Graphitpulver, erzielt werden. Es kann aber auch zweckmäßig sein, im Mischvorgang ein flüssiges, verdampfbares Medium vorzusehen, so daß ein haftfesterer Auftrag des Überzuges erfolgt. Das flussige Medium kann beispielsweise Wasser oder ein organisches Lösungsmittel sein. Gegebenenfalls kann auch ein geringer Zusatz von etwa bis 2 % eines organischen oder anorganischen Bindemittels zwecknäßig sein und einen haftfesten dichten Überzug herbeiführen. Die Teilchengröße des Überzugsstoffes liegt im allgeneinen zwischen 0,02 und 1,0 mm, wobei eine Teilchengröße von 0,05 bis 0,25 mm vorteilhaft ist.
  • Für die Effektivität des nach dem Verfahren der Erfindung hergestellten drahtförmigen Behandlungsmittels ist es des weiteren von Wichtigkeit, daß die Metallkomponenten des Pulvergemischs in gleicher Korngröße vorliegen. Hier hat es sich als vorteilhaft herausgestellt, eine Korngröße der Metallpulver von 0,02 - 2,0 mm einzuhalten. Ein bevorzugter Bereich liegt bei einer Korngröße von 0,05 bis 1,5 mm. Zweckmäßig liegt die reaktive und mit dem reaktionsverzögernden Überzug zu versehende Metallkomponente in Form von Granulaten einer Teilchengröße von 0,8 bis 1,2 mm, insbesondere in einer Körnung von 1 mm vor.
  • Nach einer weiteren Ausführungsform der vorliegenden Erfindung kann die Metallkomponente (A) auch in Form eines Legierungspulvers eingesetzt werden, beispielsweise Mg/Fe/Si-Legierungen oder Ca/Si/Mg-Legierungen, die ggf. noch Metalle der Seltenen Erde enthalten können. Der Magnesiumgehalt der Legierungen liegt im allgemeinen zwischen 3 und 50 %.
  • Die ummantelte Pulvermischung des nach dem erfindungsgemäßen Verfahren hergestellten Behandlungsmittels enthält des weiteren eine metallurgisch neutrale, reaktionshemmende Komponente (C). Metallurgisch neutral heißt im Sinne der Erfindung, daß keine Aufnahme des Stoffes in die Schmelze erfolgt. Geeignete Stoffe für diese Komponente sind blähbare Silikate oder Kohlenstoffträger bzw. Mischungen dieser Komponenten. Als blähbare Silikate werden beispielsweise Quarzporphyrgläser, z.B.
  • Perlit, eingesetzt, die bei Erhitzung auf Temperaturen über 1200° C infolge Austritt des eingeschlossenen Wassers zu Gesteinsschaum expandieren. Ferner eignen sich blähbare Schichtsilikate, wie Vermiculit. Während die blähbaren Silikate aufgrund ihrer geringen wärmeleitfähigkeit die stärkste reaktionshemmende Wirkung hervorrufen, kann gewüschtenfalls mittels Einsatz von Koks oder Graphit allein oder in Mischung mit den blähbaren Silikaten als Komponente (C) eine weniger starke Reaktionshemmung erzielt und den jeweiligen örtlichen Gegebenheiten des Behandlungsvorgangs angepaßt werden.
  • Wenn auch die Zusammensetzung der Pulvermischung des nach dem erfindungsgemäßen Verfahren hergestellten Behandlungsdrahtes in einem weiten Mengenbereich variiert werden kann, so hat es sich im allgemeinen doch als zweckmäßig herausgestellt, eine Zusammensetzung in vorzugsweise folgenden Mengenbereichen vorzusehen:
    Figure imgb0001
    Eine Zusammensetzung der Pulvermischung entsprechend
    Figure imgb0002
    hat sich für die Behandlung von Gußeisenschmelzen zur Herstellung von Kugelgraphiteisen als besonders geeignet erwiesen.
  • Der das Metallpulver einschließende Mantel aus Eisenmetall hat in aller Regel eine Wandstärke von kleiner als 1 mm und beträgt vorzugsweise 0,15 bis 0,5 mm. Der Behandlungsdraht selbst hat in aller Regel einen Durchmesser von 2 - 6 mm. In manchen Fällen von Schmelzbehandlungen können auch wesentlich stärkere, wenn auch weniger flexible Behandlungsdrähte mit einem Durchmesser bis 20 mmerforderlich sein. Drähte mit einem Durchmesser von 2 - 6 mm werden bei einer Arbeitsweise mit Behandeln des Gießstrahls einer Metallschmelze verwendet, während Drähte mit einem Aurchmesser größer als 6 mm und bis 20 mm, vorzugsweise bis 15 mm, bei Behandlungen von Metallschmelzen, wie Gußeisenschmelze, in der Pfanne eingesetzt werden.
  • Der nach dem erfindungsgemäßen Verfahren hergestellte Behandlungsdraht ist bei nicht zu starken Durchmessern flexibel und mit recht einfachen Drahtvorschubgeräten zu fördern. Er läßt sich dann mit Erfolg einsetzen, wenn eine Vorschubgeschwindigkeit des Drahtantriebes von > 60 m/min realisiert wird. Vorzugsweise wird jedoch mit Geschwindigkeiten von 110 bis etwa 200 m/min gearbeitet, um zu gewährleisten, daß der Draht tief in die Schmelze eintaucht, so daß ein optimales Ausbringen erreicht wird. Abhängig von der zu behandelnden Menge an flüssigem Metall kann man einen Draht oder mehrere Drähte gleichzeitig in die Schmelze einspulen. Bei Verwendung von mehreren Drähten ergeben sich vorteilhaft kürzere Behandlungszeiten und geringere Temperaturverluste.
  • Wenn mehrere Drähte gleichzeitig zur Anwendung kommen, so können diese entweder alle von gleicher Beschaffenheit sein oder aber auch unterschiedliche Füllungen besitzen, zum Beispiel können für eine Metallschmelzenbehandlung gleichzeitig eingesetzt werden:
    • a) Zwei Drähte mit Mg-Füllung gemäß vorliegender Erfindung;
    • b) ein Draht als Legierungsdraht, auch als sogenannter "Monodraht" darstellbar, aus Elementen oder Legierungen der Elemente Cu, Al, Ni, Cr, Mg, Ti, Ce, Bi, Te, Sb, Nb;
    • c) ein oder mehrere Drähte mit einer Füllung aus Impfmittel herkömmlicher Art, wie Ferrosilicium.
  • Der nach dem erfindungsgemäßen Verfahren hergestellte Behandlungsdraht wird üblicherweise in die ruhende Schmelze meine Pfanne gespult. Dabei spielt die Form der Pfanne keine entscheidende Rolle im Gegensatz zu konventionellen Mg-Behandlungsverfahren, die keine Drähte verwenden.
  • Bei Verwendung von mehreren Behandlungsdrähten gleichzeitig ist es von Vorteil, die Drähte nicht an der gleichen Stelle in die Schmelze einzutauchen. Die übliche Abmessung der Transportpfanne erscheint für dieses Verfahren der Mg-Behandlung geeeignet.
  • Neben der Einführung des Drahtes in die Pfanne kann der Behandlungsdraht auch in den Gießstrahl, Gießtümpel bzw. in die Gießform direkt eingespult werden oder in ein gesondertes Behandlungsgefäß bzw. Rinne zwischen Ofen und Transport- oder Gießpfanne getaucht werden.
  • Bei größerer Vielfalt der Drähte werden diese vorzugsweise nicht gleichzeitig, sondern in einzelnen Verfahrensschritten getrennt in die Schmelze des Behandlungsgefäßes eingetaucht. Zum Beispiel kann die Behandlung einer Gußeisenschmelze zur Herstellung von Gußeisen mit Kugelgraphit in folgender Weise vorgenommen werden:
    • 1. Schritt: Entschwefeln und Desoxidieren mit einem nach dem erfindungsgemäßen Verfahren hergestellten Behandlungsdraht, enthaltend eine Pulvermischung der Zusammensetzung
      Figure imgb0003
    • 2. Schritt: Modifizieren des Graphits mit einem Behandlungsdraht, entsprechend wie im 1. Schritt
    • 3. Schritt: Legieren mit z.B. massivem Cu-Draht zur Einstellung einer gewünschten Matrix
    • 4. Schritt: Impfen mit einem mit beispielsweise pulverförmigem Ferrosilicium gefüllten Draht als letzte metallurgische Behandlung vor dem Vergießen.
  • Die Vorteile einer solchen mehrstufigen Verfahrensweise liegen darin, daß z.B. an nur einer Behandlungsstation die verschiedenen Verfahrensschritte kurz hintereinander erfolgen können. Ein Umiüllen der Schmelze in andere Gefäße entfällt. Dadurch wird Zeit gewonnen und ein hoher Temperaturverlust vermieden. Außerdem ist ein genaueres und einfacheres Arbeiten möglich.
  • Die Erfindung wird anhand eines Ausführungsbeispiels näher und beispielhaft erläutert.
  • Beispiel:
  • Mittels einer Drahterzeugungsmaschine wurde durch Deformieren und Komprimieren ein Behandlungskörper in Drahtform hergestellt. Bei einem Außendurchmesser von 5 mm des Drahtes umschloß eine Hülle aus Weichstahlband (Mantelstärke 0,35 mm) einen Kern aus einem Metallpulvergemisch. Das Pulvergemisch bestand aus 69 % metallischem Magnesiumpulver, 26 % Eisenpulver, beide von einer Teilchengröße von 0,5 mm, sowie 5 % Graphitpulver einer Teilchengröße < 0,2 mm. Vor dem Herstellen des Pulvergemischs wurde das Magnesiummetallpulver mit einem Teil des Graphitpulvers vorgemischt, um eine sichere Ausbildung des reaktionsverzögernden Überzugs auf der Magnesiumoberfläche zu gewährleisten. Der Magnesiumgehalt, bezogen auf den laufenden Meter Draht, betrug 10 g.
  • Der Behandlungsdraht wurde mittels einer automatischen Vorschubvorrichtung in Gußeisenschmelzen eingeführt. Die gußeisenschmelzen befanden sich jeweils in einer offenen, sogenannten schlanken Pfanne (Fassungsvermögen 1 to; Verhältnis Höhe:Durchmesser = 2 : 1 ). Es wurde eine Gußeisenschmelze folgender Zusammensetzung inden Versuchen 1 und II behandelt:
    Figure imgb0004
  • Die weiteren Versuchsbedingungen und die Versuchsergebnisse sind in der nachfolgenden Tabelle angeführt:
    Figure imgb0005
  • Die Behandlung der Gußeisenschmelze verlief ruhig und ohne Auswurf von Schmelzenanteilen. Der Graphit war in abgegossenen Proben zu mehr als 90 % in der Kugelform ausgebildet.
  • Die Versuche zeigen, daß auch bei erhöhtem Magnesiumanteil im Behandlungsdraht ein ruhiger Ablauf der Behandlung und ein hohes Ausbringen des Magnesiums von ca. 40 % erzielt werden.
  • Bei Verwendung von z.B. Perlit statt Graphit als reaktionshemmende Komponente des nach dem erfindungsgemäßen Verfahren hergestellten Behandlungsdrahtes verläuft die Behandlungsreaktion gleichfalls ohne Eruptionen. Darüber hinaus bewirkt die silikatische Komponente im Behandlungsdraht eine Reinigung der schmelze durch Bindung der in der Schmelze dispergierten Reaktionsprodukte bzw. Schlackenteilchen.
  • Wird im gemäß erfindungsgemäßen Verfahren hergestellten Behandlungsdraht statt Eisenpulver Kupfer oder Nickel in Pulverform verwendet, so kann die Eisenschmelze mit der Magnesiumbehandlung gleichzeitig legiert werden, was zu erhöhtem Perlit-Anteil im Grundgefüge führt.

Claims (4)

1. Verfahren zum Herstellen eines drahtförmigen Mittels zum Behandeln von Gußeisenschmelzen zur Herstellung von Kugelgraphiteisen, aus einer mit Eisenmetall ummantelten pulverförmigen Mischung, die mindestens eines der Metalle (A) Magnesium, Calcium und Seltene Erden sowie mindestens eines der Metalle (B) Eisen, Nickel und Mangan enthält, dadurch gekennzeichnet, daß das Metallpulver (A) zur Herstellung eines reaktionsverzögernden Überzuges zuerst mit Graphit- oder Perlitpulver vorgemischt und danach mit der Komponente (B) und einer reaktionshemmenden Komponente (C) aus blähbaren Silikaten Koks und/ oder Graphit zur endgültigen Mischung vereinigt wird, wobei die Korngröße der Metallpulver (A, B) und der Komponente (C) 0,02 bis 2,0 mm und die Zusammensetzung der Pulvermischung 30 bis 80 Gew.-% (A), 10 bis 60 Gew.-% (B), 1 bis 15 Gew.-% (C) beträgt und wobei die Überzugsmenge in der Menge der Komponente (C) enthalten ist.
2. Verfahren zur Herstellung eines drahtförmigen Mittels nach Anspruch 1, dadurch gekennzeichnet, daß als Komponente (C) Perlit, Vermiculit, Koks, Graphit oder eine Mischung dieser Stoffe verwendet wird.
3. Verfahren zur Herstellung eines drahtförmigen Mittels nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, daß eine Pulvermischung der Zusammensetzung
Figure imgb0006
verwendet wird.
4. Verfahren zur Herstellung eines drahtförmigen Mittels nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß eine Pulvermischung der Zusammensetzung
Figure imgb0007
verwendet wird.
EP82200429A 1981-05-27 1982-04-07 Drahtförmiges Mittel zum Behandeln von Metallschmelzen Expired EP0066305B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3121089A DE3121089A1 (de) 1981-05-27 1981-05-27 Drahtfoermiges mittel zum behandeln von metallschmelzen
DE3121089 1981-05-27

Publications (2)

Publication Number Publication Date
EP0066305A1 EP0066305A1 (de) 1982-12-08
EP0066305B1 true EP0066305B1 (de) 1986-02-05

Family

ID=6133337

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82200429A Expired EP0066305B1 (de) 1981-05-27 1982-04-07 Drahtförmiges Mittel zum Behandeln von Metallschmelzen

Country Status (2)

Country Link
EP (1) EP0066305B1 (de)
DE (2) DE3121089A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3910776A1 (de) * 1988-05-10 1989-11-23 Fischer Ag Georg Verfahren zur behandlung von gusseisenschmelzen in einer offenen pfanne mittels reinmagnesium
DE3924558C1 (de) * 1989-07-25 1990-11-22 Skw Trostberg Ag, 8223 Trostberg, De
DE4138231C1 (de) * 1991-11-21 1992-10-22 Skw Trostberg Ag, 8223 Trostberg, De
DE4226833A1 (de) * 1992-08-13 1994-02-17 Alfred Dr Freissmuth Entschwefelungsmittel für Roheisen und Gußeisen
IL115780A (en) * 1994-10-28 1999-08-17 Alcan Int Ltd Production of granules of reactive metals for example magnesium and magnesium alloy
US5951738A (en) * 1995-10-27 1999-09-14 Alcan International Limited Production of granules of reactive metals, for example magnesium and magnesium alloy
FR2796398B1 (fr) * 1999-07-12 2002-02-22 Pechiney Electrometallurgie Grenaille de calcium metal pour le traitement de l'acier par la technique du fil fourre
MX2009000599A (es) * 2006-07-20 2009-01-29 Heraeus Electro Nite Int Alambres con nucleo altamente dimensional con contenido de removedores de oxigeno y proceso para fabricarlos.
AU2007276412B2 (en) * 2006-07-20 2011-04-28 Heraeus Electro-Nite International N.V. High dimensional cored wires containing oxygen removers and a process for making the same
DE102012013662A1 (de) 2012-07-10 2014-01-16 Mechthilde Döring-Freißmuth Füllldraht und Verfahren zur Behandlung von Eisenschmelzen
CA3031491C (en) 2019-01-03 2020-03-24 2498890 Ontario Inc. Systems, methods, and cored wires for treating a molten metal
DE102019105453A1 (de) * 2019-03-04 2020-09-10 Kme Mansfeld Gmbh Verfahren zum kontinuierlichen Herstellen eines Kupferlegierungsprodukts
CN111518989A (zh) * 2020-06-03 2020-08-11 马鞍山市兴达冶金新材料有限公司 一种环保复合钙包芯线及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2603412B2 (de) * 1975-07-25 1978-04-13 Hitachi Cable, Ltd., Tokio Verfahren zum Herstellen eines drahtförmigen Verbundzusatzwerkstoffes zur Behandlung von Eisen- oder Stahlschmelzen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE791502A (fr) * 1971-11-17 1973-03-16 Magnesium Elektron Ltd Addition de magnesium a du metal en fusion
US3921700A (en) * 1974-07-15 1975-11-25 Caterpillar Tractor Co Composite metal article containing additive agents and method of adding same to molten metal
US4152150A (en) * 1977-12-09 1979-05-01 Caterpillar Tractor Co. Particulate treating material
DE2948636A1 (de) * 1979-12-04 1981-06-11 Metallgesellschaft Ag, 6000 Frankfurt Drahtfoermiges mittel zum behandeln von metallschmelzen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2603412B2 (de) * 1975-07-25 1978-04-13 Hitachi Cable, Ltd., Tokio Verfahren zum Herstellen eines drahtförmigen Verbundzusatzwerkstoffes zur Behandlung von Eisen- oder Stahlschmelzen

Also Published As

Publication number Publication date
EP0066305A1 (de) 1982-12-08
DE3121089A1 (de) 1982-12-16
DE3268918D1 (en) 1986-03-20

Similar Documents

Publication Publication Date Title
DE2531573C2 (de) Zusatz zu Metallschmelzen und Verfahren zum Einbringen des Zusatzes in eine Schmelze
EP0066305B1 (de) Drahtförmiges Mittel zum Behandeln von Metallschmelzen
DE2738379A1 (de) Verfahren zum raffinieren von eisen- und stahlschmelzen
DE1558336B2 (de) Schleudergiessverfahren zur herstellung duktiler roehrenfoermiger gussstuecke
DE19916235C2 (de) Fülldraht zur Behandlung von Schmelzen mittels Drahtinjektion
EP0005152B1 (de) Gefüllter rohrförmiger Gegenstand zum kontrollierten Eintauchen in geschmolzenes Metall
DE3924558C1 (de)
DE1299670B (de) Zusatz zu Gusseisenschmelzen zum Entschwefeln und zur Kugelgraphitbildung
DE2948636A1 (de) Drahtfoermiges mittel zum behandeln von metallschmelzen
DE2753282C2 (de) Mittel zur metallurgischen Behandlung von flüssigem Eisen sowie Verwendung des Mittels
AT409271B (de) Verfahren zur herstellung von agglomeraten, enthaltend eisen und mindestens ein weiteres element der gruppen 5 oder 6 des periodensystems
EP0499269B1 (de) Impfdraht
DE2244092A1 (de) Nickel-magnesium-vorlegierung
DE2437186C3 (de) Verfahren zum Herstellen von Magnesium enthaltenden Eisenbriketts
DE1433405A1 (de) Mittel zur Behandlung von geschmolzenen Metallen und Legierungen der Eisengruppe unter Bildung von sphaerolytischem Eisen
EP0353804B1 (de) Verfahren zur Herstellung von Gusseisen mit Kugelgraphit und/oder Vermiculargraphit
DE2421743B2 (de) Verfahren zum Herstellen eines stangenförmigen Desoxydations- und Entschwefelungsmittels für Eisen- oder Stahlschmelzen o.dgl
DE4124159C1 (de)
EP0175934A1 (de) Impflegierung auf Basis von Ferrosilicium oder Silicium und Verfahren zu ihrer Herstellung
DE1533474C2 (de) Verfahren zur Herstellung von Magnesiumenthaltendem Ferrosilizium
DD202895A5 (de) Zusatzstoffe fuer auf geschmolzenem eisen basierende legierungen
DD259001A5 (de) Verfahren zur herstellung von perlitischen gusseisensorten
DE2550620A1 (de) Verfahren zum einverleiben eines hochreaktiven materials in geschmolzenen stahl
DE4035631A1 (de) Fuelldraht fuer die behandlung von gusseisenschmelzen
DE2626354B2 (de) Kohlenstofffreies giesspulver fuer kokillen- und strangguss von stahl

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB

17P Request for examination filed

Effective date: 19830602

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB LI

REF Corresponds to:

Ref document number: 3268918

Country of ref document: DE

Date of ref document: 19860320

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SKW TROSTBERG AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940321

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950430

Ref country code: CH

Effective date: 19950430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980313

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980318

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990315

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000407

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000407