EP0061894A2 - Zwei-Komponentenzusatz zur Verbesserung der Fliessfähigkeit von mittleren Destillat-Heizölen - Google Patents
Zwei-Komponentenzusatz zur Verbesserung der Fliessfähigkeit von mittleren Destillat-Heizölen Download PDFInfo
- Publication number
- EP0061894A2 EP0061894A2 EP82301556A EP82301556A EP0061894A2 EP 0061894 A2 EP0061894 A2 EP 0061894A2 EP 82301556 A EP82301556 A EP 82301556A EP 82301556 A EP82301556 A EP 82301556A EP 0061894 A2 EP0061894 A2 EP 0061894A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- vinyl acetate
- nitrogen compound
- flow
- oil
- soluble nitrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000654 additive Substances 0.000 title claims abstract description 46
- 230000000996 additive effect Effects 0.000 title claims abstract description 35
- 239000010771 distillate fuel oil Substances 0.000 title claims description 15
- 239000000446 fuel Substances 0.000 claims abstract description 66
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims abstract description 39
- 229910017464 nitrogen compound Inorganic materials 0.000 claims abstract description 31
- 150000002830 nitrogen compounds Chemical class 0.000 claims abstract description 31
- -1 amine salt Chemical class 0.000 claims abstract description 24
- 150000001408 amides Chemical class 0.000 claims abstract description 18
- 125000003118 aryl group Chemical group 0.000 claims abstract description 12
- 238000009835 boiling Methods 0.000 claims abstract description 7
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 33
- 239000003921 oil Substances 0.000 claims description 30
- 239000000203 mixture Substances 0.000 claims description 24
- 239000002253 acid Substances 0.000 claims description 19
- 125000000217 alkyl group Chemical group 0.000 claims description 19
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 15
- 150000007513 acids Chemical class 0.000 claims description 14
- 125000004432 carbon atom Chemical group C* 0.000 claims description 14
- 150000001412 amines Chemical class 0.000 claims description 12
- 150000008064 anhydrides Chemical class 0.000 claims description 12
- 239000013078 crystal Substances 0.000 claims description 12
- 238000005481 NMR spectroscopy Methods 0.000 claims description 9
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 claims description 8
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 claims description 8
- 239000012141 concentrate Substances 0.000 claims description 8
- 239000003966 growth inhibitor Substances 0.000 claims description 8
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 claims description 8
- 125000005210 alkyl ammonium group Chemical group 0.000 claims description 7
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 7
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 claims description 7
- 239000003760 tallow Substances 0.000 claims description 5
- 238000005160 1H NMR spectroscopy Methods 0.000 claims description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 4
- 239000005977 Ethylene Substances 0.000 claims description 4
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical group CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 claims description 4
- 229920001577 copolymer Polymers 0.000 claims description 3
- 239000012442 inert solvent Substances 0.000 claims description 2
- 238000004611 spectroscopical analysis Methods 0.000 claims 3
- 150000001735 carboxylic acids Chemical class 0.000 abstract description 3
- 238000012360 testing method Methods 0.000 description 29
- 229920000642 polymer Polymers 0.000 description 19
- 239000001993 wax Substances 0.000 description 17
- 229940126062 Compound A Drugs 0.000 description 9
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 9
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 6
- 150000001991 dicarboxylic acids Chemical class 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 4
- 150000001335 aliphatic alkanes Chemical class 0.000 description 3
- 150000003863 ammonium salts Chemical class 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000002283 diesel fuel Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229940125904 compound 1 Drugs 0.000 description 2
- 229940125846 compound 25 Drugs 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- JRLTTZUODKEYDH-UHFFFAOYSA-N 8-methylquinoline Chemical group C1=CN=C2C(C)=CC=CC2=C1 JRLTTZUODKEYDH-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical group CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 1
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 1
- PLZVEHJLHYMBBY-UHFFFAOYSA-N Tetradecylamine Chemical compound CCCCCCCCCCCCCCN PLZVEHJLHYMBBY-UHFFFAOYSA-N 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- OVHKECRARPYFQS-UHFFFAOYSA-N cyclohex-2-ene-1,1-dicarboxylic acid Chemical compound OC(=O)C1(C(O)=O)CCCC=C1 OVHKECRARPYFQS-UHFFFAOYSA-N 0.000 description 1
- QYQADNCHXSEGJT-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylate;hydron Chemical compound OC(=O)C1(C(O)=O)CCCCC1 QYQADNCHXSEGJT-UHFFFAOYSA-N 0.000 description 1
- YZFOGXKZTWZVFN-UHFFFAOYSA-N cyclopentane-1,1-dicarboxylic acid Chemical compound OC(=O)C1(C(O)=O)CCCC1 YZFOGXKZTWZVFN-UHFFFAOYSA-N 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 150000001470 diamides Chemical class 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000003324 growth hormone secretagogue Substances 0.000 description 1
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical class C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000004200 microcrystalline wax Substances 0.000 description 1
- 235000019808 microcrystalline wax Nutrition 0.000 description 1
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 1
- HKUFIYBZNQSHQS-UHFFFAOYSA-N n-octadecyloctadecan-1-amine Chemical compound CCCCCCCCCCCCCCCCCCNCCCCCCCCCCCCCCCCCC HKUFIYBZNQSHQS-UHFFFAOYSA-N 0.000 description 1
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 1
- 238000002103 osmometry Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/143—Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/146—Macromolecular compounds according to different macromolecular groups, mixtures thereof
Definitions
- This invention relates to the use of certain mixtures of additives to improve the flow and filterability properties of distillate fuels at low temperatures to fuels containing the mixtures and to concentrates of the additives for incorporation into the fuel.
- the invention relates to an additive system composed of a nitrogen-containing wax crystal growth inhibitor and a particular category of ethylene-vinyl acetate copolymer.
- additives are disclosed in the art for improving the flow properties of middle distillate fuel oils.
- Combinations of additives which function both as wax nucleators and/or wax crystal growth stimulators and as wax growth arrestors are well-known and disclosed for example in U.S. Patent 3,961,916 issued June 8th 1976 to Ilnyckyj et al, which shows an additive combination comprising ethylene copolymerised with ethylenically unsaturated mono- or dicarboxylic acid alkyl esters or a vinyl ester of a C 1 -C 17 saturated fatty acid.
- Additive systems comprising nitrogen containing amide or amine salts as used in the present invention are disclosed in U.S. Patent 4,211,534 issued July 8th, 1980 to Feldman which discloses a three component combination additive flow improver consisting of an ethylene polymer or copolymer, a second polymer of an oil soluble ester and/or C 3 and higher olefin polymer and, as a third component, a nitrogen containing compound.
- This three component system is said to have advantages over combinations consisting of any two of the additive components for improving the cold flow properties of distillate fuels.
- U.S. Patent 3,982,909 issued September 28th, 1976 to Hollyday discloses an additive system comprising amides, diamides and ammonium salts alone or in combination with certain hydrocarbons such as microcrystalline waxes or petrolatums and/or an ethylene backbone polymeric pour depressant, the combination being useful as a flow improver for middle distillate fuels.
- Nitrogen containing oil soluble succinic acid or its derivatives are disclosed in U.S. Patent 4,147,520 issued April 3, 1975 to Ilynckyj which describes these materials in combination with ethylene vinyl acetate copolymer wax nucleators.
- the present invention is based on the discovery that a two component additive system consisting essentially of an amine salt that is an alkyl ammonium or amide compound having a total of 30-200 preferably 50-150 carbon atoms derived from certain carboxylic acids or anhydrides in combination with a certain ethylene vinyl acetate copolymer is highly effective at relatively lower treatment levels for improving the flow and filterability properties of middle distillate fuels below their cloud points.
- wax containing petroleum fuel oil compositions comprising a wax containing middle distillate fuel oil, boiling in the range of about 120°C-500°C, which has been improved in its low temperature properties by the addition of 0.005 to 0.5 wt.%, preferably 0.005 to 0.25 wt.% of a flow and filterability improver consisting essentially of:
- the flow improver combination of the present invention is useful in a broad category of distillate fuels boiling in the range of about 120°C to about 500°C (ASTM D1160), preferably those distillate fuels boiling in the range of about 150°C-400°C.
- the invention is especially applicable to fuels which have a relatively high final boiling point (FB P ), that is, above 360°C.
- the nitrogen containing wax crystal growth inhibitors used in the present invention are generally those having a total of 30-300, preferably 50-150 carbon atoms and being those oil-soluble amine salts and amides formed by reacting at least 1 molar portion of a hydrocarbyl substituted amine with 1 molar portion of the aromatic or cycloaliphatic polycarboxylic acid, e.g. 2 to 4 carboxyl groups preferably dicarboxylic acids, or their anhydrides or partial esters of dicarboxylic e.g. mono-esters of dicarboxylic acids.
- the amines may be primary, secondary, tertiary or quaternary, but preferably are secondary. Tertiary and quaternary amines can only form amine salts. Examples of amines include tetradecyl amine, cocoamine, hydrogenated tallow amine and the like. Examples of secondary amines include cocomethyl amine, dioctadecyl amine, methyl-benhenyl amine and the like. Amine mixtures are also suitable and many amines derived from natural materials are mixtures.
- the preferred amine is a secondary hydrogenated tallow amine of the formula HNR 1 R 2 wherein R 1 and R 2 are alkyl groups derived from tallow fat composed of approximately 4% C 14 , 31% C 16 , 59% C 18 .
- carboxylic acids examples include cyclohexane dicarboxylic acid, cyclohexene dicarboxylic acid, cyclopentane dicarboxylic acid, naphthalene dicarboxylic acid, and the like. Generally these acids will have about 5-13 carbon atoms in the cyclic moiety.
- Preferred acids useful in the present invention are benzene dicarboxylic acids such as phthalic acid, terephthalic acid, and isophthalic acid. Isophthalic acid or its anhydride is the particularly preferred embodiment.
- the nitrogen containing compound has at least one straight chain alkyl segment extending from the compound containing 8-40 preferably 14-24 carbon atoms.
- the nitrogen compound contains at least three alkyl chains each containing from 8 to 40 carbon atoms and preferably at least two of these chains are normal.
- at least one ammonium salt, amine salt or amide linkage is required to be present in the molecule.
- the particularly preferred amine compound is the amide-amine salt formed by reacting 1 molar portion of phthalic anhydride with 2 molar portions of di-hydrogentated tallow amine. Another preferred embodiment is the diamide formed by dehydrating this amide-amine salt.
- amide or amine salts of monoesters of the aforesaid dicarboxylic acids are also suitable.
- lower alkyl monoesters may also be suitable provided the nitrogen compound is an oil-soluble compound and has about 30-300 preferably 50-150 carbon atoms.
- An octadecyl ester of an amine salt of phthalic anhydride is an example of a preferred embodiment in this category.
- both the type of nitrogen-containing compounds and the type of ethylene vinyl acetate copolymer used have been found to be significant parameters to provide an effective two-component additive system which is a superior flow improver.
- the flow improver combination of the present invention is a highly effective one compared with three-component systems such as disclosed in U.S. Patent 4,211,534 which are used at relatively high treatment concentrations. It has been found in the present invention that the use of a third component with its associated costs may not be necessary in many fuels.
- the nitrogen containing compounds of the present invention are highly effective in inhibiting the growth of wax crystals.
- the longer alkanes crystallising first generally the maximum is at around 20 to 22 carbon atoms.
- the nitrogen containing compounds appear to be highly effective in controlling the growth of the bulk of the alkane waxes but appear to be slightly less effective in controlling the initial stages of wax precipitation.
- the ethylene vinyl acetate copolymer contain from 10 to 40 wt.% more preferably 10 to 35 wt.%, most preferably from 10 to 20 wt.% vinyl acetate; has a number average molecular weight (M n ) as measured by Vapour Phase Osmometry within the range of about 1,000 to 30,000, preferably 1500 to 7000 more preferably 1500 to 5500 most preferably of 2500 to 5500 and a degree of branching in the range of 1 to 20 preferably 2 to 12.
- M n number average molecular weight
- the degree of branching is the number of methyl groups other than those of the vinyl acetate in the polymer molecule per 100 methylene groups as determined by proton nuclear magnetic resonance spectroscopy as for example using a Perkin-Elmer R-34 Spectrometer on 20% (W/W) solution in orthodichlorobenzene at 100 * C operating at 220 MHz in the continuous wave mode.
- W e have also found that the relative proportions of the nitrogen containing compound and the ethylene vinyl acetate copolymer is important in achieving the improvement in flow and filterability.
- at least 25 wt.% preferably at least 50 wt.% of the nitrogen containing compound should be used and more preferably between 25 and 95 wt.% preferably 50 to 95 Wt.% most preferably between 60 and 90 wt.%, especially between 60 and 80 wt.% the balance being the ethylene/vinyl acetate copolymer.
- the additive systems of the present invention may conveniently be supplied as concentrates of the mixture of the nitrogen containing compound and the ethylene vinyl acetate copolymer in oil or other suitable inert solvent for incorporation into the bulk distillate fuel. These concentrates may also contain other additives as required. These concentrates which contain from 3 to 90 wt.% preferably from 3 to 60 wt.%, more preferably 10 to 50 wt.% of the additives in oil or other solvent are also within the scope of the present invention.
- DOT test Flow Improved Distillate Operability Test
- the cold flow properties of the described fuels containing the additives were determined by the slow cool flow test as follows. 300 ml of fuel are cooled linearly at I * C/hour to the test temperature then that temperature is held constant. After 2 hours at the test temperature, approximately 20 ml of the surface layer is removed by suction to prevent the test being influenced by the abnormally large wax crystals which tend to form on the oil/air interface during cooling. Wax which has settled in the bottle is dispersed by gentle stirring, then a CF PP filter assembly as described hereafter in relation to CF PP Test is inserted.
- a vacuum of 300 mm of water is applied and 200 ml of.the fuel is passed through the filter into the graduated receiver, A PASS is recorded if the 200 ml are collected within sixty seconds through a given mesh size or a FAIL if the filter becomes blocked and the flow rate is too slow.
- Filter assemblies with filter screens of 20, 30, 40, 60, 80, 100, 120, 150, 200, 250, 350 mesh number are used to determine the finest mesh number that a wax containing fuel will pass. The smaller are the wax crystals and therefore the finer the mesh the greater the effectiveness of the additive flow improver. It should be noted that no two fuels will give exactly the same test results at the same treatment level for the same flow improver additive, and, therefore, actual treat levels will vary somewhat from fuel to fuel.
- Fuel 1 was evaluated in the DOT test using a flow improver composed of 75% by weight of Nitrogen Compound A, and 25% by weight of EVA Polymer 1 and the results at -12°C are reported below:
- Example 1 -' was conducted with the conventional flow improver additive as reported in Example 1, polymer 1 in U.S. Patent 4,211,534.
- This flow improver additive is described as a polymer mixture of about 75 wt.% of a wax growth arrestor and about 25 wt.% of a nucleator, both compounds being ethylene vinyl acetate polymer, henceforth referred to as Polymer 15.
- Example 1 The DOT test used in Example 1 was repeated using Fuel 3. All tests were at -12 * C with 100 ppm flow improver composed of 75 ppm Nitrogen Compound A of Example 1 and 25 ppm of various ethylene vinyl acetate copolymers (EVA) tabulated below. Results are in Table 1. The purpose of this example is to demonstrate the importance of the particular category of ethylene-vinyl acetate copolymers.
- Example 6 The comparison of Example 6 was repeated in Fuels 2 and 3 and the results are shown in Figures 2 and 3 respectively.
- Example 9 was repeated but using Fuels 2 and 3 and the results are shown in Figures 5 and 6 respectively.
- a 40 ml sample of the oil to be tested is cooled in a bath which is maintained at about -34°C to give non-linear cooling at about 1'C/min.
- a test device which is a pipette to whose lower end is attached an inverted funnel which is positioned below the surface of the oil to be tested. Stretched across the mouth of the funnel is a 350 mesh screen having an area defined by a 12 millimetre diameter.
- the periodic tests are each initiated by applying a vacuum to the upper end of the pipette whereby oil is drawn through the screen up into the pipette to a mark indicating 20 ml of oil. After each successful passage the oil is returned immediately to the CFPP tube. The test is repeated with each one degree drop in temperature until the oil fails to fill the pipette within 60 seconds. This temperature is reported as the CFPP temperature. The difference between the CF PP of an additive free fuel and of the same fuel containing additive is reported as the CFPP depression by the additive. A more effective additive flow improver gives a greater CF P P depression at the same concentration of additive.
- Example 12 The evaluations of Example 12 were repeated in Fuels 2 and 3 and the results are recorded in Figures 8 and 9 respectively.
- Example 15 was repeated but using Fuels 2 and 3 and the results are recorded in Figures 11 and 12 respectively.
- the performance of the additives is evaluated in a test developed for the low temperature properties of diesel fuels in which a sample of the fuel is brought to the test temperature by cooling at 2'F per hour and testing the filterability at that temperature by determining if the fuel will pass through a 350 mesh screen under a vacuum of 6 inches of mercury within 60 seconds. If so the fuel is considered to PASS.
- the ethylene vinyl acetate copolymers used in this Example had the following structure Mixtures of Nitrogen Compound A with varying amounts of ethylene vinyl acetate copolymers 9 to 14 were tested in Fuels 4 and 5, the amount of additive needed to PASS the test being recorded in Figures 13 and 14 respectively. The lower the amount of additive showing the better performance of the additive.
- the fuel in one barrel contained 135 parts per million of Polymer 15 and only passed a 30 mesh screen whilst the fuel in the other barrel which contained 135 parts per million of a mixture of 4 parts of Nitrogen Compound A and 1 part of EVA Polymer 1 passed a 100 mesh screen.
- the results are from four 25 m 3 tanks of Fuel 7 which were tested side by side. Over a period of three weeks storage, under natural cold conditions (including natural temperature cycling), the fuel at -14°C was pumped out of the tanks as in a fuel distribution situation - and the finest filter screen that the fuel would flow through was recorded as follows
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Liquid Carbonaceous Fuels (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT82301556T ATE15496T1 (de) | 1981-03-31 | 1982-03-24 | Zwei-komponentenzusatz zur verbesserung der fliessfaehigkeit von mittleren destillat-heizoelen. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB8110082 | 1981-03-31 | ||
GB8110082 | 1981-03-31 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0061894A2 true EP0061894A2 (de) | 1982-10-06 |
EP0061894A3 EP0061894A3 (en) | 1983-01-19 |
EP0061894B1 EP0061894B1 (de) | 1985-09-11 |
Family
ID=10520807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP82301556A Expired EP0061894B1 (de) | 1981-03-31 | 1982-03-24 | Zwei-Komponentenzusatz zur Verbesserung der Fliessfähigkeit von mittleren Destillat-Heizölen |
Country Status (17)
Country | Link |
---|---|
EP (1) | EP0061894B1 (de) |
JP (2) | JPS581792A (de) |
AT (1) | ATE15496T1 (de) |
AU (1) | AU547501B2 (de) |
BG (1) | BG60057B2 (de) |
CA (1) | CA1182641A (de) |
CS (1) | CS275637B6 (de) |
DD (1) | DD208170A5 (de) |
DE (1) | DE3266117D1 (de) |
GB (1) | GB2095698A (de) |
HU (1) | HU199552B (de) |
IN (1) | IN158487B (de) |
MX (2) | MX172089B (de) |
PL (1) | PL129941B1 (de) |
RU (1) | RU2017794C1 (de) |
SG (1) | SG58888G (de) |
YU (1) | YU45106B (de) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0104015A2 (de) * | 1982-09-16 | 1984-03-28 | Exxon Research And Engineering Company | Zusatzkonzentrate für Destillatkraftstoffe |
EP0113581A1 (de) * | 1983-01-04 | 1984-07-18 | Exxon Research And Engineering Company | Zwischendestillatzubereitungen mit verbessertem Fliessverhalten bei niedriger Temperatur |
EP0153176A2 (de) * | 1984-02-21 | 1985-08-28 | Exxon Research And Engineering Company | Mitteldestillat-Zusammensetzungen mit Fliesseigenschaften bei Kälte |
EP0155807A2 (de) * | 1984-03-22 | 1985-09-25 | Exxon Research And Engineering Company | Mitteldestillate Zusammensetzungen mit Fliesseigenschaften bei Kälte |
US4569679A (en) * | 1984-03-12 | 1986-02-11 | Exxon Research & Engineering Co. | Additive concentrates for distillate fuels |
EP0203812A1 (de) * | 1985-05-28 | 1986-12-03 | Exxon Research And Engineering Company | Fliessverbesserungsgemisch für Mitteldestillatkraftstoffe |
EP0217602A1 (de) * | 1985-09-24 | 1987-04-08 | Mitsubishi Petrochemical Co., Ltd. | Kraftölzusatz und Kraftöl mit Fliessvermögen |
EP0261959A2 (de) * | 1986-09-24 | 1988-03-30 | Exxon Chemical Patents Inc. | Brennstoffezusätze |
EP0261958A2 (de) * | 1986-09-24 | 1988-03-30 | Exxon Chemical Patents Inc. | Mitteldestillatzusammensetzungen mit verminderter Wachskristallgrösse |
WO1988002393A2 (en) * | 1986-09-24 | 1988-04-07 | Exxon Chemical Patents, Inc. | Improved fuel additives |
GB2208517B (en) * | 1986-09-24 | 1990-10-03 | Exxon Chemical Patents Inc | Middle distillate compositions with reduced wax crystal size |
GB2231584A (en) * | 1986-09-24 | 1990-11-21 | Exxon Chemical Patents Inc | Improved fuel additives |
AT394569B (de) * | 1986-09-24 | 1992-05-11 | Exxon Chemical Patents Inc | Mitteldestillatzusammensetzungen mit verminderter wachskristallgroesse |
WO1993014178A1 (en) * | 1992-01-14 | 1993-07-22 | Exxon Chemical Patents Inc. | Additives and fuel compositions |
EP0857776A1 (de) | 1997-01-07 | 1998-08-12 | Clariant GmbH | Verbesserung der Fliessfähigkeit von Mineralölen und Mineralöldestillaten unter Verwendung von Alkylphenol-Aldehydharzen |
US5814110A (en) * | 1986-09-24 | 1998-09-29 | Exxon Chemical Patents Inc. | Chemical compositions and use as fuel additives |
US6010989A (en) * | 1997-09-08 | 2000-01-04 | Clariant Gmbh | Additive for improving the flow properties of mineral oils and mineral oil distillates |
US7041738B2 (en) | 2002-07-09 | 2006-05-09 | Clariant Gmbh | Cold flow improvers for fuel oils of vegetable or animal origin |
GB2435884A (en) * | 2006-03-09 | 2007-09-12 | Infineum Int Ltd | Ethylene/vinyl ester and phenolic resin fuel additive package |
US7435271B2 (en) | 2000-01-11 | 2008-10-14 | Clariant Produkte (Deutschland) Gmbh | Multifunctional additive for fuel oils |
US7550019B2 (en) | 2003-07-21 | 2009-06-23 | Clariant Produkte (Deutschland) Gmbh | Fuel oil additives and additized fuel oils having improved cold properties |
US7713315B2 (en) | 2005-07-28 | 2010-05-11 | Clariant Produkte (Deutschland) Gmbh | Mineral oils with improved conductivity and cold flowability |
EP2230226A1 (de) * | 2009-03-18 | 2010-09-22 | Infineum International Limited | Kraftstoffölzusätze |
US7815696B2 (en) | 2002-07-09 | 2010-10-19 | Clariant Produkte (Deutschland) Gmbh | Oxidation-stabilized lubricant additives for highly desulfurized fuel oils |
US8133852B2 (en) | 2005-07-28 | 2012-03-13 | Clariant Produkte (Deutschland) Gmbh | Mineral oils with improved conductivity and cold flowability |
US8283298B2 (en) | 2005-07-28 | 2012-10-09 | Clariant Produkte (Deutschland) Gmbh | Mineral oils with improved conductivity and cold flowability |
US8298402B2 (en) | 2005-09-22 | 2012-10-30 | Clariant Produkte (Deutschland) Gmbh | Additives for improving the cold flowability and lubricity of fuel oils |
EP3885424A1 (de) | 2020-03-24 | 2021-09-29 | Clariant International Ltd | Zusammensetzungen und verfahren zur dispergierung von paraffinen in schwefelarmen brennstoffölen |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60166389A (ja) * | 1984-02-09 | 1985-08-29 | Nippon Oil & Fats Co Ltd | 燃料油用流動性向上剤 |
GB8510719D0 (en) * | 1985-04-26 | 1985-06-05 | Exxon Chemical Patents Inc | Fuel compositions |
GB2197877A (en) * | 1986-10-07 | 1988-06-02 | Exxon Chemical Patents Inc | Additives for wax containing distillated fuel |
GB2197878A (en) * | 1986-10-07 | 1988-06-02 | Exxon Chemical Patents Inc | Middle distillate compositions with reduced wax crystal size |
DE4237662A1 (de) * | 1992-11-07 | 1994-05-11 | Basf Ag | Erdölmitteldestillatzusammensetzungen |
GB9818210D0 (en) * | 1998-08-20 | 1998-10-14 | Exxon Chemical Patents Inc | Oil additives and compositions |
DE102004014080A1 (de) * | 2004-03-23 | 2005-10-13 | Peter Dr. Wilharm | Nukleierungsmittel auf der Basis von hyperverzweigten Polymeren |
GB0902009D0 (en) * | 2009-02-09 | 2009-03-11 | Innospec Ltd | Improvements in fuels |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3850587A (en) * | 1973-11-29 | 1974-11-26 | Chevron Res | Low-temperature flow improves in fuels |
US3961916A (en) * | 1972-02-08 | 1976-06-08 | Exxon Research And Engineering Company | Middle distillate compositions with improved filterability and process therefor |
FR2300792A1 (fr) * | 1975-02-13 | 1976-09-10 | Exxon Research Engineering Co | Composition de fuel-oil comportant un agent azote d'amelioration de l'ecoulement a froid |
FR2384014A1 (fr) * | 1977-03-16 | 1978-10-13 | Exxon Research Engineering Co | Combinaisons de copolymeres aliphatiques avec des derives azotes d'acides succiniques substitues et leur utilisation comme agents d'amelioration de l'ecoulement des huiles combustibles |
FR2426730A1 (fr) * | 1978-05-25 | 1979-12-21 | Exxon Research Engineering Co | Compositions d'additifs pour ameliorer l'ecoulement et la filtrabilite des fuel-oils distilles |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE858666A (fr) * | 1977-09-13 | 1978-03-13 | Exxon Research Engineering Co | Combinaisons de polymeres convenant dans des huiles d'hydrocarbures pour ameliorer les proprietes d'ecoulement aux basses temperatures |
-
1982
- 1982-03-24 DE DE8282301556T patent/DE3266117D1/de not_active Expired
- 1982-03-24 EP EP82301556A patent/EP0061894B1/de not_active Expired
- 1982-03-24 AT AT82301556T patent/ATE15496T1/de not_active IP Right Cessation
- 1982-03-24 GB GB8208629A patent/GB2095698A/en not_active Withdrawn
- 1982-03-26 MX MX016348A patent/MX172089B/es unknown
- 1982-03-26 MX MX192003A patent/MX160804A/es unknown
- 1982-03-30 AU AU82183/82A patent/AU547501B2/en not_active Ceased
- 1982-03-30 PL PL1982235709A patent/PL129941B1/pl unknown
- 1982-03-30 DD DD82238566A patent/DD208170A5/de not_active IP Right Cessation
- 1982-03-30 CA CA000399828A patent/CA1182641A/en not_active Expired
- 1982-03-30 CS CS822251A patent/CS275637B6/cs unknown
- 1982-03-30 RU SU823413952A patent/RU2017794C1/ru active
- 1982-03-31 YU YU700/82A patent/YU45106B/xx unknown
- 1982-03-31 BG BG056042A patent/BG60057B2/bg unknown
- 1982-03-31 JP JP57053631A patent/JPS581792A/ja active Granted
- 1982-03-31 HU HU82988A patent/HU199552B/hu not_active IP Right Cessation
- 1982-05-27 IN IN403/DEL/82A patent/IN158487B/en unknown
-
1988
- 1988-09-09 SG SG588/88A patent/SG58888G/en unknown
-
1990
- 1990-04-11 JP JP2096139A patent/JPH02289686A/ja active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3961916A (en) * | 1972-02-08 | 1976-06-08 | Exxon Research And Engineering Company | Middle distillate compositions with improved filterability and process therefor |
US3850587A (en) * | 1973-11-29 | 1974-11-26 | Chevron Res | Low-temperature flow improves in fuels |
FR2300792A1 (fr) * | 1975-02-13 | 1976-09-10 | Exxon Research Engineering Co | Composition de fuel-oil comportant un agent azote d'amelioration de l'ecoulement a froid |
FR2384014A1 (fr) * | 1977-03-16 | 1978-10-13 | Exxon Research Engineering Co | Combinaisons de copolymeres aliphatiques avec des derives azotes d'acides succiniques substitues et leur utilisation comme agents d'amelioration de l'ecoulement des huiles combustibles |
FR2426730A1 (fr) * | 1978-05-25 | 1979-12-21 | Exxon Research Engineering Co | Compositions d'additifs pour ameliorer l'ecoulement et la filtrabilite des fuel-oils distilles |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0104015A3 (en) * | 1982-09-16 | 1984-06-27 | Exxon Research And Engineering Company | Improved additive concentrates for distillate fuels |
US4537602A (en) * | 1982-09-16 | 1985-08-27 | Exxon Research & Engineering Co. | Additive concentrates for distillate fuels |
EP0104015A2 (de) * | 1982-09-16 | 1984-03-28 | Exxon Research And Engineering Company | Zusatzkonzentrate für Destillatkraftstoffe |
EP0113581A1 (de) * | 1983-01-04 | 1984-07-18 | Exxon Research And Engineering Company | Zwischendestillatzubereitungen mit verbessertem Fliessverhalten bei niedriger Temperatur |
EP0153176A3 (en) * | 1984-02-21 | 1985-11-27 | Exxon Research And Engineering Company | Middle distillate compositions with improved cold flow properties |
EP0153176A2 (de) * | 1984-02-21 | 1985-08-28 | Exxon Research And Engineering Company | Mitteldestillat-Zusammensetzungen mit Fliesseigenschaften bei Kälte |
EP0153177A2 (de) * | 1984-02-21 | 1985-08-28 | Exxon Research And Engineering Company | Mitteldestillat-Zusammensetzungen mit Fliesseigenschaften bei Kälte |
EP0153177A3 (en) * | 1984-02-21 | 1985-12-04 | Exxon Research And Engineering Company | Middle distillate compositions with improved low temperature properties |
US4569679A (en) * | 1984-03-12 | 1986-02-11 | Exxon Research & Engineering Co. | Additive concentrates for distillate fuels |
EP0155807A3 (de) * | 1984-03-22 | 1985-11-27 | Exxon Research And Engineering Company | Mitteldestillate Zusammensetzungen mit Fliesseigenschaften bei Kälte |
EP0156577A3 (en) * | 1984-03-22 | 1985-12-04 | Exxon Research And Engineering Company | Middle distillate compositions with improved cold flow properties |
EP0156577A2 (de) * | 1984-03-22 | 1985-10-02 | Exxon Research And Engineering Company | Mitteldestillate Zusammensetzungen mit Fliesseigenschaften in der Kälte |
EP0155807A2 (de) * | 1984-03-22 | 1985-09-25 | Exxon Research And Engineering Company | Mitteldestillate Zusammensetzungen mit Fliesseigenschaften bei Kälte |
EP0203812A1 (de) * | 1985-05-28 | 1986-12-03 | Exxon Research And Engineering Company | Fliessverbesserungsgemisch für Mitteldestillatkraftstoffe |
US4802892A (en) * | 1985-09-24 | 1989-02-07 | Mitsubishi Petrochemical Co., Ltd. | Fuel oil additive and fuel oil having improved flowability |
EP0217602A1 (de) * | 1985-09-24 | 1987-04-08 | Mitsubishi Petrochemical Co., Ltd. | Kraftölzusatz und Kraftöl mit Fliessvermögen |
GB2208517B (en) * | 1986-09-24 | 1990-10-03 | Exxon Chemical Patents Inc | Middle distillate compositions with reduced wax crystal size |
GB2231584A (en) * | 1986-09-24 | 1990-11-21 | Exxon Chemical Patents Inc | Improved fuel additives |
WO1988002394A2 (en) * | 1986-09-24 | 1988-04-07 | Exxon Chemical Patents, Inc. | Middle distillate compositions with reduced wax crystal size |
US5814110A (en) * | 1986-09-24 | 1998-09-29 | Exxon Chemical Patents Inc. | Chemical compositions and use as fuel additives |
AT394568B (de) * | 1986-09-24 | 1992-05-11 | Exxon Chemical Patents Inc | Verbesserte brennstoffadditive |
EP0261958A3 (de) * | 1986-09-24 | 1988-06-15 | Exxon Chemical Patents Inc. | Mitteldestillatzusammensetzungen mit verminderter Wachskristallgrösse |
EP0261959A3 (en) * | 1986-09-24 | 1988-06-29 | Exxon Chemical Patents Inc. | Improved fuel additives |
EP0261958A2 (de) * | 1986-09-24 | 1988-03-30 | Exxon Chemical Patents Inc. | Mitteldestillatzusammensetzungen mit verminderter Wachskristallgrösse |
EP0261959A2 (de) * | 1986-09-24 | 1988-03-30 | Exxon Chemical Patents Inc. | Brennstoffezusätze |
WO1988002393A2 (en) * | 1986-09-24 | 1988-04-07 | Exxon Chemical Patents, Inc. | Improved fuel additives |
GB2231584B (en) * | 1986-09-24 | 1991-03-06 | Exxon Chemical Patents Inc | Improved fuel additives |
AT394569B (de) * | 1986-09-24 | 1992-05-11 | Exxon Chemical Patents Inc | Mitteldestillatzusammensetzungen mit verminderter wachskristallgroesse |
WO1988002393A3 (en) * | 1986-10-07 | 1988-05-05 | Exxon Chemical Patents Inc | Improved fuel additives |
WO1988002394A3 (en) * | 1986-10-07 | 1988-05-05 | Exxon Chemical Patents Inc | Middle distillate compositions with reduced wax crystal size |
WO1993014178A1 (en) * | 1992-01-14 | 1993-07-22 | Exxon Chemical Patents Inc. | Additives and fuel compositions |
EP0857776A1 (de) | 1997-01-07 | 1998-08-12 | Clariant GmbH | Verbesserung der Fliessfähigkeit von Mineralölen und Mineralöldestillaten unter Verwendung von Alkylphenol-Aldehydharzen |
US5998530A (en) * | 1997-01-07 | 1999-12-07 | Clariant Gmbh | Flowability of mineral oils and mineral oil distillates using alkylphenol-aldehyde resins |
US6010989A (en) * | 1997-09-08 | 2000-01-04 | Clariant Gmbh | Additive for improving the flow properties of mineral oils and mineral oil distillates |
US7435271B2 (en) | 2000-01-11 | 2008-10-14 | Clariant Produkte (Deutschland) Gmbh | Multifunctional additive for fuel oils |
US7041738B2 (en) | 2002-07-09 | 2006-05-09 | Clariant Gmbh | Cold flow improvers for fuel oils of vegetable or animal origin |
US7815696B2 (en) | 2002-07-09 | 2010-10-19 | Clariant Produkte (Deutschland) Gmbh | Oxidation-stabilized lubricant additives for highly desulfurized fuel oils |
US7550019B2 (en) | 2003-07-21 | 2009-06-23 | Clariant Produkte (Deutschland) Gmbh | Fuel oil additives and additized fuel oils having improved cold properties |
US7713315B2 (en) | 2005-07-28 | 2010-05-11 | Clariant Produkte (Deutschland) Gmbh | Mineral oils with improved conductivity and cold flowability |
US8133852B2 (en) | 2005-07-28 | 2012-03-13 | Clariant Produkte (Deutschland) Gmbh | Mineral oils with improved conductivity and cold flowability |
US8283298B2 (en) | 2005-07-28 | 2012-10-09 | Clariant Produkte (Deutschland) Gmbh | Mineral oils with improved conductivity and cold flowability |
US8298402B2 (en) | 2005-09-22 | 2012-10-30 | Clariant Produkte (Deutschland) Gmbh | Additives for improving the cold flowability and lubricity of fuel oils |
GB2435884A (en) * | 2006-03-09 | 2007-09-12 | Infineum Int Ltd | Ethylene/vinyl ester and phenolic resin fuel additive package |
EP2230226A1 (de) * | 2009-03-18 | 2010-09-22 | Infineum International Limited | Kraftstoffölzusätze |
US10308593B2 (en) | 2009-03-18 | 2019-06-04 | Infineum International Limited | Additives for fuel oils |
EP3885424A1 (de) | 2020-03-24 | 2021-09-29 | Clariant International Ltd | Zusammensetzungen und verfahren zur dispergierung von paraffinen in schwefelarmen brennstoffölen |
WO2021190793A1 (de) | 2020-03-24 | 2021-09-30 | Clariant International Ltd | Zusammensetzungen und verfahren zur dispergierung von paraffinen in schwefelarmen brennstoffölen |
WO2021190794A1 (de) | 2020-03-24 | 2021-09-30 | Clariant International Ltd | Zusammensetzungen und verfahren zur dispergierung von paraffinen in schwefelarmen brennstoffölen |
US11993756B2 (en) | 2020-03-24 | 2024-05-28 | Clariant International Ltd | Compositions and methods of dispergating paraffins in sulphur-low fuel oils |
Also Published As
Publication number | Publication date |
---|---|
MX160804A (es) | 1990-05-25 |
JPH02289686A (ja) | 1990-11-29 |
IN158487B (de) | 1986-11-22 |
AU547501B2 (en) | 1985-10-24 |
GB2095698A (en) | 1982-10-06 |
EP0061894A3 (en) | 1983-01-19 |
CA1182641A (en) | 1985-02-19 |
RU2017794C1 (ru) | 1994-08-15 |
DD208170A5 (de) | 1984-03-28 |
JPH0258318B2 (de) | 1990-12-07 |
PL129941B1 (en) | 1984-06-30 |
JPS581792A (ja) | 1983-01-07 |
PL235709A1 (de) | 1982-10-25 |
CS8202251A2 (en) | 1991-04-11 |
YU70082A (en) | 1985-03-20 |
DE3266117D1 (en) | 1985-10-17 |
ATE15496T1 (de) | 1985-09-15 |
BG60057B2 (bg) | 1993-08-30 |
CS275637B6 (en) | 1992-03-18 |
YU45106B (en) | 1992-03-10 |
HU199552B (en) | 1990-02-28 |
EP0061894B1 (de) | 1985-09-11 |
JPH0353355B2 (de) | 1991-08-14 |
AU8218382A (en) | 1982-10-07 |
SG58888G (en) | 1989-03-10 |
MX172089B (es) | 1993-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0061894B1 (de) | Zwei-Komponentenzusatz zur Verbesserung der Fliessfähigkeit von mittleren Destillat-Heizölen | |
US4661121A (en) | Middle distillate compositions with improved low temperature properties | |
US4481013A (en) | Two component flow improver additive for middle distillate fuel oils | |
EP0061895B2 (de) | Zusatz zur Verbesserung des Fliessverhaltens von Destillat-Treibstoffen und Konzentrate daraus | |
CA1331511C (en) | Middle distillate compositions with improved low temperature properties | |
KR920009622B1 (ko) | 개선된 저온 유동성을 갖는 중간 유출 조성물 | |
EP0283293B2 (de) | Verwendung von Tieftemperaturfliessverbesserern in Destillatbrennstoffölen | |
CA1277974C (en) | Oil and fuel oil compositions | |
EP0261959A2 (de) | Brennstoffezusätze | |
RU2014347C1 (ru) | Топливная композиция | |
EP0104015B1 (de) | Zusatzkonzentrate für Destillatkraftstoffe | |
EP0525079B1 (de) | Chemische zusammensetzungen und ihre verwendung als brennstoffzusätze | |
EP0239320B1 (de) | Flüssige Brennstoffzusammensetzungen | |
EP0343981B2 (de) | Verwendung eines Additives in einer Brennstoffölzusammensetzung als Fliessverbesserer | |
EP0255345B1 (de) | Flüssige Brennstoffzusammensetzungen | |
WO1988002394A2 (en) | Middle distillate compositions with reduced wax crystal size | |
AU611862B2 (en) | Middle distillate compositions with reduced wax crystal size | |
JP3667761B6 (ja) | 燃料油組成物 | |
JPS60195193A (ja) | 低温特性改良用添加剤を含有する蒸留燃料油 | |
GB2197877A (en) | Additives for wax containing distillated fuel | |
CS276122B6 (en) | Concentrate of additives for the improvement fluidity properties and filterability of medium boiling fuel oils | |
GB2197878A (en) | Middle distillate compositions with reduced wax crystal size |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19820413 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LU NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 15496 Country of ref document: AT Date of ref document: 19850915 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3266117 Country of ref document: DE Date of ref document: 19851017 |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19860331 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19901231 Year of fee payment: 10 |
|
ITTA | It: last paid annual fee | ||
EPTA | Lu: last paid annual fee | ||
EAL | Se: european patent in force in sweden |
Ref document number: 82301556.5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19960320 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19961223 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19970116 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19970217 Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19970324 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980325 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980331 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980331 |
|
BERE | Be: lapsed |
Owner name: EXXON RESEARCH AND ENGINEERING CY Effective date: 19980331 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
EUG | Se: european patent has lapsed |
Ref document number: 82301556.5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20010208 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20010219 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20010222 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20010226 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20020323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20020324 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Effective date: 20020323 |
|
NLV7 | Nl: ceased due to reaching the maximum lifetime of a patent |
Effective date: 20020324 |
|
NLV7 | Nl: ceased due to reaching the maximum lifetime of a patent |
Effective date: 20020324 |