EP0057747A2 - Brenner für die Verbrennung staubförmiger Brennstoffe - Google Patents

Brenner für die Verbrennung staubförmiger Brennstoffe Download PDF

Info

Publication number
EP0057747A2
EP0057747A2 EP81108054A EP81108054A EP0057747A2 EP 0057747 A2 EP0057747 A2 EP 0057747A2 EP 81108054 A EP81108054 A EP 81108054A EP 81108054 A EP81108054 A EP 81108054A EP 0057747 A2 EP0057747 A2 EP 0057747A2
Authority
EP
European Patent Office
Prior art keywords
channel
fuel
burner according
burner
jacket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81108054A
Other languages
English (en)
French (fr)
Other versions
EP0057747A3 (en
EP0057747B1 (de
Inventor
Joachim Kümmel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0057747A2 publication Critical patent/EP0057747A2/de
Publication of EP0057747A3 publication Critical patent/EP0057747A3/de
Application granted granted Critical
Publication of EP0057747B1 publication Critical patent/EP0057747B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel

Definitions

  • So-called coal dust burners are used for the combustion of coal dust, particularly in steam boiler and hot water systems, in which the coal dust is supplied to the burners by means of carrier air or carrier gas.
  • the combustion air partly flows into the combustion chamber through a central core air duct as a core air jet and through a jacket duct as secondary air.
  • a separate pilot burner is generally used for the ignition.
  • the known coal dust burners have different parts. So they are only capable of large output units above approx. 5 Gcal / h heat output per burner insert.
  • the coal dust grit spec be kept within limits to prevent the flame from moving back or out of the burner root. Otherwise there would be a danger of the burner slipping or of flame or combustion chamber vibrations.
  • the control range is also small due to the reignition and distribution problems of the known coal dust burners and is between 50% and 100%. Only in large systems with multiple burner operation can the control range be increased by switching off individual burners.
  • the invention has for its object to design a burner of the type mentioned in such a way that it is also suitable for small power ranges, has an enlarged control range and is less sensitive to a wide coal dust band and can accordingly also be operated with mixed bed dust from large central grinding plants.
  • outlet of the fuel channel is designed as an annular nozzle, at least one of the two circumferential walls of which is rotatable and driven, and in that the outlet of the central channel is designed such that the core air jet is at least partially towards the escaping fuel is directed into the area of the secondary air for the purpose of distraction.
  • the burner according to the invention is particularly suitable for a performance range significantly below 5 Gcal / h, especially for the performance range 0.3 to 3.5 Gcal / h.
  • This burner opens up a new performance range for dusty fuels, especially coal dust. Since, in contrast to large burners, the flame volume in burners working in the aforementioned performance range is correspondingly low, the coal dust must escape at a low speed, which is expediently between 3 and 8 m / s. At partial load in particular, this corresponds to the flame reignition rate. A reignition is avoided by the rotating part of the ring nozzle, since this causes such a high heat transfer to the coal dust that it acts like a flame filter. Circumferential speeds of 12 to 30 m / s have proven to be sufficient and expedient for the rotating part or parts.
  • Another advantage of the burner according to the invention is the enlargement of the control range, which is now around 25% to 100%.
  • the burner is also much more sensitive to a wide range of fuel dust, so that mixed bed dust can also be used.
  • the fine and ultra-fine dust content is carried out of the ring nozzle with the carrier air, while the larger particles slide to the outlet due to the rotating movement of the part of the ring nozzle in question.
  • the latter is particularly the case when the outer circumferential wall of the ring nozzle is rotatably mounted, since the larger grains are then distributed outwards as a result of the centrifugal forces acting on them.
  • the sliding to the outlet is promoted by the conically widening design of the diameter of the ring nozzle.
  • This conical widening should be the same, preferably smaller than the angle of repose of the fuel in question, in order to avoid erosions and agglomerations.
  • the fuel channel should have an S-shaped cross section in the area of the ring nozzle.
  • the overall cross-section should initially widen in the area of the S-shaped course and narrow again towards the ring nozzle. This measure brings about an equalization of the fuel flow over the scope.
  • the central channel runs out against a shielding plate to form an annular gap which opens before the exit of the ring nozzle. Since this shielding plate is very hot due to the temperatures prevailing in the combustion chamber, the core air can heat up there, which favors the initial ignition of the fuel. In addition, a deflection in the radial direction to the exit of the fuel at the ring nozzle is thereby easily achieved.
  • the core air should expediently emerge from the annular gap at approximately 20 to 100 m / s in order to achieve intensive mixing with the escaping fuel and a deflection into the secondary air flow, which likewise contributes to the mixing.
  • the mixing power achieved in this way from the three mixing pulses acting at an angle to one another is essentially load-independent.
  • the core air jet forms a load-independent backfire screen for the see. against cup fire.
  • gap nozzles can emanate from the central channel, in particular in the area of the annular gap, which open into the fuel channel, possibly into the middle of its S-shaped course. As a result, the fuel dust flow is evened out before entering the ring nozzle.
  • preheating should be provided.
  • This can consist, for example, of an electrical heat exchanger, the electrical connection power of which does not exceed a value of 2% of the burner output even with low-volatile coal as fuel.
  • This corresponds to the relatively small proportion of core air here, which expediently represents lo% to 15% of the total amount of combustion air.
  • Additional ignition stabilization can also be achieved by mixing the core air with steam. This steam accelerates the fuel gasification in such a way that lower temperatures are sufficient for preheating, so the heating power required for this can be reduced.
  • vibration generators can be provided in the central duct and / or in the jacket duct, which set the core air and / or the secondary air into gas dynamic vibrations before they exit.
  • These vibration generators can be designed as annular spaces surrounding the respective channel, which are connected to the respective channel via a coordinated annular gap.
  • Other embodiments for impressing a gas dynamic vibration are also possible.
  • guide vanes can also be arranged to impart a swirl.
  • a swirl contributes to the intensification of the external and internal hot gas recirculation and thereby increases the supply of ignition energy. This in turn reduces the need for preheating the core air.
  • an intermediate channel is provided between the fuel channel and the jacket channel. This can be supplied with cooling air during normal burner operation and with ignition gas during start-up, with a throughput that is adequate for the burner heat output for the fuel used.
  • the coal dust burner 1 shown in FIG. 1 is inserted as a whole into a conically expanding burner sleeve 2. It has an outer jacket 3, in which a jacket tube 4 is arranged at a distance from this.
  • a central tube 10 surrounding a central channel 9 and a fuel tube 11, which surrounds the central tube 10 to form an annular fuel channel 12, are arranged coaxially with the outer jacket 3 and the jacket tube 4. If necessary, heated core air 13 is conveyed via the central duct 9 and a coal dust-air mixture 14 is conveyed via the fuel duct 12.
  • the central tube 10 ends at a distance from a shielding plate 15, which on the one hand serves as protection against the heat caused by the flame and the recurculation and on the other hand redirects the core air jet 13 radially outward.
  • the core air 13 then emerges laterally from an annular gap 16.
  • the shielding plate 15 has a multiplicity of small bores 17, from which a small part of the core air 13 can flow out. In this way, the slag particles arriving there during the recirculation are cooled down to such an extent that they cannot get stuck on the shielding plate 15.
  • the fuel pipe 11 is surrounded by a drive shaft 18, which - which is not shown in detail here - is rotatably mounted and driven by an electric motor.
  • a cup 19 is fastened, which is cylindrical in the lower area and widens conically in the upper area.
  • the drive shaft 18 continues through the attachment of the cup 19 upwards.
  • a collar 2o of the central tube 10 which has a U-shaped cross section and is bent downward, projects into the intermediate space thereby formed.
  • a conical body 21 is arranged around this collar 20, the conical surface 22 of which forms an annular nozzle 23 with the conically widening region of the cup 19.
  • the fuel channel 12 receives a deflection which is S-shaped in cross section through the collar 20 or cone body 21 and the extension of the fuel tube 11 or the drive shaft 18. Coal dust settles in the pockets 24, 25 of the deflection, so that the deflection is evened out and the pockets 24, 25 are protected against erosion.
  • a slot-shaped passage 26 is kept open for a small part of the core air 13. This part of the core air 13 contributes to the fact that the coal dust can emerge from the ring nozzle 23 in a uniform density.
  • coal dust When operating the coal dust burner 1, coal dust is introduced into the combustion chamber via the fuel channel 12, its S-shaped deflection and the ring nozzle 23. Since this coal dust burner 1 is intended in particular for low heating outputs, the outflow speed must be relatively low, for example 3 to 8 m / s, since otherwise the flame would detach from the burner and be carried away.
  • the emerging coal dust is immediately detected by the core air 13 emerging from the annular gap 16 at speeds between 20 to 100 m / s and pressed into the area of the secondary air 7, 8, which flows out via the jacket channels 5, 6.
  • the secondary air portion 8 emerging from the jacket duct 6 is a swirl supporting the inner and outer hot gas recirculation is impressed via guide vanes 27, 28, the burner sleeve 2 stabilizing the flame.
  • the core air 13 is heated in such a way that it initiates the initial ignition, together with the radiant heat from the flame and the hot gas recirculation.
  • the heating can be done by an electric heating up to 35 0 ° C.
  • the core air 13 is additionally heated on the shielding plate 15.
  • the rotating cup 19 reliably prevents blockages in the S-shaped deflection and the ring nozzle 23 due to the shear forces in the circumferential direction. Furthermore, it ensures sufficient heat transfer into the coal dust to prevent reignition despite the low exit speed of the coal dust.
  • FIG. 2 shows another embodiment of a coal dust burner 29. In the illustration shown, it is also inserted into a burner muffle 30, the conical design of which serves to stabilize the flame.
  • only one jacket channel 31 is provided, which is formed by an outer jacket 32 and by a jacket tube 33.
  • guide vanes 34, 35 are provided at the outlet of the jacket channel 31 in order to impart a swirl to the secondary air 36 flowing out there in order to support the recirculation.
  • a central tube 38 Coaxial to the outer jacket 32 and jacket tube 33 is a a central tube 38 surrounding a central channel 37 and a fuel tube 39 which surrounds the central tube 38 to form an annular fuel channel 4o.
  • the core air 41 passes through the central duct 37 and a carbon-air mixture 42 enters the combustion chamber via the fuel duct 40.
  • the central tube 38 ends - as in the exemplary embodiment according to FIG. 1 - at a distance from a shielding plate 43.
  • the core air 41 is diverted radially outward through this shielding plate 43 and then emerges laterally from an annular gap 44.
  • the shielding plate 43 also has a large number of small bores 45 from which a small part of the core air 41 can flow out for the purpose of avoiding slag deposits.
  • the fuel pipe 39 is surrounded by a drive shaft 46, which is likewise rotatably mounted here and is driven by an electric motor.
  • the upper end of the drive shaft 46 is formed into a cup 47 which widens conically towards the outside and has an annular web 48 on the inside, as a result of which an annular groove 49 is formed.
  • a collar 5o formed onto the central tube 38 and bent downward in a U-shape, projects into the annular groove 49 from above.
  • a hollow conical body 51 is arranged around this collar 50, the conical surface 52 of which, together with the cup 47, form an annular nozzle 53.
  • the fuel channel 4o receives a deflection with an S-shaped cross section through the collar 5o and the annular groove 48.
  • the hollow interior 55 of the cone body 51 is connected to the annular gap 44 via slot nozzles 56.
  • the mixing pulse effect on the emerging Koh - lens deaf intensified thus improving the ignition stability.
  • the same goal is served by a vibration generator for the secondary air 36, which consists of an annular channel 57 placed around the outer jacket 32, which is connected to the jacket channel 31 by a circumferential slot nozzle 58. In this way, the secondary air 36 is set in low-frequency vibrations.
  • An intermediate tube 59 is arranged between the drive shaft 46 and the jacket tube 33, which includes a cooling channel 6o with the jacket tube 33. Cooling air 61 can be passed through it in order to cool the bearings of the drive shaft 46, which are not shown here. In the starting phase, instead of the cooling air 61, pilot gas is passed through, which emerges via the ring opening 62 and is ignited there.

Abstract

Ein Brenner (1, 29) für die Verbrennung staubförmiger Brennstoffe, insbesondere von Kohlenstaub, weist einen Zentralkanal (9, 37) für die Zuführung eines Kernluftstrahls (13,41), einen Brennstoffkanal (12,40) fü die Zuführung des Brennstoffs und einen Mantelkanal (5, 6; 31) für die Zuführung von Sekundärluft (7, 8; 36) auf. Damit ein solcher Brenner (1, 29) auch für kleine Leistungsbereiche geeignet ist, einen vergrößerten Regelbereich hat und unempfindlicher gegenüber einem breiten Kohlenstaubband ist, ist der Austritt des Brennstoffkanals (12, 40) als Ringdüse (23, 53) ausgebildet, von deren beiden Umfangswandungen zumindest eine (19, 47) drehbar und angetrieben ist, und der Austritt des Zentralkanals (9, 37) derart ausgebildet, daß der Kernluftstrahl (13, 41) zumindest teilweise nach aussen gegen den austretenden Brennstoff zum Zwecke der Ablenkung in den Bereich der Sekundärluft (7, 8; 36) gerichtet ist.

Description

  • Brenner für die Verbrennung staubförmiger Brennstoffe
  • Die Erfindung betrifft einen Brenner für die Verbrennung staubförrmiger Brennstoffe, insbesondere von Kohlenstaub, mit einem Zentralkanal für die Zuführung eines Kernluftstrahles, mit einem Brennstoffkanal für die Zuführung des Brennstoffs= und mit einem Mantelkanal für die Zuführung von Sekundärluft.
  • Für die Verbrennung von Kohlenstaub insbesondere in Dampfkessel- und Warmwasseranlagen werden sogenannte Kohlenstaubbrenner eingesetzt, bei denen der Kohlenstaub den Brennern mittels Trägerluft oder Trägergas zugeführt wird. Die Verbrennungsluft strömt teilweise durch einen mittigen Kernluftkanal als Kernluftstrahl und durch einen Mantelkanal als Sekundärluft in den Feuerraum ein. Für die Zündung wird in der Regel ein separater Zündbrenner eingesetzt.
  • Die bekannten Kohlenstaubbrenner haben verschiedene Nabhteile. So sind sie nur für große Leistungseinheiten oberhalb ca. 5 Gcal/h Wärmeleistung je Brennereinsatz fähig. Auch muß das Kohlenstaub-Körnungsspektrum in Grenzen gehalten werden, um das Zurück- oder Auswandern der Flamme aus der Brennerwurzel zu vermeiden. Ansonsten bestände die Gefahr der Verschlakkung des Brenners oder von Flamnen- bzw. Feuerraum- schwingungen..Daneben ist auch der Regelbereich aufgrund der Rückzünd- und Verteilprobleme der bekannten Kohlenstaubbrenner gering und liegt zwischen 5o % und loo %. Nur bei Großanlagen mit Mehrbrennerbetrieb kann der Regelbereich durch Abschaltung einzelner Brenner erhöht werden.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Brenner der eingangs genannten Art derart zu gestalten, daß er auch für kleine Leistungsbereiche geeignet ist, einen vergrößerten Regelbereich hat und unempfindlicher gegenüber einem breiten Kohlenstaubband ist und demgemäß auch mit Mischbettstaub aus großen zentralen Mahlanlagen betrieben werden kann.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der Austritt des Brennstoffkanals als Ringdüse ausgebildet ist, von deren beiden Umfangswandüngen zumindest eine drehbar und angetrieben ist, und daß der Austritt des Zentralkanals derart ausgebildet ist, daß der Kernluftstrahl zumindest teilweise nach aus sen gegen den austretenden Brennstoff zum Zwecke der Ablenkung in den Bereich der Sekundärluft gerichtet ist.
  • Der erfindungsgemäße Brenner eignet sich insbesondere für einen Leistungsbereich deutlich unter 5 Gcal/h, vor allem für den Leistungsbereich o,3 bis 3,5 Gcal/h. Es wird also mit diesem Brenner ein neuer Leistungs-bereich für staubförmige Brennstoffe, insbesondere Kohlenstaub, erschlossen.-Da im Gegensatz zu Großbrennern das Flammvolumen bei Brennern, die in dem vorgenannten Leistungsbereich arbeiten, entsprechend gering ist, muß der Kohlenstaub mit geringer Geschwindigkeit, die zweckmäßigerweise zwischen 3 bis 8 m/s liegt, austreten. Insbesondere bei Teillast entspricht dies der Flammen-Rückzündgeschwindigkeit. Eine Rückzündung wird jedoch durch den rotierenden Teil der Ringdüse vermieden, da hierdurch ein derart hoher Wärmeübergang zum Kohlenstaub bewirkt wird, daß dieser wie ein Flammenfilter wirkt. Dabei haben sich Umfangsgeschwindigkeiten von 12 bis 3o m/s für den rotierenden Teil bzw. die rotierenden Teile als hinreichend und zweckmäßig erwiesen.
  • Ein weiterer Vorteil des erfindungsgemäßen Brenners liegt in der Vergrößerung des Regelbereiches, der nunmehr bei ca. 25 % bis loo % liegt. Auch ist der Brenner wesentlich umenpfindlicher gegenüber einem breiten Brennstoffstaubband, so daß auch Mischbettstaub verwendet werden kann. Dabei wird der Fein- und Feinststaubanteil mit der Trägerluft aus der Ringdüse ausgetragen, während die größeren Körner durch die rotierende Bewegung des betreffenden Teiles der Ringdüse zum Austritt gleiten.
  • Letzteres ist insbesondere dann der Fall, wenn die äußere Umfangswandung der Ringdüse drehbar gelagert ist, da sich dann die größeren Körner infolge der auf sie wirkenden Zentrifugalkräfte nach außen hin verteilen. Das Gleiten zum Austritt wird durch die konisch sich erweiternde Gestaltung des Durchmessers der Ringdüse begünstigt. Diese konische Erweiterung sollte dabei gleich, vorzugsweise kleiner als der Schüttwinkel des betreffenden Brennstoffes sein, um Erosionen und Agglomerationen zu vermeiden.
  • Der Brennstoffkanal sollte im Bereich der Ringdüse einen im Querschnitt S-förmigen Verlauf haben. Dabei sollte sich der Gesamtquerschnitt im Bereich des S-förmigen Verlaufs zunächst erweitern und zur Ringdüse hin wieder verengen. Diese Maßnahme bewirkt eine Vergleichmäßigung des Brennstoffstromes über den Umfang.
  • Nach einem weiteren Merkmal der Erfindung ist vorgesehen, daß der Zentralkanal gegen eine Abschirmplatte zur Bildung eines vor den Austritt der Ringdüse mündenden Ringspalts ausläuft. Da diese Abschirmplatte aufgrund der im Feuerraum herrschenden Temperaturen sehr heiß ist, kann sich an ihr die Kernluft erwärmen, was die Initialzündung des Brennstoffes begünstigt. Außerdem wird hierdurch auf einfache Weise eine Umlenkung in radialer Richtung zum Austritt des Brennstoffes an der Ringdüse verwirklicht. Zweckmäßigerweise sollte dabei die Kernluft mit ca. 2o bis loo m/s aus dem Ringspalt austreten, um eine intensive Vermischung mit dem austretenden Brennstoff und eine Ablenkung in den Sekundärluftstrom zu erreichen, der ebenfalls zu der Vermischung beiträgt. Die hierdurch erzielte Mischleistung aus den drei winklig zueinander wirkenden Mischimpulsen ist im wesentlichen lastunabhängig. Zusätzlich bildet der Kernluftstrahl einen ebenfalls lastunabhängigen Rückzündschirm zur Siehe- . rung gegen Becherbrand.
  • Um eine Verschlackung der Abschirmplatte zu vermeiden, sind in ihr eine Vielzahl von kleinen Bohrungen vorgesehen, aus denen ein geringfügiger Teil der Kernluft austreten kann. Im Randbereich können diese Bohrungen winklig angeordnet werden, um den abfallenden Luftdruck im Bereich des Austritts 'aus dem Ringspalt zu kompensieren.
  • Zusätzlich können vom Zentralkanal, insbesondere im Bereich des Ringspalts , Spaltdüsen ausgehen, die in den Brennstoffkanal, gegebenenfalls in die Mitte dessen S-förmigen Verlaufs, münden. Hierdurch wird der Brennstoffstaubstrom vor dem Eintritt in die Ringdüse vergleichmäßigt.
  • Sofern die Temperatur des Kernluftstrahles für die Initialzündung des Brennstoffs nicht ausreicht, sollte eine entsprechende Vorwärmung vorgesehen werden. Diese kann beispielsweise aus einem elektrischen Wärmetauscher bestehen, dessen elektrische Anschlußleistung auch bei niederflüchtiger Kohle als Brennstoff einen Wert von 2 % der Brennerleistung nicht überschreitet. Dies korrespondiert mit dem hier relativ geringen Anteil der Kernluft, die zweckmäßigerweise lo % bis 15 % der Gesamtverbrennungsluftmenge stellt. Eine zusätzliche Zündstabilisierung kann noch dadurch erreicht werden, daß die Kernluft mit Dampf vermischt wird. Dieser Dampf beschleunigt die Brennstoffvergasung derart, daß für die Vorwärmung geringere Temperaturen ausreichen, die hierfür benötigte Heizleistung also verringert werden kann.
  • Zu einer Verbesserung der Zündstabilität des Brennstoffstaub-Luftgemisches können im Zentralkanal und/oder im Mantelkanal 5chwingungsgeneratoren vorgesehen werden, die die Kernluft und/oder die Sekundärluft vor ihrem Austritt in gasdynamische Schwingungen versetzen. Diese Schwingungsgeneratoren können als den jeweiligen Kanal umgebende Ringräume ausgebildet werden, die mit dem jeweiligen Kanal über einen abgestimmten Ringspalt in Verbindung stehen. Auch andere Ausführungsformen zur Aufprägung einer gasdynamischen Schwingung sind möglich.
  • Am Austritt des Mantelkanals können zusätzlich Leitschaufeln zur Aufprägung eines Dralls angeordnet werden. Ein solcher Drall trägt zur Intensivierung der äußeren und inneren Heißgasrezirkulation bei und erhöht hierdurch die Zuführung von Zündenergie. Dies verringert wiederum den Bedarf an Vorwärmung für die Kernluft.
  • Um die Wärmeeinwirkung der insbesondere bei Verwendung von Brennstoff mit geringen Anteilen an flüchtigen Bestandteilen relativ hoch vorgewärmten Kernluft zu verringern, ist gemäß der Erfindung vorgesehen, daß zwischen Brennstoffkanal und Mantelkanal' ein Zwischenkanal vorgesehen ist. Dieser kann während des normalen Brennerbetriebes mit Kühlluft und im Anfahrbetrieb mit Zündgas beaufschlagt werden, und zwar mit einer Durchsatzleistung, welche der Brennerwärmeleistung für den jeweils verwendeten Brennstoff adäquat ist.
  • In der Zeichnung ist die Erfindung an Hand von zwei Ausführungsbeispielen näher veranschaulicht. Es zeigen:
    • Fig. 1 einen Längsschnitt durch den oberen Teil eines Kohlenstaubbrenners in schematischer Darstellung und
    • Fig. 2 einen Längsschnitt durch den oberen Teil einer anderen Ausführungsform eines Kohlenstaubbrenners in schematischer Darstellung.
  • Der in Figur 1 gezeigte Kohlenstaubbrenner 1 ist als Ganzes in eine sich kegelförmig erweiternde Brennermuffe 2 eingesetzt. Er hat einen Außenmantel 3, in den im Abstand zu diesem ein Mantelrohr 4 angeordnet ist.
  • Hierdurch werden zwei Mantelkanäle 5, 6 gebildet, über die Sekundärluft 7, 8 in den sich in dieser Darstellung nach oben anschließenden Feuerraum einströmen kann.
  • Koaxial zum Außenmantel 3 und zum Mantelrohr 4 ist ein einen Zentralkanal 9 umgebendes Zentralrohr lo sowie ein Brennstoffrohr 11 angeordnet, welches das Zentralrohr lo unter Bildung eines ringförmigen Brennstoffkanals 12 umgibt. Über den Zentralkanal 9 wird erforderlichenfalls erwärmte Kernluft 13 und über den Brennstoffkanal 12 ein Kohlenstaub-Luftgemischl4 befördert.
  • Das Zentralrohr lo endet im Abstand zu einer Abschirmplatte 15, die einerseits als Schutz gegen die durch die Flamme und die Rezurkulation bewirkte Wärme dient und andererseits den Kernluftstrahl 13 radial nach außen umleitet. Aus einem Ringspalt 16 tritt dann die Kernluft 13 seitlich aus.
  • Die Abschirmplatte 15 hat eine Vielzahl von kleinen Bohrungen 17, aus denen ein geringer Teil der Kernluft 13 herausströmen kann. Auf diese Weise werden die bei der Rezirkulation dort ankommenden Schlacketeilchen soweit abgekühlt, daß sie sich nicht auf der Abschirmplatte 15 festsetzen können.
  • Das Brennstoffrohr 11 ist von einer Antriebswelle 18 umgeben, die - was hier nicht näher dargestellt ist - drehbar gelagert und von einem Elektromotor angetrieben ist. Im Bereich des oberen Endes der Antriebswelle 18 ist ein Becher 19 befestigt, der im unteren Bereich zylinderförmig ausgebildet ist und sich im oberen Bereich kegelförmig erweitert.
  • Die Antriebswelle 18 setzt sich über die Befestigung des Bechers 19 nach oben hin noch fort. In den dadurch gebildeten Zwischenraum ragt von oben ein im Querschnitt U-förmiger, nach unten umgebogener Kragen 2o des Zentralrohres lo hinein. Um diesen Kragen 2o herum ist ein Kegelkörper 21 angeordnet, dessen Kegelfläche 22 mit dem sich kegelförmig erweiternden Bereich des Bechers 19 eine Ringdüse 23 bildet. Gleichzeitig erhält der Brennstoffkanal 12 durch den Kragen 2o bzw. Kegelkörper 21 sowie den Fortsatz des Brennstoffrohrs 11 bzw. der Antriebswelle 18 eine im Querschnitt S-förmige Umlenkung. In den Taschen 24, 25 der Umlenkung setzt sich Kohlenstaub ab, so daß die Umlenkung vergleichmäßigt wird und die Taschen 24, 25 vor Erosion geschützt werden.
  • Zwischen Kegelkörper 21 und Kragen 2o ist ein schlitzförmiger Durchlaß 26 für einen geringen Teil der Kernluft 13 offengehalten. Dieser Teil der Kernluft 13 trägt dazu bei, daß der Kohlenstaub in gleichmässiger Dichte aus der Ringdüse 23 austreten kann.
  • Beim Betrieb des Kohlenstaubbrenners 1 wird Kohlenstaub über den Brennstoffkanal 12, seine S-förmige Umlenkung und die Ringdüse 23 in den Feuerraum eingebracht. Da dieser Kohlenstaubbrenner l insbesondere für kleine Heizleistungen gedacht ist, muß die Ausströmgeschwindigkeit relativ gering sein, beispielsweise 3 bis 8 m/s, da sich ansonsten die Flamme von dem Brenner lösen und weggetragen würde. Der austretende Kohlenstaub wird sofort von dem aus dem Ringspalt 16 mit Geschwindigkeiten zwischen 2o bis loo m/s austretenden Kernluft 13 erfaßt und in den Bereich der Sekundärlüft 7, 8 gedrückt, die über die Mantelkanäle 5, 6 ausströmt. Dem aus dem Mantelkanal 6 austretenden Sekundärluftanteil 8 wird dabei über Leitschäufeln 27, 28 ein die innere und äußere Heißgasrezirkulation unterstützender Drall aufgeprägt, wobei die Brennermuffe 2 die Flamme stabilisiert.
  • Die Kernluft 13 ist je nach dem Anteil der flüchtigen Bestandteile des Kohlenstaubes derart erhitzt, das sie - zusammen mit der Strahlungswärme aus der Flamme und der Heißgasrezirkulation - die Initialzündung einleitet. Die Erhitzung kann durch eine elektrische Beheizung bis zu 350°C erfolgen. Zusätzlich erhitzt wird die Kernluft 13 an der Abschirmplatte 15.
  • Der rotierende Becher 19 verhindert aufgrund der Scherkräfte in Umfangsrichtung zuverlässig Verstopfungen in der S-förmigen Umlenkung und der Ringdüse 23. Desweiteren sorgt er für-einen hinreichenden Wärmeübergang in den Kohlenstaub, um eine Rückzündung trotz der niedrigen Austrittsgeschwindigkeit des Kohlenstaubs zu verhindern.
  • Figur 2 zeigt eine andere Ausführungsform eines Kohlenstaubbrenners 29. In der gezeigten Darstellung ist auch er in eine Brennermuffel 3o eingesetzt, deren kegelförmige Gestaltung der Stabilisierung der Flamme dient.
  • Bei dieser Ausführungsform ist nur ein Mantelkanal 31 vorgesehen, der von einem Außenmantel 32 und von einem Mantelrohr 33 gebildet wird. Am Austritt des Mantelkanals 31 sind Leitschaufeln 34, 35 vorgesehen, um der dort ausströmenden Sekundärluft 36 einen Drall zur Unterstützung der Rezirkulation aufzuprägen.
  • Koaxial zum Außenmantel 32 und Mantelrohr 33 ist ein einen Zentralkanal 37 umgebendes Zentralrohr 38 sowie ein Brennstoffrohr 39 angeordnet, welches das Zentralrohr 38 unter Bildung eines ringförmigen Brennstoffkanals 4o umgibt. Über den Zentralkanal 37 gelangt die Kernluft 41 und über den Brennstoffkanal 4o ein Kohlenstoff-Luftgemisch 42 in den Feuerraum.
  • Das Zentralrohr 38 endet - wie bei dem Ausführungsbeispiel gemäß Figur 1 - im Abstand zu einer Abschirmplatte 43. Die Kernluft 41 wird durch diese Abschirmplatte 43 radial nach außen umgeleitet und tritt dann aus einem Ringspalt 44 seitlich aus.
  • Die Abschirmplatte 43 hat auch hier eine Vielzahl von kleinen Bohrungen 45, aus denen ein geringer Teil der Kernluft 41 zum Zwecke der Vermeidung von Schlackenablagerungen ausströmen kann.
  • Das Brennstoffrohr 39 ist von einer Antriebswelle 46 umgeben, die hier ebenfalls drehbar gelagert und von einem Elektromotor angetrieben ist. Das obere Ende der Antriebswelle 46 ist zu einem Becher 47 ausgeformt, der sich nach außen hin kegelförmig erweitert und innen einen Ringsteg 48 aufweist, wodurch eine Ringnut 49 gebildet wird.
  • In die Ringnut 49 ragt von oben ein an das Zentralrohr 38 angeformter, U-förmig nach unten umgebogener Kragen 5o hinein. Um diesen Kragen 5o herum ist ein hohler Kegelkörper 51 angeordnet, dessen Kegelfläche 52 mit dem Becher 47 eine Ringdüse 53 bilden. Gleichzeitig erhält der Brennstoffkanal 4o durch den Kragen 5o und die Ringnut 48 eine im Querschnitt S-förmige Umlenkung.
  • Zwischen dem Kegelkörper 51 und dem Kragen 5o ist ein schlitzförmiger Durchlaß 54 für einen geringen Teil der Kernluft 41 freigehalten. Er hat dieselbe Aufgabe wie der Durchlaß 26 bei dem Ausführungsbeispiel gemäß Figur 1.
  • Der hohle Innenraum 55 des Kegelkörpers 51 steht über Schlitzdüsen 56 mit dem Ringspalt 44 in Verbindung. Nach dem Prinzip der Flöte entsteht hierdurch ein gasdynamischer Schwingungsgenerator, der die-durch den Ringspalt 44 strömende Kernluft 41 in niederfrequente Schwingungen versetzt. Hierdurch wird die Mischimpulswirkung auf den austretenden Koh- lenstaub intensiviert und damit die Zündstabilität verbessert. Dem gleichen Ziel dient ein Schwingungsgenerator für die Sekundärluft 36, der aus einem um den Außenmantel 32 gelegten Ringkanal 57 besteht, der mit einer umlaufenden Schlitzdüse 58 mit dem Mantelkanal 31 in Verbindung steht. Auf diese Weise wird auch die Sekundärluft 36 in niederfrequente Schwingungen versetzt.
  • Zwischen der Antriebswelle 46 und dem Mantelrohr 33 ist ein Zwischenrohr 59 angeordnet, das mit dem Mantelrohr 33 einen Kühlkanal 6o einschließt. Durch ihn kann Kühlluft 61 geleitet werden, um die hier nicht gezeigten Lager der Antriebswelle 46 zu kühlen. In der Startphase wird statt der Kühlluft 61 Zündgas hindurchgeleitet, das über die Ringöffnung 62 austritt und dort entzündet wird.
  • Die Funktion des in Figur 2 dargestellten Kohlenstaubbrenners 29 ist - abgesehen von der Wirkung der Schwingungsgeneratoren und des Kühlkanals 60 - die gleiche wie bei dem Kohlenstaubbrenner 1 gemäß Figur 1.

Claims (12)

  1. l. Brenner (1, 29) für die Verbrennung staubförmiger Brennstoffe, insbesondere von Kohlenstaub, mit einem Zentralkanal (9, 37) für die Zuführung eines Kernluftstrahls- (13, 41), mit einem Brennstoffkanal (12, 40) für die Zuführung des Brennstoffs und mit einem Mantelkanal (5, 6; 31.) für die Zuführung von Sekundärluft (7, 8; 36) dadurch gekennzeichnet, daß der Austritt des Brennstoffkanals (12, 40) als Ringdüse (23, 53) ausgebildet ist, 'von deren beiden Umfangswandungen zumindest eine (19, 47) drehbar und angetrieben ist, und daß der Austritt des Zentralkanals (9, 37) derart ausgebildet ist, daß der Kernluftstrahl (13, 41) zumindest teilweise nach außen gegen den austretenden Brennstoff zum Zwecke der Ablenkung in den Bereich der Sekundärluft (7, 8; 36) gerichtet ist.
  2. 2. Brenner nach Anspruch 1, dadurch gekennzeichnet, daß der Brenstoff mit Geschwindigkeiten zwischen 3 bis 8 m/s austritt.
  3. 3. Brenner nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die äußere Umfangswandung (19, 47) der Ringdüse (23, 53) drehbar gelagert und angetrieben ist.
  4. 4. Brenner nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Ringdüse (23, 53) einen sich konisch vergrößernden Durchmesser aufweist.
  5. 5. Brenner nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Brennstoffkanal (12, 40) im Bereich der Ringdüse einen im Querschnitt S-förmigen Verlauf hat, wobei sich vorzugsweise der Gesamtquerschnitt im Bereich des S-förmigen Verlaufs zunächst erweitert und zur Ringdüse (23, 53) hin wieder verringert.
  6. 6. Brenner nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Zentralkanalgegen eine Abschirmplatte (15, 43) zur Bildung eines vor den Austritt derRingdüse (23, 53) mündenden Ringspalts (16, 44) ausläuft.
  7. 7. Brenner nach Anspruch 6, dadurch gekennzeichnet, daß die Abschirmplatte (15, 43) kleine Bohrungen (17, 45) für den Austritt eines geringfügigen Teils der Kernluft (13, 41) aufweist.
  8. 8. Brenner nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß vom Zentralkanal :(9, 37) Spaltdüsen (26, 54) in den Brennstoffkanal (12, 40) gehen, gegebenenfalls in die Mitte dessen S-förmigen Verlaufs.
  9. 9. Brenner nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Kernluftstrahl (13, 41) zur Bewirkung einer Initialzündung des Brennstoffs entsprechend vorgewärmt ist, gegebenenfalls durch einen elektrischen Wärmetauscher mit einer elektrischen Anschlußleistung, die auch bei niederflüchtiger Kohle als Brennstoff einen Wert von 2 % der Brennerleistung nicht überschreitet.
  10. lo. Brenner nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der Zentralkanal (9, 37) und/oder der Mantelkanal (5, 6; 31) mit je.einem Schwingungsgenerator versehen ist-bzw. sind, der vorzugsweise als den jeweiligen Kanal (12, 40; 5, 6, 31) umgebender Ringraum (55, 57) ausgebildet ist, der mit dem jeweiligen Kanal (12, 4o; 5, 6, 31) über einen abgestimmten Ringspalt (56, 58) in Verbindung steht.
  11. 11. Brenner nach einem der Ansprüche 1 bis lo, dadurch gekennzeichnet, daß zwischen Brennstoffkanal (12, 40) und Mantelkanal (5, 6; 31) ein Zwischenkanal (60) für die Zuführung von Kühlluft (61) und/oder Heizgas vorgesehen ist.
  12. 12. Brenner nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß am Austritt des Mantelkanals (5, 6; 31) Leitschaufeln (27, 28; 34, 35) zur Aufprägung eines Dralls angeordnet sind.
EP81108054A 1981-02-06 1981-10-08 Brenner für die Verbrennung staubförmiger Brennstoffe Expired EP0057747B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19813104054 DE3104054A1 (de) 1981-02-06 1981-02-06 Brenner zur verbrennung von staubfoermigen brennstoffen
DE3104054 1981-02-06

Publications (3)

Publication Number Publication Date
EP0057747A2 true EP0057747A2 (de) 1982-08-18
EP0057747A3 EP0057747A3 (en) 1982-11-10
EP0057747B1 EP0057747B1 (de) 1985-10-09

Family

ID=6124162

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81108054A Expired EP0057747B1 (de) 1981-02-06 1981-10-08 Brenner für die Verbrennung staubförmiger Brennstoffe

Country Status (4)

Country Link
US (1) US4457695A (de)
EP (1) EP0057747B1 (de)
JP (1) JPS57150708A (de)
DE (2) DE3104054A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4550563A (en) * 1979-11-23 1985-11-05 Marchand William C Gas turbine combustion system utilizing renewable and non-critical solid fuels with residue remover to minimize environmental pollution
EP0114062A3 (de) * 1983-01-18 1986-02-19 Stubinen Utveckling AB Verfahren und Vorrichtung zum Verbrennen fester Brennstoffe, insbesondere Kohle, Torf oder dergleichen, in pulverisierter Form
SE8306652D0 (sv) * 1983-12-02 1983-12-02 Insako Kb Method and apparatus for activating large
US4604052A (en) * 1985-04-29 1986-08-05 The United States Of America As Represented By The United States Department Of Energy Dual-water mixture fuel burner
DE3541616A1 (de) * 1985-11-25 1987-05-27 Krupp Polysius Ag Brenner fuer pulverfoermigen brennstoff
US4628832A (en) * 1986-01-29 1986-12-16 Coen Company, Inc. Dual fuel pilot burner for a furnace
US4690074A (en) * 1986-05-02 1987-09-01 Norton Charles L Coal combustion system
US5803372A (en) * 1997-04-03 1998-09-08 Asahi Sunac Corporation Hand held rotary atomizer spray gun
GB2325729A (en) * 1997-05-29 1998-12-02 Rolls Royce Power Eng A burner
DE102008036058B4 (de) * 2008-08-01 2013-04-18 Linde Ag Verfahren und Vorrichtung zum Anfahren von mit Brennstaub betriebenen Vergasungsreaktoren
US20120003595A1 (en) * 2009-09-29 2012-01-05 Honeywell International Inc. High turn down low nox burner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH187974A (de) * 1936-02-06 1936-12-15 Surber Hans Verfahren und Vorrichtung zum Verbrennen von Öl.
DE672311C (de) * 1935-10-09 1939-02-27 Oskar Jebens OElbrenner mit umlaufendem Zerstaeuberbecher
GB528018A (en) * 1938-04-26 1940-10-21 Attilio Perretti Burner for oil and other fuel
DE2729476A1 (de) * 1977-06-30 1979-01-11 Ruhrkohle Ag Kohlenstaubbrenner mit zuendfeuerung
US4150631A (en) * 1977-12-27 1979-04-24 Combustion Engineering, Inc. Coal fired furance
EP0007894A1 (de) * 1978-07-31 1980-02-06 Ab Scaniainventor Rotationszerstäuberbrenner für die Verbrennung von in einer Flüssigkeit suspendierter feinkörniger Kohle

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1887015A (en) * 1928-04-13 1932-11-08 Buell Comb Company Ltd Means for the combustion of pulverized fuel
US1728011A (en) * 1928-06-15 1929-09-10 John N M Shimer Centrifugal fluid-fuel burner
US2457067A (en) * 1938-04-26 1948-12-21 Perretti Attilio Atomizing oil burner
US2341682A (en) * 1940-08-01 1944-02-15 Riley Stoker Corp Pulverized fuel burner
DE1145736B (de) * 1956-07-03 1963-03-21 Babcock & Wilcox France Einrichtung zur Verbesserung der Verbrennung fluessiger oder staub-foermiger Brennstoffe
DE1551936A1 (de) * 1967-07-12 1970-03-19 Maschf Augsburg Nuernberg Ag Brenner fuer fluessige oder fliessfaehige Brennstoffe
CA1060332A (en) * 1976-05-29 1979-08-14 Dowa Co. Gasified liquid fuel burner
US4113416A (en) * 1977-02-24 1978-09-12 Ishikawajima-Harima Jukogyo Kabushiki Kaisha Rotary burner
US4270698A (en) * 1977-11-30 1981-06-02 Karl Bisa Aerosol forming device
US4206712A (en) * 1978-06-29 1980-06-10 Foster Wheeler Energy Corporation Fuel-staging coal burner
JPS55134212A (en) 1979-04-05 1980-10-18 Babcock Hitachi Kk Burner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE672311C (de) * 1935-10-09 1939-02-27 Oskar Jebens OElbrenner mit umlaufendem Zerstaeuberbecher
CH187974A (de) * 1936-02-06 1936-12-15 Surber Hans Verfahren und Vorrichtung zum Verbrennen von Öl.
GB528018A (en) * 1938-04-26 1940-10-21 Attilio Perretti Burner for oil and other fuel
DE2729476A1 (de) * 1977-06-30 1979-01-11 Ruhrkohle Ag Kohlenstaubbrenner mit zuendfeuerung
US4150631A (en) * 1977-12-27 1979-04-24 Combustion Engineering, Inc. Coal fired furance
EP0007894A1 (de) * 1978-07-31 1980-02-06 Ab Scaniainventor Rotationszerstäuberbrenner für die Verbrennung von in einer Flüssigkeit suspendierter feinkörniger Kohle

Also Published As

Publication number Publication date
EP0057747A3 (en) 1982-11-10
EP0057747B1 (de) 1985-10-09
DE3104054A1 (de) 1982-08-12
JPS57150708A (en) 1982-09-17
DE3172621D1 (en) 1985-11-14
US4457695A (en) 1984-07-03

Similar Documents

Publication Publication Date Title
EP0636836B1 (de) Brenner zum Verbrennen von staubförmigem Brennstoff
DE69735965T2 (de) Brenner
DE3520781C2 (de)
DE3027587C2 (de)
DE3518080C2 (de)
EP0139085A1 (de) Verfahren und Brenner zum Verbrennen von flüssigen oder gasförmigen Brennstoffen unter verminderter Bildung von NOx
DE4326802A1 (de) Brennstofflanze für flüssige und/oder gasförmige Brennstoffe sowie Verfahren zu deren Betrieb
DE2653404A1 (de) Verfahren und brenner zum verbrennen von fluessigem brennstoff, insbesondere oel
DE2905746C2 (de) Brenner für feinkörnige Festbrennstoffe und deren Kombination mit flüssigen und/oder gasförmigen Brennstoffen
DE2043808A1 (de) Brennvorrichtung fur Heizgas
DE2521840A1 (de) Brenner fuer fluessige brennstoffe
EP0057747B1 (de) Brenner für die Verbrennung staubförmiger Brennstoffe
EP0101462B1 (de) Brenner für staubförmige, gasförmige und/oder flüssige brennstoffe
DE2558281A1 (de) Brenner zur verbrennung von fluessigem brennstoff in gasfoermigem zustand
EP0483554A1 (de) Verfahren zur Minimierung der NOx-Emissionen aus einer Verbrennung
DE2518094C2 (de) Vergasungsbrenner
EP0645583A1 (de) Gasbrenner
DE2345838A1 (de) Brenner
DE1401932A1 (de) Verfahren zum Betrieb von Brennern fuer Kesselfeuerungen
AT404399B (de) Verfahren und brenner zum verbrennen insbesondere flüssiger brennstoffe
EP0669497B1 (de) Einrichtung zum Verbrennen von oxidierbaren Schadstoffen
EP0579008A2 (de) Ölbrenner
DE3309905C2 (de) Verfahren und Vorrichtung zum Verbrennen fester Brennstoffe in pulverisierter Form
DE19824719C2 (de) Brenner, insbesondere Ölbrenner
CH650067A5 (en) Oil-atomising burner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19830321

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 3172621

Country of ref document: DE

Date of ref document: 19851114

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19861031

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19871031

BERE Be: lapsed

Owner name: KUMMEL JOACHIM

Effective date: 19871031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001016

Year of fee payment: 20