EP0053784B1 - Refrigerator-Kryostat - Google Patents

Refrigerator-Kryostat Download PDF

Info

Publication number
EP0053784B1
EP0053784B1 EP81110025A EP81110025A EP0053784B1 EP 0053784 B1 EP0053784 B1 EP 0053784B1 EP 81110025 A EP81110025 A EP 81110025A EP 81110025 A EP81110025 A EP 81110025A EP 0053784 B1 EP0053784 B1 EP 0053784B1
Authority
EP
European Patent Office
Prior art keywords
stage
refrigerator
pump
cold head
pump face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81110025A
Other languages
English (en)
French (fr)
Other versions
EP0053784A1 (de
Inventor
Hans-Joachim Dr. Forth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balzers und Leybold Deutschland Holding AG
Original Assignee
Leybold Heraeus GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold Heraeus GmbH filed Critical Leybold Heraeus GmbH
Publication of EP0053784A1 publication Critical patent/EP0053784A1/de
Application granted granted Critical
Publication of EP0053784B1 publication Critical patent/EP0053784B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps

Definitions

  • two-stage refrigerators of this type and helium as the working gas e.g. B. generate temperatures below 10 K.
  • the second stage of the refrigerator cold head cools the sample and the first stage radiation protection which surrounds the second stage with the sample held thereon as completely as possible.
  • the reproducible setting of any temperatures in the range from 10 K to about 350 K on the sample is achieved by appropriate electrical heating of the second stage.
  • the pressure in the housing of the cryostat small 10- 3 must be mbar.
  • a high vacuum pump (diffusion pump, turbomolecular pump or ion atomizing pump) is generally used to generate and maintain this insulating vacuum.
  • backing pumps are essential for the operation of these pumps. This relatively high outlay for vacuum generation in the cryostat housing is also necessary, among other things, so that gases evaporating from the sample and / or from the second stage of the refrigerator at higher temperatures do not accumulate again on the sample and contaminate it when the temperature of the sample is restored is lowered.
  • the present invention has for its object to provide a refrigerator cryostat with a two-stage cold head, in which a complex system for generating the insulating vacuum can be dispensed with, without the risk of contamination of the cooled sample.
  • this object is achieved in that the first stage of the cold head of the refrigerator is equipped with a pump surface.
  • This pumping surface acts as a cryo-condensation and / or as a cryo-sorption pump, so that the external high-vacuum pump can be dispensed with. It is sufficient if a mechanical vacuum pump is available for pre-evacuation.
  • the second cold stage expediently serves to hold the sample and to set variable low temperatures, while the first cold stage is equipped with the pump surface.
  • the first stage of a refrigerator generally assumes an essentially constant temperature of 40 to 60 K during operation, regardless of the temperature of the second stage. At this temperature, gases such as CH 4 , N 2 , etc. can be bound to the pump surface by sorption. This enables pressures in the 10-5 mbar range to be maintained.
  • a refrigerator cryostat 1 with a two-stage refrigerator which is accommodated in a housing, was chosen as the exemplary embodiment.
  • Known drive devices for the refrigerator cold head are accommodated in the lower part 3 of the housing in a manner not shown in detail. They are supplied with power via the connecting cable 4.
  • the connecting pieces 5 and 6 are also provided for the supply and discharge of the working gas.
  • the lower housing part carries a temperature display 7 for the temperature of the second stage.
  • the actual two-stage cold head 10 of the refrigerator is located in the housing parts 8 and 13.
  • the first stage 9 of the cold head 10 of the refrigerator is located in the middle housing part, designated 8.
  • the embodiment is shown as a section.
  • the cylindrical sections 11 and 12 of the cold head 10 of the refrigerator are visible, in which the displacers of the first and second stages of the two-stage refrigerator are located.
  • the upper part 13 of the cryostat housing is shown closed again.
  • the second stage of the refrigerator is located in this area, on which the sample is held in a manner that is not known and is known per se.
  • the housing part 13 is provided with removable stars 14 so that the sample can be observed on the one hand.
  • the visible first stage 9 of the refrigerator has a flange 16 on which a further flange 17 is fastened, which carries a cylindrical shield 18 for the sample.
  • the first stage 9 of the refrigerator is equipped with a pump surface 19, which consists essentially of a cylindrically shaped copper sheet, which is also fastened to the flange 16 via four bent tabs 20, so that there is good thermal contact with the first stage.
  • the pump surface 19 is nickel-plated on the outside and coated with several grams of activated carbon on the inside towards the first stage.
  • the outside of the sheet serves as a cryocondensation pump and the inside serves as a cryosorption pump.
  • Fig. 2 the pump surface 19 is suit again shown wraps.
  • the sheet is coated on one side with activated carbon.
  • the length of the tabs 20 is selected so that there are openings for the passage of the gases between the outer edge of the flange 16 and the cylindrical section.
  • the first stage 9 of the refrigerator is additionally equipped with a heating sleeve 21. This heating is only switched on when it is necessary to regenerate the sorption surfaces.
  • the heating energy is supplied in a manner which is not shown in more detail via a vacuum-tight electrical feedthrough designated 22.
  • This implementation also supplies the invisible second stage with heating current in a manner known per se in order to be able to set the temperature of the sample to the desired values.
  • the connecting piece 23 on the central housing part 8 is only connected to a fore-vacuum pump 24. This only serves to pre-evacuate the housing before and during cooling of the refrigerator. It can be separated from the housing when the pressure falls below about 10- 2 mbar after cooling the refrigerator cold head.
  • the sorption surface 19 then has the effect that pressures in the 10-5 mbar range can be generated and maintained. Even if higher temperatures are set at the second stage of up to 350 K, the pressure in the housing always remains at sufficiently low values. How long this low pressure can be maintained depends on the capacity of the activated carbon.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

  • Unter einem Kryostaten wird eine Einrichtung verstanden, welche die Einstellung und Aufrechterhaltung beliebiger Temperaturen im Bereich von T < 10 K bis etwa T = 350 K erlaubt. Dabei setzt sich immer mehr durch, zur Kälteerzeugung Refrigeratoren zu verwenden. Refrigeratoren sind Kältemaschinen mit mindestens je einem Kolben und einem Zylinder. Der Zylinder wird in bestimmter Weise alternierend mit einer Hochdruck- und einer Niederdruckgasquelle verbunden, so daß während der Hin- und Herbewegung des Kolbens ein thermodynamischer Kreisprozeß (Stirling-Prozeß, Gifford/McMahon-Prozeß usw.) abläuft, wobei das Arbeitgas in einem geschlossenen Kreislauf geführt werden kann. Die Folge ist, daß einem bestimmten Bereich des Zylinders Wärme entzogen wird. Mit zweistufiger Refrigeratoren dieser Art und Helium als Arbeitsgas lassen sich z. B. Temperaturen bis unter 10 K erzeugen.
  • Bei bekannten Kryostaten mit zweistufigen Helium-Refrigeratoren kühlt die zweite Stufe des Refrigerator-Kaltkopfes die Probe und die erste Stufe einen Strahlungsschutz, der die zweite Stufe mit der darauf gehalterten Probe möglichst vollständig umgibt. Die reproduzierbare Einstellung beliebiger Temperaturen im Bereich von 10 K bis etwa 350 K an der Probe wird durch entsprechendes elektrisches Heizen der zweiten Stufe erreicht.
  • Um die mit einem Refrigerator erzielbare tiefste Temperatur von weniger 10 K zu erreichen, muß der Druck im Gehäuse des Kryostaten kleiner 10-3 mbar betragen. Zur Erzeugung und Aufrechterhaltung dieses Isoliervakuums wird im allgemeinen eine Hochvakuumpumpe (Diffusionspumpe, Turbomolekularpumpe oder lonenzerstäuberpumpe) verwendet. Zum Betrieb dieser Pumpen sind zusätzlich Vorpumpen unerläßlich. Dieser relativ hohe Aufwand für die Vakuumerzeugung im Kryostatgehäuse ist u. a. auch deshalb erforderlich, damit von der Probe und/ oder von der zweiten Stufe des Refrigerators bei höheren Temperaturen abdampfende Gase sich nicht wieder auf der Probe anlagern und diese verschmutzen, wenn die Temperatur der Probe wieder erniedrigt wird.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen Refrigerator-Kryostaten mit einem zweistufigen Kaltkopf zu schaffen, bei dem auf ein aufwendiges System zur Erzeugung des Isoliervakuums verzichtet werden kann, ohne daß die Gefahr der Verschmutzung der gekühlten Probe besteht.
  • Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß die erste Stufe des Kaltkopfes des Refrigerators mit einer Pumpfläche ausgerüstet ist. Diese Pumpfläche wirkt als Kryo-Kondensations- und/oder als Kryo-Sorptionspumpe, so daß die externe Hochvakuumpumpe entfallen kann. Es genügt, wenn zur Vorevakuierung eine mechanische Vakuumpumpe vorhanden ist. Zweckmäßigerweise dient die zweite Kaltstufe der Halterung der Probe und der Einstellung variabler tiefer Temperaturen, während die erste Kaltstufe mit der Pumpfläche ausgerüstet ist. Die erste Stufe eines Refrigerators nimmt während des Betriebs in der Regel eine im wesentlichen konstant bleibende Temperatur von 40 bis 60 K an, und zwar unabhängig von der Temperatur der zweiten Stufe. Bei dieser Temperatur können Gase wie CH4, N2 usw. an der Pumpfläche durch Sorption gebunden werden. Drücke im 10-5- mbar-Bereich können dadurch aufrechterhalten werden.
  • Weitere Vorteile und Einzelheiten der Erfindung sollen anhand eines in der Figur dargestellten Ausführungsbeispiels erläutert werden. Als Ausführungsbeispiel wurde ein Refrigerator-Kryostat 1 mit einem zweistufigen Refrigerator gewählt, der in einem Gehäuse untergebracht ist. Im unteren Teil 3 des Gehäuses sind in nicht näher dargestellter Weise an sich bekannte Antriebsvorrichtungen für den Refrigerator-Kaltkopf untergebracht. Ihre Stromversorgung erfolgt über das Anschlußkabel 4. Am unteren Gehäuseteil 3 sind außerdem die Anschlußstutzen 5 und 6 für die Zu- und Abfuhr des Arbeitsgases vorgesehen. Schließlich trägt der untere Gehäuseteil eine Temperaturanzeige 7 für die Temperatur der zweiten Stufe. Der eigentliche zweistufige Kaltkopf 10 des Refrigerators befindet sich in den Gehäuseteilen 8 und 13.
  • Im mittleren, mit 8 bezeichneten Gehäuseteil befindet sich die erste Stufe 9 des Kaltkopfes 10 des Refrigerators. In diesem Bereich ist das Ausführungsbeispiel als Schnitt dargestellt. Dadurch sind die zylindrischen Abschnitte 11 und 12 des Kaltkopfes 10 des Refrigerators sichtbar, in denen sich die Verdränger der ersten bzw. zweiten Stufe des zweistufigen Refrigerators befinden. Der obere Teil 13 des Kryostaten-Gehäuses ist wieder geschlossen dargestellt. In diesem Bereich befindet sich die zweite Stufe des Refrigerators, auf der die Probe in nicht näher dargestellter, an sich bekannter Weise gehaltert ist. In Höhe der Probe ist der Gehäuseteil 13 mit demontierbaren Ferstern 14 versehen, so daß die Probe einerseits beobachtbar ist.
  • Die sichtbare erste Stufe 9 des Refrigerators weist einen Flansch 16 auf, auf dem ein weiterer Flansch 17 befestigt ist, der eine zylindrische Abschirmung 18 für die Probe trägt. Zusätzlich ist die erste Stufe 9 des Refrigerators mit einer Pumpfläche 19 ausgerüstet, die im wesentlichen aus einem zylindrisch geformten Kupferblech besteht, das über vier abgeknickte Laschen 20 ebenfalls am Flansch 16 befestigt ist, so daß ein guter Wärmekontakt zur ersten Stufe besteht.
  • Die Pumpfläche 19 ist auf ihrer Außenseite hochglanzvernickelt und innen, zur ersten Stufe hin, mit mehreren Gramm Aktivkohle belegt. Bei gekühlter erster Stufe dient die Außenseite des Blechs als Kryokondensationspumpe und die Innenseite als Kryosorptionspumpe.
  • In Fig. 2 ist die Pumpfläche 19 nochmals abgewickelt dargestellt. Das Blech ist einseitig mit Aktivkohle belegt. Die Länge der Laschen 20 ist so gewählt, daß zwischen dem Außenrand des Flansches 16 und dem zylindrischen Abschnitt Öffnungen für den Durchtritt der Gase vorhanden sind.
  • Die erste Stufe 9 des Refrigerators ist zusätzlich noch mit einer Heizungsmanschette 21 ausgerüstet. Diese Heizung wird nur dann eingeschaltet, wenn ein Regenerieren der Sorptionsflächen erforderlich ist.
  • Die Zufuhr der Heizenergie erfolgt in nicht näher dargestellter Weise über eine mit 22 bezeichnete, vakuumdichte elektrische Durchführung. Über diese Durchführung wird auch die nicht sichtbare zweite Stufe in an sich bekannter Weise mit Heizstrom versorgt, um die Temperatur der Probe auf die gewünschten Werte einstellen zu können.
  • Wegen des Vorhandenseins der Sorptionsflächen 19 im Bereich der ersten Stufe 9 des Refrigerators genügt es, wenn der Anschlußstutzen 23 am mittleren Gehäuseteil 8 lediglich mit einer Vorvakuumpumpe 24 verbunden ist. Diese dient nur zur Vorevakuierung des Gehäuses vor und während des Abkühlens des Refrigerators. Sie kann vom Gehäuse getrennt werden, wenn nach Abkühlung des Refrigerator-Kaltkopfes der Druck etwa 10-2 mbar unterschreitet. Die Sorptionsfläche 19 bewirkt danach, daß Drücke im 10-5-mbar-Bereich erzeugt und aufrechterhalten werden können. Selbst bei Einstellung höherer Temperaturen an der zweiten Stufe von bis zu 350 K bleibt der Druck im Gehäuse immer bei hinreichend niedrigen Werten. Wie lange dieser niedrige Druck aufrechterhalten werden kann, hängt ab von der Kapazität der Aktivkohle.
  • Die Kapazität von etwa 5 bis 10 g Aktivkohle reicht für einen mehrtägigen Experimentierbetrieb aus und muß erst dann einer Regeneration unterzogen werden.

Claims (5)

1. Refrigerator-Kryostat (1) mit einem in einem Gehäuse (8, 13) angeordneten, zweistufigen Kaltkopf (10), dessen zweite Stufe der Halterung und Temperierung einer Probe dient und durch entsprechendes elektrisches Heizen auf variable Temperaturen einstellbar ist, dadurch gekennzeichnet, daß die erste Stufe (9) des Kaltkopfes (10) mit einer Pumpfläche (19) ausgerüstet ist.
2. Refrigerator-Kryostat nach Anspruch 1, dadurch gekennzeichnet, daß die Pumpfläche (19) von einem zylindrisch geformten Blechabschnitt gebildet wird.
3. Refrigerator-Kryostat nach Anspruch 2, dadurch gekennzeichnet, daß die Pumpfläche (19) über abgeknickte Laschen (20) mit der ersten Stufe des Kaltkopfes (10) verbunden ist.
4. Refrigerator-Kryostat nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Pumpfläche (19) aus einem Kupferblech besteht, das außen hochglanzvernickelt und innen mit Aktivkohle belegt ist.
5. Refrigerator-Kryostat nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß im Bereich der Pumpfläche (19) eine Heizvorrichtung (21) angeordnet ist.
EP81110025A 1980-12-10 1981-12-01 Refrigerator-Kryostat Expired EP0053784B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19803046458 DE3046458A1 (de) 1980-12-10 1980-12-10 Refrigerator-kryostat
DE3046458 1980-12-10

Publications (2)

Publication Number Publication Date
EP0053784A1 EP0053784A1 (de) 1982-06-16
EP0053784B1 true EP0053784B1 (de) 1984-08-08

Family

ID=6118758

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81110025A Expired EP0053784B1 (de) 1980-12-10 1981-12-01 Refrigerator-Kryostat

Country Status (3)

Country Link
US (1) US4408469A (de)
EP (1) EP0053784B1 (de)
DE (1) DE3046458A1 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2115602B (en) * 1982-02-24 1986-01-02 Philips Electronic Associated Getters in infra-red radiation detectors
FR2572794B1 (fr) * 1984-11-06 1987-06-12 Commissariat Energie Atomique Procede pour augmenter la capacite d'absorption d'une pompe de cryopompage et pompe de cryopompage associee
US4719938A (en) * 1985-01-22 1988-01-19 Helix Technology Corporation Self-cleaning valve and cryopump utilizing the same
US4763483A (en) * 1986-07-17 1988-08-16 Helix Technology Corporation Cryopump and method of starting the cryopump
WO1988005500A1 (en) * 1987-01-27 1988-07-28 Helix Technology Corporation An optimally staged cryopump
US5001903A (en) * 1987-01-27 1991-03-26 Helix Technology Corporation Optimally staged cryopump
DE3836884C2 (de) * 1988-10-29 1997-10-02 Leybold Ag Verfahren zur Untersuchung einer auf dem Kaltkopf eines Kryostaten befindlichen Probe und Refrigerator-Kryostat
US5144810A (en) * 1988-11-09 1992-09-08 Mitsubishi Denki Kabushiki Kaisha Multi-stage cold accumulation type refrigerator and cooling device including the same
DE3943772C2 (de) * 1988-11-09 1998-01-02 Mitsubishi Electric Corp Mehrstufige Gaskältemaschine
DE3936914C2 (de) * 1988-11-09 1996-06-27 Mitsubishi Electric Corp Mehrstufige Gaskältemaschine
US5092130A (en) * 1988-11-09 1992-03-03 Mitsubishi Denki Kabushiki Kaisha Multi-stage cold accumulation type refrigerator and cooling device including the same
US5251456A (en) * 1988-11-09 1993-10-12 Mitsubishi Denki Kabushiki Kaisha Multi-stage cold accumulation type refrigerator and cooling device including the same
US5144805A (en) * 1988-11-09 1992-09-08 Mitsubishi Denki Kabushiki Kaisha Multi-stage cold accumulation type refrigerator and cooling device including the same
US5293752A (en) * 1988-11-09 1994-03-15 Mitsubishi Denki Kabushiki Kaisha Multi-stage cold accumulation type refrigerator and cooling device including the same
USRE36610E (en) * 1989-05-09 2000-03-14 Kabushiki Kaisha Toshiba Evacuation apparatus and evacuation method
DE4336035A1 (de) * 1993-10-22 1995-04-27 Leybold Ag Verfahren zum Betrieb einer Kryopumpe sowie Vakuumpumpensystem mit Kryopumpe und Vorpumpe
US5857342A (en) * 1998-02-10 1999-01-12 Superconductor Technologies, Inc. Temperature controlling cryogenic package system
US7293426B2 (en) * 2004-10-05 2007-11-13 Washington University Apparatus for freezing a biological sample
US20110283737A1 (en) * 2010-05-20 2011-11-24 Siemens Medical Solutions Usa, Inc. Process for separating gases at cryogenic temperatures
EP2458218A1 (de) 2010-11-30 2012-05-30 Converteam Technology Ltd System zur Aufrechterhaltung eines hohen Vakuums

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3390536A (en) * 1967-02-01 1968-07-02 Gca Corp Cryogenic pumping apparatus
FR1603997A (en) * 1968-12-27 1971-06-21 Low temperature sorption pump
DE2455712A1 (de) * 1974-11-25 1976-08-12 Eckhard Kellner Cryo-sorptionspumpe
DE2536005A1 (de) * 1975-08-13 1977-02-24 Eckhard Kellner Hochvakuum-pumpensystem
US4150549A (en) * 1977-05-16 1979-04-24 Air Products And Chemicals, Inc. Cryopumping method and apparatus
FR2396879A1 (fr) * 1977-07-05 1979-02-02 Air Liquide Cryopompe
DE2736491C2 (de) * 1977-08-12 1986-04-30 Linde Ag, 6200 Wiesbaden Verfahren zum Evakuieren eines Vakuumbehälters für eine Verflüssigungsanlage für tiefsiedende Gase
US4143520A (en) * 1977-12-23 1979-03-13 The United States Of America As Represented By The Secretary Of The Navy Cryogenic refrigeration system
CH628959A5 (en) * 1978-04-18 1982-03-31 Balzers Hochvakuum Cryopump with a fitted refrigerating machine
DE2830943C2 (de) * 1978-07-14 1986-06-12 Leybold-Heraeus GmbH, 5000 Köln Kryopumpenanordnung
US4295338A (en) * 1979-10-18 1981-10-20 Varian Associates, Inc. Cryogenic pumping apparatus with replaceable pumping surface elements
US4311018A (en) * 1979-12-17 1982-01-19 Varian Associates, Inc. Cryogenic pump

Also Published As

Publication number Publication date
DE3046458A1 (de) 1982-07-15
US4408469A (en) 1983-10-11
EP0053784A1 (de) 1982-06-16

Similar Documents

Publication Publication Date Title
EP0053784B1 (de) Refrigerator-Kryostat
DE2102352C3 (de) Hochfrequenzbetriebene Sprühvorrichtung
EP0603180B1 (de) Kryopumpe
EP0366818A1 (de) Kryostat mit einem Flüssig-Stickstoff (LN2)-Bad
DE1628440A1 (de) Verfahren zur schnellen Verminderung des Druckes eines Gasgemisches innerhalb einer Kammer und Vakuumsystem zur Durchfuehrung dieses Verfahrens
EP0445503B1 (de) Zweistufige Kryopumpe
DE2214590B2 (de) Verfahren und vorrichtung zum vakuumverdampfen von metallen
DE2810736A1 (de) Feldemissionskathode sowie herstellungsverfahren und verwendung hierfuer
CH652804A5 (en) Method for regenerating the low-temperature condensation surfaces of a cryopump and cryopump appliance for implementing the method
WO1998006943A1 (de) Kryopumpe
EP0338113B1 (de) Verfahren zur Adaption einer zweistufigen Refrigerator-Kryopumpe auf ein betimmtes Gas
EP0566776A2 (de) Verfahren und Anordnung zur Reinigung von Öl
DE2830943C2 (de) Kryopumpenanordnung
DE1601910B2 (de) Kältetransporteinrichtung
DE2700196C2 (de)
DE2912856A1 (de) Kryopumpe
DE4037826A1 (de) Regenerative gaskaeltemaschine
DE3943641C2 (de) Mehrstufige Gaskältemaschine
DE3852303T2 (de) Optimal gestufte kryopumpe.
DE1255440B (de) Einrichtung zur Herstellung von UEberzuegen auf Unterlagen durch Aufdampfen von Substanzen im Hochvakuum mittels Elektronenstrahlen
DE2536005A1 (de) Hochvakuum-pumpensystem
DE3540987C2 (de) Verfahren zum Herstellen einer Elektronenröhre
DE2157565C3 (de) Kühlfalle für den Endbildraum eines Elektronenmikroskops
AT236732B (de) Elektronischer Verdampfer
DE1157410B (de) Verfahren und Vorrichtung zum Messen des Dampfdruckes von unter Vakuum verdampfenden Substanzen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19811204

AK Designated contracting states

Designated state(s): CH FR GB NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH FR GB LI NL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19841102

Year of fee payment: 4

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19841119

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19851231

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19861231

Ref country code: CH

Effective date: 19861231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19870701

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19870831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881118