EP0030309B1 - Warmband oder Grobblech aus einem denitrierten Stahl und Verfahren zu seiner Herstellung - Google Patents
Warmband oder Grobblech aus einem denitrierten Stahl und Verfahren zu seiner Herstellung Download PDFInfo
- Publication number
- EP0030309B1 EP0030309B1 EP80107296A EP80107296A EP0030309B1 EP 0030309 B1 EP0030309 B1 EP 0030309B1 EP 80107296 A EP80107296 A EP 80107296A EP 80107296 A EP80107296 A EP 80107296A EP 0030309 B1 EP0030309 B1 EP 0030309B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- steel
- temperature
- hot
- intermediate temperature
- lies
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 60
- 239000010959 steel Substances 0.000 title claims description 60
- 238000000034 method Methods 0.000 title claims description 17
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000007792 addition Methods 0.000 claims description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 7
- 238000005098 hot rolling Methods 0.000 claims description 7
- 239000011651 chromium Substances 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 239000010955 niobium Substances 0.000 claims description 5
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 239000011733 molybdenum Substances 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 239000011593 sulfur Substances 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052684 Cerium Inorganic materials 0.000 claims description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 2
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 239000004411 aluminium Substances 0.000 claims 2
- 239000000356 contaminant Substances 0.000 claims 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 claims 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims 2
- 238000000926 separation method Methods 0.000 description 17
- 238000001816 cooling Methods 0.000 description 11
- 238000009863 impact test Methods 0.000 description 7
- 238000005096 rolling process Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
Definitions
- the invention relates to a method for producing hot strip or heavy plate from a denitrified steel.
- the invention further relates to hot strip or heavy plate made from denitrated steel.
- thermo-mechanical treatment of steels means a controlled reshaping of the steel in a temperature range around the transformation point Ar 3 with a controlled precipitation and / or transformation of the structure at the same time.
- thermo-mechanically treated steels When mechanically and technologically testing these steels, especially in the presence of notches in a wide temperature range above the complete brittle fracture (Charpy impact test), tears are often observed perpendicular to the fracture surface (referred to as »separation «, »splitting « or »splitting «).
- »separation«, »splitting « or »splitting « This tendency to split the fracture surfaces of thermo-mechanically treated steels is important, for example, for the operation of long-distance pipelines because it reduces the ability of these steels to stop the propagation of tough fractures.
- Proposals have already been made for the production of high-strength steels for long-distance pipelines, in which fracture splitting no longer occurs in the impact strength test, but all of which are associated with high alloy costs and high production costs.
- the invention has for its object to achieve an increased impact strength, even at low temperatures (ie CVN transition temperature TÜ5 0 of at least -30 ° C) by controlling the occurrence of the separations in a hot-rolled hot strip or heavy plate.
- the hot strip or sheet made of denitrified steel consisting of carbon 0.04 to 0.16%, manganese 1.25 to 1.90%, silicon 0.02 to 0 , 55%, phosphorus 0.004 to 0.020%, sulfur 0.002 to 0.015%, aluminum 0.02 to 0.08%, niobium 0.02 to 0.08%, balance iron and any impurities during hot rolling the last finishing stand with a temperature of Leaves 750 ° C to 820 ° C and is cooled to an intermediate temperature at a cooling rate of 2 to 10 ° C / s if the intermediate temperature is between 450 ° C and 570 ° C and then the hot strip or sheet in the reel or in the stack Air slowly cools to room temperature, creating a ferritic-pearlitic structure.
- the method according to the invention can therefore significantly improve the usability of the steel, for example for large pipe fem lines, without the need for excessive alloy additives.
- vanadium 0.02 to 0.10% has a particularly favorable effect on the increase in the strength properties of a steel according to the invention, since the vanadium precipitation takes place mainly in the ferrite grain and not at grain boundaries.
- the steel has a ferritic-pearlitic structure and the ratio of C v max to C V 100 is between 1.0 and 1.3.
- C v 100 denotes the high notch impact value (highest values) at which the samples are just showing a 100% deformation fracture.
- C v max is the temperature-dependent value that has the highest impact value of the entire test.
- the steel produced according to the invention has a complete absence of fracture splits in the CVN impact test (CVN-Charpy-V-Notch) while at the same time ensuring CVN transition temperatures of at least -30 ° C.
- the steel of the composition mentioned has a reduced number of separations. Nevertheless, it still has a significantly higher notched impact strength.
- the notched impact strength in J / cm 2 decreases with increasing number of "separations" in the fracture surfaces of the CVN samples.
- the reason for this decrease in impact strength lies in the fact that the separations that run perpendicular to the main fracture surface and parallel to the sample surface mainly occur before they pass through the main crack, as can be seen in Figure 1, so that when the samples are bent during the Notch impact test requires less energy to initiate the necking start.
- Such a material is obtained by maintaining an intermediate temperature of 500 to 570 ° C.
- the intermediate temperature is 550 ° to 620 ° C
- the temperature on the last finishing stand from 750 ° C to 850 ° C can be.
- FIGS. 2 and 3 clearly show the advantages of reducing the number of "separations" in the impact test.
- the notched impact strength increases on average from 150 J / cm 2 to 230 J / cm 2 for those with molybdenum, chromium or nickel alloys alloyed steels of grade X 70 (Fig. 3) and from 160 J / cm 2 to 280 J / cm 2 for niobvanadin-containing steels of grade X 70 (Fig. 2), which increases the impact strength by 53 or 75%. corresponds.
- the temperature at which the hot strip or sheet leaves the last finishing stand during hot rolling need not be quite as narrow for a low-separation steel according to the invention as for the production of a separation-free steel.
- a temperature range of 7 50 ° to 850 ° C is possible.
- additions of 0.002 to 0.08 zirconium and / or 0.004 to 0.051 cerium can also be used when carrying out the new process with an intermediate temperature of 550 ° to 620 ° C.
- composition of the steels is shown in Table 6, in which the proportions of the constituents contained in the steel are given in percent. The numbers of the melts are only used to identify the steel.
- the steels were manufactured according to the parameters given in Table 7. In it are the initial thickness, the thickness of the rolled steel sheet, the blast furnace temperature, the final roll temperature and the temperature after cooling (reel temperature). In all cases with the exception of sheet A, the steel was wound up. The last column shows the cooling rate from the final roll temperature to the reel temperature in ° C / s. The steel then slowly cools down in the reel.
- the mechanical-technological properties of the investigated and inventive steels are summarized in Table 8.
- the letters “L” and “Q” characterize the position of the specimen in relation to the rolling direction, namely "L” a longitudinal specimen and “Q” a cross specimen on which the impact test was carried out.
- the other three columns contain the usual information about the yield strength and tensile strength.
- the ak value indicates the energy consumption of the steel at various points on the a k curve depending on the temperature.
- C v 100 characterizes the lowest temperature at which there is still a complete deformation fracture.
- C v max characterizes the area of maximum energy absorption, while TÜ 50 specifies the temperature at which the Charpy V impact test specimens according to DIN 50115 show 50% deformation fracture in the fracture surfaces in the transition area between brittle fracture and deformation fracture.
- the next two columns indicate the transition temperature for the points C v 100 and TÜ 50 . It turns out that the TÜ 50 is always considerably below -30 ° C, so that high toughness is guaranteed even at low temperatures.
- the steels are characterized by a high energy consumption.
- the quotient C v max to C v l 00 is close to 1, namely between 1 and 1.3. All of these steels are free of tears perpendicular to the fracture surface (separations).
- Tables 1 to 5 relate to low-separation steels according to the invention with a higher notched impact strength
- Tables 6 to 8 characterize separation-free steels which naturally have a very high notched impact strength.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
- Die Erfindung betrifft ein Verfahren zur Herstellung von Warmband oder Grobblech aus einem denitrierten Stahl. Die Erfindung betrifft weiterhin aus denitriertem Stahl hergestelltes Warmband oder Grobblech.
- Seit längerer Zeit besteht die Forderung nach der Entwicklung von höherfesten Stählen mit guten Zähigkeitswerten, die in Form von Warmbändern oder Grobblechen beispielsweise für Großrohrfernleitungen Verwendung finden können. Zur Herstellung hat sich das kontrollierte und gesteuerte Warmwalzen als wirtschaftliches Verfahren für die Herstellung von thermo-mechanisch behandelten Warmbändern oder Grobblechen immer mehr durchgesetzt. Unter einer thermo-mechanischen Behandlung von Stählen versteht man eine kontrollierte Umformung des Stahles in einem Temperaturbereich um den Umwandlungspunkt Ar3 mit einer gleichzeitig gesteuerten Ausscheidung und/oder Umwandlung des Gefüges.
- Es ist bekannt, denitrierten Stahl mit einer Zusammensetzung Kohlenstoff 0,04 bis 0,16%, Mangan 1,25 bis 1,90%, Silizium 0,02 bis 0,55%, Phosphor 0,004 bis 0,020%, Schwefel 0,002 bis 0,015%, Aluminium 0,02 bis 0,08%, Niob 0,02 bis 0,08%, Rest Eisen und etwaige Verunreinigungen zu benutzen. Gegebenenfalls können diesem Stahl Zusätze von Molybdän 0,015 bis 0,35%, Chrom 0,10 bis 0,30 % und/oder Nickel 0,30 bis 0,90% allein oder in Kombination zulegiert werden.
- Bei der mechanisch-technologischen Prüfung dieser Stähle, besonders in Anwesenheit von Kerben in einem breiten Temperaturbereich oberhalb des vollständigen Sprödbruchs (Charpy-Kerbschlagprobe) beobachtet man oft Aufreißungen senkrecht zur Bruchfläche (als »Separation«, »Spaltung« oder »Splitting« bezeichnet). Diese Neigung zur Aufspaltung der Bruchflächen von thermo-mechanisch behandelten Stählen ist beispielsweise für die Betreibung von Großrohr-Fernleitungen von Bedeutung, weil die Fähigkeit dieser Stähle, eine Zähbruchfortpflanzung zu stoppen, dadurch vermindert wird. Für die Herstellung von höherfesten Stählen für Großrohr-Fernleitungen, bei denen keine Bruchaufspaltungen bei der Kerbschlagzähigkeitsprüfung mehr auftreten, wurden schon Vorschläge gemacht, die jedoch alle mit hohen Legierungskosten und hohen Herstellungskosten verbunden sind. So wird beispielsweise in der DE-OS 2 653 847 empfohlen, dem Stahl Chrom- und Manganzusätze von bis zu 3,5% bzw. zu 2,5%zuzulegieren, nachdem der Stahl einer Aufstickung (Stickstoffanreicherung) auf Gehalte von 0,012% unterworfen wurde. Bei diesem Stahl wird das Warmwalzen kompliziert gestaltet. Das Walzgut wird bei Temperaturen zwischen 950°C und 1100°C einer Verformung von 30 bis 60%, einer anschließenden Unterbrechung des Walzvorganges und bei Temperaturen zwischen 700° und 900°C einer Verformung von 75 bis 95% der ursprünglichen Dicke unterworfen. Das verformte Gefüge wird schließlich in der unteren Bainitstufe umgewandelt. Das Zulegieren der Chrom- und Manganzusätze verteuert bekanntlich Stähle erheblich. Durch den komplizierten und aufwendigen Walzvorgang entstehen weiter erhöhte Herstellungskosten.
- Aus der JP-A-54-71 714 ist ein Verfahren bekannt, bei dem zur Vermeidung von Separations eine beschleunigte Abkühlung mit einer Abkühlgeschwindigkeit von 3°C/s oder mehr auf eine Zwischentemperatur erfolgt, die zwischen 500°C und 650°C liegen soll. Eine besondere Angabe über die danach folgende weitere Abkühlung des Stahls ist in der Entgegenhaltung nicht enthalten. Die Tabellen 2 und 3 dieser Entgegenhaltung zeigen Vergleichsstähle, die zwischen der Endwalztemperatur und der Zwischentemperatur normal an Luft abgekühlt sind und dort beanspruchte Stähle, die unter sonst gleichen Bedingungen in diesem Temperaturbereich eine beschleunigte Abkühlung mit einer Abkühlrate von 9°C/s bzw. 5°C erfahren haben. Die Tabelle enthält den Wert Ismax als Maß für die Anzahl der Separations. Durch die beschleunigte Abkühlung lassen sich die Separations erheblich vermindern oder gar beseitigen. Aus dem ebenfalls in der Tabelle aufgeführten Wert vEo, der ein Maß für die Kerbschlagzähigkeit ist, läßt sich weiterhin entnehmen, daß gleichzeitig die Kerbschlagzähigkeit abnimmt.
- Der Erfindung liegt die Aufgabe zugrunde, durch eine Steuerung des Auftretens der Separations bei einem warmgewalzten Warmband oder Grobblech eine erhöhte Kerbschlagzähigkeit, auch bei niedrigen Temperaturen (d. h. CVN-Übergangstemperatur TÜ50 von mindestens -30°C), zu erreichen.
- Diese Aufgabe wird erfindungsgemäß mit einem Verfahren der eingangs erwähnten Art gelöst, bei dem das Warmband oder Blech aus denitriertem Stahl bestehend aus Kohlenstoff 0,04 bis 0,16%, Mangan 1,25 bis 1,90%, Silizium 0,02 bis 0,55%, Phosphor 0,004 bis 0,020%, Schwefel 0,002 bis 0,015%, Aluminium 0,02 bis 0,08%, Niob 0,02 bis 0,08%, Rest Eisen und etwaige Verunreinigungen beim Warmwalzen das letzte Fertiggerüst mit einer Temperatur von 750°C bis 820°C verläßt und mit einer Abkühlgeschwindigkeit von 2 bis 10°C/s auf eine Zwischentemperatur abgekühlt wird, wenn die Zwischentemperatur zwischen 450°C und 570°C liegt und das Warmband oder Blech danach im Haspel oder im Stapel an Luft langsam auf Raumtemperatur abkühlt, wodurch ein ferritisch-perlitisches Gefüge erzeugt wird.
- Überraschenderweise hat sich herausgestellt, daß nur bei der Einhaltung des beschriebenen, relativ einfachen Warmwalzvorganges der genannte Stahl eine bedeutende Verminderung der Bruchaufspaltungen in den CVN-Kerbschlagproben (CVN-Charpy-V-Notch) bei CVN-Übergangstemperaturen von mindestens 30°C und damit eine erheblich erhöhte Kerbschlagzähigkeit zeigt.
- Durch das erfindungsgemäße Verfahren kann also ohne die Notwendigkeit von überhöhten Legierungszusätzen die Brauchbarkeit des Stahls, beispielsweise für Großrohr-Femleitungen, erheblich verbessert werden.
- Es hat sich herausgestellt, daß eine Zugabe von Vanadin 0,02 bis 0,10%sich besonders günstig auf die Erhöhung der Festigkeitseigenschaften eines erfindungsgemäßen Stahls auswirkt, da die Vanadin-Ausscheidungen hauptsächlich im Ferritkorn und nicht an Korngrenzen stattfindet.
- Wenn eine Zwischentemperatur von 450°C bis 500°C eingehalten wird, läßt sich die Entstehung von Separationen vollständig vermeiden. Der Stahl weist ein ferritisch-perlitisches Gefüge auf und das Verhältnis von Cvmax zu CV100 liegt zwischen 1,0 und 1,3. Dabei bezeichnet Cv100 die Kerbschlaghochlage (höchste Werte), bei der die Proben noch gerade einen 100%igen Verformungsbruch aufweisen.
- Cvmax ist der Wert in Abhängigkeit von der Temperatur, der den höchsten Kerbschlagzähigkeitswert der gesamten Prüfung aufweist. Der erfindungsgemäß hergestellte Stahl weist ein völliges Fehlen von Bruchaufspaltungen in den CVN-Kerbschlagproben (CVN-Charpy-V-Notch) bei gleichzeitiger Gewährleistung von CVN-Übergangstemperaturen von mindestens -30°C auf.
- Bei der Einhaltung einer Zwischentemperatur von 500°C bis 570°C weist der Stahl der genannten Zusammensetzung eine verringerte Anzahl von Separationen auf. Trotzdem weist er noch eine wesentlich erhöhte Kerbschlagzähigkeit auf. Bei der Kerbschlagzähigkeitsprüfung von mit Separationen behaftetem Warmband und/oder Blech hat sich gezeigt, daß mit zunehmender Anzahl von »Separations« in den Bruchflächen der CVN-Proben die Kerbschlagzähigkeit in J/cm2 abnimmt. Der Grund für diese Abnahme der Kerbschlagzähigkeit liegt in der Tatsache, daß die Separationen, die senkrecht zur Hauptbruchfläche und parallel zur Probenoberfläche verlaufen, hauptsächlich vor dem Durchlaufen des Hauptrisses entstehen, wie dies aus Bild 1 ersichtlich ist, so daß beim Biegen der Proben während der Kerbschlagprüfung eine geringere Energie für die Einleitung des Einschnürbeginns benötigt wird. Dies ist insofern von Bedeutung, als bei der Erzeugung von Warmbändern bzw. Blechen nicht immer »separationsfreies« Material mit höchsten Kerbschlagzähigkeitswerten gefordert wird, so daß auch Material mit etwas geringerer Anzahl von »Separationen«, jedoch mit erhöhter Kerbschlagzähigkeit Anwendung findet.
- Ein derartiges Material wird mit der Einhaltung einer Zwischentemperatur von 500 bis 570°C erhalten.
- Bei der Verwendung eines Stahls mit Zusätzen von Molybdän von 0,15 bis 0,35%, von Chrom von 0,10 bis 0,35% und/oder von Nickel von 0,30 bis 0,90%allein oder in Kombination reichen zur Erzeugung eines »separationsfreien« Materials unter Beibehaltung derselben Abkühlbedingungen von 2° bis 10°C/s auch Zwischentemperaturen von 550°C aus, so daß die Abkühlung nur auf diese Temperatur erfolgen muß.
- Zur Herstellung eines Stahls mit den Zulegierungen, der eine verringerte Anzahl von Separationen aber eine erhöhte Kerbschlagzähigkeit aufweist, ist es ausreichend, wenn die Zwischentemperatur 550° bis 620°C beträgt, wobei die Temperatur am letzten Fertiggerüst von 750°C bis zu 850°C betragen kann.
- Welche Vorteile eine Reduzierung der Anzahl von »Separationen« bei der Kerbschlagprüfung mit sich bringt, geht aus den Bildern 2 und 3 eindeutig hervor.
- Nimmt z. B. das Verhältnis Cvmax zu Cv100 von rund 2,0 auf Werte von 1,3 ab, dann steigt die Kerbschlagzähigkeit im Durchschnitt von 150 J/cm2 auf 230 J/cm2 bei den mit Molybdän-, Chrom- oder Nickelzusätzen legierten Stählen der Güte X 70 (Bild 3) und von 160 J/cm2 auf 280 J/cm2 bei den niobvanadinhaltigen Stählen der Güte X 70 an (Bild 2), was einer Steigerung der Kerbschlagzähigkeit von 53 bzw. 75% entspricht.
- Die Darstellung der Kerbschlagzähigkeit als Funktion des Verhältnisses Cvmax zu Cv 100 wurde deshalb für die Bilder 2 und 3 gewählt, weil das Verhältnis von Cvmax zu Cv100 empfindlicher auf die Anzahl der Separationen reagiert als alle anderen Parameter.
- Im Sauerstoffaufblaskonverter wurden die Stähle der Tabelle 1 und 2 erschmolzen und gemäß den Bedingungen der Tabellen 3, 4 und 5 zu Warmbändern bzw. Grobblechen gewalzt und geprüft.
- Die ermittelten Ergebnisse, die zusätzlich in den Bildern 4 und 5 bzw. 6 und 7 dargestellt sind, zeigen, daß ein deutlicher Kerbschlagzähigkeitsanstieg gegenüber den herkömmlich gefertigten mikrolegierten Vergleichsstählen erzielt wurde.
- Es wurde festgestellt, daß die Temperatur, mit der das Warmband oder Blech beim Warmwalzen das letzte Fertiggerüst verläßt, bei einem separationsarmen Stahl gemäß der Erfindung nicht ganz so eng zu sein braucht wie bei der Herstellung eines separationsfreien Stahls. Ein Temperaturbereich von 7 50° bis 850°C ist möglich.
- Erfindungsgemäß können bei Durchführung des neuen Verfahrens mit einer Zwischentemperatur von 550° bis 620°C auch noch Zusätze von 0,002 bis 0,08 Zirkon und/oder 0,004 bis 0,051 Cer verwendet werden.
- Zur Herstellung von separationsfreien Stählen gemäß Anspruch 3 oder Anspruch 7 wurden Versuche an elf Stahlsorten mit verschiedenen Kohlenstoffgehalten und Kombinationen von Mikrolegierungszusätzen an Niob, Vanadin, Nickel und Chrom durchgeführt.
- Die Zusammensetzung der Stähle ist der Tabelle 6 zu entnehmen, in der die Anteile der im Stahl enthaltenen Bestandteile in Prozent angegeben sind. Die Nummern der Schmelzen dienen lediglich zur Identifizierung des Stahls.
- Die Stähle wurden gemäß der in Tabelle 7 angegebenen Parameter hergestellt. Darin sind die Ausgangsdicke, die Dicke des gewalzten Stahlbleches, die Stoßofentemperatur, die Walzendtemperatur und die Temperatur nach der Abkühlung (Haspeltemperatur) angegeben. In allen Fällen mit Ausnahme des Bleches A wurde der Stahl aufgehaspelt. Die letzte Spalte gibt die Abkühlgeschwindigkeit von der Walzendtemperatur zur Haspeltemperatur in °C/s an. Im Haspel kühlt der Stahl dann langsam ab.
- Die mechanisch-technologischen Eigenschaften der untersuchten und erfindungsgemäßen Stähle sind in der Tabelle 8 zusammengefaßt. Die Buchstaben »L« und »Q« charakterisieren die Probenlage in bezug auf die Walzrichtung, nämlich »L« eine Längsprobe und »Q« eine Querprobe, an der die Kerbschlagprobe vorgenommen worden ist. Die weiteren drei Spalten enthalten die üblichen Angaben zur Streckgrenze und zur Zugfestigkeit. Der ak-Wert gibt die Energieaufnahme des Stahls bei verschiedenen Punkten der ak-Kurve in Abhängigkeit von der Temperatur an. Cv100 charakterisiert die tiefste Temperatur, bei der noch ein vollständiger Verformungsbruch einsetzt. Cvmax charakterisiert den Bereich der maximalen Energieaufnahme, während TÜ50 die Temperatur angibt, in der im Übergangsbereich zwischen Sprödbruch und Verformungsbruch die Charpy-V-Kerbschlagproben nach DIN 50115 50% Verformungsbruch in den Bruchflächen zeigen.
- Die nächsten beiden Spalten geben die Übergangstemperatur für die Punkte Cv100 und TÜ50 an. Es zeigt sich, daß die TÜ50 immer beträchtlich unter-30°C liegt, so daß eine hohe Zähigkeit auch bei tiefen Temperaturen gewährleistet ist. Die Stähle zeichnen sich durch eine hohe Energieaufnahme aus. Bei den erfindungsgemäßen separationsfreien Stählen liegt der Quotient Cvmax zu Cvl 00 bei nahe 1, nämlich zwischen 1 und 1,3. Alle diese Stähle sind frei von Aufreißungen senkrecht zur Bruchfläche (separations).
-
Claims (11)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2949124 | 1979-12-06 | ||
DE19792949124 DE2949124C2 (de) | 1979-12-06 | 1979-12-06 | Warmband oder Grobblech aus denitriertem Stahl und Verfahren zu seiner Herstellung |
DE19803030060 DE3030060A1 (de) | 1980-08-08 | 1980-08-08 | Warmband oder grobblech aus einem denitrierten stahl und verfahren zu seiner herstellung |
DE3030060 | 1980-08-08 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0030309A2 EP0030309A2 (de) | 1981-06-17 |
EP0030309A3 EP0030309A3 (en) | 1982-05-12 |
EP0030309B1 true EP0030309B1 (de) | 1985-02-13 |
Family
ID=25782269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP80107296A Expired EP0030309B1 (de) | 1979-12-06 | 1980-11-22 | Warmband oder Grobblech aus einem denitrierten Stahl und Verfahren zu seiner Herstellung |
Country Status (4)
Country | Link |
---|---|
US (1) | US4397697A (de) |
EP (1) | EP0030309B1 (de) |
CA (1) | CA1149711A (de) |
DE (1) | DE3070180D1 (de) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59100214A (ja) * | 1982-11-29 | 1984-06-09 | Nippon Kokan Kk <Nkk> | 厚肉高張力鋼の製造方法 |
US4662950A (en) * | 1985-11-05 | 1987-05-05 | Bethlehem Steel Corporation | Method of making a steel plate for construction applications |
DE3721641C1 (de) * | 1987-07-01 | 1989-01-12 | Thyssen Stahl Ag | Verfahren zur Herstellung von Warmband |
DE3818879C1 (de) * | 1988-06-01 | 1989-11-16 | Mannesmann Ag, 4000 Duesseldorf, De | |
HU205393B (en) * | 1988-06-22 | 1992-04-28 | Gyoergy Vizi | Process for producing corner element of steel container from hot rolled steel plate |
DE4033700C1 (de) * | 1990-10-19 | 1992-02-06 | Stahlwerke Peine-Salzgitter Ag, 3150 Peine, De | |
US5833667A (en) * | 1993-03-19 | 1998-11-10 | Venetec International, Inc. | Catheter anchoring system |
JP3509603B2 (ja) * | 1998-03-05 | 2004-03-22 | Jfeスチール株式会社 | 靱性に優れた降伏強さが325MPa以上の極厚H形鋼 |
EP1205570A4 (de) * | 2000-03-02 | 2004-11-10 | Matsushita Electric Ind Co Ltd | Farbkathodenstrahlröhre-maskenrahmen, darin verwendete stahlplatte, herstellungsverfahren für diese stahlplatte und farbkathodenstrahlröhre mit diesem maskenrahmen |
DE102020206298A1 (de) * | 2020-05-19 | 2021-11-25 | Thyssenkrupp Steel Europe Ag | Stahlflachprodukt und Verfahren zu dessen Herstellung |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3102831A (en) * | 1960-08-10 | 1963-09-03 | Molybdenum Corp | Production of columbium containing steels |
US3704180A (en) * | 1968-08-28 | 1972-11-28 | Inland Steel Co | Method for producing tough,high strength steel article |
USRE28790E (en) * | 1969-07-16 | 1976-04-27 | Jones & Laughlin Steel Corporation | High-strength low-alloy steels having improved formability |
ZA705046B (en) * | 1969-07-30 | 1971-04-28 | Armco Steel Corp | Process for production of high strength low alloy steel |
US3726723A (en) * | 1970-05-11 | 1973-04-10 | American Metal Climax Inc | Hot-rolled low alloy steels |
US3849209A (en) * | 1972-02-01 | 1974-11-19 | Nippon Steel Corp | Manufacturing method of high tension, high toughness steel |
JPS5324892B2 (de) * | 1972-10-19 | 1978-07-24 | ||
US3860456A (en) * | 1973-05-31 | 1975-01-14 | United States Steel Corp | Hot-rolled high-strength low-alloy steel and process for producing same |
US3976514A (en) * | 1975-02-10 | 1976-08-24 | Nippon Steel Corporation | Method for producing a high toughness and high tensil steel |
IT1028878B (it) * | 1975-02-10 | 1979-02-10 | Italsider Spa | Procedimento per la fabbricazione di un acciaio ad elevata resistenza antiinvecchiante, particolarmente adatto alla costuruzione di tubi saldati ed atto a sopportare elevate deformazioni plastiche a freddo, acciaio atto ad essere impiegato in detto procedimento ed acciaio ottenuto da tale procedimento |
JPS5220322A (en) * | 1975-08-08 | 1977-02-16 | Sumitomo Metal Ind Ltd | Process for producing a hot rolled steel band having a strong toughnes s and a high strength |
IT1052444B (it) * | 1975-11-28 | 1981-06-20 | Centro Speriment Metallurg | Processo per la produzione di acciaio strutturale meccanicamente anisotropo e acciaio cosi ottenuto |
JPS52101627A (en) * | 1976-02-23 | 1977-08-25 | Sumitomo Metal Ind Ltd | Non-tempered shape steel in low temp. toughness |
JPS52107225A (en) * | 1976-03-05 | 1977-09-08 | Sumitomo Metal Ind Ltd | Production of high tensile hot rolled steel |
JPS52123921A (en) * | 1976-04-13 | 1977-10-18 | Nippon Kokan Kk <Nkk> | Production of steel plate with high toughness |
JPS5421917A (en) * | 1977-07-20 | 1979-02-19 | Nippon Kokan Kk <Nkk> | Method of manufacturing non-quenched high-tensile steel having high toughness |
JPS5822522B2 (ja) * | 1977-08-18 | 1983-05-10 | 住友金属工業株式会社 | 強靭非調質高張力鋼板の製造法 |
JPS5827327B2 (ja) * | 1977-11-21 | 1983-06-08 | 日本鋼管株式会社 | セパレ−シヨンの生じない制御圧延高張力鋼の製造法 |
JPS54132421A (en) * | 1978-04-05 | 1979-10-15 | Nippon Steel Corp | Manufacture of high toughness bainite high tensile steel plate with superior weldability |
JPS5828327B2 (ja) * | 1978-04-18 | 1983-06-15 | 日本鋼管株式会社 | 極めて優れた延性を有する極低炭素高張力鋼の製造方法 |
-
1980
- 1980-11-22 DE DE8080107296T patent/DE3070180D1/de not_active Expired
- 1980-11-22 EP EP80107296A patent/EP0030309B1/de not_active Expired
- 1980-12-03 US US06/212,675 patent/US4397697A/en not_active Expired - Lifetime
- 1980-12-05 CA CA000366285A patent/CA1149711A/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
CA1149711A (en) | 1983-07-12 |
DE3070180D1 (en) | 1985-03-28 |
EP0030309A3 (en) | 1982-05-12 |
EP0030309A2 (de) | 1981-06-17 |
US4397697A (en) | 1983-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69828865T2 (de) | Hochfestes, hervorragend bearbeitbares kaltgewalztes stahlblech mit hervorragender schlagbeständigkeit | |
DE69617002T4 (de) | Verfahren zur herstellung von hochfesten nahtlosen stahlrohren mit hervorragender schwefel induzierter spannungsrisskorossionsbeständigkeit | |
DE69829739T2 (de) | Verfahren zur herstellung ultrafeinkörnigen warmgewalzten stahlblechs | |
DE69920847T2 (de) | Warmgewalztes Stahlblech mit ultrafeinem Korngefüge und Verfahren zu dessen Herstellung | |
DE69800029T2 (de) | Hochfester, hochzäher Stahl und Verfahren zu dessen Herstellung | |
EP2924140B1 (de) | Verfahren zur Erzeugung eines hochfesten Stahlflachprodukts | |
EP3535431B1 (de) | Mittelmanganstahlprodukt zum tieftemperatureinsatz und verfahren zu seiner herstellung | |
DE69221597T3 (de) | Hochfestes warmgewalztes Stahlfeinblech mit niedrigem Strechgrenzenverhältnis und Verfahren zu seiner Herstellung | |
DE3883051T2 (de) | Verfahren zur Herstellung von Stahlblechen mit guter Zähigkeit bei niedrigen Temperaturen. | |
DE69232036T2 (de) | Warmgewalztes hochfestes Stahlblech mit hohem Streckgrenzenverhältnis, ausgezeichneter Verformbarkeit und Punktschweissfähigkeit | |
EP3504349B1 (de) | Verfahren zur herstellung eines höchstfesten stahlbandes mit verbesserten eigenschaften bei der weiterverarbeitung und ein derartiges stahlband | |
EP2905348B1 (de) | Hochfestes Stahlflachprodukt mit bainitisch-martensitischem Gefüge und Verfahren zur Herstellung eines solchen Stahlflachprodukts | |
DE3401406A1 (de) | Verfahren zur herstellung von stahlplatten mit hoher zugfestigkeit | |
EP0352597A1 (de) | Verfahren zur Erzeugung von Warmband oder Grobblechen | |
DE3012188C2 (de) | ||
DE69724023T2 (de) | Herstellungsverfahren eines dicken Stahlgegenstandes mit hoher Festigkeit und hoher Zähigkeit und hervorragender Schweissbarkeit und minimaler Variation der strukturellen und physikalischen Eigenschaften | |
EP0030309B1 (de) | Warmband oder Grobblech aus einem denitrierten Stahl und Verfahren zu seiner Herstellung | |
DE102007030207A1 (de) | Verwendung einer hochfesten Stahllegierung zur Herstellung von Strahlrohren mit hoher Festigkeit und guter Umformbarkeit | |
EP0181583B1 (de) | Verfahren zur Herstellung von Warmband mit Zweiphasen-Gefüge | |
DE112006003553B9 (de) | Dicke Stahlplatte für eine Schweißkonstruktion mit ausgezeichneter Festigkeit und Zähigkeit in einem Zentralbereich der Dicke und geringen Eigenschaftsänderungen durch ihre Dicke und Produktionsverfahren dafür | |
DE3546770C2 (de) | ||
EP1453984B1 (de) | Verfahren zum herstellen von warmband oder -blech aus einem mikrolegierten stahl | |
EP3719147A1 (de) | Warmgewalztes stahlflachprodukt und verfahren zu seiner herstellung | |
DE69832684T2 (de) | Verfahren zur herstellung von stahlrohr mit ultrafeinem gefüge | |
DE4033700C1 (de) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT NL Designated state(s): DE FR GB IT NL |
|
ITCL | It: translation for ep claims filed |
Representative=s name: MODIANO & ASSOCIATI S.R.L. |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19820407 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL Designated state(s): DE FR GB IT NL |
|
REF | Corresponds to: |
Ref document number: 3070180 Country of ref document: DE Date of ref document: 19850328 |
|
ET | Fr: translation filed | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: HOESCH AG Effective date: 19851113 Opponent name: THYSSEN STAHL AG Effective date: 19851108 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: HOESCH AG Opponent name: THYSSEN STAHL AG |
|
PLBN | Opposition rejected |
Free format text: ORIGINAL CODE: 0009273 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION REJECTED |
|
27O | Opposition rejected |
Effective date: 19910109 |
|
NLR2 | Nl: decision of opposition | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19921010 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19921016 Year of fee payment: 13 |
|
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19921130 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19931122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19940601 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19931122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19940729 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19991112 Year of fee payment: 20 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |