EP0030309B1 - Warmband oder Grobblech aus einem denitrierten Stahl und Verfahren zu seiner Herstellung - Google Patents

Warmband oder Grobblech aus einem denitrierten Stahl und Verfahren zu seiner Herstellung Download PDF

Info

Publication number
EP0030309B1
EP0030309B1 EP80107296A EP80107296A EP0030309B1 EP 0030309 B1 EP0030309 B1 EP 0030309B1 EP 80107296 A EP80107296 A EP 80107296A EP 80107296 A EP80107296 A EP 80107296A EP 0030309 B1 EP0030309 B1 EP 0030309B1
Authority
EP
European Patent Office
Prior art keywords
steel
temperature
hot
intermediate temperature
lies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80107296A
Other languages
English (en)
French (fr)
Other versions
EP0030309A3 (en
EP0030309A2 (de
Inventor
Klaus Dipl.-Ing. Freier
Constantin M. Dr.-Ing. Vlad
Klaus Dipl.-Ing. Hulka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stahlwerke Pein Salzgitter AG
Preussag Stahl AG
Original Assignee
Stahlwerke Pein Salzgitter AG
Preussag Stahl AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25782269&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0030309(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE19792949124 external-priority patent/DE2949124C2/de
Priority claimed from DE19803030060 external-priority patent/DE3030060A1/de
Application filed by Stahlwerke Pein Salzgitter AG, Preussag Stahl AG filed Critical Stahlwerke Pein Salzgitter AG
Publication of EP0030309A2 publication Critical patent/EP0030309A2/de
Publication of EP0030309A3 publication Critical patent/EP0030309A3/de
Application granted granted Critical
Publication of EP0030309B1 publication Critical patent/EP0030309B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling

Definitions

  • the invention relates to a method for producing hot strip or heavy plate from a denitrified steel.
  • the invention further relates to hot strip or heavy plate made from denitrated steel.
  • thermo-mechanical treatment of steels means a controlled reshaping of the steel in a temperature range around the transformation point Ar 3 with a controlled precipitation and / or transformation of the structure at the same time.
  • thermo-mechanically treated steels When mechanically and technologically testing these steels, especially in the presence of notches in a wide temperature range above the complete brittle fracture (Charpy impact test), tears are often observed perpendicular to the fracture surface (referred to as »separation «, »splitting « or »splitting «).
  • »separation«, »splitting « or »splitting « This tendency to split the fracture surfaces of thermo-mechanically treated steels is important, for example, for the operation of long-distance pipelines because it reduces the ability of these steels to stop the propagation of tough fractures.
  • Proposals have already been made for the production of high-strength steels for long-distance pipelines, in which fracture splitting no longer occurs in the impact strength test, but all of which are associated with high alloy costs and high production costs.
  • the invention has for its object to achieve an increased impact strength, even at low temperatures (ie CVN transition temperature TÜ5 0 of at least -30 ° C) by controlling the occurrence of the separations in a hot-rolled hot strip or heavy plate.
  • the hot strip or sheet made of denitrified steel consisting of carbon 0.04 to 0.16%, manganese 1.25 to 1.90%, silicon 0.02 to 0 , 55%, phosphorus 0.004 to 0.020%, sulfur 0.002 to 0.015%, aluminum 0.02 to 0.08%, niobium 0.02 to 0.08%, balance iron and any impurities during hot rolling the last finishing stand with a temperature of Leaves 750 ° C to 820 ° C and is cooled to an intermediate temperature at a cooling rate of 2 to 10 ° C / s if the intermediate temperature is between 450 ° C and 570 ° C and then the hot strip or sheet in the reel or in the stack Air slowly cools to room temperature, creating a ferritic-pearlitic structure.
  • the method according to the invention can therefore significantly improve the usability of the steel, for example for large pipe fem lines, without the need for excessive alloy additives.
  • vanadium 0.02 to 0.10% has a particularly favorable effect on the increase in the strength properties of a steel according to the invention, since the vanadium precipitation takes place mainly in the ferrite grain and not at grain boundaries.
  • the steel has a ferritic-pearlitic structure and the ratio of C v max to C V 100 is between 1.0 and 1.3.
  • C v 100 denotes the high notch impact value (highest values) at which the samples are just showing a 100% deformation fracture.
  • C v max is the temperature-dependent value that has the highest impact value of the entire test.
  • the steel produced according to the invention has a complete absence of fracture splits in the CVN impact test (CVN-Charpy-V-Notch) while at the same time ensuring CVN transition temperatures of at least -30 ° C.
  • the steel of the composition mentioned has a reduced number of separations. Nevertheless, it still has a significantly higher notched impact strength.
  • the notched impact strength in J / cm 2 decreases with increasing number of "separations" in the fracture surfaces of the CVN samples.
  • the reason for this decrease in impact strength lies in the fact that the separations that run perpendicular to the main fracture surface and parallel to the sample surface mainly occur before they pass through the main crack, as can be seen in Figure 1, so that when the samples are bent during the Notch impact test requires less energy to initiate the necking start.
  • Such a material is obtained by maintaining an intermediate temperature of 500 to 570 ° C.
  • the intermediate temperature is 550 ° to 620 ° C
  • the temperature on the last finishing stand from 750 ° C to 850 ° C can be.
  • FIGS. 2 and 3 clearly show the advantages of reducing the number of "separations" in the impact test.
  • the notched impact strength increases on average from 150 J / cm 2 to 230 J / cm 2 for those with molybdenum, chromium or nickel alloys alloyed steels of grade X 70 (Fig. 3) and from 160 J / cm 2 to 280 J / cm 2 for niobvanadin-containing steels of grade X 70 (Fig. 2), which increases the impact strength by 53 or 75%. corresponds.
  • the temperature at which the hot strip or sheet leaves the last finishing stand during hot rolling need not be quite as narrow for a low-separation steel according to the invention as for the production of a separation-free steel.
  • a temperature range of 7 50 ° to 850 ° C is possible.
  • additions of 0.002 to 0.08 zirconium and / or 0.004 to 0.051 cerium can also be used when carrying out the new process with an intermediate temperature of 550 ° to 620 ° C.
  • composition of the steels is shown in Table 6, in which the proportions of the constituents contained in the steel are given in percent. The numbers of the melts are only used to identify the steel.
  • the steels were manufactured according to the parameters given in Table 7. In it are the initial thickness, the thickness of the rolled steel sheet, the blast furnace temperature, the final roll temperature and the temperature after cooling (reel temperature). In all cases with the exception of sheet A, the steel was wound up. The last column shows the cooling rate from the final roll temperature to the reel temperature in ° C / s. The steel then slowly cools down in the reel.
  • the mechanical-technological properties of the investigated and inventive steels are summarized in Table 8.
  • the letters “L” and “Q” characterize the position of the specimen in relation to the rolling direction, namely "L” a longitudinal specimen and “Q” a cross specimen on which the impact test was carried out.
  • the other three columns contain the usual information about the yield strength and tensile strength.
  • the ak value indicates the energy consumption of the steel at various points on the a k curve depending on the temperature.
  • C v 100 characterizes the lowest temperature at which there is still a complete deformation fracture.
  • C v max characterizes the area of maximum energy absorption, while TÜ 50 specifies the temperature at which the Charpy V impact test specimens according to DIN 50115 show 50% deformation fracture in the fracture surfaces in the transition area between brittle fracture and deformation fracture.
  • the next two columns indicate the transition temperature for the points C v 100 and TÜ 50 . It turns out that the TÜ 50 is always considerably below -30 ° C, so that high toughness is guaranteed even at low temperatures.
  • the steels are characterized by a high energy consumption.
  • the quotient C v max to C v l 00 is close to 1, namely between 1 and 1.3. All of these steels are free of tears perpendicular to the fracture surface (separations).
  • Tables 1 to 5 relate to low-separation steels according to the invention with a higher notched impact strength
  • Tables 6 to 8 characterize separation-free steels which naturally have a very high notched impact strength.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von Warmband oder Grobblech aus einem denitrierten Stahl. Die Erfindung betrifft weiterhin aus denitriertem Stahl hergestelltes Warmband oder Grobblech.
  • Seit längerer Zeit besteht die Forderung nach der Entwicklung von höherfesten Stählen mit guten Zähigkeitswerten, die in Form von Warmbändern oder Grobblechen beispielsweise für Großrohrfernleitungen Verwendung finden können. Zur Herstellung hat sich das kontrollierte und gesteuerte Warmwalzen als wirtschaftliches Verfahren für die Herstellung von thermo-mechanisch behandelten Warmbändern oder Grobblechen immer mehr durchgesetzt. Unter einer thermo-mechanischen Behandlung von Stählen versteht man eine kontrollierte Umformung des Stahles in einem Temperaturbereich um den Umwandlungspunkt Ar3 mit einer gleichzeitig gesteuerten Ausscheidung und/oder Umwandlung des Gefüges.
  • Es ist bekannt, denitrierten Stahl mit einer Zusammensetzung Kohlenstoff 0,04 bis 0,16%, Mangan 1,25 bis 1,90%, Silizium 0,02 bis 0,55%, Phosphor 0,004 bis 0,020%, Schwefel 0,002 bis 0,015%, Aluminium 0,02 bis 0,08%, Niob 0,02 bis 0,08%, Rest Eisen und etwaige Verunreinigungen zu benutzen. Gegebenenfalls können diesem Stahl Zusätze von Molybdän 0,015 bis 0,35%, Chrom 0,10 bis 0,30 % und/oder Nickel 0,30 bis 0,90% allein oder in Kombination zulegiert werden.
  • Bei der mechanisch-technologischen Prüfung dieser Stähle, besonders in Anwesenheit von Kerben in einem breiten Temperaturbereich oberhalb des vollständigen Sprödbruchs (Charpy-Kerbschlagprobe) beobachtet man oft Aufreißungen senkrecht zur Bruchfläche (als »Separation«, »Spaltung« oder »Splitting« bezeichnet). Diese Neigung zur Aufspaltung der Bruchflächen von thermo-mechanisch behandelten Stählen ist beispielsweise für die Betreibung von Großrohr-Fernleitungen von Bedeutung, weil die Fähigkeit dieser Stähle, eine Zähbruchfortpflanzung zu stoppen, dadurch vermindert wird. Für die Herstellung von höherfesten Stählen für Großrohr-Fernleitungen, bei denen keine Bruchaufspaltungen bei der Kerbschlagzähigkeitsprüfung mehr auftreten, wurden schon Vorschläge gemacht, die jedoch alle mit hohen Legierungskosten und hohen Herstellungskosten verbunden sind. So wird beispielsweise in der DE-OS 2 653 847 empfohlen, dem Stahl Chrom- und Manganzusätze von bis zu 3,5% bzw. zu 2,5%zuzulegieren, nachdem der Stahl einer Aufstickung (Stickstoffanreicherung) auf Gehalte von 0,012% unterworfen wurde. Bei diesem Stahl wird das Warmwalzen kompliziert gestaltet. Das Walzgut wird bei Temperaturen zwischen 950°C und 1100°C einer Verformung von 30 bis 60%, einer anschließenden Unterbrechung des Walzvorganges und bei Temperaturen zwischen 700° und 900°C einer Verformung von 75 bis 95% der ursprünglichen Dicke unterworfen. Das verformte Gefüge wird schließlich in der unteren Bainitstufe umgewandelt. Das Zulegieren der Chrom- und Manganzusätze verteuert bekanntlich Stähle erheblich. Durch den komplizierten und aufwendigen Walzvorgang entstehen weiter erhöhte Herstellungskosten.
  • Aus der JP-A-54-71 714 ist ein Verfahren bekannt, bei dem zur Vermeidung von Separations eine beschleunigte Abkühlung mit einer Abkühlgeschwindigkeit von 3°C/s oder mehr auf eine Zwischentemperatur erfolgt, die zwischen 500°C und 650°C liegen soll. Eine besondere Angabe über die danach folgende weitere Abkühlung des Stahls ist in der Entgegenhaltung nicht enthalten. Die Tabellen 2 und 3 dieser Entgegenhaltung zeigen Vergleichsstähle, die zwischen der Endwalztemperatur und der Zwischentemperatur normal an Luft abgekühlt sind und dort beanspruchte Stähle, die unter sonst gleichen Bedingungen in diesem Temperaturbereich eine beschleunigte Abkühlung mit einer Abkühlrate von 9°C/s bzw. 5°C erfahren haben. Die Tabelle enthält den Wert Ismax als Maß für die Anzahl der Separations. Durch die beschleunigte Abkühlung lassen sich die Separations erheblich vermindern oder gar beseitigen. Aus dem ebenfalls in der Tabelle aufgeführten Wert vEo, der ein Maß für die Kerbschlagzähigkeit ist, läßt sich weiterhin entnehmen, daß gleichzeitig die Kerbschlagzähigkeit abnimmt.
  • Der Erfindung liegt die Aufgabe zugrunde, durch eine Steuerung des Auftretens der Separations bei einem warmgewalzten Warmband oder Grobblech eine erhöhte Kerbschlagzähigkeit, auch bei niedrigen Temperaturen (d. h. CVN-Übergangstemperatur TÜ50 von mindestens -30°C), zu erreichen.
  • Diese Aufgabe wird erfindungsgemäß mit einem Verfahren der eingangs erwähnten Art gelöst, bei dem das Warmband oder Blech aus denitriertem Stahl bestehend aus Kohlenstoff 0,04 bis 0,16%, Mangan 1,25 bis 1,90%, Silizium 0,02 bis 0,55%, Phosphor 0,004 bis 0,020%, Schwefel 0,002 bis 0,015%, Aluminium 0,02 bis 0,08%, Niob 0,02 bis 0,08%, Rest Eisen und etwaige Verunreinigungen beim Warmwalzen das letzte Fertiggerüst mit einer Temperatur von 750°C bis 820°C verläßt und mit einer Abkühlgeschwindigkeit von 2 bis 10°C/s auf eine Zwischentemperatur abgekühlt wird, wenn die Zwischentemperatur zwischen 450°C und 570°C liegt und das Warmband oder Blech danach im Haspel oder im Stapel an Luft langsam auf Raumtemperatur abkühlt, wodurch ein ferritisch-perlitisches Gefüge erzeugt wird.
  • Überraschenderweise hat sich herausgestellt, daß nur bei der Einhaltung des beschriebenen, relativ einfachen Warmwalzvorganges der genannte Stahl eine bedeutende Verminderung der Bruchaufspaltungen in den CVN-Kerbschlagproben (CVN-Charpy-V-Notch) bei CVN-Übergangstemperaturen von mindestens ­30°C und damit eine erheblich erhöhte Kerbschlagzähigkeit zeigt.
  • Durch das erfindungsgemäße Verfahren kann also ohne die Notwendigkeit von überhöhten Legierungszusätzen die Brauchbarkeit des Stahls, beispielsweise für Großrohr-Femleitungen, erheblich verbessert werden.
  • Es hat sich herausgestellt, daß eine Zugabe von Vanadin 0,02 bis 0,10%sich besonders günstig auf die Erhöhung der Festigkeitseigenschaften eines erfindungsgemäßen Stahls auswirkt, da die Vanadin-Ausscheidungen hauptsächlich im Ferritkorn und nicht an Korngrenzen stattfindet.
  • Wenn eine Zwischentemperatur von 450°C bis 500°C eingehalten wird, läßt sich die Entstehung von Separationen vollständig vermeiden. Der Stahl weist ein ferritisch-perlitisches Gefüge auf und das Verhältnis von Cvmax zu CV100 liegt zwischen 1,0 und 1,3. Dabei bezeichnet Cv100 die Kerbschlaghochlage (höchste Werte), bei der die Proben noch gerade einen 100%igen Verformungsbruch aufweisen.
  • Cvmax ist der Wert in Abhängigkeit von der Temperatur, der den höchsten Kerbschlagzähigkeitswert der gesamten Prüfung aufweist. Der erfindungsgemäß hergestellte Stahl weist ein völliges Fehlen von Bruchaufspaltungen in den CVN-Kerbschlagproben (CVN-Charpy-V-Notch) bei gleichzeitiger Gewährleistung von CVN-Übergangstemperaturen von mindestens -30°C auf.
  • Bei der Einhaltung einer Zwischentemperatur von 500°C bis 570°C weist der Stahl der genannten Zusammensetzung eine verringerte Anzahl von Separationen auf. Trotzdem weist er noch eine wesentlich erhöhte Kerbschlagzähigkeit auf. Bei der Kerbschlagzähigkeitsprüfung von mit Separationen behaftetem Warmband und/oder Blech hat sich gezeigt, daß mit zunehmender Anzahl von »Separations« in den Bruchflächen der CVN-Proben die Kerbschlagzähigkeit in J/cm2 abnimmt. Der Grund für diese Abnahme der Kerbschlagzähigkeit liegt in der Tatsache, daß die Separationen, die senkrecht zur Hauptbruchfläche und parallel zur Probenoberfläche verlaufen, hauptsächlich vor dem Durchlaufen des Hauptrisses entstehen, wie dies aus Bild 1 ersichtlich ist, so daß beim Biegen der Proben während der Kerbschlagprüfung eine geringere Energie für die Einleitung des Einschnürbeginns benötigt wird. Dies ist insofern von Bedeutung, als bei der Erzeugung von Warmbändern bzw. Blechen nicht immer »separationsfreies« Material mit höchsten Kerbschlagzähigkeitswerten gefordert wird, so daß auch Material mit etwas geringerer Anzahl von »Separationen«, jedoch mit erhöhter Kerbschlagzähigkeit Anwendung findet.
  • Ein derartiges Material wird mit der Einhaltung einer Zwischentemperatur von 500 bis 570°C erhalten.
  • Bei der Verwendung eines Stahls mit Zusätzen von Molybdän von 0,15 bis 0,35%, von Chrom von 0,10 bis 0,35% und/oder von Nickel von 0,30 bis 0,90%allein oder in Kombination reichen zur Erzeugung eines »separationsfreien« Materials unter Beibehaltung derselben Abkühlbedingungen von 2° bis 10°C/s auch Zwischentemperaturen von 550°C aus, so daß die Abkühlung nur auf diese Temperatur erfolgen muß.
  • Zur Herstellung eines Stahls mit den Zulegierungen, der eine verringerte Anzahl von Separationen aber eine erhöhte Kerbschlagzähigkeit aufweist, ist es ausreichend, wenn die Zwischentemperatur 550° bis 620°C beträgt, wobei die Temperatur am letzten Fertiggerüst von 750°C bis zu 850°C betragen kann.
  • Welche Vorteile eine Reduzierung der Anzahl von »Separationen« bei der Kerbschlagprüfung mit sich bringt, geht aus den Bildern 2 und 3 eindeutig hervor.
  • Nimmt z. B. das Verhältnis Cvmax zu Cv100 von rund 2,0 auf Werte von 1,3 ab, dann steigt die Kerbschlagzähigkeit im Durchschnitt von 150 J/cm2 auf 230 J/cm2 bei den mit Molybdän-, Chrom- oder Nickelzusätzen legierten Stählen der Güte X 70 (Bild 3) und von 160 J/cm2 auf 280 J/cm2 bei den niobvanadinhaltigen Stählen der Güte X 70 an (Bild 2), was einer Steigerung der Kerbschlagzähigkeit von 53 bzw. 75% entspricht.
  • Die Darstellung der Kerbschlagzähigkeit als Funktion des Verhältnisses Cvmax zu Cv 100 wurde deshalb für die Bilder 2 und 3 gewählt, weil das Verhältnis von Cvmax zu Cv100 empfindlicher auf die Anzahl der Separationen reagiert als alle anderen Parameter.
  • Im Sauerstoffaufblaskonverter wurden die Stähle der Tabelle 1 und 2 erschmolzen und gemäß den Bedingungen der Tabellen 3, 4 und 5 zu Warmbändern bzw. Grobblechen gewalzt und geprüft.
  • Die ermittelten Ergebnisse, die zusätzlich in den Bildern 4 und 5 bzw. 6 und 7 dargestellt sind, zeigen, daß ein deutlicher Kerbschlagzähigkeitsanstieg gegenüber den herkömmlich gefertigten mikrolegierten Vergleichsstählen erzielt wurde.
  • Es wurde festgestellt, daß die Temperatur, mit der das Warmband oder Blech beim Warmwalzen das letzte Fertiggerüst verläßt, bei einem separationsarmen Stahl gemäß der Erfindung nicht ganz so eng zu sein braucht wie bei der Herstellung eines separationsfreien Stahls. Ein Temperaturbereich von 7 50° bis 850°C ist möglich.
  • Erfindungsgemäß können bei Durchführung des neuen Verfahrens mit einer Zwischentemperatur von 550° bis 620°C auch noch Zusätze von 0,002 bis 0,08 Zirkon und/oder 0,004 bis 0,051 Cer verwendet werden.
  • Zur Herstellung von separationsfreien Stählen gemäß Anspruch 3 oder Anspruch 7 wurden Versuche an elf Stahlsorten mit verschiedenen Kohlenstoffgehalten und Kombinationen von Mikrolegierungszusätzen an Niob, Vanadin, Nickel und Chrom durchgeführt.
  • Die Zusammensetzung der Stähle ist der Tabelle 6 zu entnehmen, in der die Anteile der im Stahl enthaltenen Bestandteile in Prozent angegeben sind. Die Nummern der Schmelzen dienen lediglich zur Identifizierung des Stahls.
  • Die Stähle wurden gemäß der in Tabelle 7 angegebenen Parameter hergestellt. Darin sind die Ausgangsdicke, die Dicke des gewalzten Stahlbleches, die Stoßofentemperatur, die Walzendtemperatur und die Temperatur nach der Abkühlung (Haspeltemperatur) angegeben. In allen Fällen mit Ausnahme des Bleches A wurde der Stahl aufgehaspelt. Die letzte Spalte gibt die Abkühlgeschwindigkeit von der Walzendtemperatur zur Haspeltemperatur in °C/s an. Im Haspel kühlt der Stahl dann langsam ab.
  • Die mechanisch-technologischen Eigenschaften der untersuchten und erfindungsgemäßen Stähle sind in der Tabelle 8 zusammengefaßt. Die Buchstaben »L« und »Q« charakterisieren die Probenlage in bezug auf die Walzrichtung, nämlich »L« eine Längsprobe und »Q« eine Querprobe, an der die Kerbschlagprobe vorgenommen worden ist. Die weiteren drei Spalten enthalten die üblichen Angaben zur Streckgrenze und zur Zugfestigkeit. Der ak-Wert gibt die Energieaufnahme des Stahls bei verschiedenen Punkten der ak-Kurve in Abhängigkeit von der Temperatur an. Cv100 charakterisiert die tiefste Temperatur, bei der noch ein vollständiger Verformungsbruch einsetzt. Cvmax charakterisiert den Bereich der maximalen Energieaufnahme, während TÜ50 die Temperatur angibt, in der im Übergangsbereich zwischen Sprödbruch und Verformungsbruch die Charpy-V-Kerbschlagproben nach DIN 50115 50% Verformungsbruch in den Bruchflächen zeigen.
  • Die nächsten beiden Spalten geben die Übergangstemperatur für die Punkte Cv100 und TÜ50 an. Es zeigt sich, daß die TÜ50 immer beträchtlich unter-30°C liegt, so daß eine hohe Zähigkeit auch bei tiefen Temperaturen gewährleistet ist. Die Stähle zeichnen sich durch eine hohe Energieaufnahme aus. Bei den erfindungsgemäßen separationsfreien Stählen liegt der Quotient Cvmax zu Cvl 00 bei nahe 1, nämlich zwischen 1 und 1,3. Alle diese Stähle sind frei von Aufreißungen senkrecht zur Bruchfläche (separations).
  • Während also die Tabellen 1 bis 5 erfindungsgemäße separationsarme Stähle mit einer höheren Kerbschlagzähigkeit betreffen, charakterisieren die Tabellen 6 bis 8 separationsfreie Stähle, die naturgemäß eine sehr hohe Kerbschlagzähigkeit aufweisen.
    Figure imgb0001
    Figure imgb0002
    Figure imgb0003
    Figure imgb0004
    Figure imgb0005
    Figure imgb0006
    Figure imgb0007
    Figure imgb0008
    Figure imgb0009
    Figure imgb0010
    Figure imgb0011
    Figure imgb0012
    Figure imgb0013
    Figure imgb0014
    Figure imgb0015
    Figure imgb0016
    Figure imgb0017
    Figure imgb0018
    Figure imgb0019

Claims (11)

1. Verfahren zur Herstellung von Warmband oder Grobblech mittels einer thermomechanischen Behandlung, bei der eine starke Verformung des Stahls in einem Temperaturbereich um den Umwandlungspunkt Ar3 erfolgt, aus einem denitrierten Stahl bestehend aus Kohlenstoff 0,04 bis 0,16%, Mangan 1,25 bis 1,90%, Silizium 0,02 bis 0,55%, Phosphor 0,004 bis 0,020%. Schwefel 0,002 bis 0,015%, Aluminium 0,02 bis 0,08%, Niob 0,02 bis 0,08%, Rest Eisen und etwaige Verunreinigungen, wobei das Warmband oder Blech beim Warmwalzen das letzte Fertiggerüst mit einer Temperatur von 750°C bis 820°C verläßt und mit einer Abkühlgeschwindigkeit von 2 bis 10°C/s auf eine Zwischentemperatur abgekühlt wird, dadurch gekennzeichnet, daß die Zwischentemperatur zwischen 450°C und 570°C liegt und daß das Warmband oder Blech danach im Haspel oder im Stapel an Luft langsam auf Raumtemperatur abkühlt, wodurch ein ferritisch-perlitisches Gefüge erzeugt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß dem Stahl Vanadinzusätze von 0,02 bis 0,10% zulegiert werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Zwischentemperatur zwischen 450°C und 500°C liegt.
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Zwischentemperatur zwischen 500°C und 570°C liegt.
5. Verfahren zur Herstellung von Warmband oder Grobblech mittels einer thermomechanischen Behandlung, bei der eine starke Verformung des Stahls in einem Temperaturbereich um den Umwandlungspunkt Ar3 erfolgt, aus einem denitrierten Stahl bestehend aus Kohlenstoff 0,04 bis 0,16%, Mangan 1,25 bis 1,90%, Silizium 0,02 bis 0,56%, Phosphor 0,004 bis 0,020%, Schwefel 0,002 bis 0,015%, Aluminium 0,02 bis 0,08%, Niob 0,02 bis 0,08% sowie Zusätzen von Molybdän 0,15 bis 0,35%, von Chrom 0,10 bis 0,30% und/oder Nickel 0,30 bis 0,90% allein oder in Kombination, Rest Eisen und etwaige Verunreinigungen, wobei das Warmband oder Blech beim Warmwalzen das letzte Fertiggerüst mit einer Temperatur von 750°C bis 850°C verläßt und mit einer Abkühlgeschwindigkeit von 2 bis 10°C/s auf eine Zwischentemperatur abgekühlt wird, dadurch gekennzeichnet, daß die Zwischentemperatur zwischen 450 und 620°C liegt und daß das Warmband oder Blech danach im Haspel oder im Stapel an Luft langsam auf Raumtemperatur abkühlt, wodurch ein ferritisch-perlitisches Gefüge erzeugt wirq.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß dem Stahl Vanadinzusätze von 0,02 bis 0,10% zulegiert werden.
7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die Zwischentemperatur zwischen 450°C und 550°C liegt und daß das Warmband oder Grobblech beim Warmwalzen das letzte Fertiggerüst mit einer Temperatur von 750°C bis 820°C verläßt.
8. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die Zwischentemperatur zwischen 550°C und 620°C liegt.
9. Verfahren nach Anspruch 8, gekennzeichnet durch einen Zusatz von 0,002 bis 0,08% Zirkon.
10. Verfahren nach Anspruch 8 oder 9, gekennzeichnet durch einen Zusatz von 0,004 bis 0,051 % Cer.
11. Warmband oder Grobblech, hergestellt nach einem Verfahren nach einem der Ansprüche 1 bis 10.
EP80107296A 1979-12-06 1980-11-22 Warmband oder Grobblech aus einem denitrierten Stahl und Verfahren zu seiner Herstellung Expired EP0030309B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE2949124 1979-12-06
DE19792949124 DE2949124C2 (de) 1979-12-06 1979-12-06 Warmband oder Grobblech aus denitriertem Stahl und Verfahren zu seiner Herstellung
DE19803030060 DE3030060A1 (de) 1980-08-08 1980-08-08 Warmband oder grobblech aus einem denitrierten stahl und verfahren zu seiner herstellung
DE3030060 1980-08-08

Publications (3)

Publication Number Publication Date
EP0030309A2 EP0030309A2 (de) 1981-06-17
EP0030309A3 EP0030309A3 (en) 1982-05-12
EP0030309B1 true EP0030309B1 (de) 1985-02-13

Family

ID=25782269

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80107296A Expired EP0030309B1 (de) 1979-12-06 1980-11-22 Warmband oder Grobblech aus einem denitrierten Stahl und Verfahren zu seiner Herstellung

Country Status (4)

Country Link
US (1) US4397697A (de)
EP (1) EP0030309B1 (de)
CA (1) CA1149711A (de)
DE (1) DE3070180D1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100214A (ja) * 1982-11-29 1984-06-09 Nippon Kokan Kk <Nkk> 厚肉高張力鋼の製造方法
US4662950A (en) * 1985-11-05 1987-05-05 Bethlehem Steel Corporation Method of making a steel plate for construction applications
DE3721641C1 (de) * 1987-07-01 1989-01-12 Thyssen Stahl Ag Verfahren zur Herstellung von Warmband
DE3818879C1 (de) * 1988-06-01 1989-11-16 Mannesmann Ag, 4000 Duesseldorf, De
HU205393B (en) * 1988-06-22 1992-04-28 Gyoergy Vizi Process for producing corner element of steel container from hot rolled steel plate
DE4033700C1 (de) * 1990-10-19 1992-02-06 Stahlwerke Peine-Salzgitter Ag, 3150 Peine, De
US5833667A (en) * 1993-03-19 1998-11-10 Venetec International, Inc. Catheter anchoring system
JP3509603B2 (ja) * 1998-03-05 2004-03-22 Jfeスチール株式会社 靱性に優れた降伏強さが325MPa以上の極厚H形鋼
EP1205570A4 (de) * 2000-03-02 2004-11-10 Matsushita Electric Ind Co Ltd Farbkathodenstrahlröhre-maskenrahmen, darin verwendete stahlplatte, herstellungsverfahren für diese stahlplatte und farbkathodenstrahlröhre mit diesem maskenrahmen
DE102020206298A1 (de) * 2020-05-19 2021-11-25 Thyssenkrupp Steel Europe Ag Stahlflachprodukt und Verfahren zu dessen Herstellung

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3102831A (en) * 1960-08-10 1963-09-03 Molybdenum Corp Production of columbium containing steels
US3704180A (en) * 1968-08-28 1972-11-28 Inland Steel Co Method for producing tough,high strength steel article
USRE28790E (en) * 1969-07-16 1976-04-27 Jones & Laughlin Steel Corporation High-strength low-alloy steels having improved formability
ZA705046B (en) * 1969-07-30 1971-04-28 Armco Steel Corp Process for production of high strength low alloy steel
US3726723A (en) * 1970-05-11 1973-04-10 American Metal Climax Inc Hot-rolled low alloy steels
US3849209A (en) * 1972-02-01 1974-11-19 Nippon Steel Corp Manufacturing method of high tension, high toughness steel
JPS5324892B2 (de) * 1972-10-19 1978-07-24
US3860456A (en) * 1973-05-31 1975-01-14 United States Steel Corp Hot-rolled high-strength low-alloy steel and process for producing same
US3976514A (en) * 1975-02-10 1976-08-24 Nippon Steel Corporation Method for producing a high toughness and high tensil steel
IT1028878B (it) * 1975-02-10 1979-02-10 Italsider Spa Procedimento per la fabbricazione di un acciaio ad elevata resistenza antiinvecchiante, particolarmente adatto alla costuruzione di tubi saldati ed atto a sopportare elevate deformazioni plastiche a freddo, acciaio atto ad essere impiegato in detto procedimento ed acciaio ottenuto da tale procedimento
JPS5220322A (en) * 1975-08-08 1977-02-16 Sumitomo Metal Ind Ltd Process for producing a hot rolled steel band having a strong toughnes s and a high strength
IT1052444B (it) * 1975-11-28 1981-06-20 Centro Speriment Metallurg Processo per la produzione di acciaio strutturale meccanicamente anisotropo e acciaio cosi ottenuto
JPS52101627A (en) * 1976-02-23 1977-08-25 Sumitomo Metal Ind Ltd Non-tempered shape steel in low temp. toughness
JPS52107225A (en) * 1976-03-05 1977-09-08 Sumitomo Metal Ind Ltd Production of high tensile hot rolled steel
JPS52123921A (en) * 1976-04-13 1977-10-18 Nippon Kokan Kk <Nkk> Production of steel plate with high toughness
JPS5421917A (en) * 1977-07-20 1979-02-19 Nippon Kokan Kk <Nkk> Method of manufacturing non-quenched high-tensile steel having high toughness
JPS5822522B2 (ja) * 1977-08-18 1983-05-10 住友金属工業株式会社 強靭非調質高張力鋼板の製造法
JPS5827327B2 (ja) * 1977-11-21 1983-06-08 日本鋼管株式会社 セパレ−シヨンの生じない制御圧延高張力鋼の製造法
JPS54132421A (en) * 1978-04-05 1979-10-15 Nippon Steel Corp Manufacture of high toughness bainite high tensile steel plate with superior weldability
JPS5828327B2 (ja) * 1978-04-18 1983-06-15 日本鋼管株式会社 極めて優れた延性を有する極低炭素高張力鋼の製造方法

Also Published As

Publication number Publication date
CA1149711A (en) 1983-07-12
DE3070180D1 (en) 1985-03-28
EP0030309A3 (en) 1982-05-12
EP0030309A2 (de) 1981-06-17
US4397697A (en) 1983-08-09

Similar Documents

Publication Publication Date Title
DE69828865T2 (de) Hochfestes, hervorragend bearbeitbares kaltgewalztes stahlblech mit hervorragender schlagbeständigkeit
DE69617002T4 (de) Verfahren zur herstellung von hochfesten nahtlosen stahlrohren mit hervorragender schwefel induzierter spannungsrisskorossionsbeständigkeit
DE69829739T2 (de) Verfahren zur herstellung ultrafeinkörnigen warmgewalzten stahlblechs
DE69920847T2 (de) Warmgewalztes Stahlblech mit ultrafeinem Korngefüge und Verfahren zu dessen Herstellung
DE69800029T2 (de) Hochfester, hochzäher Stahl und Verfahren zu dessen Herstellung
EP2924140B1 (de) Verfahren zur Erzeugung eines hochfesten Stahlflachprodukts
EP3535431B1 (de) Mittelmanganstahlprodukt zum tieftemperatureinsatz und verfahren zu seiner herstellung
DE69221597T3 (de) Hochfestes warmgewalztes Stahlfeinblech mit niedrigem Strechgrenzenverhältnis und Verfahren zu seiner Herstellung
DE3883051T2 (de) Verfahren zur Herstellung von Stahlblechen mit guter Zähigkeit bei niedrigen Temperaturen.
DE69232036T2 (de) Warmgewalztes hochfestes Stahlblech mit hohem Streckgrenzenverhältnis, ausgezeichneter Verformbarkeit und Punktschweissfähigkeit
EP3504349B1 (de) Verfahren zur herstellung eines höchstfesten stahlbandes mit verbesserten eigenschaften bei der weiterverarbeitung und ein derartiges stahlband
EP2905348B1 (de) Hochfestes Stahlflachprodukt mit bainitisch-martensitischem Gefüge und Verfahren zur Herstellung eines solchen Stahlflachprodukts
DE3401406A1 (de) Verfahren zur herstellung von stahlplatten mit hoher zugfestigkeit
EP0352597A1 (de) Verfahren zur Erzeugung von Warmband oder Grobblechen
DE3012188C2 (de)
DE69724023T2 (de) Herstellungsverfahren eines dicken Stahlgegenstandes mit hoher Festigkeit und hoher Zähigkeit und hervorragender Schweissbarkeit und minimaler Variation der strukturellen und physikalischen Eigenschaften
EP0030309B1 (de) Warmband oder Grobblech aus einem denitrierten Stahl und Verfahren zu seiner Herstellung
DE102007030207A1 (de) Verwendung einer hochfesten Stahllegierung zur Herstellung von Strahlrohren mit hoher Festigkeit und guter Umformbarkeit
EP0181583B1 (de) Verfahren zur Herstellung von Warmband mit Zweiphasen-Gefüge
DE112006003553B9 (de) Dicke Stahlplatte für eine Schweißkonstruktion mit ausgezeichneter Festigkeit und Zähigkeit in einem Zentralbereich der Dicke und geringen Eigenschaftsänderungen durch ihre Dicke und Produktionsverfahren dafür
DE3546770C2 (de)
EP1453984B1 (de) Verfahren zum herstellen von warmband oder -blech aus einem mikrolegierten stahl
EP3719147A1 (de) Warmgewalztes stahlflachprodukt und verfahren zu seiner herstellung
DE69832684T2 (de) Verfahren zur herstellung von stahlrohr mit ultrafeinem gefüge
DE4033700C1 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT NL

Designated state(s): DE FR GB IT NL

ITCL It: translation for ep claims filed

Representative=s name: MODIANO & ASSOCIATI S.R.L.

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19820407

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 3070180

Country of ref document: DE

Date of ref document: 19850328

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: HOESCH AG

Effective date: 19851113

Opponent name: THYSSEN STAHL AG

Effective date: 19851108

NLR1 Nl: opposition has been filed with the epo

Opponent name: HOESCH AG

Opponent name: THYSSEN STAHL AG

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19910109

NLR2 Nl: decision of opposition
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921010

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921016

Year of fee payment: 13

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19921130

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940729

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991112

Year of fee payment: 20

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO