EP0028670B1 - Verfahren zur Herstellung von hochradioaktive Abfallstoffe enthaltenden Formkörpern - Google Patents

Verfahren zur Herstellung von hochradioaktive Abfallstoffe enthaltenden Formkörpern Download PDF

Info

Publication number
EP0028670B1
EP0028670B1 EP19800102963 EP80102963A EP0028670B1 EP 0028670 B1 EP0028670 B1 EP 0028670B1 EP 19800102963 EP19800102963 EP 19800102963 EP 80102963 A EP80102963 A EP 80102963A EP 0028670 B1 EP0028670 B1 EP 0028670B1
Authority
EP
European Patent Office
Prior art keywords
glass
ceramic
pressure
mpa
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19800102963
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0028670A1 (de
Inventor
Gerhard Dr. Ondracek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Kernforschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kernforschungszentrum Karlsruhe GmbH filed Critical Kernforschungszentrum Karlsruhe GmbH
Publication of EP0028670A1 publication Critical patent/EP0028670A1/de
Application granted granted Critical
Publication of EP0028670B1 publication Critical patent/EP0028670B1/de
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/301Processing by fixation in stable solid media
    • G21F9/302Processing by fixation in stable solid media in an inorganic matrix
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/16Processing by fixation in stable solid media
    • G21F9/162Processing by fixation in stable solid media in an inorganic matrix, e.g. clays, zeolites
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • G21F9/301Processing by fixation in stable solid media
    • G21F9/302Processing by fixation in stable solid media in an inorganic matrix
    • G21F9/305Glass or glass like matrix

Definitions

  • the invention relates to a method for producing moldings containing highly radioactive waste materials, in which the waste materials and the glass, glass ceramic or ceramic matrix surrounding them are sintered by means of pressure and temperature.
  • the glass state is an imbalance state, crystallization can be expected with long-term storage. According to previous knowledge, this begins with the macroscopically inhomogeneously distributed, heterogeneous inclusions, which act as nuclei. Crystallized areas with chemically different composition and fine structure are formed, which are arranged macroscopically inhomogeneous in the remaining glass phase. The highly active fission products are - in varying amounts - mainly concentrated in the crystallized areas. Because of their different composition and structure, these have different coefficients of thermal expansion, which leads to mechanical stresses in a glass block during final storage. In particular, the macroscopically inhomogeneous distribution of the different crystal areas, ultimately based on the macroscopically inhomogeneous distribution of the heterogeneous inclusions, increases the risk of cracking and brittle fracture in the glass block.
  • the isostatic hot pressing of the capsule with the particle mixture is carried out at a pressure of at least 10 MPa and at a temperature of at least 973 K.
  • glass such as borosilicate glass and phosphate glass, could also be used as the durable material.
  • implementation examples with the latter materials have not been disclosed.
  • the invention is based, in their properties to provide improved solidification products from highly radioactive waste and a glass, glass ceramic or ceramic matrix, in which a homogeneous distribution of the incorporated waste is ensured both during production and during long-term storage. It is also an object of the invention to provide a method with which intermediate and final storage moldings of such improved solidification products can be produced. In particular, mechanical stresses which involve the risk of crack formation and brittle fracture in the molded body should be avoided. The method should be technically simple and can be carried out with relatively little effort.
  • the object is also achieved in a different way, namely in that the waste materials are first melted in a known manner in a glass, glass ceramic or ceramic matrix, then the solidified melt is mechanically comminuted or ground, the comminuted material or the The ground material is mixed and, without first enclosing it in a capsule, is either cold pressed directly at a pressure in the range from 50 MPa to 500 MPa and then sintered below the melting range of the matrix in the devitrification range at a temperature between 500 K and 800 K or at a pressure in the range from 10 to 50 MPa and a temperature in the range from 500 K to 800 K (except hot isostatic pressing).
  • the sludge containing the waste materials thickened with glass, glass ceramic or ceramic powder, is compacted before drying in slip casting.
  • the first solution also has the advantage that the glass, glass ceramic or ceramic waste mixture does not have to be melted, the processing temperatures can therefore be reduced to about two thirds of the temperatures required by melting technology, viscosity-related flow problems are avoided and crucible reactions and signs of segregation of the heterogeneous inclusions (segregation, inhomogeneous distribution) are reduced. In addition, the evaporation of highly active components, which was previously unavoidable when melting, is greatly reduced.
  • radioactive powder can be introduced into the end products solidified by the process according to the invention.
  • a simulated, denitrified waste solution of the following composition was prepared with inactive components:
  • this solution was evaporated to dryness and the residue was ground to an average particle size of 10 to 50 ⁇ m (waste powder).
  • powder fractions can also be used, but powder fractions that are too finely ground will not be used in order to rule out dust formation as far as possible.
  • Example 1 To produce blocks with a diameter of 200 mm and a height of 150 mm by means of cold isostatic pressing in a flexible vessel, which is a condition for isostatic shaping, the procedure described in Example 1 was initially followed. The powder mixture was pressed at a pressure of approximately 500 MPa. The compacts were then sintered at 600 K to 800 K for 10 to 15 hours and then tempered. The desired macroscopic homogeneity was also achieved with these samples. The density was about 95% of the melt density.
  • Example 1 The waste and glass powder mixture described in Example 1 was poured into a graphite mold with a graphite stamp and hot-pressed or pressure-sintered without prior cold pressing while simultaneously applying a pressure of 10 to 40 MPa at about 600 K (indirect heating). A treatment time of 10 minutes was sufficient for the blocks with a diameter of 20 mm and a height of 25 mm. A density of 97% of the solid density on the blocks was found, as well as the desired macroscopic homogeneity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Processing Of Solid Wastes (AREA)
  • Compositions Of Oxide Ceramics (AREA)
EP19800102963 1979-11-08 1980-05-28 Verfahren zur Herstellung von hochradioaktive Abfallstoffe enthaltenden Formkörpern Expired EP0028670B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19792945006 DE2945006A1 (de) 1979-11-08 1979-11-08 Verfahren zur herstellung von hochradioaktive abfallstoffe enthaltenden formkoerpern
DE2945006 1979-11-08

Publications (2)

Publication Number Publication Date
EP0028670A1 EP0028670A1 (de) 1981-05-20
EP0028670B1 true EP0028670B1 (de) 1983-09-28

Family

ID=6085400

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19800102963 Expired EP0028670B1 (de) 1979-11-08 1980-05-28 Verfahren zur Herstellung von hochradioaktive Abfallstoffe enthaltenden Formkörpern

Country Status (4)

Country Link
EP (1) EP0028670B1 (US07534539-20090519-C00280.png)
JP (1) JPS5682499A (US07534539-20090519-C00280.png)
BR (1) BR8007001A (US07534539-20090519-C00280.png)
DE (1) DE2945006A1 (US07534539-20090519-C00280.png)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3214242A1 (de) * 1982-04-17 1983-10-20 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Verfahren zur verbesserung der fuer eine langzeitlagerung erforderlichen eigenschaften von verfestigungen radioaktiver abfaelle
JPS59220696A (ja) * 1983-05-30 1984-12-12 株式会社日立製作所 放射性廃樹脂の処理方法およびその装置
NL8303132A (nl) * 1983-09-09 1985-04-01 Machiel Nicolaas Duivelaar Werkwijze voor het onschadelijk maken van gevaarlijk chemisch afval.
DE3343422A1 (de) * 1983-12-01 1985-06-20 Kernforschungsanlage Jülich GmbH, 5170 Jülich Verfahren zum konditionieren kontaminierten abfalls durch zementieren
US4778626A (en) * 1985-11-04 1988-10-18 Australian Nat'l Univ. of Acton Preparation of particulate radioactive waste mixtures
AU2018221145A1 (en) * 2017-02-16 2019-07-25 GeoRoc International, Inc. Composition and method for the processing of hazardous sludges and ion exchange media

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3000072A (en) * 1959-08-20 1961-09-19 Ca Atomic Energy Ltd Process of containing and fixing fission products
DE2534014C3 (de) * 1975-07-30 1980-06-19 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Thermodynamisch stabiles Glaskeramikprodukt mit Radionukliden zur Beseitigung radioaktiver Abfalle und Verfahren zu seiner Herstellung
DE2627265A1 (de) * 1976-06-18 1977-12-29 Krauss Maffei Ag Mehrstufige gegenstrom-wasch- dekantierzentrifuge
FR2369659A1 (fr) * 1976-11-02 1978-05-26 Asea Ab Pr
FR2375695A1 (fr) * 1976-12-21 1978-07-21 Asea Ab Procede pour le traitement de dechets radioactifs

Also Published As

Publication number Publication date
DE2945006C2 (US07534539-20090519-C00280.png) 1987-01-15
EP0028670A1 (de) 1981-05-20
DE2945006A1 (de) 1981-05-21
JPS5682499A (en) 1981-07-06
BR8007001A (pt) 1981-05-12

Similar Documents

Publication Publication Date Title
DE3305854C1 (de) Verfahren zur Herstellung von poroesem Sinterglas mit grossem offenem Porenvolumen
DE10248888B4 (de) Verfahren zur Herstellung endkonturnaher, metallischer und/oder keramischer Bauteile
DE3318813A1 (de) Verfahren zur formung von faserverstaerkten glasmatrix-verbundgegenstaenden
DE3428252C2 (US07534539-20090519-C00280.png)
DE1918834A1 (de) Isotropes Graphit grosser Dichte
DE3214242C2 (US07534539-20090519-C00280.png)
DE1758845B2 (de) Verfahren zur herstellung von praezisionsgiessformen fuer reaktionsfaehige metalle
EP0028670B1 (de) Verfahren zur Herstellung von hochradioaktive Abfallstoffe enthaltenden Formkörpern
DE2856466C2 (de) Verfahren zur Verfestigung hochradioaktive Abfallstoffe enthaltender, als Granalien oder als Pulver vorliegender Glasteilchen in einer Metallmatrix
CH676433A5 (US07534539-20090519-C00280.png)
DE3720110C2 (de) Verfahren zum Schmelzen und zum Vergießen von beta-Titanlegierungen
DE2200002C3 (de) Ungebrannte heterogene hochschmelzende Mischung
DE1571567B1 (de) Verfahren zur Herstellung eines Traegers fuer dieGaschromatographie
DE112006000461T5 (de) Gießverfahren
DE3008368C2 (de) Verfahren zur Herstellung eines Glas-Keramikwärmeaustauscherkerns
EP3478432B1 (de) Wärmedämmende platte, insbesondere abdeckplatte für metallschmelzen, sowie verfahren zur herstellung der platte und deren verwendung
DE3050499C2 (de) Feuerfestes Pulver und Verfahren zu seiner Gewinnung
LU87823A1 (de) Feuerfestes keramisches formteil sowie verfahren zu seiner herstellung
DE3440717A1 (de) Pastenzusammensetzung und ihre verwendung in praezisions-gussverfahren, insbesondere in der dentaltechnologie
DE2855738C3 (de) Verfahren zur Herstellung eines lagerfähigen, biologisch schädlichen, insbesondere radioaktiven Abfalls
DE3729700C2 (de) Verfahren zur Herstellung von preßfähigem Granulat für die Fertigung von Produkten aus gesintertem keramischen Werkstoff
DE590357C (de) Verfahren zur Herstellung hochfeuerfester Koerper
DE2261523A1 (de) Leitende keramik mit erhoehter porositaet und verfahren zu ihrer herstellung
DE1471364B2 (de) Verfahren zur herstellung eines harten, glaenzenden, undurchlaessigen glasartigen koerpers durch verkohlen eines vorgeformten, ausgehaerteten phenolaldehydharzkoerpers
DE112022000001T5 (de) Herstellungsverfahren für ein sphärisches Mehrkomponenten-Legierungspulver

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE FR GB

17P Request for examination filed

Effective date: 19810609

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE FR GB

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840601

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19840630

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19880528

BERE Be: lapsed

Owner name: KERNFORSCHUNGSZENTRUM KARLSRUHE G.M.B.H.

Effective date: 19880531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890131

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890531