EP0016073B1 - Verfahren zur Herstellung von isolierenden Bauelementen, Vorrichtung zur Durchführung des Verfahrens und nach dem Verfahren hergestelltes Bauelement - Google Patents

Verfahren zur Herstellung von isolierenden Bauelementen, Vorrichtung zur Durchführung des Verfahrens und nach dem Verfahren hergestelltes Bauelement Download PDF

Info

Publication number
EP0016073B1
EP0016073B1 EP79900734A EP79900734A EP0016073B1 EP 0016073 B1 EP0016073 B1 EP 0016073B1 EP 79900734 A EP79900734 A EP 79900734A EP 79900734 A EP79900734 A EP 79900734A EP 0016073 B1 EP0016073 B1 EP 0016073B1
Authority
EP
European Patent Office
Prior art keywords
foam plastics
casting mould
material containing
containing cement
fibres
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79900734A
Other languages
English (en)
French (fr)
Other versions
EP0016073A1 (de
Inventor
Matthew R. Piazza
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ametex AG
Original Assignee
Ametex AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US05/925,251 external-priority patent/US4233787A/en
Priority claimed from US05/956,014 external-priority patent/US4280974A/en
Priority to AT79900734T priority Critical patent/ATE693T1/de
Application filed by Ametex AG filed Critical Ametex AG
Publication of EP0016073A1 publication Critical patent/EP0016073A1/de
Application granted granted Critical
Publication of EP0016073B1 publication Critical patent/EP0016073B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B19/00Machines or methods for applying the material to surfaces to form a permanent layer thereon
    • B28B19/003Machines or methods for applying the material to surfaces to form a permanent layer thereon to insulating material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • E04C2/288Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and concrete, stone or stone-like material
    • E04C2/2885Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and concrete, stone or stone-like material with the insulating material being completely surrounded by, or embedded in, a stone-like material, e.g. the insulating material being discontinuous

Definitions

  • the invention relates to a method for producing components with at least one prefabricated, insulating foam body, which is encased by a shell made of fiber-reinforced, cement-containing material, a base layer of wet, cement-containing material being introduced into a casting mold, then a smaller base area than that Foam body having the inner base surface of the casting mold is placed on the base layer while maintaining a distance from the mold walls, then further wet, cement-containing material is introduced into the casting mold to form the side walls and the top layer of the foam body, and the component is removed from the casting mold after the hardening of the cement-containing material.
  • the invention further relates to a device for carrying out the method.
  • the invention also relates to a component produced by the method, which has at least two foam bodies arranged next to one another and covered by a common shell.
  • components with one or more foam cores which are encased by a shell made of a fiber-reinforced, cement-containing material.
  • Such components resemble conventional external components made in one piece from concrete; compared to the latter, however, they are considerably lighter in weight and also have better insulating properties.
  • FR-A-2.294.291 Such a component and a method of the type mentioned are described in FR-A-2.294.291.
  • the foamed core is surrounded by a shell made of glass fiber reinforced cement, the fiber content of which can be 1-40 volume percent.
  • This component is manufactured in a single mold. This process is labor intensive and not economical.
  • the present invention has for its object to provide a method of the type mentioned and an apparatus for producing such components in an economical and efficient manner.
  • the method which solves this problem is characterized in that the elongated casting mold is divided into individual sections by means of cross strips prior to the introduction of the base layer and the cement-containing material is introduced continuously over the length of the casting mold up to the height of the cross strips, that fibers on the Base layer applied and mechanically incorporated into it, that dividing bars are placed with a height exceeding the height of the foam body on the cross bars to form the chambers receiving the foam body and that after the introduction of the cement-containing material for the side walls and the top layer fibers are applied to the top layer and be mechanically incorporated into it.
  • the device according to the invention is characterized in that the means for dividing the elongate casting mold provided with side rails, transverse strips with a height corresponding to the height of the base layer, and subdivision bars which can be placed thereon with a height exceeding the height of the foam body by the amount corresponding to the thickness of the cover layer Include height, and that further means for chopping and spraying the fibers and means for incorporating the fibers into the base or cover layer are provided on the fiber carriage.
  • the hollow configuration of the foam bodies is advantageous.
  • FIGS. 1 and 2 show the device for producing components.
  • the device comprises a mixing machine 1, into which the various components for the cement-containing material are filled and mixed.
  • a material carriage 2 is movably arranged on a horizontal rail arrangement 3, which is connected to a casting mold 4.
  • the material trolley 2 can be moved under the mixing machine 1 to cream the cement-containing material. Then he can ride on the mold so that the zer l entumble material can be introduced into the mold. 4
  • the device further comprises a fiber carriage 5 which can also be moved on the rail arrangement 3 .
  • a fiber carriage 5 chopped or cut fibers are deposited on the wet, cement-containing material in the casting mold 4 in order to reinforce the cement-containing material.
  • containers 6 are provided next to the mixing machine 1 in order to collect waste material from the material wagon at 2.
  • the mixer 1 of Fig. 1 can be stored temporarily, the starting components for the zementha l tig e material and are automatically fed in the prescribed quantity of a mixer.
  • the raw materials are fed via n ö CHT-illustrated feed openings in the machine and enter into respective chambers.
  • the desired amounts of the various raw materials then pass from the S p e i n cherhunt into an intermediate container, from there into the mixer and finally filled directly from the latter in the material cart. 2
  • the zementhalti e g material consists of a Zementanieil, which are added to the usual additives such as sand and pumice.
  • known additives such as lime and Stearate for waterproofing, rubbery additives for reinforcement and wetting properties can in terms of Faserarmierun g and water-binding additives, such as "Pozz olith" are added for rapid bonding.
  • known dyes for the coloring.
  • This sulfur-based material can additionally be processed with sand and other filling materials in a manner known per se.
  • the rail assembly 3 as shown in FIGS. 1 includes both longitudinal and transverse rails, which can consist, for example, of V-shaped rail parts made of cast iron or steel.
  • the cross rail parts serve to move the material carriage 2 or the fiber carriage 5 back and forth between the two parallel casting molds 4.
  • the Ma t e rialwagen 2 is, as mentioned, be filled from the mixing machine 1 with the cementitious material.
  • the Materialwa g en conveniently comprises an inner container with an outlet nozzle from which the zementhal tig e material can be filled into the casting molds. 4
  • a distribution and stripping device 7 is used.
  • the distribution and stripping device 7 is mounted behind the material carriage 2 (viewed in the direction of travel) and has two V-shaped end parts 8 and a central part 9 which is arranged perpendicular to the direction of travel (marked with an arrow) (FIGS. 3 and 4).
  • the V-shaped end parts 8 are adjustably connected to the middle part 9 by means of screws, slots and bolts 10.
  • the width of the distributing and stripping device 7 can be adjusted in this way so that the device can be used for casting molds of different widths and the correct filling, distribution and leveling of the cementitious material is ensured.
  • FIG. 4 shows how the cement-containing material is also moved to the long sides of the foam body 14 by the distributing and stripping device 7 in order to fill up the side distances 15 and to form the cover layer 16.
  • the cover layer 16, the side walls 33 and the base layer 17 completely encase the foam body 14 and form a shell 34 after curing.
  • the fiber carriage 5 is provided in a manner not shown with spray nozzles in order to ensure the uniform, controlled spraying of the chopped or cut fibers onto the cementitious material.
  • the fiber carriage 5 also has a cutting or chopping mechanism in order to chop and cut the fiber material on rolls.
  • a roller 18 is attached to the rear of the fiber carriage 5, which rolls the chopped fibers into the layer of cementitious material and the purpose of moistening and wetting the fibers with the material.
  • the fibers are worked into the cement-containing material by the roller 18.
  • the roller 18 can be designed without projections or it can also be provided with a number of longitudinal ribs or annular ribs in order to improve the wetting of the fibers.
  • the desired random distribution of the fibers, which results from chopping, cutting and spraying, is not disturbed by the rolling.
  • the pre-cut fibers could also in other ways, for. B. be sprinkled by hand.
  • the needle roller 19 may be provided with a plurality of blunt or pointed needles 20, nails or projections which protrude radially from the axis of the roller 19 to press the fibers into the wet cementitious material without breaking or otherwise breaking the fibers violate.
  • the casting mold 4 is shown in detail in FIGS. 5-7 and is described in more detail below. Legs 21 of the casting mold 4 are fastened to crossbeams 23, which in turn are mounted on the feed beams 25 made of wood or another hard material.
  • the feed bars 25 carry a flat base plate 27, which can also expediently consist of wood.
  • the mold 4 has lateral rails 29 which consist of a fixed, first L-shaped rail part 30 and a vertically adjustable, second L-shaped rail part 31.
  • the L-shaped rail parts 30, 31 are connected to one another by means of bolts 26.
  • the bolts 26 engage in vertical slots in the L-shaped rail part 31, so that the height thereof can be adjusted.
  • a lining plate 28 is guided laterally through the first rail parts 30 and held by the lower ends of the second rail parts 31.
  • the first rail parts 30 are expediently fastened by means of bolts 32 which protrude into the base plate 27.
  • the feed beam 25 and the base plate 27 can be fastened by nails or screws 22, 24, as shown in FIG. 5.
  • the base layer 17 of the cement-containing material is filled into this frame and passes directly onto the lining plate 28.
  • the solid foam body 14 is placed on the base layer 17 and then covered by the wet, cement-containing material, so that the side walls 33 and the top layer 16 are formed.
  • the width of the casting mold 4 is determined by the length of the distance limiting members 35 which are inserted between the side rails 29.
  • the casting chambers corresponding to the frame for the individual components are formed by the distance limiting members 35 and the side rails 29.
  • Brackets 36 are provided for fastening the distance-limiting members and are mounted at the desired locations on the casting mold. 8
  • the brackets 36 consist of side walls 37, 38, which run parallel to the distance limiting members 35 and an intermediate wall 39, which extends between the side walls 37, 38.
  • the wall sections 40, 41 form, together with the intermediate wall 39, a channel for receiving the distance-limiting member 35.
  • the wall sections 42, 43 project perpendicularly from the intermediate wall 39 and touch the side rails 29 of the casting mold.
  • the bracket 36 continues with a first tongue 44 which extends outward from the ends of the wall sections 42, 43 and is intended to fix the holder 36 in its intended position relative to the side rails 29. As shown in FIG. 9, a part of the first tongue 44 is arranged below the L-shaped rail file 31, namely between the latter and the liner plate 28. In this way, the holder 36 is immovably fixed during the manufacturing process.
  • a second tongue 45 also serves to position the distance limiting member 35 and to fix the holder 36 immovably.
  • the distance limiting member 35 consists of a cross bar 46 and a dividing bar 47.
  • the cross bar 46 is inserted into the channel formed by the two holders 36.
  • the height of the cross bar 46 corresponds to the height of the base layer 17 to be cast.
  • the latter is continuously cast on the lining plate 28 between the side rails 29 and the cross bars 46 over the entire length of the casting mold.
  • the base layer 17 is then leveled by means of the distributing and stripping device 7, at the same level as the upper part of the cross bar 46 (FIG. 11).
  • the fiber reinforcement which consists of fibers of a certain length, is then applied to the base layer 17, the application advantageously being carried out in several passes of the fiber carriage 5.
  • the fibers are then worked into the surface of the base layer 17.
  • the application of the fibers could also be done in other ways, e.g. B. be carried out by manual sprinkling.
  • 1-2 percent by weight of a fiber reinforcement is added to the cementitious material before it is poured into the casting mold. This can be done in the mixing machine 1 by adding pre-cut fibers in lengths of 0.5-5 cm, advantageously about 1.2 cm, to the wet, cement-containing material and mixing for about 5 to 5 minutes before the pouring process.
  • the use of 1-2% by weight of fibers and the short mixing time guarantee that the fibers are distributed evenly and that there is no tangling.
  • the subdivision rods 47 are placed between the brackets 36 on the transverse strips 46. Then the foam body 14 is placed on the base layer 17 while it is still wet. The upper surfaces of the dividing bars 47 are higher than the foam body 14, so that after the introduction of further wet, cement-containing material and pre-cut fibers, a uniform layer of the wet, cement-containing material envelops the foam body 14.
  • This additional material comprises the cover layer 16, the height of which now corresponds to the height of the dividing bars 47, as shown in FIG. 12.
  • the base area of the foam body 14 is smaller than the base area of the base layer section, which is delimited by the chamber edges. In this way, a recess is kept free between the foam body 14 and the side rails 29 and between the foam body 14 and the distance-limiting members 35.
  • the side walls 33 of the shell 34 of the foam body 14 can then be cast together and envelop each foam body 14 with a moist, fiber-reinforced, cement-containing shell 34.
  • the glass fiber-reinforced, cement-containing material which envelops each foam body 14, has a matrix of randomly connected fibers, which are put under tension when the cement-containing material sets and shrinks. After curing, the components are removed from the mold 4 by machine or by hand.
  • the foam body 14 may be expedient to additionally reinforce the foam body 14 with a tissue-shaped fiber material before pouring.
  • the additional reinforcement is advantageously inserted at least in the area of the corners and edges of the base layer 17, the above reinforcing material extending upwards along the side rails 29 and projecting over these side rails. This material is folded either before, during or after the filling of the lateral spacings 15 upwards into the cover layer 16, this folding in turn being able to take place before, during or after the creation of the cover layer 16.
  • the base layer 17 with the additional fiber reinforcement can, if desired, be cured to obtain a fiber-reinforced panel made of cementitious material.
  • a fiber-reinforced panel made of cementitious material.
  • Such panels can be used in various ways, e.g. B. wall lining, as molded parts, as tunnel lining, for furniture, for air ducts, for waste ducts, for pipes and for smaller buildings and storage boilers.
  • the panels can be made of gray, white or brown »Portl.and « cement or other special cements and can be made with provilated and structured surfaces.
  • the cements mentioned are also used to produce the components according to the invention.
  • the fiber material is advantageously produced in strips and cut in lengths of 0.4-7.5 cm, mainly 2.5-5 cm.
  • Alkali-resistant fibers are expediently used, which are sold under the brand name “CEM-FIL” and in US Pat. No. 3,901,720 are described.
  • the fiber content is usually about 5 ⁇ 0.5 percent by weight, the interlocking fibers being randomly distributed.
  • the fibers can be connected to one another mechanically, physically or by cohesion. The connections are strengthened when the cementitious material hardens and shrinks around the foam body 14, the fibers being placed under tension.
  • the total proportion of fibers can be kept lower with the same strength than if the fibers are only added by spraying. If the sprayed fibers are additionally worked in with the needle roller 19, the strength of the hardened layer is greater than with a conventional plate with a total of 5% fiber material. For example, to produce a fiber-reinforced plate, 1.5 percent by weight of approximately 1.3 cm long pieces of fiber were mixed in before casting, and 2 percent by weight of approximately 5 cm long chopped fibers were sprayed on and incorporated with the needle roller 19. The total proportion of fibers is only 3.5 percent by weight. The strength of such a fiber-reinforced plate is greater than that of a plate with 5% chopped and sprayed fibers, the length of which is somewhat less than 5 cm and which is not treated with the needle roller 19.
  • Fiber materials other than those already mentioned can also be used for the method.
  • glass fibers which are known per se and which can be encased in a polyester cover to increase the resistance to alkali.
  • Other fiber materials are alkali-resistant glass fibers, aramid fibers, nylon fibers and polyester fibers, whereby natural and synthetic, inorganic and organic fibers (e.g. graphite fibers) can be mixed together.
  • the additional fiber reinforcement (fabric) to reinforce the foam body can be an aramid fiber, e.g. B. »Kavlar « from DuPont, which improves the connection between the shell and the foam body.
  • the additional fiber reinforcement can be arranged directly below the surface of the shell, so that it is well embedded in the fiber-reinforced, cement-containing material in order to achieve the greatest possible reinforcement.
  • the mixed fibers and the additional fiber reinforcement must be completely wetted by the cement-containing material.
  • additional fiber reinforcement which are used in particular in components with multi-part foam cores. It is therefore possible to use nonwovens, fabrics and mats as additional reinforcement.
  • the additional fiber reinforcement can be coarse or fine, it being essential that the structure has enough openings so that the cementitious material can penetrate and wet the additional reinforcement.
  • Additional reinforcements are normally used which have a lattice-like structure, the openings of which can have dimensions of 0.3-5 cm, in particular 0.6-1.25 cm.
  • the type and structure of the additional reinforcement also depends on the intended use of the components.
  • the foam body can either be completely encased by this additional reinforcing material, or only the most important surfaces can be covered, e.g. B. the front and rear of the panel, which in certain applications brings with it sufficient strength.
  • the wettability of the additional reinforcement can be increased by using a diluted latex solution. The latter can also be incorporated into the cementitious material, e.g. B. with rollers or needle rollers.
  • the foam body itself can consist of inorganic or organic foam materials.
  • Solid urethane polymer foams are preferred because they are well known and used for a variety of insulation purposes.
  • Such urethane polymer foams are made by combining the reagents (e.g., a polyol and an isocyanate), e.g. B. by means of compressed airless spraying or liquid application. Foam formation begins almost immediately and is completed in a short time, depending on the composition of the urethane polymer used.
  • the tightness of solid urethane polymer foams also depends on the composition and is generally about 24 kg per m 3 to 160 kg / m 3, but mainly 32-80 kg per m 3 .
  • Wide useful solid foam materials include polyester foams, phenolic resin foams, isocyanurate foams, and sulfur-based foams, which are sold under the brand name "SUFOAM” by Chevron Chemical Company.
  • the cementitious material is hardened, either under ambient conditions, temperatures or in a steam container.
  • the wet, cementitious material can be heated to accelerate the spraying process, for example by adding water at temperatures of 50 ° -95 ° C.
  • the component can be removed mechanically from the casting mold using loops or by hand.
  • FIG. 13 a component is shown in FIG. 13 which has four foam cores 48-51 arranged side by side, which are encased by a single shell 34. These foam cores can be placed next to each other and z. B. tied together by means of a ribbon. Clearances can also be left between the individual foam cores, which are filled with a fiber-reinforced, cementitious material and thus form a reinforcing rib 52.
  • a building material element has a very high strength, and can be produced in lengths of, for example, 6 m, without an additional fabric-shaped fiber reinforcement being necessary.
  • an additional reinforcement of the components of the components can be achieved in such a way that metallic reinforcement structures 53 are used which envelop one or more of the foam bodies 54.
  • Such reinforcement structures 53 are commercially available under the brand name "DUROWALL" and are used for the reinforcement of concrete.
  • a further reinforcement possibility according to FIG. 15 is that 55 dovetail grooves 56 are left out in the foam body.
  • cementitious material is filled into the lower dovetail grooves before the foam body 55 is placed on the base layer 17.
  • the side and top grooves can also be pre-filled, but they can also be filled when the top layer is applied.
  • dovetail grooves grooves with a different shape could also be used.
  • the dovetail-shaped ribs formed during curing represent a considerable stiffening of the shell of the component.
  • the foam bodies 55 having grooves can also be arranged next to one another, as shown in FIG. 13.
  • each foam body 70 is formed in the form of a hollow container and consists of the tube section 73 which is closed off by two end walls 74, the end walls being fastened to the tube section 73 by adhesive or by liquid foam.
  • the tubular section 73 with a rectangular cross section can either be shaped tubular or it can also be composed of individual flat plates.
  • Each foam body 70 has channel-forming means in the walls or at the corners 75-78, possibly also at the corners 79.
  • the channel-forming means at these corners consist of a sawing with an inclined cross section, as can be seen in FIG. 16. In Fig. 18 the channel-forming means are stepped, while in Fig. 19 they have a curved cross section.
  • the channels formed by the channel-forming means are expediently arranged on the edges of the foam bodies 70, because at these points the depth of the channels can be greater than if they were arranged in the middle of the foam bodies. In the latter fur, their depth could be at most 1 ⁇ 2-3 ⁇ 4 of the wall thickness, otherwise the foam body would be weakened too much. In contrast, the depth of the channel at the edges can be greater than the wall thickness of the foam body. This can be seen in FIG. 16. Other channel shapes would also be possible, other than those shown in FIGS. 16, 18 and 19.
  • Means are also provided to align the adjacent foam elements with one another.
  • these means may consist of a projection 83 and a corresponding thereto, diametrically opposed formed recess 84 consist, in the gege nüberl i e - constricting sides of the foam body 70 are arranged.
  • the projection 83 and the recess 84 advantageously extend over the entire length of the foam bodies 70, wherein the projection of the one Schaumstoffk ö r p ers fed protrudes into the recess of the adjacent thereto foam body so as to align the foam body in their mutual position.
  • the projection 83 and the recess 84 have strength in the embodiment of F. 1 6 a rectangular cross section.
  • the projection 85 is curved outwards, while the recess 86 is indented inwards.
  • the reinforcement rib is formed by the recess 84 or 86 when filling it with cement-containing material.
  • bands 87 can be used as shown in F ig. 21 is shown.
  • the tapes 87 can be used in conjunction with the reinforcement fabric wrap 71, or without the latter.
  • six hollow foam bodies 88 are the same Dimensions arranged side by side and a foam body 89 of different dimensions added to the ends.
  • channels 81 are present at the corners or edges, which form reinforcing ribs when filled with cement-containing material.
  • the components can be designed in the shape of a ship's hull. This form of training is used in particular for wall panels that are to achieve a special aesthetic effect.
  • the larger foam bodies 88 have a length of approximately 255 cm, a width of approximately 120 cm and a thickness of approximately 50 cm, the thickness of the foam walls being approximately 3.8 cm.
  • the shell 72 has a different thickness, approximately 2.8 cm at the ends, approximately 7.5 cm at the sides and approximately 2.8 cm at the top and bottom.
  • the supporting part 90 consists of a plurality of arms 91 which are embedded in the shell 72 and of an internally threaded section 92 which is arranged flush with the outer surface of the shell 72.
  • FIGS. 27 and 28 A further embodiment of a supporting part 93, which is inserted in the side wall of the component, can be seen from FIGS. 27 and 28.
  • This support part also serves for handling when moving and assembling the components.
  • the support part 93 consists of the bolts 94, the lower part of which is anchored in the shell 72, and the outer part of which protrudes into a main spherical recess 95, which is recessed in the shell 72.
  • FIGS. 29 and 30 show how the corners of the foam bodies 89 are provided with the additional fabric reinforcement 71 in order to increase the strength of the foam bodies.
  • the components of the present invention can be used in the same way as commercially available, prefabricated building boards. But they are much lighter in weight, so that the assembly does not cause any problems. As a result of the extraordinarily good insulation properties and the existing watertightness, no further precautions are necessary to maintain these properties, as is the case with conventional building boards.
  • a rubber-like connector that dries at room temperature e.g. B.
  • a silicone elastomer can be used to connect adjacent components.
  • the installed ceiling or wall could be covered with a suitable rubber-like coating to increase the impact resistance. This coating also counteracts the formation of cracks in later subsidence.
  • the edges of the components could be provided with grooves for receiving a flexible sealing material, e.g. B. polyethylene to ensure the air and water tightness of the joints between adjacent components.
  • the fiber material used for the reinforcement of the components consists of glass fibers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Devices For Checking Fares Or Tickets At Control Points (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Floor Finish (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von Bauelementen mit mindestens einem vorgefertigten, isolierenden Schaumstoffkörper, der von einer Schale aus faserarmiertem, zementhaltigem Material umhüllt ist, wobei in eine Gießform eine Grundschicht aus nassem, zementhaltigem Material eingebracht wird, dann der eine kleinere Grundfläche als die Innengrundfläche der Gießform aufweisende Schaumstoffkörper unter Einhaltung eines Abstands von den Formwänden auf die Grundschicht aufgelegt wird, anschließend zur Bildung der Seitenwände und der Deckschicht des Schaumstoffkörpers weiteres nasses, zementhaltiges Material in die Gießform eingebracht wird und das Herausnehmen des Bauelements aus der Gießform nach dem Erhärten des zementhaltigen Materials erfolgt.
  • Die Erfindung betrifft weiter eine Vorrichtung zur Ausführung des Verfahrens. Schließlich betrifft die Erfindung auch ein nach dem Verfahren hergestelltes Bauelement, welches mindestens zwei nebeneinander angeordnete, von einer gemeinsamen Schale umhüllte Schaumstoffkörper aufweist.
  • Die Rationalisierung im Bauwesen hat dazu geführt, daß immer mehr vorfabrizierte Bauelemente, wie Wandteile, Deckenplatten usw. verwendet werden. Bekannte Wandkonstruktionen dieser Art bestehen beispielsweise aus einem Stahlskelett, an welchem die vorfabrizierten Wandteile befestigt werden.
  • Diese bekannten Wandteile sind sehr schwer. So kann das Gewicht einer Wandplatte aus armiertem Beton mit den Abmessungen 1,2 x 1,2 m etwa 635 bis 725 kg betragen. Die Montage dieser Platten erfordert spezielle Hebevorrichtungen. Die Platten haben sehr schlechte Isoliereigenschaften und einen geringen Feuchtigkeitsdämmwert. Um hier Abhilfe zu schaffen, müssen zusätzliche Maßnahmen für die Isolierung und Abdichtung der Wandkonstruktionen vorgesehen werden.
  • Diese Nachteile werden vermieden durch die Verwendung von Bauelementen mit einem oder mehreren Schaumstoffkernen, die von einer Schale aus einem faserarmierten, zementhaltigen Material umhüllt sind. Solche Bauelemente gleichen äußerlich konventionellen, einstückig aus Beton liergestellten Bauelementen; sie sind aber im Vergleich zu den letzteren wesentlich leichter im Gewicht und weisen auch bessere lsoliereigenschaften auf.
  • Ein derartiges Bauelement und ein Verfahren der eingangs genannten Art sind in der FR-A-2.294.291 beschrieben. Der geschäumte Kern ist von einer Schale aus glasfaserarmiertem Zement umgeben, dessen Faseranteil 1-40 Volumenprozente betragen kann. Die Herstellung dieses Bauelementes erfolgt in einei Einzelform. Dieses Verfahren ist arbeitsaufwendig und nicht wirtschaftlich.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art und eine Vorrichtung zu schaffen, um solche Bauelemente auf wirtschaftliche und ratione!le Weise herzustellen.
  • Das Verfahren, welches diese Aufgabe löst, ist dadurch gekennzeichnet, daß die längliche Gießform vor dem Einbringen der Grundschicht mittels Querleisten in einzelne Abschnitte unterteilt und das zementhaltige Material kontinuierlich über die Länge der Gießform bis auf die Höhe der Querleisten eingebracht wird, daß Fasern auf die Grundschicht aufgebracht und mechanisch in sie eingearbeitet werden, daß zur Bildung von die Schaumstoffkörper aufnehmenden Kammern Unterteilungsstäbe mit einer die Höhe der Schaumstoffkörper übertreffenden Höhe auf die Querleisten gelegt werden und daß nach dem Einbringen des zementhaltigen Materials für die Seitenwände und die Deckschicht auf die Deckschicht Fasern aufgebracht und mochanisch in sie eingearbeitet werden.
  • Insbesondere das Unterteilen der Gießform mittels zweiteiliger Trennelemente und die Art und Weise der Fasereinbringung erlauben eine rationelle Fertigung.
  • Die erfindungsgemäße Vorrichtung zeichnet sich dadurch aus, daß die Mittel zur Unterteilung der mit seitlichen Schienen versehenen, länglichen Gießform Querleisten mit einer der Höhe der Grundschicht entsprechenden Höhe sowie auf diese aufsetzbare Unterteilungsstäbe mit einer die Höhe der Schaumstoffkörper um das der Dicke der Deckschicht entsprechende Maß übertreffenden Höhe umfassen, und daß am Faserwagen weitere Mittel zum Zerhacken und Aufsprühen der Fasern und Mittel zum Einarbeiten der Fasern in die Grund- bzw. Deckschicht vorgesehen sind.
  • Bei einem Bauelement, welches nach dem Verfahren hergestellt ist und zwei Schaumstoffkörper umfaßt, ist die hohle Ausgestaltung der Schaumstoffkörper vorteilhaft.
  • Nachstehend werden anhand der Zeichnungen Ausführungsbeispiele der Erfindung erläutert. Es zeigt
    • Fig. 1 eine Draufsicht auf eine Vorrichtung zur Herstellung von isolierenden Bauelementen mit von einer Schale umhüllten Schaumstoffkernen,
    • Fig. 2 eine Seitenansicht auf die Vorrichtung gemäß Fig. 1,
    • Fig. 3 eine Draufsicht auf das Abstreifgerät zum Verteilen und Abstreifen des zementhaltigen Materials in der Gießform,
    • Fig. 4 eine Draufsicht auf das Abstreifgerät beim Einsatz oberhalb der Gießform,
    • Fig. 5 einen Längsschnitt durch eine Gießform,
    • Fig. 6 einen Querschnitt durch die Gießform gemäß Fig. 5,
    • Fig. 7 eine perspektivische Ansicht auf die Gießform gemäß Fig. 5,
    • Fig. 8 eine perspektivische Ansicht einer Halterung für die Unterteilung der Gießform,
    • Fig. 9 eine Draufsicht auf die auf der Gießform befestigte Halterung gemäß Fig. 8,
    • Fig. 10 eine perspektivische Ansicht auf einen Teil der Gießform nach dem Einsetzen einer Querleiste für die Unterteilung,
    • Fig. 11 einen Ausschnitt aus der Gießform nach dem Einbringen der Grundschicht,
    • Fig. 12 einen Ausschnitt aus der Gießform nach dem Einsetzen der Schaumstoffkerne und dem Einbringen der Deckschicht,
    • Fig. 13 eine perspektivische Ansicht einer ersten Ausführungsform eines Bauelementes, teilweise geschnitten,
    • Fig. 14 eine zweite Ausführungsform eines Bauelementes, teilweise aufgeschnitten,
    • Fig. 15 einen Querschnitt durch eine dritte Ausführungsform eines Bauelementes,
    • Fig. 16 eine perspektivische Ansicht, teilweise geschnitten, durch eine weitere Ausführungsform eines Bauelementes mit mehreren, aneinander anliegenden Schaumstoffkernen,
    • Fig. 17 eine Draufsicht auf die Schaumstoffkerne gemäß Fig. 16 bei entfernter Deckschicht,
    • Fig. 18 und 19 zwei Detailausschnitte aus der Fig.16, wobei die zwischen benachbarten Schaumstoffkernen angeordneten Kanäle gezeigt sind,
    • Fig. 20 eine Ausführungsform der Stirnwand der Schaumstoffkerne gemäß Fig. 1,
    • Fig. 21 eine perspektivische Ansicht zweier von einem Armierungsgewebe umhüllter Schaumstoffkerne,
    • Fig. 22 eine Draufsicht auf eine weitere Ausführungsform eines Bauelementes,
    • Fig. 23 einen Schnitt nach der Linie 23-23 gemäß Fig. 22,
    • Fig. 24 einen Schnitt nach der Linie 24-24 gemäß Fig. 22,
    • Fig. 25 den Kreisausschnitt A gemäß Fig. 22,
    • Fig. 26 einen Schnitt nach der Linie 26-26 gemäß Fig. 25,
    • Fig. 27 den Kreisausschnitt B gemäß Fig. 22,
    • Fig. 28 einen Schnitt nach der Linie 28-28 gemäß Fig. 27,
    • Fig. 29 den Kreisausschnitt C gemäß Fig. 22,
    • Fig. 30 den Kreisausschnitt D gemäß Fig. 22.
  • In den Figuren 1 und 2 ist die Vorrichtung zur Herstellung von Bauelementen dargestellt. Die Vorrichtung umfaßt eine Mischmaschine 1, in welche die verschiedenen Komponenten für das zementhaltige Material eingefüllt und gemischt werden. Ein Materialwagen 2 ist fahrbar auf einer horizontalen Schienenanordnung 3 angeordnet, welche mit einer Gießform 4 verbunden ist. Der Materiatwagen 2 kann unter die Mischmaschine 1 gefahren werden zur Aufrahme des zementhaltigen Materials. Sodann läßt er sich über die Gießform fahren, damit das zerlenthaltige Material in die Gießform 4 eingebracht werden kann.
  • Die Vorrichtung umfaßt weiter einen Faserwagen 5, weicher ebenfalls auf der Schienenanordnung 3 fahrbar ist. Mittels des Faserwagens 5 werden zerhackte oder geschnittene Fasern auf das nasse, zementhaltige Material in der Gießform 4 deponiert, um das zementhaltige Material zu armieren. Ferner sind Behälter 6 neben der Mischmaschine 1 vorgesehen, um Abfallmaterial vom Materialwagan 2 aufzufangen.
  • In der Mischmaschine 1 gemäß Fig. 1 können die Ausgangskomponenten für das zementhaltige Material zwischengelagert und automatisch in der vorgesehenen Menge einem Mischer zugeführt werden. Die Rohmaterialien werden über nöcht näher dargestellte Zuführöffnungen in die Maschine eingefüllt und gelangen in entsprechende Kammern. Die gewünschten Mengen der verschiedenen Rohmaterialien gelangen dann von den Speicherkammern in einen Zwischenbehälter, von diesem in den Mischer und werden schließlich direkt von letzterem in den Materialwagen 2 eingefüllt.
  • Das zementhaltige Material besteht aus einem Zementanieil, dem die üblichen Zusatzstoffe wie Sand und Bimsstein beigegeben werden. Ferner können auch bekannte Additive wie Kalk und Stearate für die Wasserundurchlässigkeit, gummiartige Zusätze für die Verstärkung und die Benetzungseigenschaften hinsichtlich der Faserarmierung sowie wasserbindende Zusätze wie »Pozzolith« für das rasche Abbinden beigegeben werden. Auch ist es möglich, bekannte Farbstoffe für die Färbung zu verwenden. Ein unter dem Markennamen »Sument« der Chevron Chemical Company bekar ntes zementhaltiges Material auf Schwefelbasis hat sich als sehr zweckmäßig erwiesen. Dieses Material auf Schwefelbasis kann zusätzlich mit Sand und anderen Füllmaterialien in an sich bekannter Weise verarbeitet werden.
  • Die Schienenanordnung 3 gemäß Fig. 1 umfaßt sowohl Längs- wie auch Querschienen, die beispielsweise aus V-förmigen Schienenteilen aus Gußeisen oder Stahl bestehen können. Die Querschienenteile dienen dazu, den Materialwagen 2 oder den Faserwagen 5 zwischen den beiden parallelen Gießformen 4 hin- und herzubewegen.
  • Der Materialwagen 2 wird, wie erwähnt, aus der Mischmaschine 1 mit dem zementhaltigen Material aufgefüllt. Der Materialwagen umfaßt zweckmäßigerweise einen inneren Behälter mit Auslaufstutzen aus dem das zementhaltige Material in die Gießformen 4 eingefüllt werden kann. Um eine gleichmäßige Verteilung des zementhaltigen Materials zu gewährleisten, wird ein Verteil- und Abstreifgerät 7 verwendet.
  • Das Verteil- und Abstreifgerät 7 ist hinter dem Materialwagen 2 (In Fahrrichtung gesehen) montiert und weist zwei V-förmige Endteile 8 auf und einen Mittelteil 9, welcher senkrecht zur Fahrtrichtung (mit Pfeil markiert) angeordnet ist (Fig. 3 und 4). Die V--förmigen Endteile 8 sind mittels Schrauben, Schlitzen und Bolzen 10 verstellbar mit dem Mittelteil 9 verbunden. Die Breite des Verteil- und Abstreifgerätes 7 kann auf diese Weise verstellt werden, damit das Gerät für Gießformen verschiedener Breiten verwendet werden kann und die richtige Füllung, Verteilung und Nivellierung des zementhaltigen Materials gewährleistet ist.
  • Um eine gleichmäßige Verteilung des zementhaltigen Materials in jeder Schicht zu erhalten, sind Vibratoren 11-13 am Verteil- und Abstreifgerät 7 angeordnet, deren Stromversorgung vom Materialwagen 2 her erfolgt. In Fig. 4 ist gezeigt, wie das zementhaltige Material durch das Verteil- und Abstreifgerät 7 auch zu den Längsseiten der Schaumstoffkörper 14 bewegt wird, um die Seitenabstände 15 aufzufüllen und die Deckschicht 16 zu bilden. Die Deckschicht 16, die Seitenwände 33 und die Grundschicht 17 umhüllen den Schaumstoffkörper 14 vollständig und bilden nach dem Aushärten eine Schale 34.
  • Der Faserwagen 5 ist in nicht näner dargestellter Weise mit Spritzdüsen versehen um das gleichmäßige, kontrollierte Aufsprühen der zerhackten bzw. zerschnittenen Fasern auf das zementhaltige Material zu gewährleisten. Der Faserwagen 5 weist ferner einen Schneide- oder Hackmechanismus auf, um das auf Rollen sich befindliche Fasermaterial zu zerhacken und zu zerschneiden.
  • Hinten am Faserwagen 5 ist eine Walze 18 befestigt, die die zerhackten Fasern in die Schicht aus zementhaltigem Material einrollt und die Befeuchtung und Benetzung der Fasern mit dem Material bezweckt. Durch die Walze 18 werden die Fasern in das zementhaltige Material eingearbeitet. Um eine gute Durchmischung der Fasern mit dem zementhaltigen Material zu erreichen, ist es zweckmäßig, hinter der Walze 18 eine Nadelrolle 19 vorzusehen, die die Fasern in das zementhaltige Material hineindrückt. Es konnte festgestellt werden, daß durch Verwendung einer solchen Nadelrolle 19 die Bruchfestigkeit einer ausgehärteten Schicht des faserarmierten, zementhaltigen Materials etwa dreimal höher war als bei einer entsprechenden Schicht, bei welcher die Fasern nur eingerollt oder einvibriert wurden.
  • Die Walze 18 kann ohne Vorsprünge ausgebildet sein oder sie kann auch mit einer Anzahl Längsrippen oder ringförmiger Rippen versehen sein, um die Benetzung der Fasern zu verbessern. Die gewollte regellose Verteilung der Fasern, die durch das Zerhacken, Zerschneiden und Aufsprühen entsteht, wird durch das Rollen nicht gestört. Statt mit dem Faserwagen 5, könnten die vorgeschnittenen Fasern auch auf andere Weise, z. B. von Hand, aufgestreut werden.
  • Die Nadelrolle 19 kann mit einer Mehrzahl von stumpfen oder spitzen Nadeln 20, Nägel oder Vorsprünge versehen sein, die radial von der Achse der Rolle 19 abstehen, um die Fasern in das nasse, zementhaltige Material einzudrücken, ohne dabei die Fasern zu brechen oder sonstwie zu verletzen.
  • Die Gießform 4 ist im Detail in den Figuren 5-7 dargestellt und wird nachfolgend näher beschrieben. Beine 21 der Gießform 4 sind an Querbalken 23 befestigt, die ihrerseits an den Futterbalken 25 aus Holz oder einem andern harten Material montiert sind. Die Futterbalken 25 tragen eine ebene Grundplatte 27, die ebenfalls zweckmäßigerweise aus Holz bestehen kann. Sodann weist die Gießform 4 seitliche Schienen 29 auf, die aus einem festmontierten, ersten L-förmigen Schienenteil 30 und einem vertikal verstellbaren, zweiten L-förmigen Schienenteil 31 bestehen. Die L-förmigen Schienenteile 30, 31 sind mittels Bolzen 26 miteinander verbunden. Die Bolzen 26 greifen in vertikale Schlitze des L-förmigen Schienenteiles 31 hinein, so daß dieser in der Höhe verstellbar ist. Eine Futterplatte 28 ist seitlich durch die ersten Schienenteile 30 geführt und von den unteren Enden der zweiten Schienenteile 31 gehalten.
  • Die ersten Schienenteile 30 sind zweckmäßigerweise mittels Bolzen 32 befestigt, die in die Grundplatte 27 hineinragen. Die Futterbalken 25 und die Grundplatte 27 können durch Nägel oder Schrauben 22, 24 befestigt sein, wie in Fig. 5 gezeigt ist.
  • Die Schienenteile 31 bilden zusammen mit der Futterplatte 28 und den noch zu beschreibenden Unterteilungsstäben 47 eine Anzahl Rahmen, durch welche die Größe der herzustellenden Bauelemente gegeben ist. Die Grundschicht 17 des zementhaltigen Materials wird in diese Rahmen eingefüllt und gelangt direkt auf die Futterplatte 28. Sodann wird der feste Schaumstoffkörper 14 auf die Grundschicht 17 aufgelegt und anschließend vom nassen, zementhaltigen Material umhüllt, sodaß die Seitenwände 33 und die Deckschicht 16 entstehen.
  • Die Breite der Gießform 4 ist durch die Länge der Abstandsbegrenzungsorgane 35 bestimmt, die zwischen den Seitenschienen 29 eingesetzt sind. Durch die Abstandsbegrenzungsorgane 35 und die Seitenschienen 29 werden die dem Rahmen entsprechenden Gießkammern für die einzelnen Bauelemente gebildet. Zur Befestigung der Abstandsbegrenzungsorgane sind Halterungen 36 vorgesehen, welche an den gewünschten Stellen der Gießform montiert werden. Gemäß Fig. 8 bestehen die Halterungen 36 aus Seitenwänden 37, 38, welche parallel zu den Abstandsbegrenzungsorganen 35 verlaufen und einer Zwischenwand 39, die sich zwischen den Seitenwänden 37, 38 erstreckt. Die Wandabschnitte 40, 41 bilden zusammen mit der Zwischenwand 39 einen Kanal zur Aufnahme des Abstandsbegrenzungsorgans 35. Die Wandabschnitte 42, 43 stehen senkrecht von der Zwischenwand 39 ab und berühren die Seitenschienen 29 der Gießform. Die Halterung 36 ist weiter mit einer ersten Zunge 44 versehen, welche sich von den Enden der Wandabschnitte 42, 43 nach außen erstreckt und dazu bestimmt ist, die Halterung 36 in ihrer vorgesehenen Lage relativ zu den Seitenschienen 29 zu fixieren. Wie in der Fig. 9 dargestellt ist, ist ein Teil der ersten Zunge 44 unterhalb des L-förmigen Schienenfeiles 31 angeordnet, und zwar zwischen dem letzteren und der Futterplatte 28. Auf diese Weise ist die Halterung 36 während des Herstellungsprozesses unverrückbar fest positioniert. Eine zweite Zunge 45 dient ebenfalls dazu, das Abstandsbegrenzungsorgan 35 zu positionieren und die Halterung 36 unverschiebbar festzustellen. Das Abstandsbegrenzungsorgan 35 besteht aus einer Querleiste 46 und einem Unterteilungsstab 47.
  • Nachdem zwei einander zugeordnete Halterungen 36 in der Gießform eingesetzt sind, wie in Fig. 9 gezeigt ist, wird die Querleiste 46 in den durch die beiden Halterungen 36 gebildeten Kanal eingesetzt. Dabei entspricht die Höhe der Querleiste 46 der Höhe der zu gießenden Grundschicht 17. Letztere wird kontinuierlich auf der Futterplatte 28 zwischen den Seitenschienen 29 und den Querleisten 46 gegossen, über die ganze Länge der Gießform. Sodann wird die Grundschicht 17 mittels des Verteil-und Abstreifgerätes 7 nivelliert, auf dem gleichen Niveau wie der Oberteil der Querleiste 46 (Fig. 11).
  • Anschließend wird die Faserarmierung, die aus Fasern bestimmter Länge besteht, auf die Grundschicht 17 aufgebracht, wobei das Aufbringen zweckmäßigerweise in mehreren Durchgängen des Faserwagens 5 erfolgt. Die Fasern werden sodann in die Oberfläche der Grundschicht 17 eingearbeitet. Das Aufbringen der Fasern könnte auch auf andere Weise, z. B. durch manuelles Aufstreuen durchgeführt werden. Zweckmäßigerweise wird dem zementraltigen Material vor dem Eingießen in die Gießform 1-2 Gewichtsprozent einer Faserarmierung zugemischt. Dies kann in der Mischmaschine 1 erfolgen, indem vorgeschnittene Fasern in Längen von 0,5-5 cm, vorteilhafterweise etwa 1,2 cm, dem nassen, zementhaltigen Material zugegeben und während etwa 5 5 Min. vor dem Gießvorgang gemischt werden. Die Verwendung von 1-2 Gewichtsprozent Fasern und die kurze Mischzeit sind eine Gewähr dafür, daß die Verteilung der Fasern gleichmäßig erfolgt, und daß keine Knäuelbildung auftritt.
  • Nach dem Ausnivellieren der Grundschicht 17 werden die Unterteilungsstäbe 47 zwischen die Halterungen 36 auf die Querleisten 46 aufgelegt. Sodann werden die Schaumstoffkörper 14 auf die Grundschicht 17 gelegt, während diese immer noch feucht ist. Die oberen Flächen der Unterteilungsstäbe 47 sind höher als die Schaumstoffkörper 14, sodaß nach Einbringen von weiterem nassen, zementhaltigen Material und von vorgeschnittenen Fasern eine gleichmäßige Schicht des nassen, zementhaltigen Materials den Schaumstoffkörper 14 umhüllt. Dieses zusätzliche Material umfaßt die Deckschicht 16, deren Höhe nun der Höhe der Unterteilungsstäbe 47 entspricht, wie in Fig. 12 gezeigt ist.
  • Es ist zu beachten, daß die Grundfläche des Schaumstoffkörpers 14 kleiner ist als die Grundfläche des Grundschichtabschnittes, der durch die Kammerränder begrenzt ist. Auf diese Weise wird zwischen dem Schaumstoffkörper 14 und den Seitenschienen 29 sowie zwischen dem Schaumstoffkörper 14 und den Abstandsbegrenzungsorganen 35 eine Aussparung freigehalten. Die Seitenwände 33 der Schale 34 des Schaumkörpers 14 können dann gemeinsam gegossen werden und umhüllen jeden Schaumstoffkörper 14 mit einer feuchten, faserarmierten, zementhaltigen Schale 34.
  • Es ist möglich, zusätzlich Abstandbegrenzungselemente zwischen dem Schaumstoffkörper 14 und dem Abstandbegrenzungsorgan 35 sowie zwischen dem Schaumstoffkörper 14 und den Seitenschienen 29 einzusetzen, so daß die Dicke der Seitenwände 33 der Schale 34 gleichmäßig ist und während des Herstellprozesses nicht verändert wird.
  • Das glasfaserarmierte, zementhaltige Material, welches jeden Schaumstoffkörper 14 umhüllt, hat eine Matrix von regellos miteinander verbundenen Fasern, welche beim Abbinden und Schrumpfen des zementhaltigen Materials unter Spannung gesetzt werden. Nach dem Aushärten werden die Bauelemente maschinell oder von Hand aus der Gießform 4 entfernt.
  • Bei weiteren Ausführungsformen kann es zweckmäßig sein, die Schaumstoffkörper 14 vor dem Eingießen zusätzlich mit einem gewebeförmigen Fasermaterial zu armieren. Vorteilhafterweise wird die Zusatzarmierung mindestens im Bereich der Ecken und Kanten der Grundschicht 17 eingelegt, wobei vorstehendes Armierungsmaterial sich entlang der Seitenschienen 29 nach oben erstreckt und über diese Seitenschienen vorsteht. Dieses Material wird entweder vor, während oder nach der Ausfüllung der seitlichen Abstände 15 nach oben in die Deckschicht 16 gefaltet, wobei diese Einfaltung wiederum vor, während oder nach der Erstellung der Deckschicht 16 erfolgen kann.
  • Die Grundschicht 17 mit der zusätzlichen Faserarmierung kann, falls gewünscht, ausgehärtet werden, um ein faserverstärktes Paneel aus zementhaltigem Material zu erhalten. Solche Paneele können auf verschiedene Weise verwendet werden, z. B. Wandauskleidung, als Formteile, als Tunnelauskleidung, für Möbel, für Luftschächte, für Abfallschächte, für Röhren sowie für kleinere Gebäude und Lagerkessel. Die Paneele können aus grauem, weißem oder braunem »Portl.and« Zement oder anderen Spezialzementen hergestellt werden und können mit provilierten und strukturierten Oberflächen ausgeführt werden. Diese erwähnten Zemente werden auch verwendet zur Herstellung der erfindungsgemäßen Bauelemente.
  • Das Fasermaterial wird vorteilhafterweise in Bändern herstellt und in Längen von 0,4-7,5 cm, hauptsächlich 2,5-5 cm abgeschnitten. Zweckmäßigerweise werden Alkali resistente Fasern verwendet, die unter dem Markennamen »CEM-FIL« verkauft werden und im US-Patent 3901 720 beschrieben sind.
  • Bei bekannten Bauelementen beträgt der Faseranteil gewöhnlich etwa 5 ±0,5 Gewichtsprozent, wobei die ineinandergreifenden Fasern regellos verteilt sind. Die Verbindung der Fasern miteinander kann mechanisch, physikalisch oder durch Kohäsion gegeben sein. Die Verbindungen werden varstärkt, wenn das zementhaltige Material aushärtet und um die Schaumstoffkörper 14 schrumpft, wobei die Fasern unter Spannung versetzt werden.
  • Wenn dem zementhaitigen Material 1-2% zugeschnittene Fasern beigemischt werden, und später 1-3 Gewichtsprozent verhackte Fasern auf die Oberfläche aufgesprüht werden, kann der Gesamtanteil der Fasern bei gleicher Festigkeit geringer gehalten werden, als wenn die Fasern nur durch Aussprühen zugesetzt werden. Wenn die aufgesprühten Fasern zusätzlich mit der Nadelrolle 19 eingearbeitet werden, ist die Festigkeit der ausgehärteten Schicht größer als bei einer konventionellen Platte mit insgesamt 5% Fasermaterial. Beispielsweise wurden zur Herstellung einer faserarmierten Platte 1,5 Gewichtsprozent ca. 1,3 cm langer Faserstücke vor dem Gießen zugemischt, und 2 Gewichtsprozent ca. 5 cm langer gehackter Fasern aufgesprüht und mit der Nadelrolle 19 eingearbeitet. Der Totalanteil an Fasern beträgt nur 3,5 Gewichtsprozent. Die Festigkeit einer solchen faserarmierten Platte ist größer als diejenige einer Platte mit 5% gehackter und aufgesprühter Fasern, deren Länge etwas kleiner ist als 5 cm und die nicht mit der Nadelrolle 19 behandelt wird.
  • Auch andere als die bereits erwähnten Fasermaterialien können für das Verfahren verwendet werden. So ist es beispielsweise möglich, an und für sich bekannte Glasfasern zu verwenden, die von einer Polyesterhülle ummantelt sein können zur Erhöhung der Alkaliresistenz. Weitere Fasermaterialien sind alkaliresistente Glasfasern, Aramidfasern, Nylonfasern und Polyesterfasern, wobei natürliche und synthetische, anorganische und organische Fasern (z. B. Graphitfasern) miteinander vermischt sein können. Die zusätzliche Faserarmierung (Gewebe) zur Verstärkung der Schaumstoffkörper kann eine Aramidfaser sein, z. B. »Kavlar« der Firma DuPont, welche die Verbindung der Schale mit dem Schaumstoffkörper verbessert. Die zusätzliche Faserarmierung kann unmittelbar unterhalb der Oberfläche der Schale angeordnet sein, so daß sie gut in das faserarmierte, zementhaltige Material eingebettet wird, um eine möglichst große Armierung zu erzielen. Die zugemischten Fasern und die zusätzliche Faserarmierung müssen dabei vollständig durch das zementhaltige Material benetzt sein.
  • Als zusätzliche Faserarmierung kommen gewobene und nichtgewobene, dicht gehackte Faserschichten in Frage, welche insbesondere bei Bauelementen mit mehrteiligen Schaumstoffkernen verwendet werden. So ist es möglich, als Zusatzarmierung Faservliese, Gewebe und Matten zu verwenden. Die zusätzliche Faserarmierung kann grob oder fein sein, wobei es wesentlich ist, daß die Struktur genügend Öffnungen aufweist, damit das zementhaltige Material eindringen und die zusätzliche Armierung benetzen kann. Normalerweise werden Zusatzarmierungen verwendet, die eine gitterartige Struktur aufweisen, deren Öffnungen Abmessungen von 0,3-5 cm aufweisen können, insbesondere 0,6-1,25 cm. Die Art und die Struktur der Zusatzarmierung hängt auch von der vorgesehenen Verwendung der Bauelemente ab.
  • Für Baupanele mit Abmessungen von beispielsweise 150 cm x 300 cm bei einer Dicke von 10 cm hat es sich als zweckmäßig erwiesen, eine einzige Lage Armierungsmaterial zu verwenden aus mit einem Polymer umhüllten Fasern, wobei die Öffnungen im Material etwa 1,3 cm betragen. Der Schaumstoffkörper kann entweder ganz von diesem Zusatzarmierungsmaterial umhüllt sein, oder es können auch nur die wichtigsten Oberflächen belegt sein, z. B. die Front und die Hinterseite des Paneels, was bei bestimmten Anwendungen eine genügende Festigkeit mit sich bringt. Durch Verwendung einer verdünnten Latexlösung kann die Benetzbarkeit der Zusatzarmierung erhöht werden. Letztere kann ebenfalls in das zementhaltige Material eingearbeitet werden, z. B. mit Walzen oder Nadelrollen.
  • Die Schaumstoffkörper selber können aus anorganischen oder organischen Schaummaterialien bestehen. Dabei werden feste Urethan-Polymer-Schaumstoffe bevorzugt, weil diese gut bekannt sind und vielseitig für Isolationszwecke verwendet werden. Solche Urethan-Polymer-Schaumstoffe werden durch Kombination der Reagenzien (z. B. ein Polyol und ein Isocyanat) hergestellt, z. B. mittels druckluftlosem Aufsprühen oder flüssiger Auftragung. Die Schaumstoffbildung setzt fast unmittelbar ein und ist in kurzer Zeit beendet, in Abhängigkeit der verwendeten Zusammensetzung des Urethan-Polymers. Auch die Dichtheit von festen Urethan-Polymer-Schaumstoffen hängt ab von der Zusammensetzung und beträgt im Allgemeinen etwa 24 kg pro m3 bis 160 kg/m3 hauptsächtlich aber 32-80 kg pro m3.
  • Weiten zweckmäßige feste Schaumstoffmaterialien umfassen Polyester-Schaumstoffe, phenolitische Harzschaumstoffe, Isocyanurat-Schaumstoffe und Schaumstoffe aus Schwefelbasis, welche unter dem Markennamen »SUFOAM« der Firma Chevron Chemical Company vertrieben werden.
  • Nachdem die Herstellung des Bauelements abgeschlossen ist, wird das zementhaltige Material ausgehärtet, entweder bei Umgebungsten,peraturen oder auch in einem Dampfbehälter. Zur Beschleunigung der Abbinjung kann das nasse, zementhaltige Material selber erhitzt werden, zum Beispiel durch Zugabe von Wasser bei Temperaturen von 50°-95°C. Sobald das Bauelement ausgehärtet ist, kann es mechanisch mittels Schlingen oder von Hand aus der Gießform entfernt werden. Zweckmäßigerweise sind in der Schale des Bauelements Mittel, z. B. Bolzen für die Handhabung angeordnet.
  • In der der am Schluß der Beschreibung gezeigten Tabelle, werden. typische Eigenschaften von kommerziell erhältlichen, festen Urethan-Polymer-Schaumstoffen aufgeführt.
  • Das vorbeschriebene Verfahren und die Vorrichtung zur Ausführung desselben, eignen sich zur Herstellung verschiedenartiger Bauelemente. So ist z. B. in der Fig. 13 ein Bauelement gezeigt, das vier nebeneinander angeordnete Schaumstoffkerne 48-51 aufweist, die von einer einzigen Schale 34 umhüllt sind. Diese Schaumstoffkerne können nebeneinander gelegt werden und z. B. mittels eines Bandes zusammengebunden sein. Zwischen den einzelnen Schaumstoffkernen können auch Abstände freigelassen werden, die mit einem faserarmierten, zementhaitigen Material aufgefüllt werden und so eine Verstärkungsrippe 52 bilden. Ein solches Baustoffelement hat eine sehr große Festigkeit, und kann in Längen von beispielsweise 6 m hergestellt werden, ohne daß eine zusätzliche gewebeförmige Faserarmierung notwendig wäre.
  • Wie in der Fig. 14 gezeigt wird, kann eine zusätzliche Verstärkung der Bauelemente der Bauelemente so erreicht werden, daß metallische Armierungsstrukturen 53 verwendet werden, die einen oder mehrere der Schaumstoffkörper 54 umhüllen. Solche Armierungsstrukturen 53 sind im Handel unter dem Markennamen »DUROWALL« erhältlich und werden für die Armierung von Beton verwendet.
  • Eine weitere Verstärkungsmöglichkeit besteht gemäß Fig. 15 darin, daß im Schaumstoffkörper 55 Schwalbenschwanznuten 56 ausgespart sind. Bei der Herstellung des Bauelements wird armiertes oder nicht armiertes, zementhaltiges Material in die unteren Schwalbenschwanznuten eingefüllt, bevor der Schaumkörper 55 auf die Grundschicht 17 aufgelegt wird. Die seitlichen und oberen Nuten können ebenfalls vorgefüllt werden, sie können aber auch beim Auftragen der Deckschicht aufgefüllt werden. Statt Schwalbenschwanznuten könnten auch Nuten mit anderer: Formen verwendet werden. Die beim Aushärten entstehenden schwalbenschwanzförmigen Rippen stellen eine erhebliche Versteifung der Schale des Bauelements dar. Die Nuten aufweisenden Schaumstoffkörper 55 können auch nebeneinander angeordnet werden, wie in Fig. 13 gezeigt ist.
  • Anhand der Figuren 16-21 werden weitere Bauelemente erläutert, die je aus mindestens zwei festen Schaumstoffkörpern 70 bestehen, welche wiederum teilweise mit einer Zusatzgewebearmierung 71 umwickelt sind und von einer festen Schale 72 aus faserarmiertem, zementhaltigem Material umhüllt sind. Jeder Schaumstoffkörper 70 ist in der Form eines hohlen Behälters ausgebildet und besteht aus dem Rohrabschnitt 73, der durch zwei Endwände 74 abgeschlossen ist, wobei die Endwände durch Klebstoff oder durch flüssigen Schaumstoff am Rohrabschnitt 73 befestigt sind. Der Rohrabschnitt 73 mit rechteckigem Querschnitt kann entweder röhrenförmig geformt werden oder er kann auch aus einzelnen flachen Platten zusammengesetzt werden. Jeder Schaumstoffkörper 70 weist kanalbildende Mittel in den Wänden oder an den Ecken 75-78 auf, eventuell auch an den Ecken 79. Die kanalformenden Mittel an diesen Ecken bestehen aus einer Ansährägung mit geneigtem Querschnitt, wie aus der Fig. 16 hervorgeht. In Fig. 18 sind die kanalformenden Mittel abgestuft, währenddem sie in der Fig. 19 einen gewölbten Querschnitt aufweisen.
  • Die durch die kanalformenden Mittel gebildeten Kanäle werden zweckmäßigerweise an den Rändern der Schaumstoffkörper 70 angeordnet, weil an diesen Stellen die Tiefe der Kanäle größer sein kann als wenn diese in der Mitte der Schaumstoffkörper angeordnet werden. Im letzteren Fell könnte ihre Tiefe höchstens ½-¾ der Wanddicke betragen, so sonst der Schaumstoffkörper zu stark geschwächt würde. Demgegenüber kann die Tiefe des Kanals an den Rändern größer sein als die Wanddicke des Schaumstoffkörpers. Dies geht aus der Fig 16 hervor. Es wären auch weitere Kanalformen möglich, außer denen, die in den Fig. 16, 18 und 19 gezeigt sind.
  • Durch die Anordnung der kanalformenden Mittel an den Rändern bzw. Ecken 75-78 der Schaumstoffkörper 70 entstehen nun die erwähnten Kanäle 81, 82, die mit dem zementhaltigen Material gefüllt werden können. So entsteht eine Verstärkungsrippe aus zementhaltigem Material, die den gleichen Querschnitt aufweist wie der Kanal, die von der Schale 72 nach innen vorspringt, und die im Bereich der Berührungskanten zweier benachbarter Schaumstoffkörper 70 angeordnet ist.
  • Es sind auch Mittel vorgesehen, um die benachbarten Schaumstoffelemente gegeneinander auszurichten. Wie aus der Fig. 16 hervorgeht, können diese Mittel aus einem Vorsprung 83 bzw. einer diesem entsprechenden, gegengleich ausgebildeten Ausnehmung 84 bestehen, die an gegenüberlie- genden Seiten des Schaumstoffkörpers 70 angeordnet sind. Der Vorsprung 83 und die Ausnehmung 84 erstrecken sich vorteilhafterweise über die ganze Länge der Schaumstoffkörper 70, wobei der Vorsprung des einen Schaumstoffkörpers satt in die Ausnehmung des ihm benachbarten Schaumstoffkörpers hineinragt, um so die Schaumstoffkörper in ihrer gegenseitigen Lage auszurichten. Der Vorsprung 83 und die Aussparung 84 haben in der Ausführungsform gemäß Fig. 16 einen rechteckigen Querschnitt. Bei einer anderen Ausführungsform gemäß Fig. 20 ist der Vorsprung 85 nach außen gewölbt, währenddem die Ausnehmung 86 nach innen eingebuchtet ist. Beim äußersten Schaumstoffkörper entsteht durch die Ausnehmung 84 bzw. 86 beim Ausfüllen derselben mit zementhaltigem Material eine Verstärkungsrippe.
  • Um benachbarte Schaumstoffkörper 70 zusammenzuhalten, können auch Bänder 87 verwendet werden, wie in Fig. 21 gezeigt ist. Die Bänder 87 können in Verbindung mit der Armierungsgewebeumwicklung 71 verwendet werden, oder auch ohne die letztere.
  • Bei der Ausführungsform gemäß Fig.22 sind sechs hohle Schaumstoffkörper 88 gleicher Abmessungen nebeneinander angeordnet und an den Enden noch je ein Schaumstoffkörper 89 unterschiedlicher Abmessung angefügt. Auch bei dieser Ausführungsform sind an den Ecken bzw. Rändern Kanäle 81 vorhanden, die beim Füllen mit zementhaltigem Material Verstärkungsrippen bilden. Wie aus der Fig. 23 hervorgeht, können bei einer weiteren Ausführungsform die Bauelemente im Querschnitt schiffsrumpfförmig ausgebildet werden. Diese Ausbildungsform wird insbesondere für Wandpaneele verwendet, die eine besondere ästhetische Wirkung erzielen sollen.
  • In den Ausführungsformen gemäß den Figuren 22-24 haben die größeren Schaumstoffkörper 88 eine Länge von etwa 255 cm, eine Breite von etwa 120 cm und eine Dicke von etwa 50 cm, wobei die Dicke der Schaumstoffwände etwa 3,8 cm beträgt. Die Schale 72 weist eine unterschiedliche Dicke auf und zwar etwa 2,8 cm an den Enden, etwa 7,5 cm an den Seiten und etwa 2,8 cm oben und unten.
  • Damit diese Bauelemente, die eine beträchtliche Größe aufweisen, von der Gußform entfernt werden können, sind in der Schale 72 Tragteile 90 eingegossen. Diese Tragteile 90 sind auch nützlich für die spätere Handhabung und Montage der Bauelemente.
  • Gemäß den Figuren 25 und 26 besteht derTragteil 90 aus einer Mehrzahl von Armen 91, welche in der Schale 72 eingebettet sind sowie aus einem Innengewindeabschnitt 92, der bündig zur Außenfläche der Schale 72 angeordnet ist.
  • Eine weitere Ausführungsform eines Tragteiles 93, welcher in der Seitenwand des Bauelements eingesetzt ist, geht aus den Figuren 27 und 28 hervor. Auch dieser Tragteil dient der Handhabung bei Verschiebung und bei Montage der Bauelemente. Der Tragteil 93 besteht aus den Bolzen 94, dessen unterer Teil in der Schale 72 verankert ist, und dessen äußerer Teil in eine hauptkugelförmige Ausnehmung 95 hineinragt, welche in der Schale 72 ausgespart wird.
  • Schließlich zeigen die Figuren 29 und 30 wie die Ecken der Schaumstoffkörper 89 mit der Zusatzgewebearmierung 71 versehen sind, zwecks Erhöhung der Festigkeit der Schaumstoffkörper.
  • Die Bauelemente der vorliegenden Erfindung können auf gleiche Weise verwendet werden wie handelsübliche, vorfabrizierte Bauplatten. Sie sind aber wesentlich leichter im Gewicht, sodaß die Montage keinerlei Probleme mit sich bringt. Infolge der außerordentlich guten Isolationseigenschaften und bereits vorhandener Wasserdichtheit sind keine weiteren Vorkehrungen notwendig, um diese Eigenschaften zu erhalten, wie dies bei konventionellen Bauplatten nötig ist.
  • Bei Deckeninstallation oder auch bei Wandinstallation kann ein bei Raumtemperatur trocknender, gummiartiger Verbinder, z. B. ein Silikon Elastomer zur Verbindung benachbarter Bauelemente verwendet werden.
  • Die installierte Decke bzw. Wand könnte noch mit einem geeigneten, gummiartigen Überzug überstrichen werden, um die Schlagresistenz zu erhöhen. Dieser Überzug wirkt auch der Rißbildung bei späteren Setzungen entgegen. Die Ränder der Bauelemente könnten mit Nuten versehen sein zur Aufnahme eines flexiblen Dichtmaterials, z. B. Polyäthylen, um die Luft- und Wasserdichtheit der Verbindungsstellen zwischen benachbarten Bauelementen zu gewährleisten.
  • Folgende physikalische Eigenschaften sind typisch für feste Urethan-Polymer-Schaumstoffe, die kommerziell erhältlich sind:
    Figure imgb0001
  • In den beschriebenen Ausführungsbeispielen besteht das für die Armierung der Bauelemente verwendete Fasermaterial aus Glasfasern. Es wäre aber ohne weiteres auch möglich, zu diesem Zweck andere organische oder anorganische Fasern zu verwenden.

Claims (16)

1. Verfahren zum Herstellen von Bauelementen mit mindestens einem vorgefertigten, isolierenden Schaumstoffkörper (14, 48-51, 54, 55, 70, 88, 89), der von einer Schale (34, 72) aus faserarmiertem, zementhaltigem Material umhüllt ist, wobei in eine Gießform (4) eine Grundschicht (17) aus nassem, zementhaltigem Material eingebracht wird, dann der eine kleinere Grundfläche als die Innengrundftäche der Gießform (4) aufweisende Schaumstoffkörper (z. B. 14) unter Einhaltung eines Abstands (15) von den Formwänden auf die Grundschicht (17) aufgelegt wird, anschließend zur Bildung der Seitenwände (33) und der Deckschicht (16) des Schaumstoffkörpers (z. B. 14) weiteres nasses, zementhaltiges Material in die Gießform (4) eingebracht wird und das Herausnehmen des Bauelements aus der Gießform nach dem Erhärten des zementhaltigen Materials erfolgt, dadurch gekennzeichnet, daß die längliche Gießform (4) vor dem Einbringen der Grundschicht (17) mittels Querleisten (46) in einzelne Abschnitte unterteilt und das zementhaltige Material kontinuierlich über die Länge der Gießform (4) bis auf die Höhe der Querleisten (46) eingebracht wird, daß Fasern auf die Grundschicht (17) aufgebracht und mechanisch in sie eingearbeitet werden, daß zur Bildung von die Schaumstoffkörper (z. B. 14) aufnehmenden Kammern Unterteilungsstäbe (47) mit einer die Höhe der Schaumstoffkörper (14) übertreffenden Höhe auf die Querleisten (46) gelegt werden und daß nach dem Einbringen des zementhaitigen Materials für die Seitenwände (33) und die Deckschicht (16) auf die Deckschicht Fasern aufgebracht und mechanisch in sie eingearbeitet werden.
2. Verfahren nach Patentanspruch 1, dadurch gekennzeichnet, daß Abstandshalter zwischen den Schaumstoffkörpern (z. B. 14) und den seitlichen Kammerwänden (Schienen 29) eingelegt werden, um einen gleichmäßigen Wandabstandzu gswährleisten.
3. Verfahren nach Patentanspruch 1, dadurch gekennzeichnet, daß die auf die Grund- bzw. die Deckschicht (17 bzw. 16) aufzubringenden Fasern von einer Faserrolle abgezogen, zerhackt und in einem oder mehreren Durchgängen auf die Grund- bzw. Deckschicht aufgesprüht werden und daß nach jedem Durchgang die Fasern in die Schichten eingerollt werden zwecks vollständiger Benetzung derselben mit dem zementhaltigen Material.
4. Verfahren nach Patentanspruch 3, dadurch gekennzeichnet, daß die Fasern. mittels einer Nadelrolle (19) in die Schichten eingearbeitet werden.
5. Verfahren nach Patentanspruch 3, dadurch gekennzeichnet, daß die Grund- bzw. die Deckschicht (17 bzw. 16) mittels eines längs der Gießform (4) beweglichen Verteil- und Abstreifgerätes (7) nivelliert wird, und daß das Abstreifgerät (7) während seiner Verschiebung längs der Gießform (4) vibriert wird.
6. Verfahren nach Patentanspruch 1, dadurch gekennzeichnet, daß vor dem Einbringen des zementhaltigen Materials für die Seitenwände (33) und die Deckschicht (16) einer oder mehrere der Schaumstoff körper (54) seitlich mit einer metallischen Armierung (53) umgeben wird bzw. werden, die in die Gießform (4) eingelegt wird.
7. Verfahren nach Patentanspruch 1, dadurch gekennzeichnet, daß mehrere.Schaumstoffkörper (70) gemeinsam von einem Band (87) umhüllt werden.
8. Verfahren nach Patentanspruch 1, wobei die einzelnen Schaumstoffkörper von Gruppen von Schaumstoffkörpern im Abstand voneinander angeordnet werden und der Zwischenraum mit nassem, zementhaltigem Material ausgefüllt wird, dadurch gekennzeichnet, daß im Zwischenraum zwischen den Schaumstoffkörpern (54) eine metallische Armierung (53) angeordnet wird (Fig. 14).
9. Vorrichtung zur Ausführung des Verfahrens gemäß Patentanspruch 1, dadurch gekennzeichnet, daß sie eine längliche Gießform (4) aufweist, die mit seitlichen Schienen (29) versehen ist, daß ein: Materialwagen (2) für das nasse, zementhaltige Material und ein Faserwagen (5) auf den Schienen (29) fahrbar sind, daß Mittel zur Unferreilung der Gießform (4) in einzelne Abschnitte vorhanden sind, daß diese Mittel Querleisten (46) mit einer der Höhe der Grundschicht entsprechenden Höhe sowie auf diese aufsetzbare Unterteilungsstäbe (47) mit einer die Höhe der Schaumstoffkörper (14) um das der Dicke der Deckschicht (16) entsprechende Maß übertreffenden Höhe umfassen, und daß am Faserwagen (5) Mittel zum Zerhacken und Aufsprühen der Fasern und Mittel zum Einarbeiten der Fasern in die Grund- bzw. Deckschicht (17 bzw. 16) vorgesehen sind.
10. Vorrichtung nach Patentanspruch 9, dadurch gekennzeichnet, daß am Materialwagen (2) ein Verteil- und Abstreifgerät (7) angeordnet ist zwecks Verteilung und Nivellierung des nassen, zementhaltigen Materials in der Gießform (4).
11. Vorrichtung nach Patentanspruch 10, dadurch gekennzeichnet, daß das Verteil- und Abstreifgerät (7) mit Vibratoren (11-13) versehen ist.
12. Vorrichtung nach Patentanspruch 9, dadurch gekennzeichnet, daß die Mittel zum Einarbeiten der Fasern eine Walze (18) und/oder eine Nadelrolle (19) umfassen.
13. Vorrichtung nach Patentanspruch 9, dadurch gekennzeichnet, daß die Mittel zur Unterteilung der Gießform seitliche Halterungen (36) umfassen, in welche die Unterteilungsstäbe .(47) und die Querleisten (46) einsetzbar sind.
14. Nach dem Verfahren gemäß Patentanspruch 1 hergestelltes Bauelement, welches mindestens zwei nebeneinander angeordnete, von einer gemeinsamen Schale (72), umhüllte Schaumstoffkörper (70,88,89) aufweist, dadurch gekennzeichnet, daß die Schaumstoffkörper (70,88,89) hohl sind.
15. Bauelemente nach Patentanspruch 14, dadurch gekennzeichnet, daß die Schaumstoffkörper (70) von einem Band (87) umwickelt sind.
16. Bauelement nach Patentanspruch 14, dadurch gekennzeichnet, daß an gegenübeeliegenden Seiten der Schaumstoffkörper (70) mindestens ein Vorsprung (83, 85) bzw. eine gegengleich ausgebildete Ausnehmung (84, 86) angeordnet sind.
EP79900734A 1978-07-17 1980-02-25 Verfahren zur Herstellung von isolierenden Bauelementen, Vorrichtung zur Durchführung des Verfahrens und nach dem Verfahren hergestelltes Bauelement Expired EP0016073B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT79900734T ATE693T1 (de) 1978-07-17 1979-07-10 Verfahren zur herstellung von isolierenden bauelementen, vorrichtung zur durchfuehrung des verfahrens und nach dem verfahren hergestelltes bauelement.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US925251 1978-07-17
US05/925,251 US4233787A (en) 1978-07-17 1978-07-17 Composite building module and method for making same
US05/956,014 US4280974A (en) 1977-06-27 1978-10-30 Process and apparatus for making a plurality of building modules having a foam core and a cementitious shell
US956014 1997-10-22

Publications (2)

Publication Number Publication Date
EP0016073A1 EP0016073A1 (de) 1980-10-01
EP0016073B1 true EP0016073B1 (de) 1982-02-17

Family

ID=27129909

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79900734A Expired EP0016073B1 (de) 1978-07-17 1980-02-25 Verfahren zur Herstellung von isolierenden Bauelementen, Vorrichtung zur Durchführung des Verfahrens und nach dem Verfahren hergestelltes Bauelement

Country Status (12)

Country Link
EP (1) EP0016073B1 (de)
JP (1) JPS55500516A (de)
AU (1) AU4959579A (de)
BE (1) BE877698A (de)
DE (1) DE2962137D1 (de)
DK (1) DK112880A (de)
ES (1) ES482487A1 (de)
FI (1) FI792073A (de)
IT (1) IT1192778B (de)
NO (1) NO792244L (de)
PT (1) PT69896A (de)
WO (1) WO1980000232A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBO20090497A1 (it) * 2009-07-29 2011-01-30 Federico Sazzini Parete precoibentata in cls prefabbricato
WO2024042292A1 (fr) * 2022-08-23 2024-02-29 Cubik-Home Procédé de fabrication d'un élément préfabriqué pour une habitation

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1259456B (it) * 1992-10-05 1996-03-20 Pannello per la costruzione di pareti con caratteristiche di isolamento termoacustico
FR2816972B1 (fr) * 2000-11-17 2003-07-25 Composants Precontraints Element de paroi
GB0212545D0 (en) * 2002-05-30 2002-07-10 Polymer Engineering Ltd Moulded components
US7188455B2 (en) 2003-05-19 2007-03-13 Conseil Services Investissements Roofing element
WO2007061275A1 (es) * 2005-11-23 2007-05-31 Muros R De Mexico, Sociedad De Responsabilidad Limitada De Capital Variable Elemento constructivo de concreto ligero reforzado interna y externamente con fibra sintética con acabado aparente y método de fabricación
EP3089853B1 (de) * 2014-01-03 2022-08-24 Sora ja Betoni, V. Suutarinen Oy Seitenelement zur formung einer giessform
ES2729735A1 (es) * 2019-07-29 2019-11-05 Corpus Consulting & Services S L Método de fabricación de un panel de aislamiento térmico o acústico, su sistema de fijación y panel así obtenido

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2045743B1 (de) * 1969-06-30 1973-10-19 Elkalite Ltd
FR2241192A5 (en) * 1973-08-14 1975-03-14 Rhone Progil Continuous casting of concrete profiles with foam plastic cores - laid up using rapid hardening concrete and foam compsns
FR2252465A1 (en) * 1973-11-27 1975-06-20 Chevanne Sylvain Building panel with low density cellular core - has reinforced plaster around the parallelepiped shape core
IE42358B1 (en) * 1974-12-09 1980-07-30 Ametex Ltd Composite building module
US4133859A (en) * 1977-06-27 1979-01-09 Maso-Therm Corporation Process and apparatus for making a plurality of building modules

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBO20090497A1 (it) * 2009-07-29 2011-01-30 Federico Sazzini Parete precoibentata in cls prefabbricato
WO2024042292A1 (fr) * 2022-08-23 2024-02-29 Cubik-Home Procédé de fabrication d'un élément préfabriqué pour une habitation
FR3139147A1 (fr) * 2022-08-23 2024-03-01 David Damichey Procédé de fabrication d'un élément préfabriqué pour une habitation

Also Published As

Publication number Publication date
WO1980000232A1 (en) 1980-02-21
BE877698A (fr) 1979-11-05
EP0016073A1 (de) 1980-10-01
NO792244L (no) 1980-01-18
DE2962137D1 (en) 1982-03-25
JPS55500516A (de) 1980-08-14
PT69896A (en) 1979-08-01
AU4959579A (en) 1980-05-08
FI792073A (fi) 1980-01-18
IT1192778B (it) 1988-05-04
IT7968479A0 (it) 1979-07-16
ES482487A1 (es) 1980-08-16
DK112880A (da) 1980-03-14

Similar Documents

Publication Publication Date Title
DE2756820A1 (de) Mischmaterialbausteinelement und verfahren zu seiner herstellung
DE2135007A1 (de) Konstruktionselement
DE2817110A1 (de) Verfahren und vorrichtung zur herstellung von platten o.ae.
DE2328883A1 (de) Schichtplatte
DE2644738A1 (de) Vorfabrizierte, verlorene wandform und verfahren zu ihrer herstellung
DE102005062406A1 (de) Konstruktionsverfahren
DE2945752C2 (de)
DD149553A5 (de) Bauelement
EP0016073B1 (de) Verfahren zur Herstellung von isolierenden Bauelementen, Vorrichtung zur Durchführung des Verfahrens und nach dem Verfahren hergestelltes Bauelement
EP0051101B1 (de) Zementplatte, sowie Verfahren und Vorrichtung zu deren Herstellung
DE3431143C2 (de)
DE2409231A1 (de) Verfahren zur herstellung von durch anorganische bindemittel verfestigten und durch mineralfasern verstaerkten raumformkoerpern
DE3612520A1 (de) Verfahren und vorrichtung zur herstellung von platten oder waenden aus einem einen lehmbaustoff und wasser enthaltenden gemisch
DE3840377A1 (de) Verfahren und vorrichtung zum herstellen von bauplatten
EP0625088B1 (de) Verfahren zur herstellung von verbundplatten
DE2443117A1 (de) Verfahren zum kontinuierlichen herstellen von faserverstaerkten schichtgebilden
DE2903019A1 (de) Verfahren und vorrichtung zum herstellen von rohrfoermigen hohlkoerpern sowie anwendung derselben
DE2205603A1 (de) Automatisiertes fliessband fuer gipsabguesse
DE2324915A1 (de) Bauelement
EP1307326B1 (de) Spannbetonhohlplatte und verfahren zur herstellung derselben
DE2950614A1 (de) Endlosprofil fuer die herstelung von stahlbetondecken, verfahren zur herstellung des profils und der decken
DE102018130843A1 (de) Vorrichtung zur Wärmeentkopplung zwischen einer betonierten Gebäudewand und einer Geschossdecke sowie Herstellverfahren
DE3640681A1 (de) Einrichtung zum formen von teilen aus faserbeton
AT352963B (de) Plattenfoermiges bauelement sowie vorrichtung und verfahren zu dessen herstellung
DE19813583B4 (de) Vorrichtung zur Herstellung von Mauerwerk

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR GB LU NL SE

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT CH DE FR GB LU NL SE

REF Corresponds to:

Ref document number: 693

Country of ref document: AT

Date of ref document: 19820315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 2962137

Country of ref document: DE

Date of ref document: 19820325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19820710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19820711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19820731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19830201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19830621

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19830629

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19830719

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19840731

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19850329

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19850402

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

EUG Se: european patent has lapsed

Ref document number: 79900734.9

Effective date: 19850611

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT