EP0004449B1 - Bindungsverfahren für Schleifwerkzeuge - Google Patents
Bindungsverfahren für Schleifwerkzeuge Download PDFInfo
- Publication number
- EP0004449B1 EP0004449B1 EP19790300429 EP79300429A EP0004449B1 EP 0004449 B1 EP0004449 B1 EP 0004449B1 EP 19790300429 EP19790300429 EP 19790300429 EP 79300429 A EP79300429 A EP 79300429A EP 0004449 B1 EP0004449 B1 EP 0004449B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- workpiece
- plating bath
- metal
- abrasive particles
- process according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 title claims description 27
- 230000008569 process Effects 0.000 title claims description 26
- 238000000227 grinding Methods 0.000 title description 7
- 239000002245 particle Substances 0.000 claims description 103
- 229910052751 metal Inorganic materials 0.000 claims description 58
- 239000002184 metal Substances 0.000 claims description 58
- 238000007747 plating Methods 0.000 claims description 57
- 239000010410 layer Substances 0.000 claims description 34
- 239000011159 matrix material Substances 0.000 claims description 18
- 238000005530 etching Methods 0.000 claims description 13
- 239000011248 coating agent Substances 0.000 claims description 11
- 238000000576 coating method Methods 0.000 claims description 11
- 238000009713 electroplating Methods 0.000 claims description 9
- 229910021645 metal ion Inorganic materials 0.000 claims description 8
- 239000007864 aqueous solution Substances 0.000 claims description 7
- 238000004070 electrodeposition Methods 0.000 claims description 7
- 238000007772 electroless plating Methods 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 239000002356 single layer Substances 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 2
- 238000000354 decomposition reaction Methods 0.000 claims description 2
- 238000007654 immersion Methods 0.000 claims 2
- 239000010432 diamond Substances 0.000 description 71
- 229910003460 diamond Inorganic materials 0.000 description 65
- 239000000243 solution Substances 0.000 description 24
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical group [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 22
- 229910052759 nickel Inorganic materials 0.000 description 11
- 238000005520 cutting process Methods 0.000 description 9
- 101100493710 Caenorhabditis elegans bath-40 gene Proteins 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 230000009471 action Effects 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000001117 sulphuric acid Substances 0.000 description 3
- 235000011149 sulphuric acid Nutrition 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 2
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D18/00—Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
- B24D18/0018—Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for by electrolytic deposition
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D15/00—Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
Definitions
- This invention relates to a process for bonding abrasive particles to the surface of a metal workpiece.
- the hardness and abrasive qualities of diamonds are well known, particularly those of synthetically produced virgin polycrystalline diamond particles.
- Virgin polycrystalline diamond particles are of particular interest because of their greatly increased number of sharp points or cutting edges and lack of fracture planes.
- Tools such as for sharpening and grinding have been prepared from natural and synthetic diamond particles by bonding these particles together in the form of a sharpening stone using a ceramic or polymeric matrix to bond the diamonds into a unitary structure.
- this process consumes an excessive amount of diamond particles, and the ceramic structure is also easily susceptible to fracture.
- such tools have increasingly been prepared by bonding diamond particles to the surface of a metal workpiece, while immersed in an electrolytic plating bath, by electrodeposition of a metallic bonding matrix on to the workpiece and around the diamond particles.
- tools produced according to this latter process have generally been more durable and less expensive to make than the ceramically bonded tools, they have nevertheless evidenced an inherent weakness in that the diamond particles tend to be pulled from the metal workpiece by abrasive action during use of the tool. It has been found that pulling out of the diamond particles can be minimised by controlling the hardness of the metallic bonding matrix or by increasing the thickness and controlling the hardness of the metallic bonding matrix.
- the hardness of a metallic bonding matrix can be changed by changing the type of metal used and/or by heat treatment, for various kinds of metals.
- glazing is caused by one of two conditions. If a given material is cut or ground, minute particles (called “swarf”) tend to fill in the crevices between the diamond particles. Thus, one reason the cutting edge may become glazed is because the swarf is not abrasive enough to erode away the bonding matrix at the same rate as the diamond particles are being worn down. The other reason the cutting edge may become glazed is because the metal bonding matrix is not slick enough, and thus swarf will adhere to the bonding matrix and will fill in the crevices as described above.
- swarf minute particles
- French Patent Specification 1147811 discloses an embodiment of diamond coated tool in which plural layers of diamond grains are interspersed by layers of electrolytically deposited metallic support.
- the specification acknowledges the problem of having to sharpen the surface of such tools in order to restore the cutting edge after wearing down of the grains by uncovering the diamond grains from the deposited metal which surrounds it, and proposes to overcome the problem by offsetting alternate layers of diamond grains whereby as one grain is worn down an adjacent one in the layer below appears.
- the offsetting is initiated by mechanically milling the surface of the tool to produce regular hollows and ridges and during the subsequent electrolytic coating two layers of diamond grains are coated on the surface, one layer substantially wholly located within the hollows and a second layer located on the ridges.
- Said two layers are subsequently wholly embedded in deposited metal as third and fourth layers of grains are simultaneously coated over them, the grains in the third layer being aligned with the grains in the first layer and offset from the grains in the second layer, whereas the grains in the fourth layer are aligned with those in the second layer but offset from those in the first and third layers.
- U.S. Patent Specification 3957593 concludes that it is better to arrange the grains in one layer of single particle thickness than to pile particles on top of each other on the tool surface because this helps the operator to control more uniformlv the work being performed by the tool and to maintain close tolerances, and because the ')Ingle layer thickness provides longer toollfe
- the U.S. Patent proposes depositing the particles on the tool surface by mounting the tool blank on a mandrel and inserting the assembly in a tank, the blank having been subjected to a standard cleaning operation and having been dipped in a standard pickling solution followed by washing and drying.
- the abrasive particles are poured into the tank in the space between the tool surface and the sides of the tank, and are then compacted and brushed into place. Electrolytic plating is then commenced as plating solution is directed downwardly through the abrasive particles to provide a light layer of electrodeposited metal, and subsequently an over- plating layer of metal is deposited leaving the single layer of particles projecting therethrough.
- the particles in the single particle layer are bonded by the deposited metal, substantially in contact with the smooth surface of the tool. Accordingly there is a shear plane along the smooth surface of the tool from which the deposited metal may be torn thereby causing the particles to break away. It is an advantage of the method of the present invention that the abrasive particles in a layer of single particle thickness on a tool surface are less likely to be pulled from said surface during use.
- the present invention provides a process for bonding abrasive particles to the surface of a metal workpiece by immersing the workpiece and the abrasive particles in an electrolytic plating bath comprising an aqueous solution of metal ions and electrodepositing a metallic bonding matrix on to the workpiece surface and around the abrasive particles adjacent the surface, the process being characterised in that prior to such electrodeposition the surface of the workpiece is etched to form cavities therein of dimensions such that each cavity is capable of receiving a portion of one abrasive particle and, subsequently to said etching step, the workpiece is at least partially embedded in a layer of the abrasive particles in the plating bath and an electromotive force is imposed across a metal anode in the plating bath and the workpiece whereby the abrasive particles become individually partially embedded in the cavities of the etched workpiece surface as the metal is plated on to the workpiece and around the embedded particles, and in that subsequent to said electrodeposition step the workpiece is at least partially immersed
- Etching is believed to create small cavities in the workpiece surface, each cavity being adapted to individually receive a portion of an abrasive particle, thereby providing for a stronger mechanical bond between the particle/metal plated surface of the workpiece by recessing at least a part of the abrasive particle below the shear plane.
- the swarf will not significantly adhere to the matrix and the swarf will evenly wear down the second coat of metal veneer, thus maintaining a cutting edge so as to prevent glazing.
- the choice of type and thickness of the second metal coating will therefore depend on the ultimate use of the tool. Heat treatment after the second plating step can serve to control stresses in the plated surfaces and thereby provide a stronger bonded surface on the workpiece to prevent pulling out of the abrasive particles.
- Partial or complete embedding of the etched workpiece in the layer of abrasive particles ensures the even distribution of the particles during plating in the first-mentioned plating bath. Such even distribution may also be enhanced by gentle rotation of the workpiece, care being taken not to dislodge particles already bonded to the workpiece.
- a workpiece that is plated with diamond particles in accordance with the present invention advantageously incorporates the durability of diamond with the versatility of a metal substrate. While natural diamond or static synthesis diamond grit can be used, synthetically produced virgin polycrystalline diamond grit or particles are particularly useful due to their increased surface irregularities as compared to natural or static synthesis diamond particles.
- Plating these diamond particles on to the surface of a metal workpiece provides a tool with an abrasive surface useful for many grinding and lapping applications, for example, those found in grinding wheels, lapping wheels, hones, tool sharpeners, etc.
- a layer of diamond particles is bonded to the surface of a metal workpiece through electrodeposition of nickel or other suitable metal to the workpiece.
- Diamond particles do not, in themselves, electroplate on the metal workpiece but are entrapped by the metal as it is electroplated thereon.
- Uniform dispersion of diamond particles is assured by partially or totally embedding the workpiece in a layer of the diamond particles in an electroplating bath while an electromotive force imposed upon the bath assists in attracting the diamond particles to the workpiece, thereby enhancing the predetermined population and uniform packing of diamond particles on the workpiece surface.
- the workpiece is surrounded by diamond particles which may be uniformly plated on to the workpiece in a substantially quiescent bath.
- the workpiece After a predetermined layer of diamond particles has been bonded to the surface of the workpiece by the plating action of the metal, the workpiece is immersed in a second plating bath. There, a second coat of only metal is deposited over the diamond/metal surface.
- this second coating of metal has the surprising advantage of wearing down evenly as the abrasive particles wear. This helps to prevent glazing of the cutting edge due to filling of the crevices between abrasive particles.
- this second coat of metal wears, the abrasive particles will not loosen and pull out since they will remain firmly bonded to the cavities of the workpiece surface by the remainder of the second coat and by the first coat of metal.
- the second plating step is then followed by heat treatment of the workpiece so as to harden and toughen the metal and relax any stresses that may have developed during any of the previous processing steps.
- the temperature during heat treatment is held below the decomposition temperature of the diamond particles to preclude thermal decomposition.
- a workpiece 10 is snown in an etching bath 14 comprising a solution 15 of aqueous sulphuric acid.
- aqueous sulphuric acid has a 60% sulphuric acid concentration.
- an electromotive force indicated at 12 is imposed between workpiece 10 and a cathode 16 or even a metal vessel 13 containing the acid solution 15.
- a reverse DC current of about four amps at five to six volts for six or seven minutes has been found adequate.
- workpiece 10 may be rotated either continuously or intermittently in the bath with a rotatable shaft 18.
- Rotation of shaft 18 and workpiece 10 also agitates the solution and minimises undesirable concentration of electrolytic action of any one portion of the surface of the workpiece thereby assuring more uniform etching. After etching, any remaining sulphuric acid is removed by rinsing workpiece 10 with water.
- an oxide coating may readily form on the surface of the workpiece after it is removed from the vessel 13 and rinsed.
- Plating bath 20 may contain any suitable metal plating solution.
- plating bath 20 contains a nickel plating solution 22 which may be a standard aqueous solution of nickel sulphate and nickel chloride heated to about 50°C. This plating solution is well known in the art and is commonly referred to as a standard Watts bath. Conventionally, the plating solution includes about 110 to 380 g/I nickel sulphate and about 60 to 302 g/I nickel chloride in a boric acid buffer.
- Diamond particles 25 are provided as a layer 46 in the aqueous solution 22 at the bottom of the bath 20 so as to facilitate uniform distribution of diamond particles 25 about the workpiece 10 which is embedded in the layer 46. Diamond particles 25 may be of any suitable size although the very fine particles (24 to 41 microns) are preferred for sharpening tools and the like. Grinding wheels and related tools may require particle sizes upwards of 24 mesh.
- Workpiece 10 is mounted upon a shaft 32, which may be rotatable, and suspended in plating bath 20.
- the workpiece may, if necessary, be rotated during plating to ensure an even dispersion of the particles on the workpiece surface, but care should be taken not to dislodge particles already bonded to the surface.
- a nickel anode 34 is also suspended in plating bath 20 so as to be at least partly immersed in the solution 22.
- An electromotive force 36 is applied between workpiece 10 and anode 34 with workpiece 10 connected so as to act as a cathode. In this manner, workpiece 10 is plated with nickel metal ions.
- the plating action simultaneously entraps diamond particles 25 on the surface of workpiece 10 and the plated nickel metal 23 (see FIGURE 2) serves to mechanically bond diamond particles 25 to the etched surface of workpiece 10 as the particles 25 are individually embedded in the cavities 21 of the etched surface. It has been discovered that the imposition of an electromotive force 36 appears to cause an attraction between diamond particles 25 and workpiece 10 so as to more densely pack diamond particles 25 on the surface of workpiece 10. For example, approximately six minutes has been found satisfactory to form a single layer of 24 to 41 micron diamond.
- the cavities 21 (FIGURE 2) created in workpiece 10 during the etching step greatly assist in forming a strong bond between workpiece 10 and the first diamond/nickel matrix 23.
- Many of the diamond particles 25 are partially recessed into the cavities 21 so as to limit their exposure to the shear plane formed along the diamond/metal surface.
- the diamonds 25 thus secured have surprising resistance to shear and breakage away from the workpiece 10.
- workpiece 10 is removed from the plating bath and rinsed with water to remove any unplated residue from bath 20. While not essential, it has been found desirable to follow the rinsing step with an activation step wherein the diamond plated workpiece is treated by dipping or rinsing in a 50% hydrochloric acid solution prior to immersing the workpiece in a second plating bath 40. Surface activation is primarily used where the workpiece surface has been oxidised. If care is taken to avoid drying of the workpiece 10 during the etching and electroplating process, activation can usually be avoided. Prior to treatment in the second plating bath 40, the diamond adheres to the workpiece 10 as a soft pack.
- the second plating bath 40 comprises an electroless plating solution 42 of metal ions.
- the metal used may be nickel or any other suitable metal selected in accordance with the hardness and thickness charactetistics desired in an intended application for workpiece 10.
- Any suitable electroless plating solution could be used such as solutions marketed by the Allied Kelite Division of Richardson Chemical Co. (Product No. 794 A, B and HZ).
- the workpiece is held in this electroless plating bath for sufficient time to achieve a suitable second coating of metal 27 (see FIGURE 2). For example, approximately 70 to 80 minutes has been found adequate for many intended applications.
- the temperature in the electroless plating bath 40 is elevated to about 90°C or such other elevated temperature as may be recommended by the manufacturer of the solution.
- electrolytic plating may be used.
- Nickel plating has been found to deposit about 2 x 10- 5 m nickel per hour in this bath and it is presently preferred to substantially interfill the surface area around the diamonds 25 and/or cover the diamonds 25 adhering to the workpiece.
- workpiece 10 After removal from the second or electroless plating bath 40, workpiece 10 is cleaned with water, dried and then subjected to heat treatment, in a furnace 43 wherein workpiece 10 is heated to approximately 315°C for approximately one hour. Heat treatment between 340°C and 400°C for one hour yields a workpiece having a Rockwell C-Scale hardness of 72. Hardness of 46 to 72 has been found desirable. The actual hardness achieved is a function of the type of metal plated on to workpiece 10 in the second plating bath 40 (which may be different to the metal plated in the first bath 20) and the temperature and firing time of the heat treatment step.
- first plating bath shown in FIGURE 3 for electroplating diamond particles on to the etched surface of the workpiece 10 is similar to that described in connection with FIGURE 1 in that the or each workpiece 10 is at least partly embedded in a layer 46 of abrasive particles.
- an enclosed box generally designated 41 is provided in the first plating bath 20.
- the box 41 has sides 44 and a base 45.
- Nickel anode 34 is placed in the bottom of box 41 and connected to an electromotive force 36 as described previously.
- a port 48 permits plating solution 22 to enter the box 41.
- port 48 may be used as an exit for plating solution 22 as hereinafter more fully described.
- a porous platform 50 is supported by sides 44 of oox 41.
- a fine mesh net 52 is laid on top of porous platform 50 so as to prevent the diamond particles 46 from falling through the holes 54 of platform 50.
- a second platform 56 covers the diamond particles 46.
- Platform 56 has a plurality of openings 58 through which workpieces 10 may extend so as to permit the etched portion of each workpiece 10 to be embedded into the layer 46 of diamond particles.
- openings 58 are only large enough to permit a very small tolerance between each workpiece 10 and opening 58. This prevents diamond particles 46 from being carried out of the openings 58 during the plating process.
- Each workpiece 10 is connected through a wire 60 of cable 62 to electromotive force 36.
- plating solution 22 is drawn through port 48 into box 41.
- plating solution 22 may be drawn through openings 58 and may exit through port 48.
- Plating solution 22 may be circulated through box 41 by a pump (not shown), by convection currents, or by gravity flow.
- the solution 22 and metal ions formed from anode 34 then are passed through porous platform 50 and net 52, and through the layer of diamond particles 46.
- Nickel or other metal is plated on to the workpiece 10 as the solution 22 circulates through box 41, and in this manner, diamond particles 25 may be uniformly plated into the cavities 21 (see FIGURE 2) etched into the surface of the workpiece 10 through the electrodeposition of metal on to the workpiece and around the particles 25.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Polishing Bodies And Polishing Tools (AREA)
- ing And Chemical Polishing (AREA)
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US05/888,081 US4155721A (en) | 1974-11-06 | 1978-03-20 | Bonding process for grinding tools |
US888081 | 1978-03-20 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0004449A2 EP0004449A2 (de) | 1979-10-03 |
EP0004449A3 EP0004449A3 (en) | 1979-11-14 |
EP0004449B1 true EP0004449B1 (de) | 1981-12-30 |
Family
ID=25392489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19790300429 Expired EP0004449B1 (de) | 1978-03-20 | 1979-03-19 | Bindungsverfahren für Schleifwerkzeuge |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0004449B1 (de) |
JP (1) | JPS5921749B2 (de) |
AT (1) | AT368053B (de) |
CA (1) | CA1143692A (de) |
DE (1) | DE2961643D1 (de) |
HK (1) | HK92185A (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9957633B2 (en) | 2015-06-29 | 2018-05-01 | Just Co., Ltd. | Plating processing method of gripping surface of gripping tool, and gripping tool |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0129155A3 (de) * | 1983-06-20 | 1986-10-08 | Luigi Pedrini | Vorrichtung zum Kalibrieren von Granit, Marmor und ähnlichem in Plattenform |
GB2197335A (en) * | 1986-11-14 | 1988-05-18 | Peter Andrew Saville | Abrasive tool |
DE4322544C1 (de) * | 1993-07-07 | 1995-03-02 | Fein C & E | Verfahren zum Sägen von duktilen Eisenwerkstoffen |
US20070275137A1 (en) * | 2006-05-25 | 2007-11-29 | Spx Corporation | Food-processing component and method of coating thereof |
JP5863170B2 (ja) * | 2011-01-31 | 2016-02-16 | サンコール株式会社 | 固定砥粒ワイヤの製造方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE752952C (de) * | 1940-09-29 | 1951-08-16 | Finzler | Verfahren zur elektrolytischen Bindung hochwertiger Schleifmittel, z. B. Diamantkoerner, in Metall zwecks Herstellung von Schleifwerkzeugen |
US2360798A (en) * | 1942-12-12 | 1944-10-17 | Seligman | Diamond-containing abrasive substance |
FR1147811A (fr) * | 1956-04-20 | 1957-11-29 | Procédé de fabrication de surfaces d'outils diamantées par électrolyse et produit obtenu | |
CH400583A (de) * | 1960-03-14 | 1965-10-15 | Mattsson Karl Henry | Verfahren zum Herstellen von Verschleissflächen an Werkzeugen |
US3356599A (en) * | 1964-07-20 | 1967-12-05 | Shirley I Weiss | Methods and apparatus for making annular cutting wheels |
GB1311854A (en) * | 1969-07-17 | 1973-03-28 | Atomic Energy Authority Uk | Bearing surfaces formed of composite metal granule structures |
DE2000407B2 (de) * | 1970-01-07 | 1980-06-12 | Josef Dr.Phil. 4000 Duesseldorf Heyes | Verfahren zum Befestigen von Pulver auf einer leitenden Oberflache mittels eines aus einem Elektrolyten abscheidbaren Metalls |
FR2134846A5 (de) * | 1971-04-22 | 1972-12-08 | Nasch Marguerite | |
JPS5227878B2 (de) * | 1973-03-20 | 1977-07-22 | ||
US4079552A (en) * | 1974-11-06 | 1978-03-21 | Fletcher J Lawrence | Diamond bonding process |
US3957593A (en) * | 1975-01-31 | 1976-05-18 | Keene Corporation | Method of forming an abrasive tool |
-
1979
- 1979-02-27 CA CA000322399A patent/CA1143692A/en not_active Expired
- 1979-03-16 JP JP3008979A patent/JPS5921749B2/ja not_active Expired
- 1979-03-16 AT AT200579A patent/AT368053B/de not_active IP Right Cessation
- 1979-03-19 EP EP19790300429 patent/EP0004449B1/de not_active Expired
- 1979-03-19 DE DE7979300429T patent/DE2961643D1/de not_active Expired
-
1985
- 1985-11-21 HK HK92185A patent/HK92185A/xx not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9957633B2 (en) | 2015-06-29 | 2018-05-01 | Just Co., Ltd. | Plating processing method of gripping surface of gripping tool, and gripping tool |
US10883186B2 (en) | 2015-06-29 | 2021-01-05 | Just Co., Ltd. | Plating processing method of gripping surface of gripping tool, and gripping tool |
Also Published As
Publication number | Publication date |
---|---|
HK92185A (en) | 1985-11-29 |
EP0004449A2 (de) | 1979-10-03 |
CA1143692A (en) | 1983-03-29 |
AT368053B (de) | 1982-09-10 |
EP0004449A3 (en) | 1979-11-14 |
JPS5921749B2 (ja) | 1984-05-22 |
ATA200579A (de) | 1982-01-15 |
DE2961643D1 (en) | 1982-02-18 |
JPS54132892A (en) | 1979-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4155721A (en) | Bonding process for grinding tools | |
US2020117A (en) | Cutting, grinding, and burnishing tool and the production thereof | |
US5250084A (en) | Abrasive tools and process of manufacture | |
US2411867A (en) | Industrial diamond tool and method of producing same | |
US5074970A (en) | Method for applying an abrasive layer to titanium alloy compressor airfoils | |
US3957593A (en) | Method of forming an abrasive tool | |
JPH06114739A (ja) | 電着砥石 | |
JP3895840B2 (ja) | Cmp用コンディショナ及びその製造方法 | |
KR20030096083A (ko) | 연삭 숫돌 및 그의 제조 방법 | |
JPS622946B2 (de) | ||
CN110076705B (zh) | 一种裸粉上砂电镀金刚线工艺 | |
MXPA05010295A (es) | Cuchilla de rebanado de granulos multiples de alta precision. | |
US4381227A (en) | Process for the manufacture of abrasive-coated tools | |
EP0004449B1 (de) | Bindungsverfahren für Schleifwerkzeuge | |
US3211634A (en) | Method of producing abrasive surface layers | |
JP2000087282A (ja) | 電着ブレード製造装置及び製造方法 | |
US5588419A (en) | Semiconductor wafer hubbed saw blade | |
JP5705813B2 (ja) | ダイヤモンド砥粒の製造方法、ワイヤ工具の製造方法およびワイヤ工具 | |
US3488892A (en) | Abrasive saw | |
JP2002166370A (ja) | 電着砥石およびその製造方法 | |
JPS6333988B2 (de) | ||
JPS6334071A (ja) | 砥石の製造方法 | |
JPS59142068A (ja) | 切断加工用砥石の製造方法 | |
EP0847455B1 (de) | Herstellung von schleifwerkzeugen | |
JP2000153463A (ja) | 電着工具の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): BE CH DE FR GB IT LU NL SE |
|
AK | Designated contracting states |
Designated state(s): BE CH DE FR GB IT LU NL SE |
|
17P | Request for examination filed | ||
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): BE CH DE FR GB IT LU NL SE |
|
REF | Corresponds to: |
Ref document number: 2961643 Country of ref document: DE Date of ref document: 19820218 |
|
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19940210 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19940214 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19940215 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19940218 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19940224 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19940228 Year of fee payment: 16 |
|
EPTA | Lu: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19940331 Year of fee payment: 16 |
|
EAL | Se: european patent in force in sweden |
Ref document number: 79300429.2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19950319 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19950320 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Effective date: 19950331 Ref country code: BE Effective date: 19950331 |
|
BERE | Be: lapsed |
Owner name: FLETCHER J. LAWRENCE Effective date: 19950331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19951001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19951130 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19951001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19951201 |
|
EUG | Se: european patent has lapsed |
Ref document number: 79300429.2 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19980226 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 19990318 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Effective date: 19990318 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |