EP0000916B1 - Verfahren zur Herstellung von Fettsäurenitrilen und Glycerin aus Glyceriden, insbesondere aus natürlichen Fetten und Oelen - Google Patents
Verfahren zur Herstellung von Fettsäurenitrilen und Glycerin aus Glyceriden, insbesondere aus natürlichen Fetten und Oelen Download PDFInfo
- Publication number
- EP0000916B1 EP0000916B1 EP78100666A EP78100666A EP0000916B1 EP 0000916 B1 EP0000916 B1 EP 0000916B1 EP 78100666 A EP78100666 A EP 78100666A EP 78100666 A EP78100666 A EP 78100666A EP 0000916 B1 EP0000916 B1 EP 0000916B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- reaction
- fatty acid
- glycerol
- ammonia
- nitrile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 title claims description 181
- 235000014113 dietary fatty acids Nutrition 0.000 title claims description 91
- 239000000194 fatty acid Substances 0.000 title claims description 91
- 229930195729 fatty acid Natural products 0.000 title claims description 91
- -1 fatty acid nitriles Chemical class 0.000 title claims description 58
- 238000000034 method Methods 0.000 title claims description 51
- 125000005456 glyceride group Chemical group 0.000 title claims description 23
- 235000011187 glycerol Nutrition 0.000 title description 60
- 239000003925 fat Substances 0.000 title description 36
- 239000003921 oil Substances 0.000 title description 8
- 238000004519 manufacturing process Methods 0.000 title description 6
- 238000006243 chemical reaction Methods 0.000 claims description 82
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 77
- 239000003054 catalyst Substances 0.000 claims description 43
- 150000004665 fatty acids Chemical class 0.000 claims description 42
- 229910021529 ammonia Inorganic materials 0.000 claims description 37
- 239000000203 mixture Substances 0.000 claims description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 25
- 150000001408 amides Chemical class 0.000 claims description 20
- 239000012071 phase Substances 0.000 claims description 20
- 150000002825 nitriles Chemical class 0.000 claims description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- 125000004432 carbon atom Chemical group C* 0.000 claims description 10
- 238000005191 phase separation Methods 0.000 claims description 10
- 238000005194 fractionation Methods 0.000 claims description 9
- 239000007791 liquid phase Substances 0.000 claims description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 150000003626 triacylglycerols Chemical class 0.000 claims description 6
- 229910052793 cadmium Inorganic materials 0.000 claims description 5
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 5
- 239000011261 inert gas Substances 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 150000003839 salts Chemical class 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- 150000001735 carboxylic acids Chemical class 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 150000003751 zinc Chemical class 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims description 2
- 239000004215 Carbon black (E152) Substances 0.000 claims description 2
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- 229930195733 hydrocarbon Natural products 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 claims 1
- 239000002184 metal Substances 0.000 claims 1
- 238000004064 recycling Methods 0.000 claims 1
- 239000003760 tallow Substances 0.000 description 57
- 235000019197 fats Nutrition 0.000 description 35
- 239000002253 acid Substances 0.000 description 28
- 238000007127 saponification reaction Methods 0.000 description 16
- NMOHFBPSMIYLGY-UHFFFAOYSA-L zinc;2-dodecylbenzenesulfonate Chemical compound [Zn+2].CCCCCCCCCCCCC1=CC=CC=C1S([O-])(=O)=O.CCCCCCCCCCCCC1=CC=CC=C1S([O-])(=O)=O NMOHFBPSMIYLGY-UHFFFAOYSA-L 0.000 description 13
- 239000000047 product Substances 0.000 description 12
- 150000002196 fatty nitriles Chemical class 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 150000007513 acids Chemical class 0.000 description 10
- 230000005494 condensation Effects 0.000 description 10
- 239000007789 gas Substances 0.000 description 10
- 238000009833 condensation Methods 0.000 description 9
- 230000035484 reaction time Effects 0.000 description 9
- 235000015278 beef Nutrition 0.000 description 8
- 239000007795 chemical reaction product Substances 0.000 description 7
- 235000021588 free fatty acids Nutrition 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 235000019198 oils Nutrition 0.000 description 7
- 239000011541 reaction mixture Substances 0.000 description 7
- 238000004821 distillation Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 150000003460 sulfonic acids Chemical class 0.000 description 5
- 230000018044 dehydration Effects 0.000 description 4
- 238000006297 dehydration reaction Methods 0.000 description 4
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 150000001868 cobalt Chemical class 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- LDMOEFOXLIZJOW-UHFFFAOYSA-N 1-dodecanesulfonic acid Chemical compound CCCCCCCCCCCCS(O)(=O)=O LDMOEFOXLIZJOW-UHFFFAOYSA-N 0.000 description 2
- QHZLMUACJMDIAE-UHFFFAOYSA-N 1-monopalmitoylglycerol Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(O)CO QHZLMUACJMDIAE-UHFFFAOYSA-N 0.000 description 2
- BMRVLXHIZWDOOK-UHFFFAOYSA-N 2-butylnaphthalene-1-sulfonic acid Chemical compound C1=CC=CC2=C(S(O)(=O)=O)C(CCCC)=CC=C21 BMRVLXHIZWDOOK-UHFFFAOYSA-N 0.000 description 2
- AQQPJNOXVZFTGE-UHFFFAOYSA-N 2-octadecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O AQQPJNOXVZFTGE-UHFFFAOYSA-N 0.000 description 2
- ZTFYJIXFKGPCHV-UHFFFAOYSA-N 2-propan-2-ylnaphthalene-1-sulfonic acid Chemical compound C1=CC=CC2=C(S(O)(=O)=O)C(C(C)C)=CC=C21 ZTFYJIXFKGPCHV-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 235000019486 Sunflower oil Nutrition 0.000 description 2
- UYXTWWCETRIEDR-UHFFFAOYSA-N Tributyrin Chemical compound CCCC(=O)OCC(OC(=O)CCC)COC(=O)CCC UYXTWWCETRIEDR-UHFFFAOYSA-N 0.000 description 2
- PHYFQTYBJUILEZ-UHFFFAOYSA-N Trioleoylglycerol Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC(OC(=O)CCCCCCCC=CCCCCCCCC)COC(=O)CCCCCCCC=CCCCCCCCC PHYFQTYBJUILEZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 2
- 229910001570 bauxite Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004061 bleaching Methods 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- 239000004359 castor oil Substances 0.000 description 2
- 235000019438 castor oil Nutrition 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 2
- 239000008169 grapeseed oil Substances 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- CACRRXGTWZXOAU-UHFFFAOYSA-N octadecane-1-sulfonic acid Chemical compound CCCCCCCCCCCCCCCCCCS(O)(=O)=O CACRRXGTWZXOAU-UHFFFAOYSA-N 0.000 description 2
- 210000002374 sebum Anatomy 0.000 description 2
- 150000003365 short chain fatty acid esters Chemical class 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 235000012424 soybean oil Nutrition 0.000 description 2
- 239000003549 soybean oil Substances 0.000 description 2
- 239000002600 sunflower oil Substances 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- VMPHSYLJUKZBJJ-UHFFFAOYSA-N trilaurin Chemical compound CCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCC)COC(=O)CCCCCCCCCCC VMPHSYLJUKZBJJ-UHFFFAOYSA-N 0.000 description 2
- DUXYWXYOBMKGIN-UHFFFAOYSA-N trimyristin Chemical compound CCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCC DUXYWXYOBMKGIN-UHFFFAOYSA-N 0.000 description 2
- PVNIQBQSYATKKL-UHFFFAOYSA-N tripalmitin Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCC PVNIQBQSYATKKL-UHFFFAOYSA-N 0.000 description 2
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- UBEIMDKGOYBUKT-FLIQGJDUSA-N 1,2,3-trilinolenoylglycerol Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(=O)OCC(OC(=O)CCCCCCC\C=C/C\C=C/C\C=C/CC)COC(=O)CCCCCCC\C=C/C\C=C/C\C=C/CC UBEIMDKGOYBUKT-FLIQGJDUSA-N 0.000 description 1
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 1
- RZRNAYUHWVFMIP-KTKRTIGZSA-N 1-oleoylglycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-KTKRTIGZSA-N 0.000 description 1
- YRJSLCBKZMMEPB-UHFFFAOYSA-N 2-(2-methylpropyl)naphthalene-1-sulfonic acid Chemical compound C1=CC=CC2=C(S(O)(=O)=O)C(CC(C)C)=CC=C21 YRJSLCBKZMMEPB-UHFFFAOYSA-N 0.000 description 1
- CTIFKKWVNGEOBU-UHFFFAOYSA-N 2-hexadecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O CTIFKKWVNGEOBU-UHFFFAOYSA-N 0.000 description 1
- GVNWZKBFMFUVNX-UHFFFAOYSA-N Adipamide Chemical compound NC(=O)CCCCC(N)=O GVNWZKBFMFUVNX-UHFFFAOYSA-N 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 235000008753 Papaver somniferum Nutrition 0.000 description 1
- 240000001090 Papaver somniferum Species 0.000 description 1
- 239000005662 Paraffin oil Substances 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 244000089486 Phragmites australis subsp australis Species 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000003568 Sodium, potassium and calcium salts of fatty acids Substances 0.000 description 1
- BAECOWNUKCLBPZ-HIUWNOOHSA-N Triolein Natural products O([C@H](OCC(=O)CCCCCCC/C=C\CCCCCCCC)COC(=O)CCCCCCC/C=C\CCCCCCCC)C(=O)CCCCCCC/C=C\CCCCCCCC BAECOWNUKCLBPZ-HIUWNOOHSA-N 0.000 description 1
- DVMAOYMRSDRCFX-UHFFFAOYSA-N [Co].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 Chemical compound [Co].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 DVMAOYMRSDRCFX-UHFFFAOYSA-N 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- BTGRAWJCKBQKAO-UHFFFAOYSA-N adiponitrile Chemical compound N#CCCCCC#N BTGRAWJCKBQKAO-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 235000021302 avocado oil Nutrition 0.000 description 1
- 239000008163 avocado oil Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- AFEGBMDYBRZHOY-UHFFFAOYSA-N cadmium;dodecyl benzenesulfonate Chemical compound [Cd].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 AFEGBMDYBRZHOY-UHFFFAOYSA-N 0.000 description 1
- 235000013969 calcium salts of fatty acid Nutrition 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001734 carboxylic acid salts Chemical class 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 235000012716 cod liver oil Nutrition 0.000 description 1
- 239000003026 cod liver oil Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 239000002285 corn oil Substances 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- YRIUSKIDOIARQF-UHFFFAOYSA-N dodecyl benzenesulfonate Chemical compound CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 YRIUSKIDOIARQF-UHFFFAOYSA-N 0.000 description 1
- FGPZBVIFLOFHFM-UHFFFAOYSA-N dodecyl benzenesulfonate;iron Chemical compound [Fe].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 FGPZBVIFLOFHFM-UHFFFAOYSA-N 0.000 description 1
- 229940071161 dodecylbenzenesulfonate Drugs 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229940013317 fish oils Drugs 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- RZRNAYUHWVFMIP-HXUWFJFHSA-N glycerol monolinoleate Natural products CCCCCCCCC=CCCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-HXUWFJFHSA-N 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000010460 hemp oil Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229940071125 manganese acetate Drugs 0.000 description 1
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 description 1
- 229940074096 monoolein Drugs 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 235000015277 pork Nutrition 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 239000008171 pumpkin seed oil Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000002884 skin cream Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- FODHIQQNHOPUKH-UHFFFAOYSA-N tetrapropylene-benzenesulfonic acid Chemical compound CC1CC11C2=C3S(=O)(=O)OC(C)CC3=C3C(C)CC3=C2C1C FODHIQQNHOPUKH-UHFFFAOYSA-N 0.000 description 1
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 description 1
- 229910003452 thorium oxide Inorganic materials 0.000 description 1
- 239000000606 toothpaste Substances 0.000 description 1
- MAYCICSNZYXLHB-UHFFFAOYSA-N tricaproin Chemical compound CCCCCC(=O)OCC(OC(=O)CCCCC)COC(=O)CCCCC MAYCICSNZYXLHB-UHFFFAOYSA-N 0.000 description 1
- 229940093609 tricaprylin Drugs 0.000 description 1
- PHYFQTYBJUILEZ-WUOFIQDXSA-N trielaidin Chemical compound CCCCCCCC\C=C\CCCCCCCC(=O)OCC(OC(=O)CCCCCCC\C=C\CCCCCCCC)COC(=O)CCCCCCC\C=C\CCCCCCCC PHYFQTYBJUILEZ-WUOFIQDXSA-N 0.000 description 1
- 229940113164 trimyristin Drugs 0.000 description 1
- VLPFTAMPNXLGLX-UHFFFAOYSA-N trioctanoin Chemical compound CCCCCCCC(=O)OCC(OC(=O)CCCCCCC)COC(=O)CCCCCCC VLPFTAMPNXLGLX-UHFFFAOYSA-N 0.000 description 1
- PHYFQTYBJUILEZ-IUPFWZBJSA-N triolein Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(OC(=O)CCCCCCC\C=C/CCCCCCCC)COC(=O)CCCCCCC\C=C/CCCCCCCC PHYFQTYBJUILEZ-IUPFWZBJSA-N 0.000 description 1
- 229940117972 triolein Drugs 0.000 description 1
- 229960001947 tripalmitin Drugs 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000010698 whale oil Substances 0.000 description 1
- 239000010497 wheat germ oil Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- JLVUSDMLNQQPCD-UHFFFAOYSA-L zinc;phenylmethanesulfonate Chemical compound [Zn+2].[O-]S(=O)(=O)CC1=CC=CC=C1.[O-]S(=O)(=O)CC1=CC=CC=C1 JLVUSDMLNQQPCD-UHFFFAOYSA-L 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C253/00—Preparation of carboxylic acid nitriles
- C07C253/22—Preparation of carboxylic acid nitriles by reaction of ammonia with carboxylic acids with replacement of carboxyl groups by cyano groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C31/00—Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
- C07C31/18—Polyhydroxylic acyclic alcohols
- C07C31/22—Trihydroxylic alcohols, e.g. glycerol
- C07C31/225—Glycerol
Definitions
- the invention relates to a process for reacting mono-, di- and triglycerides of the general formula wherein R 1 ' R 2 and R 3 , which may be the same or different, mean aliphatic hydrocarbon radicals having 3 to 23 carbon atoms, which radicals may optionally be substituted by an OH group, or mixtures of such glycerides in the liquid phase with ammonia Obtaining fatty acid nitriles of the formula R 3 (R 1 , R 2 ) -CN and glycerol by passing gaseous ammonia, optionally with the addition of inert gas, at elevated temperatures and in the presence of catalysts.
- Fatty acid nitriles which are important intermediates for the production of amines, are preferably produced by technical processes from the corresponding fatty acids and ammonia in the presence of suitable catalysts.
- This synthesis which has been known for a long time, can be carried out both in the liquid phase in a temperature range from 250 to 350 ° C. and in the gas phase in a temperature range from 320 to 380 ° C.
- Suitable catalysts for the reaction in the liquid phase are e.g. Zinc oxide or manganese acetate, for the gas phase for example aluminum oxide or bleaching earth.
- Suitable catalysts for this are, for example, metal oxides or calcium nitrate (cf. Japanese patent publications 70-35524 and 71-21846 and 71-6614).
- the fatty acid nitrile can then be obtained in a known manner from the fatty acid amides by dehydration in a second stage.
- a process is known from Japanese Patent Publication 72-26921 in which natural fats can be converted into fatty acid amides by reaction with aliphatic amines. wherein the resulting glycerol is removed from the equilibrium by the presence of boric acid as the glycerol boric acid ester.
- GB-A 416 613 and 451 594 describe a process for the reaction of hydroxy fatty acids or fatty acids, obtained from natural fats, with ammonia to give fatty acid nitriles in the gas phase at temperatures of 300 to 450 ° C. in the presence of oxidic dehydration catalysts, in particular in the presence of alumina.
- oxidic dehydration catalysts in particular in the presence of alumina.
- glycerides can be used directly, although they cannot be evaporated under the specified conditions.
- Examples 3 of GB-A 416 631 and Examples 7 and 14 of GB-A 451 594 show such reactions of castor oil, palm kernel fat and coconut oil with ammonia at temperatures from 350 to 400 ° C. in the presence of bauxite.
- glycerol there is no evidence of the whereabouts of glycerol. Refinements have shown that the glycerol is completely decomposed by thermal cleavage under the conditions of this process.
- the task was therefore to develop a one-step process by which it is possible to obtain glycerol in high yield in addition to the fatty acid nitrile from glycerides in economically justifiable reaction times.
- R j , R 2 and R 3 which may be the same or different, are saturated or mono- or polyunsaturated hydrocarbon radicals having 3 to 23 carbon atoms, which radicals can optionally be substituted by an OH group, or mixtures of such glycerides in liquid phase with ammonia to obtain fatty acid nitriles of the formula R 3 (R ,, R 3 ) -CN and glycerol by passing gaseous ammonia, optionally with admixture of inert gas, at elevated temperatures and in the presence of catalysts, which is characterized by that the glyceride with an ammonia stream of at least 200 I / kg glyceride and hour, at temperatures of 220 to 300 ° C, in the presence of lead, zinc, cadmium, tin, titanium, zirconium, chromium, antimony
- the starting materials for the process according to the invention are mono-, di- and triglycerides of the general formula that is, in this formula, one or two fatty acid residues can be replaced by H.
- the fatty acid residues R 1 CO-, R z CO- and R 3 C0- are derived from fatty acids with 3 to 23 carbon atoms.
- the aliphatic hydrocarbon radicals R 1 , R 2 and R 3 can be straight-chain or can be branched one or more times. They can represent saturated chains or can also have one or more multiple bonds, preferably double bonds. If appropriate, these radicals can be substituted with an OH group.
- Preferred starting materials for the process according to the invention are, above all, natural fats, which are mixtures of predominantly triglycerides and small proportions of diglycerides and monoglycerides, these also mostly representing mixtures and various types of fatty acid residues in the abovementioned range, in particular those with 8 or more carbon atoms , contain.
- Examples include vegetable fats, such as olive oil, coconut fat, palm kernel fat, babussu oil, palm oil, peanut oil, rapeseed oil, castor oil, sesame oil, cotton oil, sunflower oil, soybean oil, hemp oil, poppy oil, avocado oil, cottonseed oil, wheat germ oil, corn oil, pumpkin seed oil, vegetable oil, grape seed oil, grape seed oil , also animal fats, such as beef tallow, pork fat, knock fat, mutton tallow, Japanese tallow, whale oil and other fish oils and cod liver oil. Uniform tri-, di- and monoglycerides can also be used, be it that they have been isolated from natural fats or obtained synthetically.
- Examples include: tributyrin, tricapronin, tricaprylin, tricaprinin, trilaurin, trimyristin, tripalmitin, tristearin, triolein, trielaidin, trilinoliin, trilinolenin, monopalmitin, monostearin, monoolein, monocaprinin, monolaurinoloin, monoleurinoloin, monoleurinoloin, monoleurinolein, monoleurinolein, monoleurinoleinolomine, monoleininoleininomein, monoleinininolein, monoleinineinolein, monoleinininolein, monoleinininolein, monoleininininolein, monoleinininolein, monoleinineinolein, monoleininoleinomein, monoleinininoleinolein, monoleurinoleinineinomein,
- the rapid removal of the glycerol from the reaction zone means that a certain minimum amount of ammonia is passed through the reaction mixture. This is at least 200 per kg glyceride and hour, preferably at least 400 per kg glyceride and hour. There is no upper critical limit with regard to the ammonia flow to be passed, the quantitative upper limit is determined at best by economic considerations and is for this reason about 1000 preferably about 800 ammonia per kg glyceride and hour. Up to 30%, preferably up to 15%, based on the amount of ammonia passed through, of inert gas, for example nitrogen, can advantageously be added to the amount of gas passed through.
- inert gas for example nitrogen
- the reaction temperature is kept in the range between 220 and 300 ° C., preferably 230 to 290 ° C., during the entire course of the reaction.
- the temperature is preferably allowed to rise from the beginning to the end of the process. This can be done continuously or in stages, in particular in the form of a temperature program.
- a preferred temperature program is that the reaction initially takes place in the temperature range from about 220 to 240 ° C. until about 30 to 70% of the theoretically expected amount of glycerol has been discharged from the reaction vessel, that the temperature is then raised in the course of about half to Gradually or continuously increased for 5 hours until a temperature range of about 270 to 400 ° C. is reached, and the reaction then ends in this temperature range.
- the end of the reaction can be recognized from the fact that no more liquid phase passes into the receiver.
- Alkylcarboxylic acids preferably alkylbenzenecarboxylic acids and alkylnaphthalenecarboxylic acids, which carry one or more alkyl radicals each having 1 to 23, preferably 1 to 12, carbon atoms,
- the salts used as catalysts in the process according to the invention can be obtained by reacting the free acids with the corresponding metal oxides by known processes.
- the free sulfonic acids can be obtained from the known sulfonation processes or from the corresponding alkali sulfonates, for example via ion exchangers.
- the catalysts mentioned can be added directly in the form of the salts mentioned. However, the corresponding metal oxide and the corresponding carbon or sulfonic acid can also be added individually to the reaction mixture, the catalyst forming in situ during the reaction.
- the catalysts mentioned are used in the process according to the invention in amounts of from 0.5 to 75% by weight, in the case of batchwise operation preferably from 1 to 25% by weight and in particular from 1 to 10% by weight, in the case of continuous operation in amounts of preferably 5 to 75% by weight, in particular 10 to 30% by weight, based in each case on the glyceride used, is added.
- the respective glyceride or glyceride mixture is placed in a suitable reaction vessel, for example a stirred kettle, together with the catalyst described above.
- a suitable reaction vessel for example a stirred kettle
- the total amount of catalyst or a partial amount can be initially introduced, the remaining part then being added in portions or continuously during the reaction.
- the reaction vessel is equipped with a gas inlet device that allows the gas flow to be measured. provided, further with a temperature measuring device, a Heating device and if necessary with a stirrer.
- the reaction vessel is connected to a condensation device which consists of one or preferably a plurality of condensation tanks heated to temperatures of about 60 ° to 120 ° C.
- the ammonia stream is set after the initial temperature has been reached.
- the product mixture emerging into the condensation device consists in the initial phase of higher proportions of crude glycerol.
- the proportion of fatty acid nitrile increases more and more in the course of the reaction, so that essentially pure fatty acid nitrile is discharged in the last part, while the discharge of the crude glycerol has already ended.
- the ammonia stream (to which inert gas can be added, as described above) also ensures that the water of reaction is discharged rapidly over the entire duration of the reaction.
- the escaping gas stream is expediently returned to the reaction after the water carried off has been separated off and, if appropriate, with the addition of fresh ammonia.
- the product mixture discharged collects in the condensation device, this mixture being pre-separated into a fatty acid nitrile phase and a crude glycerol / water phase.
- the final phase separation is expediently carried out after the condensation device has been drained and transferred to a separator, for example a steam separator, at about 60 to 100.degree. Residual glycerin is washed out of the fatty acid nitrile phase with water.
- the crude glycerol isolated from the aqueous phase (for example by distillation) can be purified by known processes (cf. UIImann Encyklopadie der Technischen Chemie, 1956, Volume 7, pages 523 to 524), for example by distillation.
- the process according to the invention makes it possible to produce fatty acid nitriles and glycerol in excellent yields. These yields are at least 93% and reach 96% and more fatty acid nitrile and up to 95% crude glycerol (in each case based on the theoretical yield based on the glyceride used).
- the fatty acid nitrile obtained contains at most up to 2% by weight of free fatty acids and up to 10% by weight, but usually less than 6% by weight of fatty acid amides as by-products.
- fatty acids and fatty acid amides contained in the discharged product mixture are also expediently also converted into fatty acid nitriles by subjecting them to a post-reaction in the presence of ammonia and in the presence of the catalysts defined above, if appropriate before the phase separation.
- the method according to the invention can be designed to be fully continuous in a particularly simple manner.
- the glyceride as described above, is placed in the reaction vessel together with the previously mentioned proportions of catalyst or, optionally, added to an inert, non-volatile solvent, such as paraffin oil.
- the amount of ammonia added should also be at least 2001 / kg glyceride and hour and is normally at higher throughputs than those specified above for the batchwise procedure.
- the process temperatures should advantageously be kept in the temperature range from 220 to 270 ° C., in particular in the temperature range from 230 to 250 ° C.
- the glyceride is then continuously replenished during the reaction.
- Glyceride and catalyst can also be fed continuously in a mixture.
- the fractionation system continuously discharges fatty acid nitrile, glycerol and water, while fatty acid amide and free fatty acid are continuously returned to the process.
- the reaction is first carried out until the crude glycerol is essentially completely discharged (which can be seen in the phase separation since the crude glycerol phase no longer increases), and then the fatty acid nitrile phase obtained from the phase separation does not become that yet
- the portion of fatty acid nitrile discharged is returned to the reactor, the temperature in the reactor being set to a range from 200 ° to 320 ° C. and the ammonia stream to an amount of 5 to 150 I / kg fatty acid nitrile and hour, preferably to 15 to 100 I / kg, is reduced.
- the entire fatty acid nitrile can also be discharged from the reaction, subjected to the phase separation and then introduced into a second reactor (post-reactor), the above-mentioned catalysts being added in the amounts mentioned.
- the aftertreatment then takes place under the same conditions as those mentioned above for the return of a partial amount to the first reaction vessel.
- the fatty acid nitrile has to be worked up by distillation after the after-treatment has ended.
- This aftertreatment method can also be modified such that the entire fatty acid nitrile phase is carried out continuously, for example through a tubular reactor, under the specified conditions.
- the fatty acid nitrile phase obtained can also be in the gaseous state together with ammonia in an amount of 200 to 800 I / kg fatty acid nitrile and hour, preferably 300 to 600 I / kg, and at a temperature of 280 to 400 ° C, preferably at 300 to 380 ° C, continuously passed over a fixed bed of dehydration catalysts.
- Suitable dehydration catalysts are, for example, aluminum oxide in the form of bauxite or hydrargilite, thorium oxide, zirconium oxide, aluminum phosphate, silica gel, active bleaching earth and the like or mixtures thereof.
- the process according to the invention therefore surprisingly makes it possible not only to obtain fatty acid nitriles in excellent yields and good purity, but also to obtain glycerol in high yields.
- the purity of the fatty acid nitrile obtained can be increased further, so that it is less than 2% by weight, in most cases less than 0.1% by weight of fatty acid amide and less than 1.5% by weight, in most cases contains less than 0.1% by weight of free fatty acids and is otherwise completely free of by-products.
- Fatty acid nitriles are important chemical intermediates that are further processed in particular to form primary amines and quaternary ammonium salts, which in turn can be used in particular as textile auxiliaries, flotation aids and as cationic surface-active substances in many technical processes.
- Glycerin is an important chemical compound that is used, for example, for the production of explosives, as an additive to heat and power transmission fluids, as a moisture-preserving additive to skin creams, toothpastes, soaps, tobacco and the like, as textile auxiliaries, as solvents and in many other fields that Are known in the art, can be used.
- the reaction was carried out in a heatable reactor with a capacity of 800 cm 3 , provided with a gas inlet device, stirrer, internal thermometer and a fractionating column in the form of a glass tube filled with Raschig rings (length 20 cm, diameter 1.5 cm) and one consisting of three feeds connected in series Master system in which the volatile reaction products are condensed.
- a gas inlet device stirrer
- internal thermometer internal thermometer
- a fractionating column in the form of a glass tube filled with Raschig rings (length 20 cm, diameter 1.5 cm) and one consisting of three feeds connected in series Master system in which the volatile reaction products are condensed.
- 495 g of tallow (saponification number 190, acid number 7.6) were introduced together with 5 g of zinc dodecylbenzenesulfonate as a catalyst.
- the apparatus was flushed with nitrogen while heating.
- the nitrogen was then replaced by ammonia gas, 600 l of NH 3 / kg of tallow.
- Tallow fat nitrile obtained in this way was obtained in 93.6% yield (413.7 g), based on theory, at 1.8% by weight amide content and 1.5% by weight tallow fatty acid and pure glycerol after working up with 80.2% (39 , 6 g) yield isolated. (Here and below, the yield values are always to be understood in relation to theory.)
- the total reaction time was 7.5 hours.
- the reaction products discharged into the templates were washed out with water and worked up.
- Tallow fatty nitrile was obtained in a yield of 92.3% (408 g) with an amide content of 0.7 wt .-% and a fatty acid content of 0.5 G ew .-%, and crude glycerol with a yield of 87.7% (44.7 g ) receive.
- the isolated raw glycerol contained 81.2% glycerol, based on the tallow used.
- Example 2 In the described apparatus of Example 1 445 g of technical tallow ( "bleachable tallow") (saponification number 186, acid number 12.6) and 9 g of zinc dodecylbenzenesulfonate were charged and reacted under the reaction conditions of Example 2 with ammonia. The reaction products discharged within 7.5 hours during the reaction were combined and washed out with water glycerol. After separation of the aqueous phase, tallow fatty nitrile could be isolated in 93.0% yield (370.4 g, amide content 0.5% by weight and fatty acid content of 0.3% by weight). Crude glycerol was obtained from the aqueous phase in 97.5% yield (38.5 g). The yield of pure glycerol, according to the OH number of 1683, was 84.0%, based on the tallow used.
- Example 2 In the apparatus described in Example 1, which was equipped here with a 70 cm mirror glass column with Raschig rings for fractionation, 488 g of tallow (saponification number 190, acid number 2.4) and 5 g of zinc toluenesulfonate were added. A weak stream of nitrogen was passed through the reactor during heating. At 190 ° C the changeover to 600 l NHjkg fat h was made. The reaction was carried out at 230 ° C for 3 hours. The mixture was then heated from 230 ° C. to 270 ° C. within half an hour and the temperature was kept at 270 ° C. for a further 3.25 hours.
- Example 4 In the apparatus described in Example 4, 436 g of sunflower oil (saponification number 189, acid number 0.8) and 9 g of zinc dodecylbenzenesulfonate as a catalyst were reacted with ammonia gas (690 I / kg of fat) under the conditions given in Example 4 (6.75 hours reaction time) - h) implemented. After working up 94.6% fatty nitrile (amide content 0.5% by weight, fatty acid content 0.35% by weight) and 91.2% crude glycerol (40.9 g) or, according to the OH number of 1717, 85.6 % Pure glycerin, based on 01 used, obtained.
- ammonia gas 690 I / kg of fat
- fatty acid nitrile and glycerol directly from glycerides is also possible using a continuous procedure.
- a heatable, cylindrical 750 ml glass vessel 192 g of food tallow were placed together with 7.5 g of zinc dodecylbenzenesulfonate.
- the reactor was equipped with a stirrer, internal thermometer, heated dropping funnel and a 70 cm mirror glass column filled with Raschig rings. 600 l of ammonia / kg of fat - h were passed into the reactor from below using a frit at 230 ° C.
- Example 445 g of beef tallow (saponification number 186, acid number 0.8) were introduced together with 9 g of iron dodecylbenzenesulfonate as a catalyst. Starting at 230 ° C, 600 I NH 3 / kg fat ⁇ h were passed through the sebum. The reaction temperature was raised to 290 ° C. in the course of 7.25 hours.
- Example 1 In the apparatus described in Example 1, which, however, was equipped with a direct transition piece from the reactor to the feed system instead of a fractionation unit, 486 g of food tallow (saponification number 187, acid number 0.8) were obtained together with 1% by weight of zinc dodecylbenzenesulfonate on tallow.
- I NH 3 / kg fat. h passed through the reaction material. The temperature was kept at 230 ° C. for 3 hours and after heating (0.5 hours) at 270 ° C. for 1.25 hours. The reaction was complete after a total of 4.75 hours.
- the reaction products discharged into the templates at 230 ° C. and 270 ° C. were each collected and worked up separately.
- the fatty acid nitrile isolated at 230 ° C. had an amide content of 20% by weight. At 270 ° C., an amide content of approximately 9% by weight was observed. The amide content in the entire fatty acid nitrile was 10% by weight.
- Example 1 In the apparatus described in Example 1, which, however, was equipped with a direct transition piece from the reactor to the feed system instead of a fractionation unit, 500 g of tallow (saponification number 189, acid number 0.9) together with 2% by weight of zinc dodecylbenzenesulfonate, based on Tallow. During the reaction, 600 l of NH 3 / kg fat - h were passed through the reaction mixture. The temperature was kept at 230 ° C. for 3 hours and then increased by 10 ° C. and after every half hour by a further 10 ° C. The reaction was complete at 280 ° C. The reaction time was 5.25 hours.
- the entire condensate was in water at 80 ° C in fatty acid nitrile and Glycerin / water separated.
- the isolated fatty acid nitrile had an amide content of 5.3% by weight and a fatty acid content of 0.5% by weight.
- the nitrile yield was 95.2%. After working up, pure glycerol could be obtained with a yield of 91.4%.
- Example 1 500 g of technical tallow (saponification number 191.4, acid number 1.5) were preassigned together with 2% by weight of zinc dodecylbenzenesulfonate, based on tallow.
- 600 l of ammonia per kg of fat and hour were passed through the reaction mixture, the temperature being kept at 230 ° C. for 3 hours and then being raised continuously to 280 ° C. over the course of 2.25 hours.
- the total reaction time was 5.25 hours.
- care was taken to ensure that the temperature gradient between the bottom and the transition was as small as possible.
- the condensate obtained was separated into crude fatty acid nitrile and glycerol by means of water washing.
- the isolated 432.8 g of crude fatty acid nitrile (amide content 6.1% by weight) were placed in a reactor equipped with a gas inlet tube, stirrer, internal thermometer and condensation system, and 2% by weight of zinc dodecylbenzenesulfonate were added. 60 l of ammonia per kg of reaction material were passed through the reaction mixture at 290 ° C. per hour. Water of reaction formed was discharged. The reaction time was 1 hour. After distillation of the reactor contents, 415 g of tallow fatty nitrile (93.1% yield) with an amide content of less than 0.05% by weight and an acid number of 0.1 were present. Pure glycerol (according to OH number) was obtained 47.3 g (91.2% yield).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19772737607 DE2737607A1 (de) | 1977-08-20 | 1977-08-20 | Verfahren zur herstellung von fettsaeurenitrilen und glycerin aus glyceriden, insbesondere aus natuerlichen fetten und oelen |
DE2737607 | 1977-08-20 | ||
DE2813204 | 1978-03-25 | ||
DE19782813204 DE2813204A1 (de) | 1978-03-25 | 1978-03-25 | Verfahren zur herstellung von fettsaeurennitrilen und glycerin aus glyceriden, insbesondere aus natuerlichen fetten und oelen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0000916A1 EP0000916A1 (de) | 1979-03-07 |
EP0000916B1 true EP0000916B1 (de) | 1981-05-20 |
Family
ID=25772581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP78100666A Expired EP0000916B1 (de) | 1977-08-20 | 1978-08-16 | Verfahren zur Herstellung von Fettsäurenitrilen und Glycerin aus Glyceriden, insbesondere aus natürlichen Fetten und Oelen |
Country Status (36)
Country | Link |
---|---|
US (1) | US4234509A (cs) |
EP (1) | EP0000916B1 (cs) |
JP (1) | JPS5441806A (cs) |
AR (1) | AR218080A1 (cs) |
AT (1) | AT359991B (cs) |
AU (1) | AU519437B2 (cs) |
BG (1) | BG33734A3 (cs) |
BR (1) | BR7805331A (cs) |
CA (1) | CA1135722A (cs) |
CS (1) | CS202509B2 (cs) |
DD (1) | DD138311A5 (cs) |
DE (1) | DE2860715D1 (cs) |
DK (1) | DK159064C (cs) |
EG (1) | EG13422A (cs) |
ES (1) | ES472553A1 (cs) |
FI (1) | FI63961C (cs) |
GR (1) | GR73064B (cs) |
HK (1) | HK8184A (cs) |
HU (1) | HU180472B (cs) |
IE (1) | IE47316B1 (cs) |
IL (1) | IL55385A (cs) |
IN (1) | IN150312B (cs) |
IT (1) | IT1099021B (cs) |
MX (1) | MX147995A (cs) |
MY (1) | MY8500553A (cs) |
NO (1) | NO147271C (cs) |
NZ (1) | NZ188179A (cs) |
OA (1) | OA06038A (cs) |
PH (1) | PH16609A (cs) |
PL (1) | PL119196B1 (cs) |
PT (1) | PT68440A (cs) |
RO (1) | RO77028A (cs) |
SG (1) | SG37883G (cs) |
SU (1) | SU971092A3 (cs) |
TR (1) | TR20021A (cs) |
YU (1) | YU197778A (cs) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3131968A1 (de) * | 1981-08-13 | 1983-02-24 | Chemische Werke Hüls AG, 4370 Marl | Verfahren zur herstellung von aliphatischen nitrilen |
EP0224706A1 (de) * | 1985-11-01 | 1987-06-10 | F. Hoffmann-La Roche Ag | Verfahren zur Herstellung eines Oxazols |
DE3639857A1 (de) * | 1986-11-21 | 1988-06-01 | Hoechst Ag | Verfahren zur herstellung von fettsaeurenitrilen und glycerin aus glyceriden |
US6063369A (en) * | 1998-03-16 | 2000-05-16 | Alterna, Inc. | Quaternized hemp seed oil |
JP4972387B2 (ja) * | 2006-03-08 | 2012-07-11 | 花王株式会社 | 脂肪族ニトリルの製造方法 |
BRPI0708659A2 (pt) | 2006-03-08 | 2011-06-07 | Kao Corp | processo para a produção de nitrilas alifáticas |
FR2907781B1 (fr) * | 2006-10-27 | 2010-01-08 | Ceca Sa | Procede de synthese de diamines et/ou de triamines primaires de haute purete a partir d'acides dimeres ou trimeres |
FR2916445B1 (fr) * | 2007-05-24 | 2009-07-10 | Arkema France | Procede de co-production de carbonates cycliques et de nitriles et/ou d'amines gras |
GT200700043A (es) * | 2007-05-25 | 2008-03-03 | Biocompuestos de funcion nitrilo | |
EP2536777B1 (de) | 2010-02-18 | 2016-04-20 | Basf Se | Polymerdispersion, die ein hochverzweigtes polycarbonat mit ungesättigten fettsäuregruppen enthält |
WO2016188830A1 (en) | 2015-05-22 | 2016-12-01 | Akzo Nobel Chemicals International B.V. | Fatty nitrile solvents for agricultural formulations |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2037389A (en) * | 1932-02-03 | 1936-04-14 | Ig Farbenindustrie Ag | Nitriles of higher unsaturated fatty acids and a process of preparing them |
GB416631A (en) * | 1934-02-01 | 1934-09-18 | Ig Farbenindustrie Ag | Manufacture of nitriles of unsaturated fatty acids |
GB451594A (en) * | 1935-02-05 | 1936-08-05 | Ig Farbenindustrie Ag | Improvements relating to the production of nitriles |
GB477463A (en) * | 1935-12-09 | 1937-12-30 | Armour & Co | Improvements in process of preparing nitriles |
FR864571A (fr) * | 1939-06-02 | 1941-04-30 | Rhone Poulenc Sa | Procédé de préparation de l'adiponitrile |
DK78377C (da) * | 1940-10-05 | 1954-11-08 | Armour & Co | Fremgangsmåde til fremstilling af nitriler af mættede eller umættede fedtsyrer. |
US2524831A (en) * | 1945-10-17 | 1950-10-10 | Armour & Co | Manufacture of nitriles |
US2493637A (en) * | 1948-05-01 | 1950-01-03 | Rohm & Haas | Process for the preparation of aliphatic nitriles |
US2589232A (en) * | 1950-03-14 | 1952-03-18 | Hercules Powder Co Ltd | Method of preparing stabilized fatty acid nitriles |
US2794043A (en) * | 1955-01-13 | 1957-05-28 | Goodrich Co B F | Preparation of aliphatic nitriles |
US2808426A (en) * | 1956-01-26 | 1957-10-01 | Armour & Co | Preparation of nitriles |
US2993926A (en) * | 1957-10-30 | 1961-07-25 | Archer Daniels Midland Co | Method of preparing nitriles |
CH494210A (de) * | 1968-03-27 | 1970-07-31 | Sandoz Ag | Verfahren zur Herstellung von Nitrilen |
US3850974A (en) * | 1973-05-23 | 1974-11-26 | Akzona Inc | Production of nitriles |
-
1978
- 1978-08-14 IN IN889/CAL/78A patent/IN150312B/en unknown
- 1978-08-14 ES ES472553A patent/ES472553A1/es not_active Expired
- 1978-08-15 RO RO197894982A patent/RO77028A/ro unknown
- 1978-08-15 BG BG040672A patent/BG33734A3/xx unknown
- 1978-08-16 DE DE7878100666T patent/DE2860715D1/de not_active Expired
- 1978-08-16 EP EP78100666A patent/EP0000916B1/de not_active Expired
- 1978-08-16 EG EG511/78A patent/EG13422A/xx active
- 1978-08-16 DD DD78207321A patent/DD138311A5/xx not_active IP Right Cessation
- 1978-08-17 JP JP9957878A patent/JPS5441806A/ja active Granted
- 1978-08-17 YU YU01977/78A patent/YU197778A/xx unknown
- 1978-08-17 FI FI782516A patent/FI63961C/fi not_active IP Right Cessation
- 1978-08-18 CS CS785425A patent/CS202509B2/cs unknown
- 1978-08-18 OA OA56581A patent/OA06038A/xx unknown
- 1978-08-18 HU HU78HO2097A patent/HU180472B/hu unknown
- 1978-08-18 NO NO782821A patent/NO147271C/no unknown
- 1978-08-18 CA CA000309619A patent/CA1135722A/en not_active Expired
- 1978-08-18 MX MX174574A patent/MX147995A/es unknown
- 1978-08-18 AU AU39076/78A patent/AU519437B2/en not_active Expired
- 1978-08-18 AT AT600778A patent/AT359991B/de not_active IP Right Cessation
- 1978-08-18 AR AR273352A patent/AR218080A1/es active
- 1978-08-18 NZ NZ188179A patent/NZ188179A/xx unknown
- 1978-08-18 IE IE1677/78A patent/IE47316B1/en unknown
- 1978-08-18 SU SU782650552A patent/SU971092A3/ru active
- 1978-08-18 PH PH21508A patent/PH16609A/en unknown
- 1978-08-18 BR BR7805331A patent/BR7805331A/pt unknown
- 1978-08-18 PT PT68440A patent/PT68440A/pt unknown
- 1978-08-18 DK DK367978A patent/DK159064C/da not_active IP Right Cessation
- 1978-08-18 IT IT26849/78A patent/IT1099021B/it active
- 1978-08-18 GR GR57029A patent/GR73064B/el unknown
- 1978-08-18 IL IL55385A patent/IL55385A/xx unknown
- 1978-08-19 PL PL1978209133A patent/PL119196B1/pl unknown
-
1979
- 1979-04-24 US US06/032,753 patent/US4234509A/en not_active Expired - Lifetime
-
1980
- 1980-05-23 TR TR20021A patent/TR20021A/xx unknown
-
1983
- 1983-06-30 SG SG378/83A patent/SG37883G/en unknown
-
1984
- 1984-02-01 HK HK81/84A patent/HK8184A/xx unknown
-
1985
- 1985-12-30 MY MY553/85A patent/MY8500553A/xx unknown
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0198243B1 (de) | Verfahren zur Herstellung von Carbonsäurealkylestern, insbesondere Fettsäurealkylestern | |
EP0127104B1 (de) | Verfahren zur Herstellung von Fettsäureestern kurzkettiger aliphatischer Alkohole aus freie Fettsäuren enthaltenden Fetten und/oder Ölen | |
EP0184740B1 (de) | Verfahren zur Herstellung von Fettsäuremethylestern | |
EP0164643A2 (de) | Verfahren zur Herstellung von Fettsäureestern kurzkettiger Alkohole | |
DE69005501T2 (de) | Verfahren zum Herstellen von Niedrigalkylfettsäuremonoester. | |
WO1995011210A1 (de) | Verfahren zur herstellung von fettalkoholen auf pflanzlicher basis durch fraktionierung | |
DE3501761A1 (de) | Verfahren zur vorveresterung freier fettsaeuren in rohfetten und/oder -oelen | |
DE4422858C1 (de) | Ungesättigte Fettalkohole mit verbessertem Kälteverhalten | |
DE4242466C2 (de) | Verfahren zur Herstellung von Fettalkoholen | |
EP0000916B1 (de) | Verfahren zur Herstellung von Fettsäurenitrilen und Glycerin aus Glyceriden, insbesondere aus natürlichen Fetten und Oelen | |
DE19750800C2 (de) | Verfahren zur Herstellung ungesättigter Palmfettalkohole | |
DE19600025A1 (de) | Verfahren zur Herstellung von Fettstoffen | |
AT392977B (de) | Verfahren zur aufbereitung der bei der umesterung von fetten und oelen mit niederen alkoholen anfallenden glycerinphase | |
DE3639857A1 (de) | Verfahren zur herstellung von fettsaeurenitrilen und glycerin aus glyceriden | |
WO2004055142A1 (de) | Verfahren zur herstellung von konjugierter linolsäure | |
DE19912684C2 (de) | Verfahren zur Herstellung von Kokos- und/oder Palmkernfettalkoholen | |
DE19750801C2 (de) | Verfahren zur Herstellung ungesättigter Kokos- und/oder Palmkernfettalkohole | |
DE19803053C1 (de) | Verfahren zur Herstellung von C¶1¶¶2¶-C¶1¶¶8¶-Fettsäureniedrigalkylestern | |
DE19736737C2 (de) | Verfahren zu Herstellung von oxidationsstabilen Oleinen und ihre Verwendung zur Herstellung von Wasch- und Reinigungsmitteln, kosmetischen und/oder pharmazeutischen Formulierungen, ungesättigten Fettalkoholen oder Estern | |
DE2737607A1 (de) | Verfahren zur herstellung von fettsaeurenitrilen und glycerin aus glyceriden, insbesondere aus natuerlichen fetten und oelen | |
DE3244752A1 (de) | Verfahren zur herstellung von fettsaeurenitrilen und glycerin aus glyceriden, insbesondere aus natuerlichen fetten und oelen | |
DE2111669A1 (de) | Herstellung von Alkoholen | |
DE19912683C2 (de) | Verfahren zur Herstellung von Palmfettalkoholen | |
DE102011012177A1 (de) | Verfahren zum Gewinnen von Fettalkoholen aus Abfallfetten oder Abfallölen | |
DE1961861A1 (de) | Verfahren zur Herstellung von hellen fabstabilen Fettsaeuren |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): BE CH DE FR GB LU NL SE |
|
17P | Request for examination filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Designated state(s): BE CH DE FR GB LU NL SE |
|
REF | Corresponds to: |
Ref document number: 2860715 Country of ref document: DE Date of ref document: 19810827 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19810831 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19830726 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19920713 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19920715 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19920720 Year of fee payment: 15 Ref country code: GB Payment date: 19920720 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19920807 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19920831 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19921015 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19930816 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19930817 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Effective date: 19930831 Ref country code: BE Effective date: 19930831 |
|
BERE | Be: lapsed |
Owner name: HOECHST A.G. Effective date: 19930831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19940301 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19930816 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19940429 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19940503 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
EUG | Se: european patent has lapsed |
Ref document number: 78100666.3 Effective date: 19940310 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |