EP0127104B1 - Verfahren zur Herstellung von Fettsäureestern kurzkettiger aliphatischer Alkohole aus freie Fettsäuren enthaltenden Fetten und/oder Ölen - Google Patents

Verfahren zur Herstellung von Fettsäureestern kurzkettiger aliphatischer Alkohole aus freie Fettsäuren enthaltenden Fetten und/oder Ölen Download PDF

Info

Publication number
EP0127104B1
EP0127104B1 EP84105794A EP84105794A EP0127104B1 EP 0127104 B1 EP0127104 B1 EP 0127104B1 EP 84105794 A EP84105794 A EP 84105794A EP 84105794 A EP84105794 A EP 84105794A EP 0127104 B1 EP0127104 B1 EP 0127104B1
Authority
EP
European Patent Office
Prior art keywords
phase
esterification
oil phase
entraining agent
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84105794A
Other languages
English (en)
French (fr)
Other versions
EP0127104A1 (de
Inventor
Herbert Dr. Lepper
Lothar Friesenhagen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6200251&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0127104(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP0127104A1 publication Critical patent/EP0127104A1/de
Application granted granted Critical
Publication of EP0127104B1 publication Critical patent/EP0127104B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils

Definitions

  • Fatty acid esters of short-chain aliphatic alcohols are of great technical importance. They are important starting materials for the production of fatty alcohols, for example, but are also used to obtain other oleochemical products, such as soaps, surfactants, alkanolamides, etc.
  • fatty acid esters of lower alcohols takes place predominantly by alcoholysis of the corresponding fats and / or oils of natural origin, which are known to be fatty acid triglycerides. Vegetable and / or animal fats or oils, however, almost always contain considerable amounts of free fatty acids, and this free acid content can vary within a wide range depending on the origin of the material and its history. The free fatty acid content is almost always above 3 percent by weight.
  • the acid number of the commercially available raw coconut oil is normally not more than 10 to 20. With other vegetable oils, the acid number, especially with good qualities, is less than 10, with lower qualities it is, for example, in the range from 20 to 25.
  • Technical tallow based on its acid number evaluated and traded, the content of free fatty acids - depending on the quality - between 1 and 15 to 20 percent by weight - corresponding to an acid number of about 30 to 40 - is sometimes even higher.
  • the acid number of the triglyceride to be used in the transesterification influences the possibilities or process conditions of the transesterification reaction to a considerable extent.
  • the BRADSHAW process used in technology uses e.g. B. the alkali-catalyzed transesterification of fats, the SZ of which should not exceed 1.5, with methyl alcohol as the 1st stage of continuous soap production - see, for example, Ullmann, Encyclopedia of Industrial Chemistry, 3rd edition, volume 7, page 525 ff. 4 Edition, volume 11, page 490 ff.
  • the pressure-free transesterification - which is energetically advantageous due to the lower temperatures and the significantly lower methanol requirement and does not require pressure reactors - reduces the SZ - e.g. B. by preceding conversion of the free fatty acids into the corresponding alkyl or glycerol esters - in advance.
  • this pre-esterification can be carried out alkali-catalyzed at 240 ° C. and 20 bar. In this case too, expensive pressure reactors must be used for the pre-esterification with methanol and other short-chain alcohols.
  • the object of the invention is to facilitate the production of fatty acid esters of lower monoalcohols when using triglyceride starting materials which contain not inconsiderable amounts of free fatty acids.
  • triglyceride starting materials which contain not inconsiderable amounts of free fatty acids.
  • the invention thus aims to realize the production of fatty acid esters of lower alcohols in an energy-saving and cost-effective manner, especially with starting materials such as those obtained in the context of natural, in particular vegetable and / or animal fats and / or oils.
  • the invention proposes a process for the production of fatty acid esters of aliphatic alcohols with 1 to 4 carbon atoms by catalytic transesterification free Natural fats and / or oils containing fatty acids (oil phase) with the corresponding monoalcohols, in which the oil phase in the presence of acidic esterification catalysts at temperatures not above 120 ° C and pressures not above 5 bar and in the presence of a liquid entrainer, a pre-esterification with the monoalcohols subjects, then separates the reaction product by phase separation into an entrainer phase containing the acid catalyst and water of reaction and the treated oil phase, and feeds this oil phase to the transesterification.
  • This process is characterized in that the pre-esterification is carried out in the presence of a liquid entrainer, which is essentially immiscible with the oil phase, and the catalyst-containing entrainer phase is returned to the pre-esterification stage after the phase separation and at least partial removal of the water of reaction.
  • a liquid entrainer which is essentially immiscible with the oil phase
  • the acid number of natural, vegetable and / or animal fats and / or oils can vary within a wide range.
  • the SZ of commercially available raw coconut oil is normally not more than 10 to 20.
  • the SZ is below 10 for good qualities, for example in the range of 20 to 25 for lower qualities, which are evaluated and treated according to the SZ , are in the content of free fatty acids, depending on the quality, between 1 and 15 to 20 percent by weight - d. H. with acid numbers up to, for example, 30 to 40 - but sometimes even higher.
  • Starting materials with SZ up to 60 or even above can be used in the process according to the invention.
  • the first step of the process according to the invention consists in an esterification of the free fatty acids contained in the triglyceride, accelerated by acid catalysts, with the short-chain monoalcohol.
  • the monoalcohols used are C 1 to C 4 monoalcohols and in particular methanol.
  • the monoalcohol, which is also to be used in the subsequent transesterification stage, is expediently already used in this stage of the pre-esterification. According to the invention, this pre-esterification stage takes place in the presence of the entrainer which is liquid under process conditions and which is essentially immiscible with the oil phase.
  • Comparatively mild esterification conditions are chosen so that transesterification of the triglycerides with the monoalcohol does not take place or does not occur to any significant extent.
  • the pre-esterification can be carried out, for example, at temperatures from 40 to 120 ° C., preferably at 50 to 100 ° C., working without pressure or at best with slightly increased pressures which are not above 5 bar. The use of pressure reactors is therefore not necessary here.
  • Suitable entraining agents are in particular sufficiently high-boiling polyfunctional alcohols and / or their ethers or partial ethers which are liquid at 50 ° C. and preferably already at room temperature. Accordingly, suitable liquid entraining agents are, for example, ethylene glycol, propylene glycol, polyethylene glycols, glycol ethers, for example propyl glycol, or diglycol ethers such as methyl diglycol.
  • suitable liquid entraining agents are, for example, ethylene glycol, propylene glycol, polyethylene glycols, glycol ethers, for example propyl glycol, or diglycol ethers such as methyl diglycol.
  • glycerin is particularly suitable as a liquid entrainer. Glycerin is released anyway in the subsequent stage of the transesterification. The choice of glycerin as an entrainer in the first stage of the process thus brings understandable further process simplifications.
  • the entrainer serves in particular as a liquid carrier for the acid catalyst in the first stage (pre-esterification).
  • All acidic, non-volatile esterification catalysts are in principle suitable, for example corresponding systems based on Lewis acids, low-volatile inorganic acids and / or their acidic partial esters, heteropolyacids and the like.
  • a particularly suitable class of acidic catalysts are organic sulfonic acids can be described for example by the general formula RS0 3 H, where R represents an alkyl, aryl or alkaryl radical.
  • suitable sulfonic acids are methanesulfonic acid, toluenesulfonic acid, naphthalenesulfonic acid or alkylbenzenesulfonic acid.
  • sulfuric acid or its half-ester can be used as the non-volatile inorganic acid.
  • Suitable heteropolyacids are, for example, the tungstic or the molybdate phosphoric acids.
  • the reaction of the free fatty acids with the monoalcohols takes place as the fastest reaction under the conditions of the pre-esterification stage chosen according to the invention, so that not only the transesterification of the triglycerides with the monoalcohol but also the reaction of the free fatty acids with the glycerol used as entrainer does not or not to any appreciable extent entry.
  • the glycerol added during the pre-esterification - or the other entraining agents mentioned - has a very important function in the process according to the invention: glycerol is only soluble to a very small extent in triglycerides under the chosen reaction conditions.
  • the acidic esterification catalysts and the water of reaction formed during the esterification dissolve much better in the glycerol than in the triglycerides. The result of this is that after the esterification, virtually the entire amount of the esterification catalyst used and the water of reaction formed are in the glycerol phase. Accordingly, the oil phase is practically free of acid catalyst and water of reaction, both of which would interfere with the further reaction in the subsequent alkali-catalyzed reaction.
  • the catalyst-containing glycerol phase can be freed from water of reaction and, if desired, from excess alcohol after it has been discharged from the first process stage, so that the catalyst-containing glycerol phase can be recycled to the pre-esterification stage.
  • the glycerin - or rather the entrainer which is not miscible with the oil phase - thus serves practically as a liquid carrier substance for the catalyst used and discharges the water of reaction formed in the first process stage from the oil phase.
  • the amount of acid catalyst used in the pre-esterification influences the speed of this pre-esterification within certain limits. Since the catalyst can be recovered and recycled practically quantitatively in a simple manner according to the invention, a restriction of the amount of catalyst is not necessary for reasons of cost. In general, amounts of catalyst in the range from 0.5 to 5.0 percent by weight, based on the oil phase used, will be used. The use of smaller or larger quantities is not excluded.
  • the amount of entrainer is also hardly influenced by cost considerations, since the entrainer is recovered and recycled practically quantitatively. However, the following point of view is important:
  • the amount of entrainer - for example glycerin - must be coordinated with the amount of monofunctional alcohol used in the pre-esterification in such a way that, after the pre-esterification, there is a sufficient difference in density between the oil phase and the entrainer phase for a satisfactory phase separation is present.
  • a characteristic density value for the oil phase is, for example, 0.88.
  • the density of methanol is 0.79 and that of glycerin is 1.25. Methanol and glycerin are homogeneously miscible, water of reaction and acid catalyst additionally complicate this phase.
  • the two-phase reaction product from the pre-esterification will have the oil phase as the upper phase and the entrainer phase as the lower phase.
  • simple preliminary tests can be used to determine which mixing ratios of monoalcohol and entrainer, in particular glycerol, are particularly expedient in order to facilitate the phase separation after completion of the pre-esterification.
  • the following mixing ratios are preferably used: 5 to 50 parts by volume, in particular 5 to 25 parts by volume of the liquid entraining agent are usually used per 100 parts by volume of oil phase, while 10 to 50 parts by volume, preferably 15 to 30 parts by volume, of the monoalcohol are used at the same time.
  • the amount of monoalcohol used has a positive influence on the speed and completeness of the esterification of the free fatty acids in the first stage of the process, although the solubility of the monoalcohol in the triglyceride is limited and is given as constant for a given reaction temperature. Nevertheless, it has been shown that an increase in the amount of monoalcohol causes a faster and more complete esterification of the free fatty acids. For cost reasons, however, it is advisable to limit the amount of monoalcohol in the pre-esterification, as stated, since the reprocessing of the excess alcohol is a not inconsiderable cost factor.
  • the pre-esterification can be carried out batchwise or continuously.
  • the starting materials - for example methanol, glycerol and oil phase - can be carried out in cocurrent, but also in countercurrent.
  • the mixture of monoalcohol and liquid entrainer is expediently counter-directed to the oil phase.
  • the subsequent phase separation of the reaction product from the pre-esterification is easy to carry out due to the difference in density between the two phases. Normally, a simple settling tank can be used for this.
  • the separated oil phase (195 kg) contained 10.2 percent by weight of methanol and had an acid number of 0.8. From the sulfur content of the oil phase (26 ppm) it can be calculated - taking into account the sulfur content of the coconut oil used (12 ppm) - that more than 99 percent by weight of the p-toluenesulfonic acid used remained in the glycerol phase.
  • the separated glycerol phase (45 kg) contained 45 weight percent methanol, 1.3 weight percent water (0.58 kg). The latter corresponds to 92 percent by weight of the water of reaction formed in the reduction of the acid number from 12 to 0.8 by esterification.
  • the glycerol phase was freed from methanol and water by distillation. 20 kg of a 2.8 percent by weight water-containing methanol were obtained as the distillate.
  • the distillation residue of the glycerol phase (25 kg) had an acid number of 20.6. This corresponds to 99 percent by weight of the p-toluenesulfonic acid used.
  • the oil phase was transesterified to the corresponding methyl esters with the addition of 0.35 kg of sodium methylate (as a 30% solution in methanol) and 20 l of methanol at 60-65 ° C.
  • a two-phase reaction mixture was formed (methyl ester phase and glycerol phase).
  • the upper phase was then washed with water.
  • the degree of conversion in the crude methyl ester thus freed from methanol and glycerol residues was determined via the content of bound glycerol.
  • the degree of conversion of the raw methyl ester was 97%.
  • the distillation residue of the glycerol phase which had been obtained in the pre-esterification in Example 1, was reacted together with 200 l of coconut oil (acid number - 12) and 40 l of methanol with stirring and reflux - without the addition of fresh glycerol and fresh catalyst.
  • the oil phase obtained in this way had an acid number of 0.7 and a sulfur content of 28 ppm.
  • the glycerol phase was worked up as in Example 1.
  • the residue of the glycerol phase (acid number - 20.2) was used again and again in 9 subsequent batches without further addition of glycerol or catalyst.
  • the activity of the recycled p-toluenesulfonic acid in the pre-esterification was still good.
  • the p-toluenesulfonic acid was recovered practically quantitatively with the glycerol phase.
  • the oil phase obtained in this pre-esterification had an acid number of 0.5. As the acid analysis showed, more than 99 percent by weight of the methanesulfonic acid used was in the glycerol phase obtained.
  • Palm oil with an acid number of 14.5 was pre-esterified analogously to Example 1, methanol, 20 l glycerol and 1.6 kg p-toluenesulphonic acid being used for 200 l oil.
  • the resulting oil phase (acid number 0.7) was transesterified after separation of the glycerol phase with the addition of 0.35 kg sodium methylate and 15.8 kg methanol at 65 ° C.
  • the crude methyl ester worked up analogously to Example 1 contained 0.4 percent by weight of bound glycerol. The degree of conversion of the triglyceride used was 96%.
  • coconut oil with an acid number of 14 was pre-esterified with ethanol analogously to Example 1, using 40 liters of ethanol, 1.6 kg of p-toluenesulfonic acid and 200 liters of polyethylene glycol of average molecular weight 600 instead of glycerol for 200 liters of oil.
  • the mixture was heated to 80 ° C. for about 30 minutes with stirring.
  • the acid number of the coconut oil obtained after separation of the glycerol phase was 0.9.
  • the coconut oil was then transesterified with ethanol with the addition of 0.2 percent by weight of KOH, based on the amount of oil used, to give coconut fatty acid ethyl ester at a temperature of 80.degree.
  • the content of the crude ethyl ester in bound glycerol was 0.7 percent by weight.
  • the conversion of coconut oil to butyl coconut fatty acid was carried out by first reacting 20 l of coconut oil with 4 l of butanol and 2 l of glycerol in the presence of 0.2 kg of p-toluenesulfonic acid with stirring at 120.degree. After cooling to 80-90 ° C., the glycerol phase was separated off. The oil phase had an acid number of 0.8 and was then transesterified with butanol in the presence of potassium hydroxide as a catalyst to give the corresponding coconut fatty acid ester with an approximately 95% degree of conversion.
  • coconut oil with the acid number 16 was pre-esterified with methanol in such a way that 20 l coconut oil, 4 l methanol and 1.8 kg polyethylene glycol of average molecular weight 3000 in the presence of 160 g p-toluenesulfonic acid in a closed stirred container at 100 ° C. and slightly overpressure ( approx. 2 bar) was implemented. After a reaction time of 15 minutes, the acid number of the coconut oil was 0.5. After cooling to 60 ° C, the polyethylene glycol phase was drained. The deacidified coconut oil was transesterified in the presence of 0.2 percent by weight sodium methylate with methanol at 65 ° C. with a 97% degree of conversion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fats And Perfumes (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

  • Fettsäureester kurzkettiger aliphatischer Alkohole, insbesondere solcher mit bis zu 4 C-Atomen und insbesondere Fettsäuremethylester besitzen große technische Bedeutung. Sie sind beispielsweise wichtige Ausgangsmaterialien für die Herstellung von Fettalkoholen, werden aber auch zur Gewinnung anderer fettchemischer Produkte, beispielsweise von Seifen, Tensiden, Alkanolamiden usw. eingesetzt.
  • Die technische Herstellung von Fettsäureestern niederer Alkohole erfolgt Überwiegend durch Alkoholyse der entsprechenden Fette und/oder Öle natürlichen Ursprungs, die bekanntlich Fettsäuretriglyceride sind. Pflanzliche und/oder tierische Fette bzw. Öle enthalten allerdings fast immer beträchtliche Mengen an freien Fettsäuren, wobei dieser Gehalt an freien Säuren je nach Ursprung des Materials und seiner Vorgeschichte in einem weiten Bereich schwanken kann. Fast immer liegt der Gehalt an freien Fettsäuren oberhalb von 3 Gewichtsprozent. Die Säurezahl des handelsüblichen rohen Kokosöls liegt normalerweise nicht über 10 bis 20. Bei anderen pflanzlichen Ölen liegt die Säurezahl, insbesondere bei guten Qualitäten, unter 10, bei minderen Qualitäten liegt sie beispielsweise im Bereich von 20 bis 25. Technische Talge, die nach ihrer Säurezahl bewertet und gehandelt werden, liegen im Gehalt an freien Fettsäuren - je nach Qualität - zwischen 1 und 15 bis 20 Gewichtsprozent - entsprechend einer Säurezahl von etwa 30 bis 40 - teilweise auch noch höher.
  • Die Säurezahl des in die Umesterung einzusetzenden Triglycerids beeinflußt die Möglichkeiten bzw. Verfahrensbedingungen der Umesterungsreaktion in beträchtlichem Ausmaß.
  • Die Herstellung von Fettsäureestern durch Alkoholyse von Fetten und/oder Ölen kann dementsprechend technisch nach verschiedenen Verfahren durchgeführt werden:
    • In Gegenwart von Alkalikatalysatoren können Neutralfette schon bei Temperaturen von 30 bis 70 °C mit einem 50 bis 100 prozentigen Überschuß über die stöchiometrisch erforderliche Menge Alkohol glatt in die entsprechenden Alkylester umgewandelt werden. Hierbei sind allerdings nur solche Fette und Öle problemlos umzusetzen, deren Gehalt an freien Fettsäuren möglichst unter 0,5 , Gewichtsprozent liegt, entsprechend einer Säurezahl (SZ) der Triglyceride von etwa 1 und weniger.
  • Das in der Technik angewandte BRADSHAW-Verfahren benutzt z. B. die alkalikatalysierte Umesterung von Fetten, deren SZ nicht über 1,5 liegen soll, mit Methylalkohol als 1. Stufe einer kontinuierlichen Seifenherstellung - vergl. beispielsweise Ullmann, Enzyklopädie der technischen Chemie, 3. Auflage, Band 7, Seite 525 ff. 4. Auflage, Band 11, Seite 490 ff.
  • Nach einem anderen technischen Verfahren - siehe Ullmann aaO. 4. Auflage, Band 11, Seite 432 - können auch Fette und Öle mit höheren Säurezahlen umgeestert werden. Bei diesem Verfahren wird jedoch die Herstellung von Fettsäuremethylestern in Gegenwart von Alkali-oder Zink-Katalysatoren bei 240°C unter erhöhtem Druck (ca. 100 bar) mit deutlichem Methanolüberschuß (7 bis 8 facher molarer Überschuß) durchgeführt.
  • Wegen des fast immer vorliegenden beträchtlichen Gehaltes an freien Fettsäuren in technischen Fetten und Ölen natürlichen Ursprungs, setzt die drucklose Umesterung - die wegen der niedrigeren Temperaturen und des deutlich geringeren Methanolbedarfs energetisch vorteilhaft ist und ohne Druckreaktoren auskommt - eine Verringerung der SZ - z. B. durch vorhergehende Umwandlung der freien Fettsäuren in die entsprechenden Alkyl- oder Glycerinester - voraus.
  • Diese Vorveresterung kann gemäß Ullmann aaO, 4. Auflage, Band 11, Seite 432 alkalikatalysiert bei 240 °C und 20 bar durchgeführt werden. Auch in diesem Fall müssen bei der Vorveresterung mit Methanol und anderen kurzkettigen Alkoholen teure Druckreaktoren verwendet werden.
  • Aus der US-A-4164 506 ist ein Vorveresterungsverfahren bekannt, bei dem man einen Überschuß des für die Veresterung der freien Fettsäuren eingesetzten kurzkettigen Alkohols als Schleppmittel benutzt. In diesem Fall is das Schleppmitel mit der Ölphase in einem gewissen Ausmaß mischbar. Ein hinreichender Trenneffekt wird deshalb nur dann erreicht, wenn beträchtliche Mengen des jeweligen Alkohols eingesetzt werden.
  • Der Erfindung liegt die Aufgabe zugrunde, die Herstellung von Fettsäureestern niederer Monoalkohole beim Einsatz solcher Triglycerid-Ausgangsmaterialien zu erleichtern, die nicht unbeträchtliche Mengen an freien Fettsäuren enthalten. Ausgehend von der Kombination einer Vorveresterung der freien Säuren mit anschließender Umesterung, sollen beide Verfahrensstufen bei vergleichsweise niedrigen Temperaturen und ohne Verwendung von für höhere Drucke ausgelegten Reaktoren durchgeführt werden können.
  • Darüber hinaus soll der beispielsweise in der Druckumesterung erforderliche hohe Alkoholüberschuß reduziert werden können, der über die notwendigen Aufarbeitungs- und Reinigungsschritte einen nicht zu unterschätzenden Kostenfaktor darstellt. Insgesamt will die Erfindung damit die Herstellung von Fettsäureestern niederer Alkohole energiesparend und kostengünstig, gerade auch mit solchen Ausgangsmaterialien, verwirklichen, wie sie im Rahmen natürlicher, insbesondere pflanzlicher und/oder tierischer Fette und/oder Öle anfallen.
  • Zur Lösung dieser Aufgabe schlägt die Erfindung ein Verfahren zur Herstellung von Fettsäureestern aliphatischer Alkohole mit 1 bis 4 C-Atomen durch katalytische Umesterung freie Fettsäuren enthaltender natürlicher Fette und/oder Öle (Ölphase) mit den entsprechenden Monoalkoholen vor, bei dem man die Ölphase in Gegenwart saurer Veresterungskatalysatoren bei Temperatuien nicht uber 120°C und Drucken nicht über 5 bar und in Gegenwart eines flüssigen Schleppmittels einer Vorveresterung mit den Monoalkoholen unterwirft, anschließend das Reaktionsprodukt durch Phasentrennung in eine den sauren Katalysator und Reaktionswasser enthaltende Schleppmittelphase und die behandelte Ölphase trennt, und diese Ölphase der Umesterung zuführt. Dieses Verfahren ist dadurch gekennzeichnet, daß man die Vorveresterung in Gegenwart eines mit der Ölphase im wesentlichen nicht mischbaren flüssigen Schleppmittels durchführt und die katalysatorhaltige Schleppmittelphase nach der Phasentrennung und wenigstens teilweiser Entfernung des Reaktionswassers in die Stufe der Vorveresterung zurückführt.
  • Das erfindungsgemäße Verfahren läßt sich demgemäß durch die folgenden vier Schritte darstellen:
    • 1. Umsetzung des freie Fettsäuren enthaltenden Triglycerids mit dem kurzkettigen Monoalkohol in Gegenwart eines sauren Katalysators, jedoch unter solchen Verfahrensbedingungen, daß weitgehend selektiv die freien Fettsäuren des Einsatzmaterials in die entsprechenden Alkylester umgewandelt werden. Dabei wird in Gegenwart eines mit dem Triglycerid-Einsatzmaterial im wesentlichen nicht mischbaren unter Verfahrensbedingungen flüssigen Schleppmittels gearbeitet. In dieser Verfahrensstufe der Vorveresterung gelingt es ohne Schwierigkeiten, unter den nachstehend noch im einzelnen geschilderten, milden Bedingungen, die SZ des Triglycerids auf Werte im Bereich von 1 oder darunter herabzusetzen.
    • 2. Abtrennung der Schleppmittelphase, die praktisch die gesamte Menge des eingesetzten Katalysators und des bei der Veresterung gebildeten Reaktionswassers sowie den im Reaktionsgemisch noch vorliegenden freien Anteil des Monoalkohols enthält, aus dem zweiphasigen Reaktionsgemisch.
    • 3. Entfernung von Reaktionswasser und vorzugsweise auch dem Alkohol aus der Schleppmittelphase - bevorzugt durch Destillation - und Recyclisierung des den Katalysator enthaltenden Schleppmittels in die Stufe der Vorveresterung gemäß Ziffer 1.
    • 4. Nachfolgende Umesterung des Triglycerids mit nur noch geringem Gehalt an freier Fettsäure mit dem monofunktionellen Alkohol unter energie- und kostengünstigen Bedingungen in an sich bekannter Weise, wobei insbesondere unter Verwendung eines basischen Katalysators gearbeitet werden kann.
  • Die Säurezahl natürlicher, pflanzlicher und/oder tierischer Fette und/oder Öle kann in einem weiten Bereich schwanken. So liegt die SZ des handelsüblichen rohen Kokosöls normalerweise nicht über 10 bis 20. Bei anderen pflanzlichen Ölen ist die SZ bei guten Qualitäten unterhalb 10, bei minderen Qualitäten beispielsweise im Bereich von 20 bis 25. Technische Talge, die nach der SZ bewertet und behandelt werden, liegen im Gehalt an freien Fettsäuren, je nach Qualität, zwischen 1 und 15 bis 20 Gewichtsprozent - d. h. bei Säurezahlen bis zu beispielsweise 30 bis 40 - zum Teil aber auch noch höher. So können im erfindungsgemäßen Verfahren Ausgangsmaterialien mit SZ bis 60 oder auch darüber eingesetzt werden.
  • Der erste Schritt des erfindungsgemäßen Verfahrens besteht in einer durch saure Katalysatoren beschleunigten Veresterung der im Triglycerid enthaltenen freien Fettsäuren mit dem kurzkettigen Monoalkohol. Die angewendeten Monoalkohole sind C1 bis C4 - Monoalkohole und insbesondere Methanol. Zweckmäßigerweise wird in dieser Stufe der Vorveresterung bereits der Monoalkohol eingesetzt, der auch in der nachfolgenden Umesterungsstufe Verwendung finden soll. Diese Vorveresterungsstufe findet erfindungsgemäß in Gegenwart des unter Verfahrensbedingungen flüssigen Schleppmittels statt, das mit der Ölphase im wesentlichen nicht mischbar ist. Dabei werden so vergleichsweise milde Veresterungsbedingungen gewählt, daß eine Umesterung der Triglyceride mit dem Monoalkohol nicht oder in nicht wesentlichen Ausmaße stattfindet. Die Vorveresterung kann beispielsweise bei Temperaturen von 40 bis 120 °C, vorzugsweise bei 50 bis 100°C durchgeführt werden, wobei drucklos oder mit bestenfalls schwach erhöhten Drucken gearbeitet wird, die nicht oberhalb 5 bar liegen. Ein Einsatz von Druckreaktoren ist hier also nicht erforderlich.
  • Als Schleppmittel eignen sich insbesondere hinreichend hochsiedende, bei 50°C und vorzugsweise auch schon bei Raumtemperatur flüssige polyfunktionelle Alkohole und/oder ihre Ether bzw. Partialether. Geeignete flüssige Schleppmittel sind dementsprechend beispielsweise Ethylenglykol, Propylenglykol, Polyethylenglykole, Glykolether, beispielsweise Propylglykol, oder Diglykolether wie Methyldiglykol. Ganz besonders eignet sich allerdings als flüssiges Schleppmittel Glycerin. Glycerin wird in der nachfolgenden Stufe der Umesterung ohnehin freigesetzt. Die Auswahl des Glycerins als Schleppmittel schon in der ersten Verfahrensstufe bringt damit verständliche weitere Verfahrensvereinfachungen.
  • Das Schleppmittel dient insbesondere als flüssiger Träger für den sauren Katalysator in der ersten Stufe (Vorveresterung). Alle sauren, nicht flüchtigen Veresterungskatalysatoren sind grundsätzlich geeignet, beispielsweise also entsprechende Systeme auf Basis von LewisSäuren, schwerflüchtige anorganische Säuren und/oder ihre sauren Partialester, Heteropolysäuren und dergleichen. Eine besonders geeignete Klasse der sauren Katalysatoren sind organische Sulfonsäuren, die beispielsweise durch die allgemeine Formel RS03H beschrieben werden können, wobei R einen Alkyl-, Aryl- oder Alkarylrest darstellt. Beispiel geeigneter Sulfonsäuren sind Methansulfonsäure, Toluolsulfonsäure, Naphthalinsulfonsäure oder Alkylbenzolsulfonsäure. Als schwerflüchtige anorganische Säure kann beispielsweise Schwefelsäure oder ihr Halbester Verwendung finden. Geeignete Heteropolysäuren sind etwa die Wolframato- oder die Molybdato-Phosphorsäuren.
  • Die Reaktion der freien Fettsäuren mit den Monoalkoholen verläuft unter den erfindungsgemäß gewählten Bedingungen der Vorveresterungsstufe als schnellste Reaktion, so daß nicht nur die Umesterung der Triglyceride mit dem Monoalkohol sondern auch die Reaktion der freien Fettsäuren mit dem als Schleppmittel eingesetzten Glycerin nicht oder nicht in nennenswertem Umfang eintritt.
  • Dem bei der Vorveresterung zugesetzten Glycerin - oder den anderen genannten Schleppmitteln - kommt im erfindungsgemäßen Verfahren eine sehr wichtige Funktion zu: Glycerin ist unter den gewählten Umsetzungsbedingungen nur in sehr geringem Ausmaß in Triglyceriden löslich. Andererseits lösen sich die sauren Veresterungskatalysatoren sowie das bei der Veresterung gebildete Reaktionswasser sehr viel besser im Glycerin als in den Triglyceriden. Das hat zur Folge, daß nach der Veresterung praktisch die gesamte Menge des eingesetzten Veresterungskatalysators und das gebildete Reaktionswasser sich in der Glycerinphase befinden. Die Ölphase ist dementsprechend praktisch von saurem Katalysator und von Reaktionswasser frei, die beide die weitere Umsetzung in der nachfolgenden alkalikatalysierten Umsetzung stören würden.
  • Durch einfache Destillation läßt sich die katalysatorhaltige Glycerinphase nach ihrer Ausschleusung aus der ersten Verfahrensstufe von Reaktionswasser und gewünschtenfalls von Alkoholüberschüssen befreien, so daß die katalysatorhaltige Glycerinphase im Kreislauf in die Stufe der Vorveresterung zurückgeführt werden kann. Das Glycerin - oder besser gesagt das mit der Ölphase nicht mischbare Schleppmittel - dient somit praktisch als flüssige Trägersubstanz für den eingesetzten Katalysator und schleust das in der ersten Verfahrensstufe gebildete Reaktionswasser aus der Ölphase aus.
  • Unter den geschilderten milden Bedingungen der ersten Verfahrensstufe bleibt die Menge des eingesetzten und recyclisierten Schleppmittels, insbesondere Glycerins, praktisch konstant, da seine Reaktion mit den freien Fettsäuren noch nicht stattfindet.
  • Die in der Vorveresterung eingesetzte Menge an saurem Katalysator beeinflußt in bestimmten Grenzen die Geschwindigkeit dieser Vorveresterung. Da erfindungsgemäß der Katalysator auf einfache Weise praktisch quantitativ wiedergewonnen und zurückgeführt werden kann, ist eine Beschränkung der Katalysatormenge aus Kostengründen nicht erforderlich. Im allgemeinen werden Katalysatormengen im Bereich von 0,5 bis 5,0 Gewichtsprozent - bezogen auf eingesetzte Ölphase - verwendet werden. Die Verwendung kleinerer oder größerer Mengen ist jedoch nicht ausgeschlossen.
  • Die Menge des Schleppmittels wird ebenfalls durch Kostengesichtspunkte kaum beeinflußt, da das Schleppmittel praktisch quantitativ wiedergewonnen und zurückgeführt wird. Wichtig ist allerdings der folgende Gesichtspunkt: Die Menge des Schleppmittels - also beispielsweise des Glycerins - ist mit der in der Vorveresterung eingesetzten Menge des monofunktionellen Alkohols so abzustimmen, daß im Anschluß an die Vorveresterung ein für eine zufriedenstellende Phasentrennung ausreichender Dichteunterschied zwischen der Ölphase und der Schleppmittelphase vorliegt. Ein charakteristischer Dichtewert für die Ölphase ist beispielsweise 0,88. Die Dichte von Methanol beträgt 0,79 und die von Glycerin 1,25. Methanol und Glycerin sind homogen mischbar, Reaktionswasser und saurer Katalysator beschweren zusätzlich diese Phase. In der Regel wird also das zweiphasige Reaktionsprodukt aus der Vorveresterung die Olphase als obere und die Schleppmittelphase als untere Phase aufweisen. Soweit erforderlich, kann durch einfache Vorversuche festgestellt werden, welche Mischungsverhältnisse von Monoalkohol und Schleppmittel, insbesondere Glycerin, besonders zweckmäßig sind, um die Phasentrennung nach Abschluß der Vorveresterung zu erleichtern. Bevorzugt wird dabei mit den folgenden Mischungsverhältnissen gearbeitet: Auf 100 Volumenteile Ölphass kommen üblicherweise 5 bis 50 Volumenteile, insbesondere 5 bis 25 Volumenteile des flüssigen Schleppmittels zum Einsatz, während gleichzeitig 10 bis 50 Volumenteile, vorzugsweise 15 bis 30 Volumenteile des Monoalkohols eingesetzt werden.
  • Die Einsatzmenge des Monoalkohols hat dabei einen positiven Einfluß auf die Geschwindigkeit und Vollständigkeit der Veresterung der freien Fettsäuren in der ersten Verfahrensstufe, obwohl die Löslichkeit des Monoalkohols im Triglycerid begrenzt und für eine gegebene Umsetzungstemperatur als konstant vorgegeben ist. Gleichwohl hat sich gezeigt, daß durch eine Erhöhung der Menge des Monoalkohols eine schnellere und vollständigere Veresterung der freien Fettsäuren bewirkt wird. Aus Kostengründen empfiehlt es sich allerdings in der Vorveresterung die Menge des Monoalkohols - wie angegeben - nach obenhin zu begrenzen, da die Wiederaufarbeitung des überschüssigen Alkohols einen nicht unbeträchtlichen Kostenfaktor darstellt.
  • Die Vorveresterung kann diskontinuierlich oder auch kontinuierlich durchgeführt werden. Bei der kontinuierlichen Vorveresterung können die Einsatzstoffe - beispielsweise also Methanol, Glycerin und Ölphase - im Gleichstrom, aber auch im Gegenstrom, geführt werden.
  • Wird im Gegenstrom gearbeitet, so wird zweckmäßigerweise die Mischung von Monoalkohol und flüssigem Schleppmittel der Ölphase entgegengeführt.
  • Die nachfolgende Phasentrennung des Reaktionsproduktes aus der Vorveresterung ist aufgrund des Dichteunterschiedes zwischen den beiden Phasen einfach durchzuführen. Im Normalfall kann hierfür ein einfacher Absetzbehälter zur Verwendung kommen.
  • Die Abtrennung vom Reaktionswasser und gewünschtenfalls Alkoholüberschuß aus der Schleppmittelphase durch Destillation erfolgt in an sich bekannter Weise. Schließlich wird dann auch die Umesterung des entsäuerten vorveresterten Öls in Gegenwart eines alkalischen Katalysators nach an sich bekannter Weise vorgenommen, vergleiche hierzu den eingangs zitierten Stand der Technik.
  • Die nachfolgenden Beispiele schildern einzelne bestimmte Ausführungsformen des erfindungsgemäßen Verfahrens.
  • Beispiel 1
  • In einem 400 I Rührbehälter wurden 200 I (174 kg) Kokosöl der Säurezahl 12 mit 50 I Methanol, 20 I Glycerin und 1,6 kg p-Toluolsulfonsäure unter Rühren 30 Minuten lang zum Rückflußkochen erhitzt. Anschliessend wurde das Reaktionsgemisch längere Zeit bei 50-60° C belassen, wobei eine saubere Trennung in eine Öl- und eine Glycerinphase eintrat.
  • Die abgetrennte Ölphase (195 kg) enthielt 10,2 Gewichtsprozent Methanol und besaß eine Säurezahl von 0,8. Aus dem Schwefelgehalt der Ölphase (26 ppm) läßt sich - unter Berücksichtigung des Schwefelgehaltes des eingesetzten Kokosöls (12 ppm) - errechnen, daß mehr als 99 Gewichtsprozent der eingesetzten p-Toluolsulfonsäure in der Glycerinphase verblieben sind.
  • Die abgetrennte Glycerinphase (45 kg) enthielt neben 45 Gewichtsprozent Methanol 1,3 Gewichtsprozent Wasser (0,58 kg). Letzteres entspricht 92 Gewichtsprozent des in der Reduzierung der Säurezahl von 12 auf 0,8 durch Veresterung gebildeten Reaktionswassers. Die Glycerinphase wurde destillativ von Methanol und Wasser befreit. Hierbei fielen 20 kg eines 2,8 Gewichtsprozent Wasser enthaltenden Methanols als Destillat an. Der Destillationsrückstand der Glycerinphase (25 kg) besaß eine Säurezahl von 20,6. Dies entspricht 99 Gewichtsprozent der eingesetzten p-Toluolsulfonsäure.
  • Die Umesterung der Ölphase zu den entsprechenden Methylestern erfolgte unter Zusatz von 0,35 kg Natriummethylat (als 30 %ige Lösung im Methanol) und von 20 I Methanol bei 60 - 65° C. Es bildete sich ein zweiphasiges Reaktionsgemisch (Methylesterphase und Glycerinphase). Die obere Phase (Methylesterphase) wurde anschließend mit Wasser gewaschen. In dem so von Methanol-und Glycerinresten befreiten Rohmethylester wurde der Umsetzungsgrad über den Gehalt an gebundenem Glycerin bestimmt. Der Umsetzungsgrad des Rohmethylesters lag bei 97 %.
  • Beispiel 2
  • Der Destillationsrückstand der Glycerinphase, der im Beispiel 1 bei der Vorveresterung erhalten worden war, wurde zusammen mit 200 I Kokosöl (Säurezahl - 12) und 40 I Methanol unter Rühren und Rückfluß - ohne Zugabe von frischem Glycerin und frischem Katalysatorumgesetzt. Die so gewonnene Ölphase hatte eine Säurezahl von 0,7 und einen Schwefelgehalt von 28 ppm.
  • Die Glycerinphase wurde wie in Beispiel 1 aufgearbeitet. Der Rückstand der Glycerinphase (Säurezahl - 20,2) wurde in 9 folgenden Ansätzen immer wieder eingesetzt ohne weitere Zugabe von Glycerin oder Katalysator. Die Aktivität der zurückgeführten p-Toluolsulfonsäure in der Vorveresterung war unverändert gut. Die p-Toluolsulfonsäure wurde praktisch quantitativ mit der Glycerinphase zurückgewonnen.
  • Beispiel 3
  • Analog Beispiel 1 wurden im Verlauf von 30 Minuten 200 I Kokosöl der Säurezahl 14 mit 50 Methanol und 20 I Glycerin in Gegenwart von 0,8 kg Methansulfonsäure umgesetzt.
  • Die bei dieser Vorveresterung erhaltene Ölphase besaß eine Säurezahl von 0,5. Die eingesetzte Methansulfonsäure befand sich, wie die Säureanalyse zeigte, zu mehr als 99 Gewichtsprozent in der erhaltenen Glycerinphase.
  • Beispiel 4
    • a) Der Einsatz von C10-C12-Alkylbenzolsulfonsäuren anstelle von p-Toluolsulfonsäure (siehe Beispiel 1) erbrachte hinsichtlich der Säurezahl der erhaltenen Ölphase, der Wiedergewinnung des Katalysators, der Abtrennung des Reaktionswassers und des Umsetzungsgrades praktisch die gleichen Ergebnisse wie die mit p-Toluolsulfonsäure durchgeführten Versuche.
    • b) Durchaus vergleichbare Ergebnisse wurden auch erzielt, wenn als Ausgangsmaterial Rindertalg eingesetzt und im übrigen wie in Beispiel 1 gearbeitet wurde.
    Beispiel 5
  • Palmöl der Säurezahl 14,5 wurde analog Beispiel 1 vorverestert, wobei auf 200 I ÖI40 Methanol, 20 I Glycerin und 1,6 kg p-Toluolsulfonsäure eingesetzt wurden. Die hierbei erhaltene Ölphase (Säurezahl 0,7) wurde nach Abtrennung der Glycerinphase unter Zusatz von 0,35 kg Natriummethylat und 15,8 kg Methanol bei 65° C umgeestert. Der analog Beispiel 1 aufgearbeitete Rohmethylester enthielt 0,4 Gewichtsprozent an gebundenem Glycerin. Der Umsetzungsgrad des eingesetzten Triglycerids lag bei 96 %.
  • Beispiel 6
  • Kokosöl der Säurezahl 14 wurde analog dem Beispiel 1 vorverestert, wobei auf 200 I Öl 50 I Methanol, 1,6 kg p-Toluolsulfonsäure und anstelle von Glycerin 25 I Ethylenglykol eingesetzt wurden. Hierbei wie bei der anschließenden Umesterung unter Zusatz von Natriummethylat als Katalysator wurden praktisch gleich gute Umsetzungsgrade wie in Beispiel 1 erhalten.
  • Beispiel 7
  • Kokösöl der Säurezahl 14 wurde mit Ethanol analog Beispiel 1 vorverestert, wobei auf 200 I Öl 40 I Ethanol, 1,6 kg p-Toluolsulfonsäure und anstelle von Glycerin 20 I Polyethylenglykol der mittleren Molmasse 600 eingesetzt wurden. Das Gemisch wurde ca. 30 Min. unter Rühren auf 80° C erhitzt. Die Säurezahl des nach Abtrennung der Glycerinphase erhaltenen Kokosöls lag bei 0,9. Das Kokosöl wurde anschließend mit Ethanol unter Zusatz von 0,2 Gewichtsprozent KOH, bezogen auf die Öleinsatzmenge, zu Kokosfettsäureethylester bei einer Temperatur von 80° C umgeestert. Der Gehalt des rohen Ethylesters an gebundenem Glycerin lag bei 0,7 Gewichtsprozent.
  • Beispiel 8
  • Die Umwandlung von Kokosöl in Kokosfettsäurebutylester wurde in der Weise durchgeführt, daß zunächst 20 I Kokosöl mit 4 I Butanol und 2 I Glycerin in Gegenwart von 0,2 kg p-Toluolsulfonsäure unter Rühren bei 120°C umgesetzt wurde. Nach abkühlen auf 80 - 90° C wurde die Glycerinphase abgetrennt. Die Ölphase besaß eine Säurezahl von 0,8 und wurde anschließend mit Butanol in Gegenwart von Kaliumhydroxid als Katalysator zu dem entsprechenden Kokosfettsäureester mit einem etwa 95 %igen Umsetzungsgrad umgeestert.
  • Beispiel 9
  • Kokosöl der Säurezahl 16 wurde mit Methanol in der Weise vorverestert, daß 20 I Kokosöl, 4 I Methanol und 1,8 kg Polyethylenglykol der mittleren Molmasse 3000 in Gegenwart von 160 g p-Toluolsulfonsäure in einem geschlossenen Rührbehälter bei 100°C und leichtem Überdruck (ca. 2 bar) umgesetzt wurde. Nach einer Reaktionszeit von 15 Minuten lag die Säurezahl des Kokosöls bei 0,5. Nach Abkühlen auf 60° C wurde die Polyethylenglykolphase abgelassen. Das entsäuerte Kokosöl wurde in Gegenwart von 0,2 Gewichtsprozent Natriummethylat mit Methanol bei 65°C mit einem 97 %igen Umsetzungsgrad umgeestert.
  • Beispiel 10
  • Die Umwandlung von Kokosöl (Säurezahl = 16) zu Kokosfettsäuremethylester wurde analog Beispiel 1 durchgeführt, wobei jedoch in der Vorveresterungsstufe Butylglykol anstelle von Glycerin eingesetzt wurde. Die hierbei und bei der nachfolgenden Umesterung erzielten Ergebnisse waren den in Beispiel 1 erhaltenen praktisch gleich.
  • Beispiel 11
    • a) Anstelle des in Beispiel 1 verwendeten Glycerins wurde Propylenglykol mit ebenfalls guten Ergebnissen eingesetzt.
    • b) Anstelle der in Beispiel 1 eingesetzten p-Toluolsulfonsäure wurde 98 gewichtsprozentige Schwefelsäure in einer Menge von 0,25 Gewichtsprozent, bezogen auf eingesetztes Kokosöl, als Katalysator bei der Vorveresterung eingesetzt, wobei gleich gute Ergebnisse wie in Beispiel 1 erhalten wurden.
    • c) Als saurer Katalysator für die Vorveresterung wurde anstelle von p-Toluolsulfonsäure (Beispiel 1) 12-Phosphormolybdänsäure in einer Menge von 1 Gewichtsprozent, bezogen auf eingesetztes Kokosöl, eingesetzt, wobei ebenfalls eine ausreichend gute Vorveresterung der in dem Kokosöl (Säurezahl = 16) enthaltenen freien Fettsäuren durchgeführt werden konnte.

Claims (11)

1. Verfahren zur Herstellung von Fettsäureestern aliphatischer Alkohole mit 1 bis 4 C-Atomen durch katalytische Umesterung freie Fettsäuren enthaltender natürlicher Fette und/oder Öle (Ölphase) mit den entsprechenden Monoalkoholen, bei dem man die Ölphase in Gegenwart saurer Veresterungskatalysatoren bei Temperaturen nicht über 120 °C und Drucken nicht über 5 bar und in Gegenwart eines flüssigen Schleppmittels einer Vorveresterung mit den Monoalkoholen unterwirft, anschließend das Reaktionsprodukt durch Phasentrennung in eine den sauren Katalysator und Reaktionswasser enthaltende Schleppmittelphase und die behandelte Ölphase trennt, und diese Ölphase der Umesterung zuführt, dadurch gekennzeichnet, daß man die Vorveresterung in Gegenwart eines mit der Ölphase im wesentlichen nicht mischbaren flüssigen Schleppmittels durchführt und die katalysatorhaltige Schleppmittelphase nach der Phasentrennung und wenigstens teilweiser Entfernung des Reaktionswassers in die Stufe der Vorveresterung zurückführt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man in der Stufe der Vorveresterung die Säurezahl der behandelten Ölphase auf Werte unterhalb 1 senkt.
3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß man als Schleppmittel hochsiedende, bei 50° C und vorzugsweise auch schon bei Raumtemperatur flüssige polyfunktionelle Alkohole und/oder ihre Ether bzw. Partialether einsetzt.
4. Verfahren nach Ansprüchen 1 - 3, dadurch gekennzeichnet, daß man als Schleppmittel Glycerin einsetzt.
5. Verfahren nach Ansprüchen 1 - 4, dadurch gekennzeichnet, daß die Vorveresterung bei Temperaturen von 40 - 120°C. vorzugsweise bei 50 100°C. und vorzugsweise unter Normaldruck durchgeführt wird.
6. Verfahren nach Ansprüchen 1 - 5, dadurch gekennzeichnet, daß als saurer Katalysator der Vorveresterungsstufe schwerflüchtige Säuren, insbesondere aliphatische und/oder aromatische Sulfonsäuren, eingesetzt werden.
7. Verfahren nach Ansprüchen 1 - 6, dadurch gekennzeichnet, daß das Schleppmittel und insbesondere das Mischungsverhältnis Schleppmittel/Monoalkohol derart gewählt werden, daß ein zur zügigen Phasentrennung hinreichender Dichteunterschied zwischen Ölphase und Monoalkohol enthaltender Schleppmittelphase besteht.
8. Verfahren nach Ansprüchen 1 - 7, dadurch gekennzeichnet, daß auf 100 Volumenteile Olphase 5 - 50 Volumenteile, vorzugsweise 5 - 25 Volumenteile, des flüssigen Schleppmittels und 10 - 50 Volumenteile, vorzugsweise 15 - 30 Volumenteile, des Monoalkohols eingesetzt werden.
9. Verfahren nach Ansprüchen 1 - 8, dadurch gekennzeichnet, daß auch die nachfolgende Umesterung der Glyceride mit den Monoalkoholen bei Temperaturen unterhalb 120°C - vorzugsweise bei Temperaturen von 50-100° C - und Drucken unterhalb 5 bar - vorzugsweise bei Normaldruck - durchgeführt wird, wobei zweckmäßigerweise unter basischer Katalyse gearbeitet wird.
10. Verfahren nach Ansprüchen 1 - 9, dadurch gekennzeichnet, daß Methanol eingesetzt wird.
11. Verfahren nach Ansprüchen 1 - 10, dadurch gekennzeichnet, daß als Ölphase technische Fette und/oder Öle, insbesondere natürlichen Ursprungs, mit Säurezahlen bis 60 oder auch darüber eingesetzt werden, wobei in der Stufe der Vorveresterung eine praktisch selektive Umsetzung des freien Fettsäureanteils zu entsprechenden Estern niederer aliphatischer Alkohole bewirkt wird.
EP84105794A 1983-05-30 1984-05-21 Verfahren zur Herstellung von Fettsäureestern kurzkettiger aliphatischer Alkohole aus freie Fettsäuren enthaltenden Fetten und/oder Ölen Expired EP0127104B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833319590 DE3319590A1 (de) 1983-05-30 1983-05-30 Verfahren zur herstellung von fettsaeureestern kurzkettiger aliphatischer alkohole aus freie fettsaeuren enthaltenden fetten und/oder oelen
DE3319590 1983-05-30

Publications (2)

Publication Number Publication Date
EP0127104A1 EP0127104A1 (de) 1984-12-05
EP0127104B1 true EP0127104B1 (de) 1987-03-18

Family

ID=6200251

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84105794A Expired EP0127104B1 (de) 1983-05-30 1984-05-21 Verfahren zur Herstellung von Fettsäureestern kurzkettiger aliphatischer Alkohole aus freie Fettsäuren enthaltenden Fetten und/oder Ölen

Country Status (8)

Country Link
US (1) US4608202A (de)
EP (1) EP0127104B1 (de)
JP (1) JPS6035099A (de)
BR (1) BR8402569A (de)
DE (2) DE3319590A1 (de)
GB (1) GB2140817B (de)
MY (1) MY8700278A (de)
PH (1) PH19123A (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7951967B2 (en) 2006-04-28 2011-05-31 Sk Chemicals Co., Ltd. Method and apparatus for preparing fatty acid alkyl ester using fatty acid
EP2522711A1 (de) 2011-05-13 2012-11-14 Cognis IP Management GmbH Verfahren zur Herstellung von Oleochemikalien mit vermindertem Gehalt an Nebenprodukten
US8895765B2 (en) 2008-11-07 2014-11-25 Sk Chemicals Co., Ltd. Method and apparatus for preparing alkyl ester fatty acid using fatty acid
EP1322588B1 (de) 2000-10-05 2016-06-29 Bdi-Bioenergy International Ag Verfahren zur herstellung von fettsäurealkylestern

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3444893A1 (de) * 1984-12-08 1986-06-12 Henkel KGaA, 4000 Düsseldorf Verfahren zur herstellung von fettsaeuremethylestern
DE3501761A1 (de) * 1985-01-21 1986-07-24 Henkel KGaA, 4000 Düsseldorf Verfahren zur vorveresterung freier fettsaeuren in rohfetten und/oder -oelen
FR2577569B1 (fr) * 1985-02-15 1987-03-20 Inst Francais Du Petrole Procede de fabrication d'une composition d'esters d'acide gras utilisables comme carburant de substitution du gazole avec de l'alcool ethylique hydrate et composition d'esters ainsi formes
WO1987007632A1 (en) * 1986-06-11 1987-12-17 Bio-Energy Technology Ltd. Bio-fuel production
US4834908A (en) * 1987-10-05 1989-05-30 Basf Corporation Antagonism defeating crop oil concentrates
US4946230A (en) * 1988-04-27 1990-08-07 Mazda Motor Corporation Method and an apparatus for charging an anti-lock brake system with brake liquid
DK0391485T3 (da) * 1989-04-05 1994-04-11 Unilever Plc Fremgangsmåde til fremstilling af lavere alkyl-fedtsyremonoestere
DE4122530A1 (de) * 1991-07-08 1993-01-14 Henkel Kgaa Verfahren zur herstellung von fettsaeureniedrigalkylestern
ES2065666T3 (es) * 1991-09-02 1995-02-16 Primavesi Markus Procedimiento y dispositivo para la preparacion continua de esteres de acidos grasos.
AT397510B (de) * 1991-11-06 1994-04-25 Wimmer Theodor Verfahren zur herstellung von fettsäureestern kurzkettiger alkohole
US5424467A (en) * 1993-07-14 1995-06-13 Idaho Research Foundation Method for purifying alcohol esters
DE4338111A1 (de) * 1993-11-08 1995-05-11 Henkel Kgaa Verfahren zur Herstellung von Fettsäureniedrigalkylestern
FR2748490B1 (fr) * 1996-05-07 1998-06-19 Inst Francais Du Petrole Procede de fabrication d'esters ethyliques
DE19956599C2 (de) * 1999-11-25 2003-11-13 Cognis Deutschland Gmbh Verfahren zur Herstellung von entsäuerten Triglyceriden
EP1339817B1 (de) 2000-12-04 2007-06-13 Westfalia Separator AG Verfahren zur herstellung von fettsaüreestern
US6965044B1 (en) * 2001-07-06 2005-11-15 Iowa State University Research Foundation Method of converting free fatty acids to fatty acid methyl esters with small excess of methanol
DE10154365A1 (de) * 2001-11-06 2003-05-15 Cognis Deutschland Gmbh Verfahren zur Herstellung von Fettsäureestern aus nicht entsäuerten Fetten und Ölen
AT504727A1 (de) * 2002-04-12 2008-07-15 Energea Umwelttechnologie Gmbh Verfahren und anlage zur veresterung von fettsäuren
DE10243700A1 (de) * 2002-09-20 2004-04-01 Oelmühle Leer Connemann Gmbh & Co. Verfahren und Vorrichtung zur Herstellung von Biodiesel
EP1565424A4 (de) * 2002-11-27 2006-05-31 Biodiesel Australia Ltd Herstellungsverfahren für alkylester
KR100566106B1 (ko) * 2003-03-28 2006-03-30 한국에너지기술연구원 바이오디젤유의 제조방법
BR0301103A (pt) * 2003-04-29 2005-10-04 Escola De Quimica Ufrj Processo catalìtico para esterificação de ácidos graxos presentes na borra ácida da palma utilizando catalisadores sólidos ácidos
US7619104B2 (en) * 2005-04-04 2009-11-17 Renewable Products Development Laboratories, Inc. Process for producing biodiesel or fatty acid esters from multiple triglyceride feedstocks
BRPI0502577B1 (pt) * 2005-07-07 2015-11-03 Petroleo Brasileiro Sa processo de craqueamento catalítico para produção de diesel a partir de óleos vegetais
US20070087085A1 (en) * 2005-10-17 2007-04-19 Bunge Oils, Inc. Protein-containing food product and coating for a food product and method of making same
US20080113067A1 (en) * 2005-10-17 2008-05-15 Monoj Sarma Protein-Containing Food Product and Coating for a Food Product and Method of Making Same
KR100782126B1 (ko) * 2006-01-10 2007-12-05 한국에너지기술연구원 오일에 함유된 유리지방산을 제거하기 위한 텅스텐옥사이드 지르코니아 촉매 및 이의 용도
JP2008260819A (ja) * 2007-04-11 2008-10-30 National Institute Of Advanced Industrial & Technology バイオディーゼル燃料の製造方法
US20080282606A1 (en) * 2007-04-16 2008-11-20 Plaza John P System and process for producing biodiesel
BRPI0702373A2 (pt) 2007-05-30 2009-01-20 Petroleo Brasileiro Sa processo para produÇço de biodiesel a partir de àleos vegetais e gorduras utilizando catalisadores heterogÊneos
JPWO2008149661A1 (ja) * 2007-05-31 2010-08-26 国立大学法人京都工芸繊維大学 脂肪酸エステルの製造方法
US20110139106A1 (en) * 2007-08-09 2011-06-16 21St Century R & D, Llc Modification of fats and oils for fuel and lubricating applications
US20090038692A1 (en) * 2007-08-09 2009-02-12 21St Century R & D, Llc Modification of vegetable oils for fuel applications
EP2257518B1 (de) * 2008-04-01 2016-03-09 SK Chemicals Co., Ltd. Verfahren zur herstellung von fettsäurealkylestern unter einsatz von fettsäuren
FR2929621A1 (fr) * 2008-04-08 2009-10-09 Arkema France Utilisation d'acide methane sulfonique pour l'esterification d'acides gras
PL2358851T5 (pl) 2008-11-17 2018-09-28 Basf Se Zastosowanie kwasu metanosulfonowego do wytwarzania estrów kwasów tłuszczowych
AU2009333542A1 (en) 2008-12-08 2011-07-28 Initio Fuels Llc Single step transesterification of feedstock using a gaseous catalyst
ES2713526T3 (es) 2009-07-17 2019-05-22 Korea Advanced Inst Sci & Tech Procedimiento de producción de ésteres alquílicos de ácidos grasos usando microorganismos que tienen capacidad de producir aceite
FR2957075B1 (fr) * 2010-03-04 2012-06-22 Centre Nat Rech Scient Procede d'obtention de compositions de biosolvants par esterification et compositions de biosolvants obtenues
AT510636B1 (de) 2010-10-28 2016-11-15 Wimmer Theodor Verfahren zur herstellung von fettsäureestern niederer alkohole
US9085746B2 (en) 2011-05-13 2015-07-21 Cognis Ip Management Gmbh Process for obtaining oleochemicals with reduced content of by-products
JP2014040527A (ja) * 2012-08-22 2014-03-06 Osaka Prefecture Univ 脂肪酸アルキルエステルの精製方法
KR102327852B1 (ko) 2013-07-22 2021-11-18 에스케이에코프라임 주식회사 지방을 이용한 지방산알킬에스테르의 제조방법
US9328054B1 (en) 2013-09-27 2016-05-03 Travis Danner Method of alcoholisis of fatty acids and fatty acid gyicerides
CN109477225A (zh) 2016-07-18 2019-03-15 巴斯夫欧洲公司 用于缩合反应的低腐蚀链烷磺酸
PT3864118T (pt) 2018-10-10 2022-12-20 Basf Se Método de produção de biogasóleo
US10933111B2 (en) * 2019-01-08 2021-03-02 Boston Biotechnology US CORP Treating dry eye disorders
WO2023159293A1 (pt) * 2022-02-24 2023-08-31 Brasil Bio Fuels S.A Composição, processo para produção de triglicerídeos e glicerídeos parciais de baixa acidez e produto assim obtido

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1421605A (en) * 1921-04-05 1922-07-04 Us Ind Alcohol Co Process for manufacturing esters
US1651666A (en) * 1922-12-22 1927-12-06 Standard Dev Co Process of making esters
US2383632A (en) * 1942-10-17 1945-08-28 Colgate Palmolive Peet Co Process of treating fatty glycerides
US2469371A (en) * 1946-08-14 1949-05-10 Baker Castor Oil Co Process of reacting glyceride oils
US4076948A (en) * 1968-10-10 1978-02-28 El Paso Products Company Process for treatment of adipic acid mother liquor
US3692822A (en) * 1970-04-20 1972-09-19 Gulf Research Development Co Process for preparing esters
JPS5221485A (en) * 1975-08-08 1977-02-18 Mitsubishi Rayon Co Method of dyeing aromatic polyamide fiber with solvent
JPS6025478B2 (ja) * 1977-03-17 1985-06-18 花王株式会社 脂肪酸低級アルコ−ルエステルの製造法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1322588B1 (de) 2000-10-05 2016-06-29 Bdi-Bioenergy International Ag Verfahren zur herstellung von fettsäurealkylestern
US7951967B2 (en) 2006-04-28 2011-05-31 Sk Chemicals Co., Ltd. Method and apparatus for preparing fatty acid alkyl ester using fatty acid
US8895765B2 (en) 2008-11-07 2014-11-25 Sk Chemicals Co., Ltd. Method and apparatus for preparing alkyl ester fatty acid using fatty acid
EP2522711A1 (de) 2011-05-13 2012-11-14 Cognis IP Management GmbH Verfahren zur Herstellung von Oleochemikalien mit vermindertem Gehalt an Nebenprodukten

Also Published As

Publication number Publication date
EP0127104A1 (de) 1984-12-05
GB2140817B (en) 1986-09-17
DE3462698D1 (en) 1987-04-23
DE3319590A1 (de) 1984-12-06
US4608202A (en) 1986-08-26
BR8402569A (pt) 1985-04-23
PH19123A (en) 1986-01-08
GB2140817A (en) 1984-12-05
JPS6035099A (ja) 1985-02-22
GB8413115D0 (en) 1984-06-27
MY8700278A (en) 1987-12-31

Similar Documents

Publication Publication Date Title
EP0127104B1 (de) Verfahren zur Herstellung von Fettsäureestern kurzkettiger aliphatischer Alkohole aus freie Fettsäuren enthaltenden Fetten und/oder Ölen
EP0184740B1 (de) Verfahren zur Herstellung von Fettsäuremethylestern
EP0192035B1 (de) Verfahren zur Vorveresterung freier Fettsäuren in Rohfetten und/oder -ölen
EP1183225B1 (de) Verfahren zur herstellung von fettsäureestern einwertiger alkylalkohole
DE69312841T2 (de) Verbessertes Verfahren zur Herstellung von Esters aus natürlichen Fette
EP0708813B1 (de) Verfahren zur herstellung von fettsäurealkylestern
DE3020612C2 (de) Verfahren zur Herstellung niederer Alkylester von Fettsäuren
AT502218B1 (de) Verfahren zur herstellung von carbonsäurealkylestern
EP0562504A2 (de) Verfahren zur kontinuierlichen Herstellung von C1-bis C4-Alkylestern höherer Fettsäuren
DE69005501T2 (de) Verfahren zum Herstellen von Niedrigalkylfettsäuremonoester.
EP0200982B1 (de) Verfahren zur katalytischen Umesterung von Fettsäureglyceriden mit niederen Alkanolen
WO2002028811A1 (de) Verfahren zur herstellung von fettsäurealkylestern
DE4422858C1 (de) Ungesättigte Fettalkohole mit verbessertem Kälteverhalten
DE19600025C2 (de) Verfahren zur Herstellung von Fettstoffen
EP0771345B1 (de) Ungesättigte fettstoffe mit verbessertem kälteverhalten
EP2358851B1 (de) Verwendung von methansulfonsäure zur herstellung von fettsäureestern
AT410443B (de) Verfahren zur herstellung von fettsäureestern niederer alkohole
DE19908978A1 (de) Verfahren zur Herstellung von Fettsäuremethylestern aus Triglyceriden und Fettsäuren
EP0000916B1 (de) Verfahren zur Herstellung von Fettsäurenitrilen und Glycerin aus Glyceriden, insbesondere aus natürlichen Fetten und Oelen
WO2003004591A1 (de) Verfahren zur umesterung von fett und/oder öl mittels alkoholyse
DE10038456A1 (de) Verfahren zur Gewinnung von Sterinen
AT392977B (de) Verfahren zur aufbereitung der bei der umesterung von fetten und oelen mit niederen alkoholen anfallenden glycerinphase
WO2009056231A1 (de) Kontinuierliches verfahren zur heterogen katalysierten veresterung von fettsäuren
DE4436517C1 (de) Verfahren zum Erzeugen von Fettsäure-Methylester oder Fettsäure-Äthylester und Glycerin durch Umesterung von Öl oder Fett
EP1308498B1 (de) Verfahren zur Herstellung von Fettsäureestern aus nicht entsäuerten Fetten und Ölen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR IT LI LU NL SE

17P Request for examination filed

Effective date: 19850216

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR IT NL

REF Corresponds to:

Ref document number: 3462698

Country of ref document: DE

Date of ref document: 19870423

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920506

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920511

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920531

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920616

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19930531

BERE Be: lapsed

Owner name: HENKEL K.G.A.A.

Effective date: 19930531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19931201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST