EP0127104B1 - Procédé de préparation d'esters d'acides gras et d'alcools aliphatiques à courte chaîne à partir de graisses et/ou d'huiles contenant des acides gras libres - Google Patents

Procédé de préparation d'esters d'acides gras et d'alcools aliphatiques à courte chaîne à partir de graisses et/ou d'huiles contenant des acides gras libres Download PDF

Info

Publication number
EP0127104B1
EP0127104B1 EP84105794A EP84105794A EP0127104B1 EP 0127104 B1 EP0127104 B1 EP 0127104B1 EP 84105794 A EP84105794 A EP 84105794A EP 84105794 A EP84105794 A EP 84105794A EP 0127104 B1 EP0127104 B1 EP 0127104B1
Authority
EP
European Patent Office
Prior art keywords
phase
esterification
oil phase
entraining agent
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84105794A
Other languages
German (de)
English (en)
Other versions
EP0127104A1 (fr
Inventor
Herbert Dr. Lepper
Lothar Friesenhagen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6200251&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0127104(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP0127104A1 publication Critical patent/EP0127104A1/fr
Application granted granted Critical
Publication of EP0127104B1 publication Critical patent/EP0127104B1/fr
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils

Definitions

  • Fatty acid esters of short-chain aliphatic alcohols are of great technical importance. They are important starting materials for the production of fatty alcohols, for example, but are also used to obtain other oleochemical products, such as soaps, surfactants, alkanolamides, etc.
  • fatty acid esters of lower alcohols takes place predominantly by alcoholysis of the corresponding fats and / or oils of natural origin, which are known to be fatty acid triglycerides. Vegetable and / or animal fats or oils, however, almost always contain considerable amounts of free fatty acids, and this free acid content can vary within a wide range depending on the origin of the material and its history. The free fatty acid content is almost always above 3 percent by weight.
  • the acid number of the commercially available raw coconut oil is normally not more than 10 to 20. With other vegetable oils, the acid number, especially with good qualities, is less than 10, with lower qualities it is, for example, in the range from 20 to 25.
  • Technical tallow based on its acid number evaluated and traded, the content of free fatty acids - depending on the quality - between 1 and 15 to 20 percent by weight - corresponding to an acid number of about 30 to 40 - is sometimes even higher.
  • the acid number of the triglyceride to be used in the transesterification influences the possibilities or process conditions of the transesterification reaction to a considerable extent.
  • the BRADSHAW process used in technology uses e.g. B. the alkali-catalyzed transesterification of fats, the SZ of which should not exceed 1.5, with methyl alcohol as the 1st stage of continuous soap production - see, for example, Ullmann, Encyclopedia of Industrial Chemistry, 3rd edition, volume 7, page 525 ff. 4 Edition, volume 11, page 490 ff.
  • the pressure-free transesterification - which is energetically advantageous due to the lower temperatures and the significantly lower methanol requirement and does not require pressure reactors - reduces the SZ - e.g. B. by preceding conversion of the free fatty acids into the corresponding alkyl or glycerol esters - in advance.
  • this pre-esterification can be carried out alkali-catalyzed at 240 ° C. and 20 bar. In this case too, expensive pressure reactors must be used for the pre-esterification with methanol and other short-chain alcohols.
  • the object of the invention is to facilitate the production of fatty acid esters of lower monoalcohols when using triglyceride starting materials which contain not inconsiderable amounts of free fatty acids.
  • triglyceride starting materials which contain not inconsiderable amounts of free fatty acids.
  • the invention thus aims to realize the production of fatty acid esters of lower alcohols in an energy-saving and cost-effective manner, especially with starting materials such as those obtained in the context of natural, in particular vegetable and / or animal fats and / or oils.
  • the invention proposes a process for the production of fatty acid esters of aliphatic alcohols with 1 to 4 carbon atoms by catalytic transesterification free Natural fats and / or oils containing fatty acids (oil phase) with the corresponding monoalcohols, in which the oil phase in the presence of acidic esterification catalysts at temperatures not above 120 ° C and pressures not above 5 bar and in the presence of a liquid entrainer, a pre-esterification with the monoalcohols subjects, then separates the reaction product by phase separation into an entrainer phase containing the acid catalyst and water of reaction and the treated oil phase, and feeds this oil phase to the transesterification.
  • This process is characterized in that the pre-esterification is carried out in the presence of a liquid entrainer, which is essentially immiscible with the oil phase, and the catalyst-containing entrainer phase is returned to the pre-esterification stage after the phase separation and at least partial removal of the water of reaction.
  • a liquid entrainer which is essentially immiscible with the oil phase
  • the acid number of natural, vegetable and / or animal fats and / or oils can vary within a wide range.
  • the SZ of commercially available raw coconut oil is normally not more than 10 to 20.
  • the SZ is below 10 for good qualities, for example in the range of 20 to 25 for lower qualities, which are evaluated and treated according to the SZ , are in the content of free fatty acids, depending on the quality, between 1 and 15 to 20 percent by weight - d. H. with acid numbers up to, for example, 30 to 40 - but sometimes even higher.
  • Starting materials with SZ up to 60 or even above can be used in the process according to the invention.
  • the first step of the process according to the invention consists in an esterification of the free fatty acids contained in the triglyceride, accelerated by acid catalysts, with the short-chain monoalcohol.
  • the monoalcohols used are C 1 to C 4 monoalcohols and in particular methanol.
  • the monoalcohol, which is also to be used in the subsequent transesterification stage, is expediently already used in this stage of the pre-esterification. According to the invention, this pre-esterification stage takes place in the presence of the entrainer which is liquid under process conditions and which is essentially immiscible with the oil phase.
  • Comparatively mild esterification conditions are chosen so that transesterification of the triglycerides with the monoalcohol does not take place or does not occur to any significant extent.
  • the pre-esterification can be carried out, for example, at temperatures from 40 to 120 ° C., preferably at 50 to 100 ° C., working without pressure or at best with slightly increased pressures which are not above 5 bar. The use of pressure reactors is therefore not necessary here.
  • Suitable entraining agents are in particular sufficiently high-boiling polyfunctional alcohols and / or their ethers or partial ethers which are liquid at 50 ° C. and preferably already at room temperature. Accordingly, suitable liquid entraining agents are, for example, ethylene glycol, propylene glycol, polyethylene glycols, glycol ethers, for example propyl glycol, or diglycol ethers such as methyl diglycol.
  • suitable liquid entraining agents are, for example, ethylene glycol, propylene glycol, polyethylene glycols, glycol ethers, for example propyl glycol, or diglycol ethers such as methyl diglycol.
  • glycerin is particularly suitable as a liquid entrainer. Glycerin is released anyway in the subsequent stage of the transesterification. The choice of glycerin as an entrainer in the first stage of the process thus brings understandable further process simplifications.
  • the entrainer serves in particular as a liquid carrier for the acid catalyst in the first stage (pre-esterification).
  • All acidic, non-volatile esterification catalysts are in principle suitable, for example corresponding systems based on Lewis acids, low-volatile inorganic acids and / or their acidic partial esters, heteropolyacids and the like.
  • a particularly suitable class of acidic catalysts are organic sulfonic acids can be described for example by the general formula RS0 3 H, where R represents an alkyl, aryl or alkaryl radical.
  • suitable sulfonic acids are methanesulfonic acid, toluenesulfonic acid, naphthalenesulfonic acid or alkylbenzenesulfonic acid.
  • sulfuric acid or its half-ester can be used as the non-volatile inorganic acid.
  • Suitable heteropolyacids are, for example, the tungstic or the molybdate phosphoric acids.
  • the reaction of the free fatty acids with the monoalcohols takes place as the fastest reaction under the conditions of the pre-esterification stage chosen according to the invention, so that not only the transesterification of the triglycerides with the monoalcohol but also the reaction of the free fatty acids with the glycerol used as entrainer does not or not to any appreciable extent entry.
  • the glycerol added during the pre-esterification - or the other entraining agents mentioned - has a very important function in the process according to the invention: glycerol is only soluble to a very small extent in triglycerides under the chosen reaction conditions.
  • the acidic esterification catalysts and the water of reaction formed during the esterification dissolve much better in the glycerol than in the triglycerides. The result of this is that after the esterification, virtually the entire amount of the esterification catalyst used and the water of reaction formed are in the glycerol phase. Accordingly, the oil phase is practically free of acid catalyst and water of reaction, both of which would interfere with the further reaction in the subsequent alkali-catalyzed reaction.
  • the catalyst-containing glycerol phase can be freed from water of reaction and, if desired, from excess alcohol after it has been discharged from the first process stage, so that the catalyst-containing glycerol phase can be recycled to the pre-esterification stage.
  • the glycerin - or rather the entrainer which is not miscible with the oil phase - thus serves practically as a liquid carrier substance for the catalyst used and discharges the water of reaction formed in the first process stage from the oil phase.
  • the amount of acid catalyst used in the pre-esterification influences the speed of this pre-esterification within certain limits. Since the catalyst can be recovered and recycled practically quantitatively in a simple manner according to the invention, a restriction of the amount of catalyst is not necessary for reasons of cost. In general, amounts of catalyst in the range from 0.5 to 5.0 percent by weight, based on the oil phase used, will be used. The use of smaller or larger quantities is not excluded.
  • the amount of entrainer is also hardly influenced by cost considerations, since the entrainer is recovered and recycled practically quantitatively. However, the following point of view is important:
  • the amount of entrainer - for example glycerin - must be coordinated with the amount of monofunctional alcohol used in the pre-esterification in such a way that, after the pre-esterification, there is a sufficient difference in density between the oil phase and the entrainer phase for a satisfactory phase separation is present.
  • a characteristic density value for the oil phase is, for example, 0.88.
  • the density of methanol is 0.79 and that of glycerin is 1.25. Methanol and glycerin are homogeneously miscible, water of reaction and acid catalyst additionally complicate this phase.
  • the two-phase reaction product from the pre-esterification will have the oil phase as the upper phase and the entrainer phase as the lower phase.
  • simple preliminary tests can be used to determine which mixing ratios of monoalcohol and entrainer, in particular glycerol, are particularly expedient in order to facilitate the phase separation after completion of the pre-esterification.
  • the following mixing ratios are preferably used: 5 to 50 parts by volume, in particular 5 to 25 parts by volume of the liquid entraining agent are usually used per 100 parts by volume of oil phase, while 10 to 50 parts by volume, preferably 15 to 30 parts by volume, of the monoalcohol are used at the same time.
  • the amount of monoalcohol used has a positive influence on the speed and completeness of the esterification of the free fatty acids in the first stage of the process, although the solubility of the monoalcohol in the triglyceride is limited and is given as constant for a given reaction temperature. Nevertheless, it has been shown that an increase in the amount of monoalcohol causes a faster and more complete esterification of the free fatty acids. For cost reasons, however, it is advisable to limit the amount of monoalcohol in the pre-esterification, as stated, since the reprocessing of the excess alcohol is a not inconsiderable cost factor.
  • the pre-esterification can be carried out batchwise or continuously.
  • the starting materials - for example methanol, glycerol and oil phase - can be carried out in cocurrent, but also in countercurrent.
  • the mixture of monoalcohol and liquid entrainer is expediently counter-directed to the oil phase.
  • the subsequent phase separation of the reaction product from the pre-esterification is easy to carry out due to the difference in density between the two phases. Normally, a simple settling tank can be used for this.
  • the separated oil phase (195 kg) contained 10.2 percent by weight of methanol and had an acid number of 0.8. From the sulfur content of the oil phase (26 ppm) it can be calculated - taking into account the sulfur content of the coconut oil used (12 ppm) - that more than 99 percent by weight of the p-toluenesulfonic acid used remained in the glycerol phase.
  • the separated glycerol phase (45 kg) contained 45 weight percent methanol, 1.3 weight percent water (0.58 kg). The latter corresponds to 92 percent by weight of the water of reaction formed in the reduction of the acid number from 12 to 0.8 by esterification.
  • the glycerol phase was freed from methanol and water by distillation. 20 kg of a 2.8 percent by weight water-containing methanol were obtained as the distillate.
  • the distillation residue of the glycerol phase (25 kg) had an acid number of 20.6. This corresponds to 99 percent by weight of the p-toluenesulfonic acid used.
  • the oil phase was transesterified to the corresponding methyl esters with the addition of 0.35 kg of sodium methylate (as a 30% solution in methanol) and 20 l of methanol at 60-65 ° C.
  • a two-phase reaction mixture was formed (methyl ester phase and glycerol phase).
  • the upper phase was then washed with water.
  • the degree of conversion in the crude methyl ester thus freed from methanol and glycerol residues was determined via the content of bound glycerol.
  • the degree of conversion of the raw methyl ester was 97%.
  • the distillation residue of the glycerol phase which had been obtained in the pre-esterification in Example 1, was reacted together with 200 l of coconut oil (acid number - 12) and 40 l of methanol with stirring and reflux - without the addition of fresh glycerol and fresh catalyst.
  • the oil phase obtained in this way had an acid number of 0.7 and a sulfur content of 28 ppm.
  • the glycerol phase was worked up as in Example 1.
  • the residue of the glycerol phase (acid number - 20.2) was used again and again in 9 subsequent batches without further addition of glycerol or catalyst.
  • the activity of the recycled p-toluenesulfonic acid in the pre-esterification was still good.
  • the p-toluenesulfonic acid was recovered practically quantitatively with the glycerol phase.
  • the oil phase obtained in this pre-esterification had an acid number of 0.5. As the acid analysis showed, more than 99 percent by weight of the methanesulfonic acid used was in the glycerol phase obtained.
  • Palm oil with an acid number of 14.5 was pre-esterified analogously to Example 1, methanol, 20 l glycerol and 1.6 kg p-toluenesulphonic acid being used for 200 l oil.
  • the resulting oil phase (acid number 0.7) was transesterified after separation of the glycerol phase with the addition of 0.35 kg sodium methylate and 15.8 kg methanol at 65 ° C.
  • the crude methyl ester worked up analogously to Example 1 contained 0.4 percent by weight of bound glycerol. The degree of conversion of the triglyceride used was 96%.
  • coconut oil with an acid number of 14 was pre-esterified with ethanol analogously to Example 1, using 40 liters of ethanol, 1.6 kg of p-toluenesulfonic acid and 200 liters of polyethylene glycol of average molecular weight 600 instead of glycerol for 200 liters of oil.
  • the mixture was heated to 80 ° C. for about 30 minutes with stirring.
  • the acid number of the coconut oil obtained after separation of the glycerol phase was 0.9.
  • the coconut oil was then transesterified with ethanol with the addition of 0.2 percent by weight of KOH, based on the amount of oil used, to give coconut fatty acid ethyl ester at a temperature of 80.degree.
  • the content of the crude ethyl ester in bound glycerol was 0.7 percent by weight.
  • the conversion of coconut oil to butyl coconut fatty acid was carried out by first reacting 20 l of coconut oil with 4 l of butanol and 2 l of glycerol in the presence of 0.2 kg of p-toluenesulfonic acid with stirring at 120.degree. After cooling to 80-90 ° C., the glycerol phase was separated off. The oil phase had an acid number of 0.8 and was then transesterified with butanol in the presence of potassium hydroxide as a catalyst to give the corresponding coconut fatty acid ester with an approximately 95% degree of conversion.
  • coconut oil with the acid number 16 was pre-esterified with methanol in such a way that 20 l coconut oil, 4 l methanol and 1.8 kg polyethylene glycol of average molecular weight 3000 in the presence of 160 g p-toluenesulfonic acid in a closed stirred container at 100 ° C. and slightly overpressure ( approx. 2 bar) was implemented. After a reaction time of 15 minutes, the acid number of the coconut oil was 0.5. After cooling to 60 ° C, the polyethylene glycol phase was drained. The deacidified coconut oil was transesterified in the presence of 0.2 percent by weight sodium methylate with methanol at 65 ° C. with a 97% degree of conversion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fats And Perfumes (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Claims (11)

1.) Procédé pour la fabrication d'esters d'acides gras d'alcools aliphatiques à 1 à 4 atomes de C, par transestérification catalytique de graisses et/ou huiles naturelles (phase huile) contenant des acides gras libres, avec les monoalcools correspondants, dans lequel on soumet la phase huile, en présence d'un catalyseur d'estérification acide, à des températures qui ne dépassent pas 120°C, et sous des pressions qui ne dépassent pas 5 bars, et en présence d'un agent d'entraînement liquide, à une préestérification avec des monoalcools, immédiatement après le produit de la réaction, par séparation de phase, en une phase d'agent d'entraînement, contenant le catalyseur acide et l'eau de réaction, et la phase huile traitée, et envoie cette phase huile à la transestérification, procédé caractérisé en ce que l'on effectue la préestérification en présence d'un agent d'entraînement liquide sensiblement non-miscible avec la phase huile, et retourne la phase agent d'entraînement contenant le catalyseur, après la séparation de phase et élimination au moins partielle de l'eau de la réaction, dans l'étape de préestérification
2) Procédé suivant la revendication 1, caractérisé en ce que dans l'étape de préestérification, on abaisse l'indice d'acide de la phase huile traitée à des valeurs inférieures à 1.
3) Procédé suivant l'une des revendications 1 et 2, caractérisé en ce que l'on utilise, comme agent d'entraînement des alcools polyfonctionnels à haut point d'ébullition déjà liquides à 50°C, et mieux même à la température ambiante, et/ou leurs éthers ou éthers partiels.
4) Procédé suivant les revendications 1 à 3, caractérisé en ce que, comme agent d'entraînement, on utilise la glycérine.
5) Procede suivant les revendications 1 à 4, caractérisé en ce que la préestérification est opérée à des temperatures de 40 a 120° C, de préférence de 50 à 100°C et, de préférence, à la pression normale.
6) Procédé suivant les revendications 1 à 5, caractérisé en ce que, comme catalyseur acide de l'étape de préestérification, on utilise des acides peu volatils, en particulier des acides sulfoniques aliphatiques et/ou aromatiques.
7) Procédé suivant les revendications 1 à 6, caractérisé en ce que l'agent d'entraînement et en particulier le rapport de mélange agent d'entraînement/ monoalcool, est choisi de façon telle qu'il s'établisse une différence de densité entre la phase huile et la phase agent d'entraînement contenant le monoalcool, suffisante pour que la séparation de phase soit continue.
8) Procédé suivant la revendication 1, caracterisé en ce que l'on utilise, pour 100 parties en volume de phase huile, 5 à 50 parties en volume, de préférence 5 à 25 parties en volume de l'agent d'entraînement liquide, et 10 à 50 parties en volume, ou mieux 15 à 30 parties en volume de monoalcool.
9) Procédé suivant les revendications 1 à 8, caractérisé en ce que la transestérification subséquente des glycérides avec les monoalcools s'effectue à des températures inférieures à 120°C, de préférence de 50 à 100°C et sous des pressions inférieures à 5 bars, de préférence à la pression normale, l'opération se faisant avantageusement sous catalyse basique.
10) Procédé suivant les revendications 1 à 9, caractérisé en ce que l'on utilise le méthanol.
11) Procedé suivant les revendications 1 à 10, caracterise en ce que, comme phase huile, on utilise des graisses et/ou huiles techniques, en particulier d'origine naturelle, avec des indices d'acide pouvant aller jusqu'à 60 ou même plus pendant que, dans l'étape de préestérification, il est provoqué une réaction pratiquement sélective de la portion acides gras libres en esters correspondants des alcools aliphatiques inférieurs.
EP84105794A 1983-05-30 1984-05-21 Procédé de préparation d'esters d'acides gras et d'alcools aliphatiques à courte chaîne à partir de graisses et/ou d'huiles contenant des acides gras libres Expired EP0127104B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833319590 DE3319590A1 (de) 1983-05-30 1983-05-30 Verfahren zur herstellung von fettsaeureestern kurzkettiger aliphatischer alkohole aus freie fettsaeuren enthaltenden fetten und/oder oelen
DE3319590 1983-05-30

Publications (2)

Publication Number Publication Date
EP0127104A1 EP0127104A1 (fr) 1984-12-05
EP0127104B1 true EP0127104B1 (fr) 1987-03-18

Family

ID=6200251

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84105794A Expired EP0127104B1 (fr) 1983-05-30 1984-05-21 Procédé de préparation d'esters d'acides gras et d'alcools aliphatiques à courte chaîne à partir de graisses et/ou d'huiles contenant des acides gras libres

Country Status (8)

Country Link
US (1) US4608202A (fr)
EP (1) EP0127104B1 (fr)
JP (1) JPS6035099A (fr)
BR (1) BR8402569A (fr)
DE (2) DE3319590A1 (fr)
GB (1) GB2140817B (fr)
MY (1) MY8700278A (fr)
PH (1) PH19123A (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7951967B2 (en) 2006-04-28 2011-05-31 Sk Chemicals Co., Ltd. Method and apparatus for preparing fatty acid alkyl ester using fatty acid
EP2522711A1 (fr) 2011-05-13 2012-11-14 Cognis IP Management GmbH Procédé pour l'obtention de produits oléochimiques ayant un contenu réduit en sous-produits
US8895765B2 (en) 2008-11-07 2014-11-25 Sk Chemicals Co., Ltd. Method and apparatus for preparing alkyl ester fatty acid using fatty acid
EP1322588B1 (fr) 2000-10-05 2016-06-29 Bdi-Bioenergy International Ag Procede de production d'esters alkyliques d'acides gras

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3444893A1 (de) * 1984-12-08 1986-06-12 Henkel KGaA, 4000 Düsseldorf Verfahren zur herstellung von fettsaeuremethylestern
DE3501761A1 (de) * 1985-01-21 1986-07-24 Henkel KGaA, 4000 Düsseldorf Verfahren zur vorveresterung freier fettsaeuren in rohfetten und/oder -oelen
FR2577569B1 (fr) * 1985-02-15 1987-03-20 Inst Francais Du Petrole Procede de fabrication d'une composition d'esters d'acide gras utilisables comme carburant de substitution du gazole avec de l'alcool ethylique hydrate et composition d'esters ainsi formes
WO1987007632A1 (fr) * 1986-06-11 1987-12-17 Bio-Energy Technology Ltd. Production de carburant biologique
US4834908A (en) * 1987-10-05 1989-05-30 Basf Corporation Antagonism defeating crop oil concentrates
US4946230A (en) * 1988-04-27 1990-08-07 Mazda Motor Corporation Method and an apparatus for charging an anti-lock brake system with brake liquid
JPH03200743A (ja) * 1989-04-05 1991-09-02 Unilever Nv 脂肪酸低級アルキルモノエステルの製造方法
DE4122530A1 (de) * 1991-07-08 1993-01-14 Henkel Kgaa Verfahren zur herstellung von fettsaeureniedrigalkylestern
DE59103713D1 (de) * 1991-09-02 1995-01-12 Primavesi Markus Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Fettsäureestern.
AT397510B (de) * 1991-11-06 1994-04-25 Wimmer Theodor Verfahren zur herstellung von fettsäureestern kurzkettiger alkohole
US5424467A (en) * 1993-07-14 1995-06-13 Idaho Research Foundation Method for purifying alcohol esters
DE4338111A1 (de) * 1993-11-08 1995-05-11 Henkel Kgaa Verfahren zur Herstellung von Fettsäureniedrigalkylestern
FR2748490B1 (fr) * 1996-05-07 1998-06-19 Inst Francais Du Petrole Procede de fabrication d'esters ethyliques
DE19956599C2 (de) * 1999-11-25 2003-11-13 Cognis Deutschland Gmbh Verfahren zur Herstellung von entsäuerten Triglyceriden
WO2002046339A2 (fr) 2000-12-04 2002-06-13 Dr. Frische Gmbh Procede de pretraitement d'huiles brutes et de graisses brutes pour la production d'esters d'acides gras
US6965044B1 (en) * 2001-07-06 2005-11-15 Iowa State University Research Foundation Method of converting free fatty acids to fatty acid methyl esters with small excess of methanol
DE10154365A1 (de) * 2001-11-06 2003-05-15 Cognis Deutschland Gmbh Verfahren zur Herstellung von Fettsäureestern aus nicht entsäuerten Fetten und Ölen
AT504727A1 (de) * 2002-04-12 2008-07-15 Energea Umwelttechnologie Gmbh Verfahren und anlage zur veresterung von fettsäuren
DE10243700A1 (de) * 2002-09-20 2004-04-01 Oelmühle Leer Connemann Gmbh & Co. Verfahren und Vorrichtung zur Herstellung von Biodiesel
CN1720214A (zh) * 2002-11-27 2006-01-11 澳大利亚生物柴油有限公司 烷基酯的制备方法
KR100566106B1 (ko) * 2003-03-28 2006-03-30 한국에너지기술연구원 바이오디젤유의 제조방법
BR0301103A (pt) * 2003-04-29 2005-10-04 Escola De Quimica Ufrj Processo catalìtico para esterificação de ácidos graxos presentes na borra ácida da palma utilizando catalisadores sólidos ácidos
US7619104B2 (en) * 2005-04-04 2009-11-17 Renewable Products Development Laboratories, Inc. Process for producing biodiesel or fatty acid esters from multiple triglyceride feedstocks
BRPI0502577B1 (pt) * 2005-07-07 2015-11-03 Petroleo Brasileiro Sa processo de craqueamento catalítico para produção de diesel a partir de óleos vegetais
US20070087085A1 (en) * 2005-10-17 2007-04-19 Bunge Oils, Inc. Protein-containing food product and coating for a food product and method of making same
US20080113067A1 (en) * 2005-10-17 2008-05-15 Monoj Sarma Protein-Containing Food Product and Coating for a Food Product and Method of Making Same
KR100782126B1 (ko) * 2006-01-10 2007-12-05 한국에너지기술연구원 오일에 함유된 유리지방산을 제거하기 위한 텅스텐옥사이드 지르코니아 촉매 및 이의 용도
JP2008260819A (ja) * 2007-04-11 2008-10-30 National Institute Of Advanced Industrial & Technology バイオディーゼル燃料の製造方法
US20080282606A1 (en) * 2007-04-16 2008-11-20 Plaza John P System and process for producing biodiesel
BRPI0702373A2 (pt) 2007-05-30 2009-01-20 Petroleo Brasileiro Sa processo para produÇço de biodiesel a partir de àleos vegetais e gorduras utilizando catalisadores heterogÊneos
JPWO2008149661A1 (ja) * 2007-05-31 2010-08-26 国立大学法人京都工芸繊維大学 脂肪酸エステルの製造方法
US20110139106A1 (en) * 2007-08-09 2011-06-16 21St Century R & D, Llc Modification of fats and oils for fuel and lubricating applications
US20090038692A1 (en) * 2007-08-09 2009-02-12 21St Century R & D, Llc Modification of vegetable oils for fuel applications
MX2010010879A (es) 2008-04-01 2010-10-26 Sk Chemicals Co Ltd Metodo para preparar alquilester de acido graso usando acido graso.
FR2929621A1 (fr) * 2008-04-08 2009-10-09 Arkema France Utilisation d'acide methane sulfonique pour l'esterification d'acides gras
CN102257108B (zh) 2008-11-17 2014-04-09 巴斯夫欧洲公司 甲磺酸用于制备脂肪酸酯的方法
MX2011006179A (es) 2008-12-08 2014-04-25 Initio Fuels Llc Transesterificacion de una sola etapa de materia prima de alimentacion usando catalizador gaseoso.
ES2713526T3 (es) 2009-07-17 2019-05-22 Korea Advanced Inst Sci & Tech Procedimiento de producción de ésteres alquílicos de ácidos grasos usando microorganismos que tienen capacidad de producir aceite
FR2957075B1 (fr) * 2010-03-04 2012-06-22 Centre Nat Rech Scient Procede d'obtention de compositions de biosolvants par esterification et compositions de biosolvants obtenues
AT510636B1 (de) 2010-10-28 2016-11-15 Wimmer Theodor Verfahren zur herstellung von fettsäureestern niederer alkohole
US9085746B2 (en) 2011-05-13 2015-07-21 Cognis Ip Management Gmbh Process for obtaining oleochemicals with reduced content of by-products
JP2014040527A (ja) * 2012-08-22 2014-03-06 Osaka Prefecture Univ 脂肪酸アルキルエステルの精製方法
KR102327852B1 (ko) 2013-07-22 2021-11-18 에스케이에코프라임 주식회사 지방을 이용한 지방산알킬에스테르의 제조방법
US9328054B1 (en) 2013-09-27 2016-05-03 Travis Danner Method of alcoholisis of fatty acids and fatty acid gyicerides
WO2018015191A1 (fr) 2016-07-18 2018-01-25 Basf Se Acides alcane-sulfoniques à faible corrosion pour réactions de condensation
CN112823200A (zh) 2018-10-10 2021-05-18 巴斯夫欧洲公司 制备生物柴油的方法
US10933111B2 (en) * 2019-01-08 2021-03-02 Boston Biotechnology US CORP Treating dry eye disorders
WO2023159293A1 (fr) * 2022-02-24 2023-08-31 Brasil Bio Fuels S.A Composition, procédé de production de triglycérides et de glycérides partiaux à faible acidité et produit ainsi obtenu

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1421605A (en) * 1921-04-05 1922-07-04 Us Ind Alcohol Co Process for manufacturing esters
US1651666A (en) * 1922-12-22 1927-12-06 Standard Dev Co Process of making esters
US2383632A (en) * 1942-10-17 1945-08-28 Colgate Palmolive Peet Co Process of treating fatty glycerides
US2469371A (en) * 1946-08-14 1949-05-10 Baker Castor Oil Co Process of reacting glyceride oils
US4076948A (en) * 1968-10-10 1978-02-28 El Paso Products Company Process for treatment of adipic acid mother liquor
US3692822A (en) * 1970-04-20 1972-09-19 Gulf Research Development Co Process for preparing esters
JPS5221485A (en) * 1975-08-08 1977-02-18 Mitsubishi Rayon Co Method of dyeing aromatic polyamide fiber with solvent
JPS6025478B2 (ja) * 1977-03-17 1985-06-18 花王株式会社 脂肪酸低級アルコ−ルエステルの製造法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1322588B1 (fr) 2000-10-05 2016-06-29 Bdi-Bioenergy International Ag Procede de production d'esters alkyliques d'acides gras
US7951967B2 (en) 2006-04-28 2011-05-31 Sk Chemicals Co., Ltd. Method and apparatus for preparing fatty acid alkyl ester using fatty acid
US8895765B2 (en) 2008-11-07 2014-11-25 Sk Chemicals Co., Ltd. Method and apparatus for preparing alkyl ester fatty acid using fatty acid
EP2522711A1 (fr) 2011-05-13 2012-11-14 Cognis IP Management GmbH Procédé pour l'obtention de produits oléochimiques ayant un contenu réduit en sous-produits

Also Published As

Publication number Publication date
BR8402569A (pt) 1985-04-23
EP0127104A1 (fr) 1984-12-05
JPS6035099A (ja) 1985-02-22
DE3462698D1 (en) 1987-04-23
GB2140817B (en) 1986-09-17
MY8700278A (en) 1987-12-31
PH19123A (en) 1986-01-08
GB8413115D0 (en) 1984-06-27
GB2140817A (en) 1984-12-05
US4608202A (en) 1986-08-26
DE3319590A1 (de) 1984-12-06

Similar Documents

Publication Publication Date Title
EP0127104B1 (fr) Procédé de préparation d'esters d'acides gras et d'alcools aliphatiques à courte chaîne à partir de graisses et/ou d'huiles contenant des acides gras libres
EP0184740B1 (fr) Procédé de préparation d'esters méthyl d'acides gras
EP0192035B1 (fr) Procédé de pré-estérification d'acides gras libres dans les graisses et/ou huiles brutes
AT399336B (de) Verfahren zur herstellung von fettsäurealkylestern
EP1183225B1 (fr) Procede de production d'esters d'acides gras d'alcools alkyliques monovalents
DE3020612C2 (de) Verfahren zur Herstellung niederer Alkylester von Fettsäuren
AT502218B1 (de) Verfahren zur herstellung von carbonsäurealkylestern
EP0562504A2 (fr) Procédé de préparation continue d'esters alkyliques en C1 à C4 d'acides gras supérieurs
EP0200982B1 (fr) Procédé d'interestérification catalytique de glycérides d'acides gras avec des alcanols inférieurs
WO2002028811A1 (fr) Procede de production d'esters alkyliques d'acides gras
DE4422858C1 (de) Ungesättigte Fettalkohole mit verbessertem Kälteverhalten
DE19600025C2 (de) Verfahren zur Herstellung von Fettstoffen
EP0771345B1 (fr) Produits gras insatures a comportement ameliore au froid
EP2358851B1 (fr) Utilisation de l'acide méthanesulfonique pour la fabrication d'esters d'acide gras
AT410443B (de) Verfahren zur herstellung von fettsäureestern niederer alkohole
DE19908978A1 (de) Verfahren zur Herstellung von Fettsäuremethylestern aus Triglyceriden und Fettsäuren
EP0000916B1 (fr) Procédé de production de nitriles d'acides gras et de glycérine à partir de glycérides, en particulier de graisses et/ou huiles naturelles.
WO2003004591A1 (fr) Procede de transesterification de matiere grasse et/ou d'huile par alcoolyse
DE10038456A1 (de) Verfahren zur Gewinnung von Sterinen
AT392977B (de) Verfahren zur aufbereitung der bei der umesterung von fetten und oelen mit niederen alkoholen anfallenden glycerinphase
WO2009056231A1 (fr) Procédé en continu d'estérification catalysée hétérogène des acides gras
DE4436517C1 (de) Verfahren zum Erzeugen von Fettsäure-Methylester oder Fettsäure-Äthylester und Glycerin durch Umesterung von Öl oder Fett
EP1308498B1 (fr) Procédé de production d'esters d'acides gras à partir de graisses et d'huiles non désacidifiées
DE2235373A1 (de) Verfahren zur herstellung von alkylenoxid-addukten
DE1121615B (de) Verfahren zur Herstellung von aliphatischen Hydroxyverbindungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR IT LI LU NL SE

17P Request for examination filed

Effective date: 19850216

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR IT NL

REF Corresponds to:

Ref document number: 3462698

Country of ref document: DE

Date of ref document: 19870423

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920506

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920511

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920531

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920616

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19930531

BERE Be: lapsed

Owner name: HENKEL K.G.A.A.

Effective date: 19930531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19931201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST