EP1308498B1 - Verfahren zur Herstellung von Fettsäureestern aus nicht entsäuerten Fetten und Ölen - Google Patents

Verfahren zur Herstellung von Fettsäureestern aus nicht entsäuerten Fetten und Ölen Download PDF

Info

Publication number
EP1308498B1
EP1308498B1 EP02023941A EP02023941A EP1308498B1 EP 1308498 B1 EP1308498 B1 EP 1308498B1 EP 02023941 A EP02023941 A EP 02023941A EP 02023941 A EP02023941 A EP 02023941A EP 1308498 B1 EP1308498 B1 EP 1308498B1
Authority
EP
European Patent Office
Prior art keywords
transesterification
carried out
stage
fatty acid
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02023941A
Other languages
English (en)
French (fr)
Other versions
EP1308498A1 (de
Inventor
Lothar Friesenhagen
Bernhard Dr. Gutsche
Bernard Schleper
Christian Dr. Pelzer
Nicole Schöffler
Sabine Dr. Both
Claudius Lott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cognis IP Management GmbH
Original Assignee
Cognis IP Management GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis IP Management GmbH filed Critical Cognis IP Management GmbH
Publication of EP1308498A1 publication Critical patent/EP1308498A1/de
Application granted granted Critical
Publication of EP1308498B1 publication Critical patent/EP1308498B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange

Definitions

  • the invention is in the field of basic oleochemicals and relates to an improved one Process for the production of fatty acid esters from unrefined natural raw materials.
  • Transesterifications are usually carried out with base catalysis. Are triglycerides with high acid numbers used, it comes to the partial neutralization of the catalyst. This doesn't just have that Disadvantage that valuable catalyst is lost, the soaps that are created also stand for the Transesterification is no longer available and remains in the residue. This way you can neither Achieve high sales yet minimize the amount of residue.
  • One tries to solve the problem by using heavy metal catalysts, such as zinc soaps, instead of alkali hydroxides begins, which increases the reaction rate and reduces the formation of soaps can. Heavy metals are, however, rather undesirable as catalysts for ecotoxicological reasons.
  • the object of the invention was therefore to find a new process for the transesterification of fats and oils using non-heavy metal catalysts to provide the above reliably avoids the disadvantages described.
  • the use of non-deacidified, non-degummed fats and oils with acid numbers up to approx. 50 are possible without catalyst losses and soaps are formed.
  • acid numbers can be reached below 1 and the amount of residue reduced.
  • fatty acid alkyl esters of the formula (I) are lauric, myristic, palmitic and stearic acid ethyl, propyl or butyl ester and technical mixtures thereof; however, be preferred Fatty acid methyl ester produced.
  • synthetic materials are also used as starting materials Triglycerides are in question, since they usually do not have any particular acid numbers Problem described at the beginning not or only in a subordinate way. In the case of natural triglycerides, So the vegetable or animal fats or oils, the selection is not critical.
  • suitable ingredients are palm oil, palm kernel oil, coconut oil, beef tallow, sunflower oil or Rapeseed oil as well as their mixtures.
  • the first step in the process takes advantage of the fact that esterification is only acid-catalyzed run and thereby faster than transesterification reactions, which in turn both through Acids as can be catalyzed by bases. So while in usual procedures the humiliation the acid number through neutralization with the basic transesterification catalyst and soap formation takes place, takes place within the meaning of the invention, an esterification of the free fatty acids with the formation of alkyl esters instead, which are preferably directly identical to the target product.
  • catalysts for this first Lewis acids come into question, which are selected from the stage of the process Group formed by alkali salts of organic carboxylic acids with 1 to 4 carbon atoms, Alkali carbonates, alkali hydrogen carbonates and solutions of the catalysts in fatty acids or Partial glycerides.
  • Typical examples are alkali acetates, alkali propionates, alkali butyrates, sodium carbonate, Sodium hydrogen carbonate, potassium carbonate and potassium hydrogen carbonate.
  • Particularly preferred are potassium salts, especially potassium acetate, which is optionally in fatty acids or monoglycerides solved.
  • the amount of catalyst is generally 0.1 to 2, preferably 0.5 to 1% by weight based on the starting materials.
  • the reaction is usually carried out at temperatures in the range of 100 to 300, preferably 150 to 240 ° C carried out.
  • the pressure range can be between 5 and 100 bar and is preferably 60 to 90 bar.
  • the amount of methanol is calculated according to the Acid number, i.e. based on the amount of available fatty acids.
  • alcohol preferably methanol and triglyceride in a weight ratio of 1: 2 to 2: 1.
  • the amount of catalyst is in usually 0.1 to 2, preferably 0.5 to 1 wt .-% based on the starting materials.
  • the water formed in the second stage together with the methanol and the Glycerol released from transesterification can also be water-sensitive in the third stage Catalysts are used.
  • Sodium alcoholates are particularly suitable for this purpose, such as sodium or potassium methoxide, ethoxide or butoxide. These have the advantage to be particularly active so that it is now possible to work in milder conditions and thus saving manufacturing costs.
  • the amount of catalyst is generally from 0.1 to 2, preferably 0.5 to 1% by weight based on the starting materials.
  • the second stage of transesterification typically at milder temperatures in the range of 20 to 200, preferably 70 to 150 ° C and lower pressures in the range from 1 to 10, preferably 1 to 5 bar.
  • the third stage is optional. However, their introduction can result in a significant increase in sales be achieved.
  • Example 2 60 g of raw coconut oil, 31 g of methanol and 0.6 g of potassium soap were placed in the autoclave and heated to 230.degree. A pressure of 48 bar was established. Once the temperature was reached, the mixture was stirred for 30 minutes. Thereafter, the reaction was cooled and terminated. A sample was taken from the cooled, homogenized mixture for GC analysis. Then 0.32 g of methanolic KOH were added. The mixture was heated to 230 ° C. with stirring. A pressure of 33 bar was established. Once the temperature was reached, stirring was continued for 30 minutes. The reaction mixture was then cooled.
  • Example 3 As in Example 3, 722 g of crude coconut oil, 373 g of methanol and 7.3 g of potassium soap were added to the autoclave and heated to 230.degree. A maximum pressure of 43 bar was established. Once the temperature was reached, the mixture was stirred for 30 minutes. Thereafter, the reaction was cooled and terminated. A sample was taken from the cooled, homogenized mixture for GC analysis. 3.9 g of methanolic KOH were then added. The mixture was heated to 230 ° C. with stirring. A pressure of 33 bar was established. Once the temperature was reached, stirring was continued for 30 minutes. The reaction mixture was then cooled.
  • the methanol / water was removed from 1057 g of the reaction mixture obtained in this way in a rotary evaporator between 90 ° C.-135 ° C. and a water jet vacuum. At 135 ° C., no more distillate was obtained. A total of 242.5 g of a methanol / water mixture (1.5% water content) and 808 g of organic phase could be obtained. A phase separation then took place in a separating funnel at 110 ° C. It was possible to obtain 73.5 g of the lower phase (glycerol phase) and 734.1 g of the upper phase (methyl ester phase).
  • Example 4 734 g of methyl ester mixture were mixed with 51 g of methanol and 4 g of sodium methylate in an autoclave. The mixture was heated to 130 ° C. with stirring. This created a pressure of about 4 bar. Once the temperature was reached, the mixture was stirred for 10 minutes. The reaction mixture was then cooled and the mixture was sampled for GC analysis. A list of the reaction components in percent by weight without the proportion of methanol is given in Table 4: Composition (data as percentage of area) composition TG DG MG Methyl ester fatty acid Glycerin Final rehearsal --- 0.5 1.0 93.4 1.1 4th
  • Example 5 60 g of crude coconut oil, 31 g of methanol and 0.6 g of potassium soaps were placed in an autoclave and heated to 200 ° C., a pressure of 20 bar being established. The reaction mixture was stirred for 1 hour and the course of the reaction was followed by taking samples. A list of the reaction components in percentages by weight without the proportion of methanol is given in Table 5: Composition (data as percentage of area) composition TG DG MG Methyl ester fatty acid Glycerin Sample after 30 min 17.5 15.7 15.6 45.6 1.2 4.4 Sample after 1 h - 2.1 10.2 76.2 1.0 10.5

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Fats And Perfumes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Gebiet der Erfindung
Die Erfindung befindet sich auf dem Gebiet der oleochemischen Grundstoffe und betrifft ein verbessertes Verfahren zur Herstellung von Fettsäureestern aus nicht raffinierten natürlichen Rohstoffen.
Stand der Technik
Zu den wichtigsten Verfahren im Bereich der Oleochemie gehört die Herstellung von Fettsäurealkylestern durch Umesterung von natürlichen Fetten und Ölen mit niederen Alkoholen, insbesondere Methanol. Natürliche Triglyceride, wie beispielsweise Palmöl, Kokosöl oder auch Rindertalg, fallen jedoch üblicherweise in einer Qualität an, die vor der chemischen Umwandlung eine Raffination erfordert. Hierzu gehören Prozesse, wie beispielsweise die Entschleimung, die Filtration oder die Desodorierung. Infolge von enzymatischen Prozessen während des Transportes und der Lagerung kommt es zudem zu einer partiellen Verseifung der Triglyceride, so dass diese in der Regel Säurezahlen zwischen 10 und 50 aufweisen. Es liegt auf der Hand, dass Fette und Öle mit niedriger Säurezahl und damit hoher Qualität als Rohstoffe bevorzugt sind. Andererseits ist ihre Verfügbarkeit begrenzt, was zu hohen Preisen führt. Daher besteht seitens der Hersteller von Oleochemikalien ein erhebliches Interesse am Einsatz von preiswerten, hoch-säurezahligen Rohstoffen und an Verfahren, die deren Verarbeitung, speziell deren Umesterung mit hohen Ausbeuten erlauben.
Umesterungen werden in der Regel basenkatalysiert durchgeführt. Werden Triglyceride mit hohen Säurezahlen eingesetzt, kommt es zur partiellen Neutralisation des Katalysators. Dies hat nicht nur den Nachteil, dass wertvoller Katalysator verloren geht, die dabei entstehenden Seifen stehen auch für die Umesterung nicht mehr zur Verfügung und verbleiben im Rückstand. Auf diese Weise lassen sich weder hohe Umsätze erzielen noch die Rückstandsmengen minimieren. Man versucht das Problem zu beherrschen, indem man anstelle von Alkalihydroxiden Schwermetallkatalysatoren, wie z.B. Zinkseifen einsetzt, wodurch die Reaktionsgeschwindigkeit gesteigert und die Bildung von Seifen vermindert werden kann. Schwermetalle sind jedoch als Katalysatoren aus ökotoxikologischen Gründen eher unerwünscht.
Bestimmte Lewis-Säuren sind in der EP-A-0184740 für die Veresterung von in Triglyceriden enthaltenen freien Fettsäuren offenbart.
Die Aufgabe der Erfindung hat somit darin bestanden, ein neues Verfahren zur Umesterung von Fetten und Ölen unter Einsatz von Nicht-Schwermetallkatalysatoren zur Verfügung zu stellen, das die oben geschilderten Nachteile zuverlässig vermeidet. Insbesondere sollte der Einsatz von nicht-entsäuerten, nicht-entschleimten Fetten und Ölen mit Säurezahlen bis ca. 50 möglich sein, ohne dass es zu Katalysatorverlusten und zur Bildung von Seifen kommt. Gleichzeitig sollten hohe Umsätze erzielt, Säurezahlen unter 1 erreicht und die Rückstandsmenge vermindert werden.
Beschreibung der Erfindung
Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Fettsäureniedrigalkylestem aus nicht entsäuerten Fetten und Ölen, bei dem man
  • (a) technische Triglyceride mit Säurezahlen im Bereich von 1 bis 50 in Gegenwart der Lewis-Säuren , welche ausgewählt sind aus der Gruppe der Alkalisalze organischer Carbonsäuren mit 1-4 Kohlenstoffatomen, Alkalicarbonaten, Alkalihydrogen carbonaten sowie lösungen der Katalysatoren in Fettsäuren oder Partial glyceriden mit niederen Alkoholen verestert und dabei die Säurezahl auf Werte unterhalb von 2 absenkt,
  • (b) die auf diese Weise erhaltene entsäuerte Mischung in Gegenwart von Alkalihydroxiden und niederen Alkoholen einer Umesterung unterwirft und dabei Wasser sowie freigesetztes Glycerin abtrennt, und gegebenenfalls
  • (c) das auf diese Weise erhaltene Umesterungsgemisch in Gegenwart von Alkalialkoholaten einer weiteren Umesterung unterwirft und dabei ebenfalls freigesetztes Glycerin abtrenn, wobei die Fettsäureniedrig-alkylester die Formel (I) aufweisen, R 1 CO-OR 2    (I) in der R1CO für einen linearen oder verzweigten, gesättigten oder ungesättigten Acylrest mit 6 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen und R2 für einen linearen oder verzweigten Alkylrest mit 1 bis 4 Kohlenstoffatomen steht Die Erfindung macht sich die Erkenntnis zu Nutze, dass säurekatalysierte Veresterungen schneller als Umesterungen ablaufen. Durch Einsatz von Lewis-Säuren kann daher in der ersten Stufe eine rasche Erniedrigung der Säurezahl erzielt werden, ohne dass es zur unerwünschten Bildung von Seifen kommt. Die nachfolgende Umesterung erlaubt durch die Kombination von mittelstarken und starken konventionellen Basen besonders hohe Ausbeuten und eine Reduzierung des Rückstands, so dass auf die sonst erforderlichen teuren Schwermetallkatalysatoren verzichtet werden kann. Dies führt natürlich zu einer weiteren Verbesserung der Ökonomie des Verfahrens. Zudem werden in den Reaktionsprodukten Säurezahlen von kleiner 1 erreicht.
  • Ausgangsstoffe und Umesterungsprodukte
    Typische Beispiele für Fettsäurealkylester der Formel (I) sind Laurin-, Myristin-, Palmitin- und Stearinsäureethyl-, -propyl- oder -butylester sowie deren technische Gemische; vorzugsweise werden jedoch Fettsäuremethylester hergestellt. Grundsätzlich kommen als Ausgangsstoffe zwar auch synthetische Triglyceride in Frage, da diese in der Regel keine besonderen Säurezahlen aufweisen, stellt sich das eingangs beschriebene Problem nicht oder nur in untergeordneter Weise. Bei den natürlichen Triglyceriden, also den pflanzlichen oder tierischen Fette bzw. Öle, ist die Auswahl unkritisch. Typische Beispiele für geeignete Einsatzstoffe sind Palmöl, Palmkernöl, Kokosöl, Rindertalg, Sonnenblumenöl oder Rapsöl sowie ebenfalls deren Gemische.
    Veresterung/Umesterung
    Im ersten Schritt des Verfahrens macht man sich die Tatsache zu Nutze, dass Veresterungen nur säurekatalysiert ablaufen und dabei schneller als Umesterungsreaktionen sind, die ihrerseits sowohl durch Säuren wie durch Basen katalysiert werden können. Während also in üblichen Verfahren die Erniedrigung der Säurezahl durch Neutralisation mit dem basischen Umesterungskatalysator und Seifenbildung erfolgt, findet im Sinne der Erfindung eine Ver-esterung der freien Fettsäuren unter Bildung von Alkylestem statt, die vorzugsweise mit dem Zielprodukt direkt identisch sind. Als Katalysatoren für diese erste Stufe des Verfahrens kommen Lewis-Säuren in Frage, die ausgewählt sind aus der Gruppe, die gebildet wird von Alkalisalzen organischer Carbonsäuren mit 1 bis 4 Kohlenstoffatomen, Alkalicarbonaten, Alkalihydrogencarbonaten sowie Lösungen der Katalysatoren in Fettsäuren oder Partialglyceriden. Typische Beispiele sind Alkaliacetate, Alkalipropionate, Alkalibutyrate, Na-triumcarbonat, Natriumhydrogencarbonat, Kaliumcarbonat und Kaliumhydrogencarbonat. Besonders bevorzugt sind Kaliumsalze, insbesondere Kaliumacetat, welches gegebenenfalls in Fettsäuren oder Monoglyceriden gelöst vorliegt. Die Katalysatormenge beträgt in der Regel 0,1 bis 2, vorzugsweise 0,5 bis 1 Gew.% bezogen auf die Ausgangsstoffe. Die Reaktion wird üblicherweise bei Temperaturen im Bereich von 100 bis 300, vorzugsweise 150 bis 240 °C durchgeführt. Der Druckbereich kann zwischen 5 und 100 bar liegen und beträgt vorzugsweise 60 bis 90 bar. Die Menge an Methanol berechnet sich nach der Säurezahl, d.h. nach der Menge an zur Verfügung stehenden Fettsäuren. In der Regel werden Alkohol, vorzugsweise Methanol, und Triglycerid im Gewichtsverhältnis 1 : 2 bis 2 : 1 eingesetzt.
    Umesterungen
    Im Zuge der Veresterung wird Kondensationswasser freigesetzt. In der ersten Stufe der Um-esterung ist es daher erforderlich, solche Katalysatoren einzusetzen, die durch die Gegenwart von Wasser nicht desaktiviert werden. Aus diesem Grunde empfiehlt sich der Einsatz von wasserfreien, gegebenenfalls alkoholischem Lösungen von Lithium-, Natrium- oder Kaliumhydroxid. Die Katalysatormenge beträgt in der Regel 0,1 bis 2, vorzugsweise 0,5 bis 1 Gew.-% bezogen auf die Ausgangsstoffe. Die Umesterung in der zweiten Stufe wird vorzugsweise ebenfalls bei Temperaturen im Bereich von 100 bis 250, vorzugsweise 150 bis 240 °C und Drücken im Bereich von 5 bis 100, vorzugsweise 60 bis 90 bar durchgeführt. Auch hier arbeitet man in der Regel mit einem bezogen auf die in den Triglyceriden zur Verfügung stehenden Fettsäureeste deutlichen Überschuss an Alkohol.
    Nachdem das in der zweiten Stufe gebildete Wasser zusammen mit dem Methanol und dem bei der Umesterung freigesetzten Glycerin abgetrennt worden ist, können in der dritten Stufe auch wasserempfindliche Katalysatoren eingesetzt werden. Hierzu eignen sich insbesondere Natriumalkoholate, wie beispielsweise Natrium- oder Kaliummethanolat, -ethanolat oder -butylat. Diese haben den Vorteil besonders aktiv zu sein, so dass es nunmehr möglich ist, bei milderen Bedingungen zu arbeiten und damit Herstellkosten einzusparen. Die Katalysatormenge beträgt auch hier in der Regel 0,1 bis 2, vorzugsweise 0,5 bis 1 Gew.-% bezogen auf die Ausgangsstoffe. Aus den genannten Gründen erfolgt die zweite Stufe der Umesterung typischerweise bei milderen Temperaturen im Bereich von 20 bis 200, vorzugsweise 70 bis 150 °C und niedrigeren Drücken im Bereich von 1 bis 10, vorzugsweise 1 bis 5 bar. In der Regel ist es nicht erforderlich Frischalkohol zuzusetzen, wenngleich diese Möglichkeit natürlich besteht. Nach Abtrennung von nicht umgesetzten Alkohol, vorzugsweise durch Abtrennung in einer Rektifikationskolonne, und der Entfernung des freigesetzten Glycerins vorzugsweise durch Schwerkrafttrennung ist die Umesterung abgeschlossen.
    Die dritte Stufe ist optional. Allerdings kann durch ihre Einführung eine erhebliche Umsatzsteigerung erzielt werden.
    Beispiele
    Herstellung der Kaliumseife. 1 L Canola-Spalttfettsäure wurde in einem 2 L Rundkolben auf 140 °C erhitzt. Dabei wurde zur Trocknung der Fettsäure ein Wasserstrahlvakuum angelegt. Nach Aufheben des Vakuums erfolgte die portionsweise Zugabe von 40 g Kaliumacetat. Hierbei war ein Temperaturanstieg auf 145 °C zu beobachten. Nach beendeter Zugabe wurde auf 160 °C erhitzt und emeut das Wasserstrahlvakuum anlegt. Die Fettsäure wurde bei 160 °C klar und dunkel. Es konnte kein kristalliner Feststoff mehr entdeckt werden. 12 g Destillat, das einen pH -Wert von 4,5 aufwies und nach Essigsäure roch, konnten abdestilliert werden.
    Herstellung der methanolischen KOH. Es wurden vorsichtig unter Rühren 200 g Kaliumhydroxid-Plätzchen in 200 ml Methanol gegeben (Hitzeentwicklung). Der sich bildende Bodensatz wurde nicht von der überstehenden Lösung getrennt, um eine gesättigte methanolische KOH zu erhalten.
    Beispiel 1. 60 g rohes Kokosöl (SZ = 13, FFA = 4,9), 31 g Methanol und 1 g Kaliumseife wurden in den Autoklaven gegeben und auf 230 °C aufgeheizt. Dabei stellte sich ein Druck von 48 bar ein. Ab Erreichen der Temperatur wurden 30 min gerührt. Danach wurde die Reaktion gekühlt und beendet. Vom erkalteten homogenisierten Gemisch wurde eine Probe für die GC-Analyse genommen. Anschließend wurden 0,32 g methanolische KOH zugegeben. Das Gemisch wurde unter Rühren auf 230 °C aufgeheizt. Dabei stellte sich ein Druck von 33 bar ein. Ab Erreichen der Temperatur wurden 30 min weitergerührt. Danach wurde das Reaktionsgemisch gekühlt. Eine Aufstellung der Reaktionskomponenten in Gewichtsprozenten ohne Methanolanteil gibt Tabelle 1 wieder:
    Zusammensetzung (Angaben als Flächenprozent)
    Zusammensetzung TG DG MG Methylester Fettsäure Glycerin
    rohes Kokosöl 92,8 2,3 --- --- 4,9 ---
    Anfahrgemisch 91,3 2,5 --- --- 6,2 ---
    Zwischenprobe 25,8 13,4 12,4 41,5 3,0 3,9
    Endprobe gesamt --- 2,4 13,7 70,4 1,8 11,7
    Endprobe Oberphase --- 3,6 14,1 75,7 1,5 5,1
    Endprobe Unterphase --- 1,3 9,9 18,9 2,9 67,0
    Beispiel 2. 60 g rohes Kokosöl , 31 g Methanol und 0,6 g Kaliumseife wurden in den Autoklaven gegeben und auf 230 °C aufgeheizt. Dabei stellte sich ein Druck von 48 bar ein. Ab Erreichen der Temperatur wurden 30 min gerührt. Danach wurde die Reaktion gekühlt und beendet. Vom erkalteten homogenisierten Gemisch wurde eine Probe für die GC-Analyse genommen. Anschließend wurden 0,32 g methanolische KOH zugegeben. Das Gemisch wurde unter Rühren auf 230 °C aufgeheizt. Dabei stellte sich ein Druck von 33 bar ein. Ab Erreichen der Temperatur wurden 30 min weitergerührt. Danach wurde das Reaktionsgemisch gekühlt. Eine Aufstellung der Reaktionskomponenten in Gewichtsprozenten ohne Methanolanteil gibt Tabelle 2 wieder:
    Zusammensetzung (Angaben als Flächenprozent)
    Zusammensetzung TG DG MG Methylester Fettsäure Glycerin
    rohes Kokosöl 92,8 2,3 --- --- 4,9 ---
    Anfahrgemisch 91,5 2,8 --- --- 5,7 ---
    Zwischenprobe 24,9 18,3 14,6 36,3 1,6 4,3
    Endprobe gesamt --- 1,9 14,0 70,5 1,7 11,9
    Endprobe Oberphase --- 2,2 15,4 75,1 1,5 5,8
    Endprobe Unterphase --- 0,9 7,7 17,6 2,6 71,2
    Beispiel 3. Analog Beispiel 3 wurden 722 g rohes Kokosöl, 373 g Methanol und 7,3 g Kaliumseife werden in den Autoklaven gegeben und auf 230 °C aufgeheizt. Dabei stellte sich ein maximaler Druck von 43 bar ein. Ab Erreichen der Temperatur wurden 30 min gerührt. Danach wurde die Reaktion gekühlt und beendet. Vom erkalteten homogenisierten Gemisch wurde eine Probe für die GC-Analyse genommen. Anschließend wurden 3,9 g methanolische KOH zugegeben. Das Gemisch wurde unter Rühren auf 230 °C aufgeheizt. Dabei stellte sich ein Druck von 33 bar ein. Ab Erreichen der Temperatur wurden 30 min weitergerührt. Danach wurde das Reaktionsgemisch gekühlt. Von 1057 g des so erhaltenen Reaktionsgemisches wurde die Methanol/Wasserabtrennung im Rotationsverdampfer zwischen 90 °C - 135 °C und Wasserstrahlvakuum durchgeführt. Bei 135 °C fiel kein Destillat mehr an. Insgesamt konnten 242,5 g Methanol/Wasser Gemisch (1,5 % Wasser-Anteil) und 808 g organische Phase erhalten werden. Anschließend fand bei 110 °C eine Phasenseparation im Scheidetrichter statt. Es konnten 73,5g Unterphase (Glycerinphase) und 734,1 g Oberphase (Methylesterphase) erhalten werden. Eine Aufstellung der Reaktionskomponenten in Gewichtsprozenten ohne Methanolanteil gibt Tabelle 3 wieder:
    Zusammensetzung (Angaben als Flächenprozent)
    Zusammensetzung TG DG MG Methylester Fettsäure Glycerin
    rohes Kokosöl 92,8 2,3 --- --- 4,9 ---
    Anfahrgemisch 91,5 2,8 --- --- 5,7 ---
    Endprobe gesamt --- 2,1 10,8 75,8 1,5 10,3
    Endprobe Oberphase nach
    Methanolabtrennung
    --- 1,0 12,2 85,1 1,1 1,6
    Endprobe Unterphase nach
    Methanolabtrennung
    --- 0,1 0,4 1,2 2,0 96,7
    Beispiel 4. 734 g Methylestergemisch wurden mit 51 g Methanol und 4 g Natriummethylat in einem Autoklaven versetzt. Das Gemisch wurde unter Rühren auf 130 °C aufgeheizt. Dabei entstand ein Druck von etwa 4 bar. Ab Erreichen der Temperatur wurde 10 min gerührt. Danach wurde das Reaktionsgemisch abgekühlt und Probe des Gemisches für die GC-Analyse gezogen. Eine Aufstellung der Reaktionskomponenten in Gewichtsprozenten ohne Methanolanteil gibt Tabelle 4 wieder:
    Zusammensetzung (Angaben als Flächenprozent)
    Zusammensetzung TG DG MG Methylester Fettsäure Glycerin
    Endprobe --- 0,5 1,0 93,4 1,1 4
    Beispiel 5. 60 g rohes Kokosöl, 31 g Methanol und 0,6 g Kaliumseifen wurden in einen Autoklaven gegeben und auf 200 °C aufgeheizt, wobei sich ein Druck von 20 bar einstellte. Die Reaktionsmischung wurde 1 h gerührt und der Reaktionsverlauf durch Probennahme verfolgt. Eine Aufstellung der Reaktionskomponenten in Gewichtsprozenten ohne Methanolanteil gibt Tabelle 5 wieder:
    Zusammensetzung (Angaben als Flächenprozent)
    Zusammensetzung TG DG MG Methylester Fettsäure Glycerin
    Probe nach 30 min 17,5 15,7 15,6 45,6 1,2 4,4
    Probe nach 1 h -- 2,1 10,2 76,2 1,0 10,5

    Claims (13)

    1. Verfahren zur Herstellung von Fettsäureniedrigalkylestern aus nicht entsäuerten Fetten und Ölen, bei dem man
      (a) technische Triglyceride mit Säurezahlen im Bereich von 1 bis 50 in Gegenwart von Lewis-Säuren mit niederen Alkoholen verestert und dabei die Säurezahl auf Werte unterhalb von 2 absenkt,
      (b) die auf diese Weise erhaltene entsäuerte Mischung in Gegenwart von Alkalihydroxiden und niederen Alkoholen einer Umesterung unterwirft und dabei Wasser sowie freigesetztes Glycerin abtrennt, und gegebenenfalls
      (c) das auf diese Weise erhaltene Umesterungsgemisch in Gegenwart von Alkalialkoholaten einer weiteren Umesterung unterwirft und dabei ebenfalls freigesetztes Glycerin abtrennt,
      mit der Maßgabe, dass man in der ersten Stufe (Stufe a) Lewis-Säuren einsetzt, die ausgewählt sind aus der Gruppe der Alkalisalze organischer Carbonsäuren mit 1 bis 4 Kohlenstoffatomen, Alkalicarbonaten, Alkalihydrogencarbonaten sowie Lösungen der Katalysatoren in Fettsäuren oder Partialglyceriden,
      sowie der weiteren Maßgabe, dass die Fettsäureniedrigalkylester die Formel (I) aufweisen: R 1 CO-OR 2    (I) in der R1CO für einen linearen oder verzweigten, gesättigten oder ungesättigten Acylrest mit 6 bis 22 Kohlenstoffatomen und R2 für einen linearen oder verzweigten Alkylrest mit 1 bis 4 Kohlenstoffatomen steht.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man Fettsäuremethylester herstellt.
    3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass man natürliche Fette und/oder Öle einsetzt, die ausgewählt sind aus der Gruppe, die gebildet wird von Palmöl, Palmkernöl, Kokosöl, Rindertalg, Sonnenblumenöl oder Rapsöl sowie deren Gemischen.
    4. Verfahren nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass man in der ersten Stufe Kaliumacetat oder Lösungen von Kaliumacetat in Fettsäuren als Lewis-Säuren einsetzt
    5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass man als Lewissäuren Kaliumsalze einsetzt.
    6. Verfahren nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass man die Veresterung in der ersten Stufe bei Temperaturen im Bereich von 100 bis 300 °C durchführt.
    7. Verfahren nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass man die Veresterung in der ersten Stufe bei Drücken im Bereich von 5 bis 100 bar durchführt.
    8. Verfahren nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass man die Umesterung in der zweiten Stufe in Gegenwart von wasserfreien, gegebenenfalls alkoholischem Lösungen von Natrium- oder Kaliumhydroxid durchführt.
    9. Verfahren nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass man die Umesterung in der zweiten Stufe bei Temperaturen im Bereich von 100 bis 250 °C durchführt.
    10. Verfahren nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass man die Umesterung in der zweiten Stufe bei Drucken im Bereich von 5 bis 100 bar durchführt.
    11. Verfahren nach mindestens einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass man die Umesterung in der dritten Stufe in Gegenwart von Alkalialkoholaten durchführt.
    12. Verfahren nach mindestens einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass man die Umesterung in der dritten Stufe bei Temperaturen im Bereich von 20 bis 200 °C durchführt.
    13. Verfahren nach mindestens einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass man die Umesterung in der dritten Stufe bei Drucken im Bereich von 1 bis 10 bar durchführt.
    EP02023941A 2001-11-06 2002-10-25 Verfahren zur Herstellung von Fettsäureestern aus nicht entsäuerten Fetten und Ölen Expired - Lifetime EP1308498B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE10154365 2001-11-06
    DE10154365A DE10154365A1 (de) 2001-11-06 2001-11-06 Verfahren zur Herstellung von Fettsäureestern aus nicht entsäuerten Fetten und Ölen

    Publications (2)

    Publication Number Publication Date
    EP1308498A1 EP1308498A1 (de) 2003-05-07
    EP1308498B1 true EP1308498B1 (de) 2005-07-20

    Family

    ID=7704720

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP02023941A Expired - Lifetime EP1308498B1 (de) 2001-11-06 2002-10-25 Verfahren zur Herstellung von Fettsäureestern aus nicht entsäuerten Fetten und Ölen

    Country Status (3)

    Country Link
    EP (1) EP1308498B1 (de)
    AT (1) ATE299925T1 (de)
    DE (2) DE10154365A1 (de)

    Families Citing this family (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    AT502218B1 (de) 2005-07-25 2010-09-15 Bdi Biodiesel Internat Ag Verfahren zur herstellung von carbonsäurealkylestern

    Family Cites Families (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2383601A (en) * 1943-04-28 1945-08-28 Colgate Palmolive Peet Co Treating fats and fatty oils
    JPS6025478B2 (ja) * 1977-03-17 1985-06-18 花王株式会社 脂肪酸低級アルコ−ルエステルの製造法
    DE3319590A1 (de) * 1983-05-30 1984-12-06 Henkel KGaA, 4000 Düsseldorf Verfahren zur herstellung von fettsaeureestern kurzkettiger aliphatischer alkohole aus freie fettsaeuren enthaltenden fetten und/oder oelen
    DE3444893A1 (de) * 1984-12-08 1986-06-12 Henkel KGaA, 4000 Düsseldorf Verfahren zur herstellung von fettsaeuremethylestern
    DE3515403A1 (de) * 1985-04-29 1986-10-30 Henkel KGaA, 4000 Düsseldorf Verfahren zur katalytischen umesterung von fettsaeureglyceriden mit niederen alkanolen
    WO1987007632A1 (en) * 1986-06-11 1987-12-17 Bio-Energy Technology Ltd. Bio-fuel production
    JPH04182451A (ja) * 1990-11-17 1992-06-30 Daisan Kasei Kk 高級脂肪酸モノグリセリドの製造方法
    US5525126A (en) * 1994-10-31 1996-06-11 Agricultural Utilization Research Institute Process for production of esters for use as a diesel fuel substitute using a non-alkaline catalyst
    JP2000144172A (ja) * 1998-11-13 2000-05-26 Sumitomo Chem Co Ltd 脂肪酸エステル類の製造方法および脂肪酸エステル類の用途

    Also Published As

    Publication number Publication date
    EP1308498A1 (de) 2003-05-07
    DE10154365A1 (de) 2003-05-15
    DE50203669D1 (de) 2005-08-25
    ATE299925T1 (de) 2005-08-15

    Similar Documents

    Publication Publication Date Title
    EP0184740B1 (de) Verfahren zur Herstellung von Fettsäuremethylestern
    AT399336B (de) Verfahren zur herstellung von fettsäurealkylestern
    EP1322588B1 (de) Verfahren zur herstellung von fettsäurealkylestern
    EP1910267B1 (de) Verfahren zur herstellung von carbonsäurealkylestern
    DE69005501T2 (de) Verfahren zum Herstellen von Niedrigalkylfettsäuremonoester.
    DE4422858C1 (de) Ungesättigte Fettalkohole mit verbessertem Kälteverhalten
    DE10038442A1 (de) Verfahren zur Gewinnung von Sterinen aus fettsäurehaltigen Rückständen
    EP2358851B1 (de) Verwendung von methansulfonsäure zur herstellung von fettsäureestern
    EP0332971B1 (de) Verfahren zur kontinuierlichen Umesterung von Fettsäureniedrigalkyl-estern
    EP1358306B1 (de) Verfahren zur umesterung von fett und/oder öl mittels alkoholyse
    EP1319057B1 (de) Verfahren zur herstellung von rohstoffen für die gewinnung von konjugierter linolsäure
    EP0889023B1 (de) Verfahren zur Herstellung von Mischungen aus Sorbitmonoestern, Sorbitdiestern und Partialglyceriden
    EP1308498B1 (de) Verfahren zur Herstellung von Fettsäureestern aus nicht entsäuerten Fetten und Ölen
    EP1092703B1 (de) Verfahren zur Herstellung von Fettsäuremethylestern
    AT412280B (de) Gereinigter fettsäurealkylester mit niedrigem schwefelgehalt und verfahren zu seiner herstellung
    DE4338111A1 (de) Verfahren zur Herstellung von Fettsäureniedrigalkylestern
    DE19626458C2 (de) Verfahren zur Herstellung von Estern der schwerflüchtigen Alkohole Trismethylolpropan, Trismethylolethan und Pentaerythrit mit nativen Fettsäuren
    EP1075460A1 (de) Verfahren zur herstellung von polyolestern
    DE19819655A1 (de) Verfahren zur Herstellung von Fettsäureestern aus Triglyceriden
    DE3906853A1 (de) Verfahren zur herstellung von fettsaeureglyceriden

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20021025

    AK Designated contracting states

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO SI

    AKX Designation fees paid

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

    17Q First examination report despatched

    Effective date: 20041115

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: COGNIS IP MANAGEMENT GMBH

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20050720

    Ref country code: EE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050720

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050720

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050720

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050720

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050720

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050720

    Ref country code: SK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050720

    Ref country code: CZ

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050720

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

    REF Corresponds to:

    Ref document number: 50203669

    Country of ref document: DE

    Date of ref document: 20050825

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051020

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051020

    Ref country code: BG

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051020

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051020

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051025

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051031

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051031

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051031

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051031

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051221

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20050720

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20060421

    EN Fr: translation not filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060915

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20061011

    Year of fee payment: 5

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20061019

    Year of fee payment: 5

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061031

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061031

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    BERE Be: lapsed

    Owner name: COGNIS IP MANAGEMENT G.M.B.H.

    Effective date: 20051031

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080501

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20071025

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051031

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050720