EP0000580B1 - Verfahren zur Herstellung anorganisch-organischer Kunststoffe - Google Patents

Verfahren zur Herstellung anorganisch-organischer Kunststoffe Download PDF

Info

Publication number
EP0000580B1
EP0000580B1 EP78100505A EP78100505A EP0000580B1 EP 0000580 B1 EP0000580 B1 EP 0000580B1 EP 78100505 A EP78100505 A EP 78100505A EP 78100505 A EP78100505 A EP 78100505A EP 0000580 B1 EP0000580 B1 EP 0000580B1
Authority
EP
European Patent Office
Prior art keywords
organic
inorganic
component
mixing
polyisocyanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78100505A
Other languages
English (en)
French (fr)
Other versions
EP0000580A1 (de
Inventor
Hans-Joachim Dr. Scholl
Dieter Dr. Dieterich
Peter Dr. Markusch
Rainer Dr. Welte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0000580A1 publication Critical patent/EP0000580A1/de
Application granted granted Critical
Publication of EP0000580B1 publication Critical patent/EP0000580B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/001Macromolecular compounds containing organic and inorganic sequences, e.g. organic polymers grafted onto silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3893Low-molecular-weight compounds having heteroatoms other than oxygen containing silicon
    • C08G18/3895Inorganic compounds, e.g. aqueous alkalimetalsilicate solutions; Organic derivatives thereof containing no direct silicon-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units

Definitions

  • Inorganic-organic plastics based on polyisocyanates and aqueous alkali silicate solutions are known; see e.g. DT-OS 1 770 384, 2 227 147, 2 359 606, 2 359 607, 2 359 608, 2 359 609, 2 359 610, 2 359 611, 2 359 612, DT-AS 2 325 090 and 2310559.
  • plastics can be produced which, due to the inorganic components, have above all improved fire resistance compared to purely organic substances and which, depending on the composition and reaction conditions, can be foamed or non-foamed, hard or soft, brittle or flexible. Due to the great variability of the properties, these inorganic-organic plastics offer a wide range of possible applications.
  • the plastics resulting from a W / O type dispersion are particularly interesting. They have high mechanical strengths, even when exposed to moisture, because the hardened, coherent organic phase envelops and thus fixes the likewise hardened aqueous, inorganic, incoherent phase.
  • the perfect coherent organic phase of these plastics also depends on the improved fire resistance of such systems due to the amount of water enclosed.
  • the invention is based, to avoid the disadvantages described above and to produce inorganic-organic plastics, even with high amounts of organic components, the task.
  • the process according to the invention can be carried out continuously or preferably batchwise.
  • the stable primary dispersion is first prepared from polyisocyanate, aqueous basic solution or suspension and, if appropriate, further additives, such as activators, emulsifiers and blowing agents, and then the organic compound (component c)) is added.
  • the primary dispersion is generated beforehand in a prechamber in accordance with the discontinuous mode of operation by means of a special mechanical arrangement; the mixing with the organic compound (component c)) takes place continuously in a downstream mixing head.
  • the discontinuous variant is recommended when using such organic compounds as component c) which, for example, spontaneously gel aqueous alkali silicate solutions.
  • component c) which, for example, spontaneously gel aqueous alkali silicate solutions.
  • component c) is then metered in.
  • Organic compounds according to component c) which do not gel or only very slowly gel aqueous alkali silicates can be used either by the continuous or by the batch process.
  • mixing of the individual components e.g. carried out in the order that first a spatially and temporally from components a) and b), optionally with the addition of all or part of component d), a dispersion is produced with the aid of a mixing unit and to this dispersion in a spatially and temporally then arranged mixing unit, component c), optionally with the addition of all or part of component d), is added.
  • Starting components (component a) to be used according to the invention are aliphatic, cycloaliphatic, araliphatic, aromatic and heterocyclic polyisocyanates, as described, for example, by W. Siefken in Justus Liebigs Annalen der Chemie, 562, pages 75 to 136, for example those such as in DE-OS 2,647,482 pages 5-6 - are called.
  • distillation residues containing isocyanate groups obtained in the technical production of isocyanates optionally dissolved in one or more of the aforementioned polyisocyanates. It is also possible to use any mixtures of the aforementioned polyisocyanates.
  • polyisocyanates e.g. 2,4- and 2,6-tolylene diisocyanate as well as any mixtures of these isomers (“TDI”), polyphenyl-polymethylene polyisocyanates, such as those produced by aniline-formaldehyde condensation and subsequent phosgenation (“crude MDI”) and carbodiimide groups, Polyisocyanates containing urethane groups, allophanate groups, isocyanurate groups, urea groups or biuret groups (“modified polyisocyanates").
  • TDI polyisocyanates
  • polyphenyl-polymethylene polyisocyanates such as those produced by aniline-formaldehyde condensation and subsequent phosgenation
  • CAMDI aniline-formaldehyde condensation and subsequent phosgenation
  • carbodiimide groups Polyisocyanates containing urethane groups, allophanate groups, isocyanurate groups, urea groups or biuret groups
  • Polyisocyanates containing ionic groups are particularly preferred according to the invention, for example sulfonated polyisocyanates (DT-OS 2227111, 2359614, 2 359 615), polyisocyanates containing carboxylate groups (DT-OS 2 359 613). Also preferred according to the invention are nonionic-hydrophilic polyisocyanates as described in DT-OS 2 325 909, furthermore polyisocyanates containing polar groups according to DT-OS 2 359 608 and phenolic OH groups containing polyisocyanates as described in DT OS 2 359 616.
  • polyisocyanates are preferably made from polyphenyl-polymethylene polyisocyanates, such as those produced by aniline-formaldehyde condensation and subsequent phosgenation ('crude MDI'), and from the distillation residues obtainable therefrom by distillation of two-core products, which generally have a viscosity between 50 and 50000 P / 25 ° C, an NCO content of 28-33 weight percent and a functionality> 2.
  • basic components are furthermore aqueous basic solutions or suspensions with an inorganic solid content of 20-80% by weight, preferably 30-70% by weight, especially aqueous alkali silicate solutions or alkaline stabilized silica sols, but also liquid-flowable basic suspensions of finely divided fillers.
  • aqueous basic solutions or suspensions are often also used in combination.
  • Aqueous solutions of alkali silicates are to be understood as the solutions of sodium and / or potassium silicate in water which are usually referred to as “water glasses”. It can too raw technical solutions, which can additionally contain, for example, calcium silicate, magnesium silicate, borates and aluminates, are used. Preferably, however, 32-54% by weight sodium silicate solutions are used, with a Na 2 O / SiO 2 molar ratio of 1: 1.6 to 1: 3.3.
  • Component c) is to be understood as meaning (preferably liquid at room temperature) organic compounds which, in addition to at least one isocyanate-reactive hydrogen atom, have at least one nonionic-hydrophilic group.
  • the nonionic-hydrophilic groups are primarily hydrophilic polyether groups.
  • Polyether groups which are composed of ethylene oxide and / or propylene oxide are preferred.
  • Suitable organic compounds which, in addition to a hydrogen atom which is reactive toward isocyanate, have at least one nonionic-hydrophilic group are, in particular, polyethers which are made up of alcohols with a functionality of 1-3 and ethylene oxide and / or propylene oxide and have terminal OH groups.
  • the hydrophilic center can also be introduced into the organic compound by incorporating a glycol such as tri- and tetraethylene glycol.
  • organic compounds having differently prepared polyether groups can also be used, provided that they contain - in addition to at least one reactive H atom - hydrophilic groups, e.g. monofunctional polyether based on monoalcohols and ethylene oxide.
  • the proportion of ethylene oxide in the polyether should preferably be at least 10% by weight.
  • Nonionic-hydrophilic compounds suitable according to the invention are furthermore polycarbonates based on ethylene glycol, propylene glycol, tetraethylene glycol.
  • Formose can also be used here, as it is e.g. in DT-OS 2,639,084, 2,639,083, 2,714,084, 2,714,104, 2,721,186 and 2,721,093.
  • compounds are also suitable which have a hydrophilic polyester segment, e.g. Contain triethylene glycol or diethylene glycol and succinic acid or oxalic acid.
  • a hydrophilic polyester segment e.g. Contain triethylene glycol or diethylene glycol and succinic acid or oxalic acid.
  • Polyethers which are composed of amines with a functionality of 1-4 and ethylene oxide and / or propylene oxide and have terminal OH groups are also particularly suitable for the batch process.
  • volatile organic substances are optionally used as blowing agents, such as those e.g. in DE-OS 2 647 482, page 13.
  • a blowing effect can also be achieved by adding compounds which decompose at temperatures above room temperature with the elimination of gases, for example nitrogen, e.g. Azo compounds such as azoisobutyronitrile can be achieved.
  • the water contained in the aqueous basic solution or suspension can also take on the function of the blowing agent.
  • Fine metal powders e.g. Calcium, magnesium, aluminum or zinc serve as a blowing agent through the development of hydrogen with sufficient alkaline water glass, while at the same time exerting a hardening and strengthening effect.
  • catalysts are also often used, e.g. those as described in DE-OS 2 647 482 pages 13-15.
  • the catalysts are generally used in an amount between about 0.001 and 10% by weight, based on the amount of isocyanate.
  • surface-active additives emulsifiers and foam stabilizers
  • reaction retarders cell regulators of the type known per se
  • pigments, dyes, flame retardants, stabilizers against aging and weathering effects plasticizers
  • fungistatic and bacteriostatic substances and fillers cf. e.g. this DE-OS 2 647 482, pages 15-16.
  • surface-active additives and foam stabilizers to be used according to the invention, as well as cell regulators, reaction retarders, stabilizers, anti-inflammatory substances, plasticizers, dyes and fillers, as well as fungistatic and bacteriostatic substances, and details on the use and action of these additives are given in the Plastics Manual, Volume VII by Vieweg and Höchtlen, Carl-Hanser-Verlag, Kunststoff 1966, e.g. on pages 103 to 113.
  • the mixing of the reaction components is preferably carried out at room temperature.
  • dispersions are generally obtained which, with an increasing proportion of organic components and changing the W / O phase structure, undergo unstable dispersion states which, after hardening, can result in disturbances in the structure of the inorganic-organic plastic.
  • the process products find the application known for organic-inorganic plastics, e.g. as sound and heat insulation materials, as building material, as concrete and joint sealing compounds.
  • a 1 Sufficient diisocyanatodiphenylmethane is distilled off from the crude phosgenation product of an aniline / formaldehyde condensate so that the distillation residue at 25 ° C. has a viscosity of 400 cP. (2-core fraction: 45.1% by weight, 3-core fraction :, 22.3% by weight, proportion of higher-core polyisocyanates: 32.6% by weight) NCO content: 30-31% by weight .
  • a 2 A 1 sulfonated with gaseous sulfur trioxide (sulfur content: 0.96%, NCO content: 30.5%, viscosity at 25 ° C: 24000 cP, production see DT-OS 2 227 111).
  • a 3 Correspondingly A 1 sulfonated with chlorosulfonic acid (sulfur content: 0.9%, NCO content: 30.2% viscosity at 20 ° C: 2000 cP).
  • E 1 240 g of a chalk (specific weight: 2.7, 90% of the particles ⁇ 2 ⁇ , Omyalite 90 from Omya GmbH) were dissolved in 80 g of water and 5 g of a 30% aqueous solution of a high molecular weight di Potassium salt of a maleic acid-styrene copolymer with carboxylate and sulfonate groups suspended. Solids content: 75%.
  • Components II and III were premixed.
  • Component I was 10 sec. mixed to achieve the primary dispersion with a high-speed stirrer, the mixture component (II + III) was then within 5 seconds. added with stirring. After 20 seconds Total mixing time was that Poured reaction mixture into a paper packet, started after 30 sec. to foam up and was after 85 sec. stiffens.
  • a tough elastic inorganic-organic lightweight foam was obtained with a bulk density of 48 kg / m 3 and a compressive strength of 0.07 [MPa].
  • Example 1 A conventional, simultaneous mixing of the three components according to Example 1 leads to a foam which is not practical, with foam disorders and defoamed, wet floor zone.
  • Foaming was carried out according to Example 1. The foaming process continued after 28 seconds. on, after 75 sec. the reaction mixture had solidified.
  • Components II and III were mixed.
  • Component I was 10 sec. mixed to achieve the primary dispersion with a high-speed stirrer, the mixture component (II + III) was then within 5 seconds. added with stirring. After 20 seconds Total mixing time, the reaction mixture was poured into a paper packet, started after 37 seconds. to foam up and was frozen after 40 seconds.
  • a tough, elastic, inorganic-organic lightweight foam with a bulk density of 48 kg / m 3 and a compressive strength of 0.09 [MPa] was obtained.
  • Components II and III were premixed.
  • Component I was 10 sec. mixed to achieve the primary dispersion with a high-speed stirrer, the mixture component (II + 111) was then within 5 seconds. added with stirring. After 20 seconds Total mixing time, the reaction mixture was poured into a paper packet, started after 34 seconds. lather and was, after 90 sec. stiffens.
  • a tough-elastic inorganic-organic lightweight foam was obtained with a bulk density of 47 kg / m 3 and a compressive strength of 0.10 [MPa]. +) Unsaturated polyester resin from Bayer AG
  • a conventional, simultaneous mixing of all three components leads within 20 seconds. to an inhomogeneous, highly viscous, non-foamable reaction mixture.
  • Example 19 components I + II were premixed with a high-speed stirrer, component III was then within 5 seconds. added with stirring. After 30 seconds intensive mixing, the reaction mixture was poured into a wooden box mold of approx. 55 dm 3 , started after 48 sec. to foam up and was after 70 sec. stiffens. A hard inorganic-organic foam with a bulk density of 169 kg / m 3 and a compressive strength of 0.57 [MPa] was obtained.
  • a dispersion of water glass (50% solids content) and polyisocyanate A is prepared, which is then mixed with a mixture M of the following composition in a second stirrer:
  • the product flows are set to the following values: water glass 8000 g / min, polyisocyanate 8040 g / min., 4920 g / min. the mixture M. Both mixing units have stirrers in an approx. 300 ml mixing chamber at 3000 rpm. The promotion takes place via standard gear pumps.
  • a uniformly fine-cell foam with a bulk density of 14 kg / m 3 is obtained , which can be produced continuously without difficulty at heights of up to 80 cm and a width of 100 cm.
  • Example 24 With product streams of the same size as in Example 24, a dispersion of water glass and isocyanate is first produced in a mixing unit as in Example 24, which is fed to a static mixer and mixed with the mixture M there. An equally good foam is obtained as in Example 24.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

  • Anorganisch-organische Kunststoffe auf Basis von Polyisocyanaten und wäßrigen Alkalisilikatlösungen sind bekannt; vergl. z.B. DT-OS 1 770 384, 2 227 147, 2 359 606, 2 359 607, 2 359 608, 2 359 609, 2 359 610, 2 359 611, 2 359 612, DT-AS 2 325 090 und 2310559.
  • Auf diese Weise lassen sich Kunststoffe herstellen, die aufgrund der anorganischen Anteile gegenüber rein organischen Stoffen vor allem verbesserte Brandwidrigkeit aufweisen und die je nach Zusammensetzung und Reaktionsbedingungen geschäumt oder ungeschäumt, hart oder weich, spröde oder flexibel sein können. Durch die große Variabilität der Eigenschaften bieten diese anorganisch-organischen Kunststoffe ein breites Spektrum von Anwendungsmöglichkeiten.
  • Diesen Kombinationskunststoffen ist gemeinsam, daß zu ihrer Herstellung die organische und die anorganische Phase miteinander vermischt werden müssen. Hierbei entstehen Dispersionen vom Typ W/0 (Wasser in öl) oder O/W (öl- in- Wasser).
  • Die aus einer Dispersion vom Typ W/O hervorgegangenen Kunststoffe sind besonders interessant. Sie weisen, auch unter Feuchteinwirkung, hohe mechanische Festigkeiten auf, weil die gehärtete kohärente organische Phase die ebenfalls gehärtete wäßrige anorganische inkohärente Phase umhüllt und damit fixiert. Von der perfekten kohärenten organischen Phase dieser Kunststoffe hängt aber auch, bedingt durch die eingeschlossene Wassermenge, die verbesserte Brandwidrigkeit derartiger Systeme ab.
  • Man hat versucht, zur Herstellung der beschriebenen Kunststoffe die Reaktionskomponenten in einer diskontinuierlich oder kontinuierlich arbeitenden Mischvorrichtung einstufig oder in mehreren Stufen miteinander zu vermischen und die entstandene Dispersion anschließend erstarren zu lassen.
  • So wird z.B. nach DT-OS 2 359 606 die Vermischung von
    • a) einem organischen Polyisocyanat
    • b) einer wäßrigen Silikatlösung
    • c) einer organischen Komponente

    so vorgenommen, daß zunächst die Anteile b) und c) vorgemischt oder aber a), b) und c) gleichzeitig vermischt werden.
  • Auf diese Weise erhält man jedoch vielfach Produkte, die mit zunehmendem Anteil an organischer Komponente in steigendem Maße Störungen aufweisen können, die im Extremfall den geregelten Aufbau eines anorganisch-organischen Kunststoffes verhindern.
  • Der Erfindung liegt die Aufgabe zugrunde, die oben beschriebenen Nachteile zu vermeiden und anorganisch-organische Kunststoffe, auch bei hohen Mengen an organischen Anteilen, problemlos herzustellen.
  • Diese Aufgabe wird mit dem erfindungsgemäßen Verfahren gelöst.
  • Gegenstand der vorliegenden Erfindung ist somit ein Verfahren zur Herstellung anorganisch-organischer Kunststoffe hoher Festigkeit, Elastizität, Wärmeformbeständigkeit und Schwerentflammbarkeit, bestehend aus einem als kolloides Xerosol vorliegenden Polymer-Polykieselsäuregel-Verbundmaterial durch Vermischen von
    • a) einem organischen Polyisocyanat
    • b) einer wäßrigen basischen Lösung und/oder einer wäßrigen basischen Suspension mit Gehalten an anorganischem Feststoff von 20-80 Gew.-%, vorzugsweise 30-70 Gew.-96,
    • c) einer organischen Verbindung, die mindestens ein gegenüber Isocyanat reaktionsfähiges Wasserstoffatom sowie mindestens eine nichtionisch-hydrophile Gruppe enthält, und
    • d) gegebenenfalls Katalysatoren und weiteren Zusatzmitteln und Ausreagierenlassen des so erhaltenen Gemischs,

    dadurch gekennzeichnet, daß die Vermischung in der Weise vorgenommen wird, daß zunächst die Komponenten a) und b), gegebenenfalls unter Zusatz der ganzen Menge oder eines Teils der Komponente d), zu einer stabilen Primärdispersion umgesetzt und anschließend die Komponente c), gegebenenfalls unter Zusatz der ganzen Menge oder eines Teils der Komponente d), unter Ausbildung einer Enddispersion zugegeben wird, wobei die Enddispersion vor Beginn des Aushärtens bei Raumtemperatur einen Viskositätsbereich von 100-4000 cP aufweist und aus 10-50 Gew.-% anorganisch wäßriger Phase und 90-50 Gew.-% organischer Phase besteht.
  • Das erfindungsgemäße Verfahren kann kontinuierlich oder vorzugsweise diskontinuierlich durchgeführt werden. Nach der diskontinuierlichen Arbeitsweise wird zuerst die stabile Primärdispersion aus Polyisocyanat, wäßriger basischer Lösung oder Suspension und gegebenenfalls weiteren Zusatzmitteln wie Aktivatoren, Emulgatoren und Treibmitteln hergestellt und dann die Zugabe der organischen Verbindung (Komponente c)) vorgenommen. Nach der kontinuierlichen Arbeitsweise wird entsprechend der diskontinuierlichen Arbetsweise durch eine spezielle maschinelle Anordnung vorab die Primärdispersion in einer Vorkammer erzeugt, die Vermischung mit der organischen Verbindung (Komponente c)) erfolgt kontinuierlich in einem nachgelagerten Mischkopf.
  • Die diskontinuierliche Variante empfiehlt sich bei der Mitverwendung von solchen organischen Verbindungen als Komponente c), die z.B. wäßrige Alkalisilikatlösungen spontan gelieren. Hierbei wird vorzugsweise zunächst aus Polyisocyanat und z.B. wäßrigem Alkalisilikat eine stabile Primärdispersion hergestellt und anschließend die Komponente c) zudosiert.
  • Oftmals erwünschte, längere Mischzeiten lassen sich nach dem diskontinuierlichen Verfahren dadurch realisieren, daß der zur Aushärtung benötigte Aktivator erst nach Herstellung der stabilen Primärdispersion zugegeben wird.
  • Organische Verbindungen gemäß Komponente c), die wäßrige Alkalisilikate nicht oder nur sehr langsam gelieren, können sowohl nach der kontinuierlichen als auch nach dem diskontinuierlichen Verfahren eingesetzt werden.
  • Erfindungsgemäß wird eine Vermischung der einzelnen Komponenten z.B. in der Reihenfolge vorgenommen, daß räumlich und zeitlich zuerst aus den Komponenten a) und b), gegebenenfalls unter Zusatz der ganzen Menge oder eines Teils der Komponente d), eine Dispersion mit Hilfe eines Mischaggregats hergestellt wird und zu dieser Dispersion in einem räumlich und zeitlich danach angeordneten Mischaggregat die Komponente c), gegebenenfalls unter Zusatz der ganzen Menge oder eines Teils der Komponente d), zugegeben wird.
  • Zur technischen Durchführung dieser nacheinander erfolgenden Vermischung ergeben sich verschiedene Möglichkeiten:
    • 1) Es werden zwei Rührwerksmischköpfe benutzt.
    • 2) Es werden zwei Mischaggregate benutzt, die aus zwei nacheinander auf einer angetriebenen Achse angebrachten Mischorganen bestehen, wobei die Komponenten a) und b) [und ggf. d)] am oberen Teil der angetriebenen Achse eindosiert werden, die Komponente c) [und ggf. d)] dagegen im unteren Teil der Achse.
    • 3) Die Mischaggregate bestehen aus zwei nacheinander angeordneten statischen Mischvorrichtungen, wobei die Komponenten a) und b) [und ggf. d)] am ersten statischen Mischer eindosiert werden und nach dem Passieren der ersten Mischstrecke im zweiten statischen Mischer mit der Komponente c) [und ggf. d)] vermischt werden.
    • 4) Als erstes Mischaggregat wird ein Rührwerksmischkopf benutzt und als zweites Mischaggregat ein statischer Mischer.
    • 5) Als erstes Mischaggregat wird ein statischer Mischer und als zweites Mischaggregat ein Rührwerksmischkopf benutzt.
  • Als erfindungsgemäß einzusetzende Ausgangskomponenten (Komponente a) kommen aliphatische, cycloaliphatische, araliphatische, aromatische und heterocyclische Polyisocyanate in Betracht, wie sie z.B. von W. Siefken in Justus Liebigs Annalen der Chemie, 562, Seiten 75 bis 136, beschrieben werden, beispielsweise solche, wie sie in der DE-OS 2 647 482 Seiten 5-6- genannt werden.
  • Es ist auch möglich, die bei der technischen Isocyanatherstellung anfallenden Isocyanatgruppen aufweisenden Destillationsrückstände, gegebenenfalls gelöst in einem oder mehreren der vorgenannten Polyisocyanate, einzusetzen. Ferner ist es möglich, beliebige Mischungen der vorgenannten Polyisocyanate zu verwenden.
  • Besonders bevorzugt werden in der Regel die technisch leicht zugänglichen Polyisocyanate, z.B. das 2,4- und 2,6-Toluylendiisocyanat sowie beliebige Gemische dieser Isomeren ("TDI"), Polyphenyl-polymethylen-polyisocyanate, wie sie durch Anilin-Formaldehyd-Kondensation und anschließende Phosgenierung hergestellt werden ("rohes MDI") und Carbodiimidgruppen, Urethangruppen, Allophanatgruppen, Isocyanuratgruppen, Harnstoffgruppen oder Biuretgruppen aufweisenden Polyisocyanate ("modifizierte Polyisocyanate").
  • Erfindungsgemäße besonders bevorzugt sind ionische Gruppen aufweisende Polyisocyanate, wie sie in der DT-OS 2 227 147 beschrieben werden, beispielsweise sulfonierte Polyisocyanate (DT-OS 2227111, 2359614, 2 359 615), Carboxylatgruppen aufweisende Polyisocyanate (DT-OS 2 359 613). Erfindungsgemäß bevorzugt sind auch nicht ionisch-hydrophile Polyisocyanate, wie sie in der DT-OS 2 325 909 beschrieben werden, ferner polare Gruppen aufweisende Polyisocyanate gemäß der DT-OS 2 359 608 und phenolische OH-Gruppen aufweisende Polyisocyanate, wie sie in der DT-OS 2 359 616 genannt werden.
  • Die obengenannten, besonders bevorzugten Polyisocyanate werden vorzugsweise aus Polyphenyl-polymethylen-polyisocyanaten, wie sie durch Anilin-Formaldehyd-Kondensation und anschließende Phosgenierung hergestellt werden ('rohes MDI') sowie aus den daraus durch Abdestillation von Zweikernprodukten erhältlichen Destillationsrückständen, die im allgemeinen eine Viskosität zwischen 50 und 50000 P/25°C, einen NCO-Gehalt von 28-33 Gewichtsprozent sowie eine Funktionalität >2 aufweisen, hergestellt.
  • Erfindungsgemäß werden ferner als Ausgangskomponenten (Komponente b)) wäßrige basische Lösungen oder Suspensionen mit einem Gehalt an anorganischem Feststoff von 20-80 Gew.-%, vorzugsweise 30-70 Gew.-%, vor allem wäßrige Alkalisilikatlösungen oder alkalisch stabilisierte Kieselsole, aber auch flüssig-fließfähige basische Suspensionen feinteiliger Füllstoffe, eingesetzt. Oftmals werden die vorgenannten wäßrigen basischen Lösungen oder Suspensionen auch in Kombination eingesetzt.
  • Unter wäßrigen Lösungen von Alkalisilikaten sind die üblicherweise als "Wasserglas" bezeichneten Lösungen von Natrium und/oder Kaliumsilikat in Wasser zu verstehen. Es können auch rohe technische Lösungen, welche zusätzlich z.B. Calciumsilikat, Magnesiumsilikat, Borate und Aluminate erhalten können, Verwendung finden. Vorzugsweise werden indessen 32-54 Gew.-%ige Natriumsilikatlösungen eingesetzt, mit einem molaren Verhältnis Na20/Si02 von 1:1,6 bis 1:3,3.
  • Als Komponente c) sind (vorzugsweise bei Raumtemperatur flüssige) organische Verbindungen zu verstehen, die außer mindestens einem gegenüber Isocyanat reaktiven Wasserstoffatom mindestens eine nichtionisch-hydrophile Gruppe aufweisen.
  • Bei den nichtionisch-hydrophilen Gruppen handelt es sich vor allem um hydrophile Polyäthergruppierungen.
  • Bevorzugt kommen dabei Polyäthergruppen in Betracht, die aus Äthylenoxid und/oder Propylenoxid aufgebaut sind.
  • Geeignete organische Verbindungen, die außer einem gegenüber Isocyanat reaktiven Wasserstoffatom mindestens über eine nichtionisch-hydrophile Gruppe verfügen, sind besonders Polyäther, die aus Alkoholen mit einer Funktionalität von 1-3 und Äthylenoxid und/oder Propylenoxid ausgebaut sind und endständig OH-Gruppen aufweisen.
  • Auch kann das hydrophile Zentrum durch Einbau eines Glykols wie Tri- und Tetraäthylenglykol in die organische Verbindung eingeführt werden.
  • Selbstverständlichen können erfindungsgemäß auch andersartig hergestellte Polyäthergruppierungen aufweisende organische Verbindungen eingesetzt werden, sofern sie - neben mindestens einem reaktiven H-Atom - hydrophile Gruppierungen enthalten, z.B. monofunktionelle Polyäther auf Basis von Monoalkoholen und Äthylenoxid. Der Äthylenoxidanteil im Polyäther soll vorzugsweise mindestens 10 Gew.-% betragen.
  • Erfindungsgemäß geeignete nichtionische-hydrophile Verbindungen sind weiterhin Polycarbonate auf Basis von Äthylenglykol, Propylenglykol, Tetraäthylenglykol. In Frage kommt hier auch Formose, so wie sie z.B. in den DT-OS 2 639,084, 2 639 083, 2 714 084, 2 714 104, 2 721 186 und 2 721 093 beschrieben wird.
  • Weiterhin sind auch Verbindungen geeignet, welche ein hydrophiles Polyestersegment, z.B. Triäthylenglykol oder Diäthylenglykol und Bernsteinsäure oder Oxalsäure enthalten. Derartige Segmente können im Verlauf der weiteren Reaktion mit Wasserglas zerstört werden, wobei unter Härtung der anorganischen Komponente eine Hydrophobierung der organischen Komponente eintritt.
  • Polyäther, die aus Aminen mit einer Funktionalität von 1-4 und Äthylenoxid und/oder Propylenoxid aufgebaut sind und endständige OH-Gruppen aufweisen sind ebenfalls insbesondere für das diskontinuierliche Verfahren geeignet.
  • Erfindungsgemäß werden gegebenenfalls leicht flüchtige organische Substanzen als Treibmittel mitverwendet, wie sie z.B. in der DE-OS 2 647 482, Seite 13, genannt werden. Eine Treibwirkung kann auch durch Zusatz von bei Temperaturen über Raumtemperatur unter Abspaltung von Gasen, beispielsweise von Stickstoff, sich zersetzenden Verbindungen, z.B. Azoverbindungen wie Azoisobuttersäurenitril, erzielt werden.
  • Auch das in der wäßrigen basischen Lösung oder Suspension enthaltene Wasser kann die Funktion des Treibmittels übernehmen. Ferner können feine Metallpulver, z.B. Calcium, Magnesium, Aluminium oder Zink durch Wasserstoffentwicklung mit ausreichend alkalischem Wasserglas als Treibmittel dienen, wobei sie gleichzeitig eine härtende und verstärkende Wirkung ausüben.
  • Erfindungsgemäß werden ferner oft Katalysatoren mitverwendet, z.B. solche, wie sie in der DE-OS 2 647 482 Seiten 13-15, beschrieben werden.
  • Weitere Vertreter von erfindungsgemäß zu verwendenden Katalysatoren sowie Einzelheiten über die Wirkungsweise der Katalysatoren sind im Kunststoff-Handbuch, Band VII, herausgegeben von Vieweg und Höchtlen, Carl-Hanser-Verlag, München, 1966, z.B. auf den S.96 bis 102, beschrieben.
  • Die Katalysatoren werden in der Regel in einer Menge zwischen etwa 0,001 und 10 Gew.-%, bezogen auf die Menge an Isocyanat, eingesetzt.
  • Erfindungsgemäß können auch oberflächenaktive Zusatzstoffe (Emulgatoren und Schaumstabilisatoren) mitverwendet werden, ferner Reaktionsverzögerer, Zellregler der an sich bekannten Art, Pigmente, Farbstoffe, Flammschutzmittel, Stabilisatoren gegen Alterungs- und Witterungseinflüsse, Weichmacher, fungistatisch und bakteriostatisch wirkende Substanzen und Füllstoffe (Vgl. hierzu z.B. DE-OS 2 647 482, Seiten 15-16).
  • Weitere Beispiele von gegebenenfalls erfindungsgemäß mitzuverwendenden oberflächenaktiven Zusatzstoffen und Schaumstabilisatoren sowie Zellreglern, Reaktionsverzögerern, Stabilisatoren, ilammhemmende Substanzen, Weichmachern, Farbstoffen und Füllstoffen sowie fungistatisch und bakteriostatisch wirksamen Substanzen sowie Einzelheiten über Verwendungs- und Wirkungsweise dieser Zusatzmittel sind im Kunststoff-Handbuch, Band VII, herausgegeben von Vieweg und Höchtlen, Carl-Hanser-Verlag, München 1966, z.B. auf den S. 103 bis 113, beschrieben. Die Vermischung der Reaktionskomponenten erfolgt vorzugsweise bei Raumtemperatur.
  • Zur Deutung der technischen Vorteile gemäß der Erfindung wird angenommen, daß die nach dem erfindungsgemäßen Verfahren zwischenzeitlich hergestellte Primärdispersion außerordentlich stabil ist und auch weitere Zusätze diesen stabilen Zustand über die Reaktions- und Aushärtungszeit hinaus nicht gefährden.
  • Nach dem bisherigen Stand der Technik erhält man hingegen in der Regel Dispersionen, die bei zunehmend höherem Anteil an organischen Komponenten unter Veränderung der W/O-Phasenstruktur instabile Dispergierungszustände durchlaufen, die nach Aushärtung Störungen im Aufbau des anorganisch-organischen Kunststoffs ergeben können.
  • Denn organische Substanzen können, nach herkömmlichen Mischtechniken eingebracht, Entmischungsvorgänge einleiten und dadurch die Herstellung technisch brauchbarer anorganisch-organischer Kunststoffe verhindern. Es wird als wahrscheinlich angenommen, daß derartige Zusätze die anorganische Phase gelieren und/oder daß durch vorzeitige Vernetzungsreaktion mit dem Polyisocyanat eine ausreichende Vermischung der organischen und anorganischen Phase ausbleibt.
  • Die Verfahrensprodukte finden die für organisch-anorganische Kunststoffe bekannte Anwendung, z.B. als Schall- und Wärmedämmstoffe, als Baumaterial, als Beton- und Fugenvergußmassen.
  • Beispiele (%-Angaben sind, falls nicht anders vermerkt, Gew.-%-Angaben). Ausgangsmaterialien: a) Polyisocyanatkomponente
  • A1: Von rohem Phosgenierungsprodukt eines Anilin/Formaldehyd-Kondensats wird soviel Diisocyanato-diphenylmethan abdestilliert, daß der Destillationsrückstand bei 25°C eine Viskosität von 400 cP aufweist. (2-Kernanteil: 45,1 Gew.-%, 3-Kernanteil:, 22,3 Gew.-%, Anteil an höherkernigen Polyisocyanaten: 32,6 Gew.-%) NCO-Gehalt: 30-31 Gew.-%.
  • A2: Mit gasförmigem Schwefeltrioxid sulfoniertes A1 (Schwefelgehalt: 0,96%, NCO-Gehalt: 30,5%, Viskosität bei 25°C: 24000 cP, Herstellung s. DT-OS 2 227 111).
  • A3: Entsprechend mit Chlorsulfonsäure sulfoniertes A1 (Schwefelgehalt: 0,9%, NCO-Gehalt: 30,2% Viskosität bei 20°C: 2000 cP).
  • b) Silikatkomponente
  • B1: Natriumwasserglas, 44% Feststoff, Molgewichtverhältnis Na20: Si02 = 1:2
  • B2: Natriumwasserglas, 51% Feststoff, Molgewichtsverhältnis Na2O: SiO2 = 1:2
  • B3: Natriumwasserglas, 48.6% Feststoff, Molgewichtverhältnis Na2O: SiO2 = 1.2
  • c) Polyäther
  • C1: Auf n-Butanol gestarteter Polyäthylenoxid-monoalkohol OH-Zahl: 49,2
  • C2: Auf Glycerin gestarteter Polyäthylenoxid-Polypropylenoxid-trialkohol. OH-Zahl: 56
  • C3: Auf Saccharose/TMP/H20/gestarteter Polypropylenalkohol OH-Zahl: 380
  • C4: Auf Äthylendiamin gestarteter Polypropylentetraalkohol. OH-Zahl: 630
  • C5: 2,5 Gew.-Teile C1 + 7,5 Gew.-Teile C4
  • C6: 5 Gew.-Teile C1 + 10 Gew.-Teile C4
  • d) Formose (hergestellt gemäß DT-OS 2 721 186)
  • D1: 14,5% H20; Säurezahl 9,7; OH―Zahl 724
  • e) Suspension
  • Herstellung einer Kreidesuspension
  • E1: 240 g einer Kreide (spez. Gewicht: 2,7, 90% der Teilchen <2 µ, Omyalite 90 der Fa. Omya GmbH) wurden in 80 g Wasser und 5 g einer 30 %igen wäßrigen Lösung eines hochmolekularen Di-Kaliumsalzes eines Maleinsäure-Styrol-Copolymerisats mit Carboxylat und Sulfonatgruppen suspendiert. Feststoffgehalt: 75%.
  • Beispiel 1
  • Figure imgb0001
  • Komponente II und III wurden vorgemischt. Komponente I wurde 10 sek. zur Erzielung der Primärdispersion mit einem Schnellrührer vermischt, die Mischung Komponente (II + III) wurde anschließend innerhalb von 5 sek. unter Rühren zugegeben. Nach 20 sek. Gesamtmischzeit wurde das Reaktionsgemisch in ein Papierpäckchen ausgegossen, begann nach 30 sek. aufzuschäumen und war nach 85 sek. erstarrt. Man erhielt einen Zähelastischen anorganisch-organischen Leicht-Schaumstoff mit einer Rohdichte von 48 kg/m3 und einer Druckfestigkeit von 0,07 [MPa].
  • Vergleichsbeispiel
  • Eine konventionelle, gleichzeitige Vermischung der drei Komponenten gemäß Beispiel 1 führt zu einem nicht praxisgerechten Schaum mit Schaumstörungen und entschäumter, nasser Bodenzone.
  • Diese Entmischungserscheinungen im Bereich der Bodenzone sind offensichtlich durch eine ungenügende Vermischung der Einzelkomponenten bedingt.
  • Beispiel 2
  • Figure imgb0002
  • Die Verschäumung erfolgte gemäß Beispiel 1. Der Aufschäumprozeß setzte nach 28 sek. ein, nach 75 sek. war das Reaktionsgemisch erstarrt.
  • Rohdichte [kg/m3]: 34
  • Druckfestigkeit[MPa]: 0,06
  • In den nachfolgenden Beispielen bedeuten:
    • tR = Rührzeit, Mischzeit der Mischung aus Komponente I, Komponente II und Komponente III
    • tL = Liegezeit, Zeitraum von Beginn des Mischens bis zum Beginn des Aufschäumens
    • tA = Abbindezeit, Zeitraum von Beginn des Mischens bis zur Erhärtung.
    Beispiel 3
  • Mit zusätlichen 3 g Polyäther C3 in Komponente II wurde Beispiel 2 wiederholt. Man erhielt einen Lichtschaumstoff mit folgenden Daten:
    • tR: 20 sek., tL: 33 sek., tA: 85 sek.
    • rohdichte [kg/m3]: 29
    • Druckfestigkeit [MPa]: 0,04
    Beispiel 4
  • Figure imgb0003
  • Die Verschäumung erfolgte gemäß Beispiel 1. Man erhielt einen Leichtschaum mit den Daten: tR: 20 sek.; tL: 40 sek.; tA: 105 sek.
    • Rohdichte [kg/m3]: 42
    • Druckfestigkeit [MPa]: 0,07
    Beispiel 5
  • Figure imgb0004
  • Die Verschäumung erfolgte gemäß Beispiel 1.
    • tR: 20 sek.; tL: 29 sek.; tA: 105 sek,;
    • Rohdichte [kg/m3]:, 50
    • Druckfestigkeit [MPa]: 0,09
    Beispiel 6
  • Figure imgb0005
  • Die Verschäumung erfolgte gemäß Beispiel 1.
    • tR: 20 sek.; tL: 42 sek.; tA: 90 sek.;
    • R ohdichte [kg/m3]: 61
    • Druckfestigkeit [MPa]: 0.12
    Beispiel 7
  • Figure imgb0006
  • Die Verschäumung erfolgte gemäß Beispiel 1. Man erhält einen zäh-elastischen anorganisch-organischen Leichtschaumstoff mit den Werten:
    • tR: 20 sek.; tL: 34 sek.; tA: 140 sek.;
  • Eine konventionelle, gleichzeitige Vermischung der 3 Komponenten führt zu inhomogenen, nicht schaumfähigen Reaktionsgemischen.
  • Weitere gemäß Beispiel 7 hergestellte anorganisch-organische Schaumstoffe sind in Tabelle 1 aufgeführt.
  • Es bedeuten:
    • TCAP: Tris(ß-chloräthyl)phosphat
    • R11: Trichlorfluormethan
    • L 5340: Polyäthersiloxan der Fa. Union Carbide Corp.
    • DB: Dimethylbenzylamin
      Figure imgb0007
    Beispiel 12
  • Figure imgb0008
  • Komponente II und III wurden vermischt. Komponente I wurde 10 sek. zur Erzielung der Primärdispersion mit einem Schnellrührer vermischt, die Mischung Komponente (II + III) wurde anschließend innerhalb von 5 sek. unter Rühren zugegeben. Nach 20 sek. Gesamtmischzeit wurde das Reaktionsgemisch in ein Papierpäckchen ausgegossen, begann nach 37 sek. aufzuschäumen und war nach 40 sek, erstarrt. Man erhielt einen zäh-elastischen anorganisch-organischen Leicht-Schaumstoff mit einer Rohdichte von 48 kg/m3 und einer Druckfestigkeit von 0,09 [MPa].
  • Weitere gemäß Beispiel 12 hergestellte anorganisch-organische Schaumstoffe sind in Tabelle 2 aufgeführt:
    Figure imgb0009
  • Beispiel 18
  • Figure imgb0010
  • Komponente II und III wurden vorgemischt. Komponente I wurde 10 sek. zur Erzielung der Primärdispersion mit einem Schnellrührer vermischt, die Mischung Komponente (II + 111) wurde anschließend innerhalb von 5 sek. unter Rühren zugegeben. Nach 20 sek. Gesamtmischzeit wurde das Reaktionsgemisch in ein Papierpäckchen ausgegossen, begann nach 34 sek. aufzuschäumen und war, nach 90 sek. erstarrt. Man erhielt einen zäh-elastischen anorganisch-organischen Leicht-Schaumstoff mit einer Rohdichte von 47 kg/m3 und einer Druckfestigkeit von 0,10 [MPa].
    +) Ungesättigtes Polyesterharz der Fa. Bayer AG
  • Beispiel 19
  • Figure imgb0011
  • Komponente I und II wurden 5 sek. zur Erzielung der Primärdispersion mit einem Schnellrührer vermischt. Komponente III wurde nachfolgend innerhalb von 5 sek. unter Rühren zugegeben. Nach 20 sek. Gesamtmischzeit wurde das Reaktionsgemisch in ein Papierpäckchen ausgegossen. Man erhielt einen harten Schwerschaum mit den Werten:
    • tR: 20, tL: 30, tA: 53
    • Rohdichte [kg/m3]: 212
    • Druckfestigkeit [MPa]: 0,60
  • Eine konventionelle, gleichzeitige Vermischung aller drei Komponente führt innerhalb von 20 sek. zu einem inhomogenen, hochviskosen, nicht aufschäumbaren Reaktionsgemisch.
  • Beispiel 20
  • Figure imgb0012
  • Gemäß Beispiel 19 wurden die Komponenten I + II mit einem Schnellrührer vorgemischt, Komponente III wurde anschließend innerhalb von 5 sek. unter Rühren zugegeben. Nach 30 sek. intensiver Vermischung wurde das Reaktionsgemisch in eine Holzkastenform von ca. 55 dm3 Inhalt ausgegossen, begann nach 48 sek. aufzuschäumen und war nach 70 sek. erstarrt. Man erhielt einen harten anorganisch-organischen Schaumstoff mit einer Rohdichte von 169 kg/m3 und einer Druckfestigkeit von 0,57 [MPa].
  • Beispiel 21
  • Figure imgb0013
  • Die Verschäumung erfolgte gemäß Beispiel 19.
    • tR: 20 sek.; tL: 30 sek.; tA: 50 sek.
    • Rohdichte [kg/m3]: 225
    • Druckfestigkeite [MPa]: 0,58
    Beispiel 22
  • Figure imgb0014
  • Die Verschäumung erfolgte gemäß Beispiel 19.
    • tR: 20 sek.; tL: 29 sek.; tA: 55 sek.
    • Rohdichte [kg/m3]: 229
    • Druckfestigkeit [MPa]: 0,42
    Beispiel 23
  • Figure imgb0015
  • Die Verschäumung erfolgte gemäß Beispiel 19.
    • tR: 20 sek.; tL: 31 sek.; tA: 65 sek.;
    • Rohdichte [kg/m3]: 166
    • Druckfestigkeit [MPa]: 0,37
    Beispiel 24
  • In einem ersten Rührer stellt man eine Dispersion von Wasserglas (50% Feststoffgehalt) und Polyisocyanat A, her, die danach in einem zweiten Rührer mit einer Mischung M folgender Zusammensetzung versetzt wird:
    Figure imgb0016
    Figure imgb0017
  • Die Produktströme werden auf die folgenden Werte festgelegt: Wasserglas 8000 g/min, Polyisocyanat 8040 g/min., 4920 g/min. der Mischung M. Beide Mischaggregate besitzen Stachelrührer in einer ca. 300 ml großen Mischkammer bei 3000 Upm. Die Förderung erfolgt über handelsübliche Zahnradpumpen.
  • Man erhält einen gleichmäßig feinzelligen Schaumstoff der Rohdichte 14 kg/m3, der kontinuierlich ohne Schwierigkeiten in Höhen bis zu 80 cm bei 100 cm Breite produziert werden kann.
  • Beispiel 25 (Vergleichsbeispiel)
  • Mit gleich großen Produktströmen wie im Beispiel 24 werden alle Komponenten gleichzeitig in einen einzigen Mischkopf eingegeben. Der jetzt entstehende Schaumstoff ist deutlich heterogen und zeigt am Boden und seitlich starke Fließstörungen die bis zu einer Höhe von ca. 60% der Blockhöhe hinaufreichen. Die Störungen können durch Erhöhung der Rührerdrehzahl bis auf 6000 Upm nicht beseitigt werden; ebenso bringt ein Zusatz von mehr Stabilisator keine merkliche Verbesserung, sondern führt dann zu schnell schrumpfenden Schaumstoffen.
  • Beispiel 26
  • Mit gleich großen Produktströmen wie in Beispiel 24 wird zunächst in einem Mischaggregat wie in Beispiel 24 eine Dispersion aus Wasserglas und Isocyanat hergestellt, die einem statischen Mischer zugeführt wird und dort mit der Mischung M vermengt wird. Man erhält einen ebenso guten Schaumstoff wie in Beispiel 24.

Claims (6)

1. Verfahren zur Herstellung anorganisch-organischer Kunststoffe hoher Festigkeit, Elastizität, Wärmeformbeständigkeit und Schwerentflammbarkeit bestehend aus einem als kolloides Xerosol vorliegenden Polymer-Polykieselsäuregel-Verbundmaterial durch Vermischen von
a) einem organischen Polyisocyanat
b) einer wäßrigen Alkalisilikatlösung, einem alkalisch stabilisierten Kieselsol oder einer flüssigfließfähigen basischen Suspension feinteiliger Füllstoffe mit Gehalten an anorganischen Feststoff von 20-80 Gewichtsprozent,
c) einer organischen Verbindung, die mindestens ein gegenüber Isocyanat reaktionsfähiges Wasserstoffatom sowie mindestens eine nichtionisch-hydrophile Gruppe enthält, und
d) gegebenenfalls Katalysatoren und weiteren Zusatzmitteln
und Ausreagierenlassen des so erhaltenen Gemischs, dadurch gekennzeichnet, daß die Vermischung in der Weise vorgenommen wird, daß
zunächst die Komponente a) und b), gegebenenfalls unter Zusatz der ganzen Menge oder eines Teils der Komponente d), zu einer stabilen Primärdispension umgesetzt und
anschließend Komponente c), gegebenenfalls unter Zusatz der ganzen Menge oder eines Teils der Komponente d), unter Ausbildung einer Enddispersion zugegeben wird,
wobei die Enddispersion vor Beginn des Aushärtens bei Raumtemperatur einen Viskositätsbereich von 100-4000 cP aufweist und aus 10-50 Gew.-% anorganisch wäßriger Phase und 90-50 Gew.- % organischer Phase besteht.
2. Verfahren gemäß Anspruch 1 und 2, dadurch gekennzeichnet, daß man als Alkalisilikat Natriumsilikat mit einem Na20: Si02 Molverhältnis-im Bereich von 1:1,6 bis 3,3 verwendet.
3. Verfahren gemäß Anspruch 1-2, dadurch gekennzeichnet, daß als organische Polyisocyanate Phosgenierungsprodukte der Anilin/Formaldehyd-Kondensation eingesetzt werden.
4. Verfahren nach Anspruch 1-3, dadurch gekennzeichnet, daß man als Polyisocyanat ein ionische Gruppen aufweisendes Polyisocyanat verwendet.
5. Verfahren nach Anspruch 1-4, dadurch gekennzeichnet, daß das ionische Gruppen aufweisende Polyisocyanat ein Sulfonsäure- und/oder Sulfonatgruppen aufweisendes Polyisocyanat ist.
6. Verfahren gemäß Anspruch 1-2, dadurch gekennzeichnet, daß als Polyisocyanat ein endständige Isocyanatgruppen aufweisendes nicht-ionisch hydrophile Gruppen enthaltendes Präpolymer eingesetzt wird.
EP78100505A 1977-08-02 1978-07-26 Verfahren zur Herstellung anorganisch-organischer Kunststoffe Expired EP0000580B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19772734690 DE2734690A1 (de) 1977-08-02 1977-08-02 Verfahren zur herstellung anorganisch-organischer kunststoffe
DE2734690 1977-08-02

Publications (2)

Publication Number Publication Date
EP0000580A1 EP0000580A1 (de) 1979-02-07
EP0000580B1 true EP0000580B1 (de) 1980-09-17

Family

ID=6015396

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100505A Expired EP0000580B1 (de) 1977-08-02 1978-07-26 Verfahren zur Herstellung anorganisch-organischer Kunststoffe

Country Status (5)

Country Link
US (1) US4198487A (de)
EP (1) EP0000580B1 (de)
JP (1) JPS5821924B2 (de)
DE (2) DE2734690A1 (de)
IT (1) IT1106860B (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2734691A1 (de) * 1977-08-02 1979-02-08 Bayer Ag Verfahren zur herstellung anorganisch-organischer kunststoffe
DE2908746C2 (de) * 1979-03-06 1983-08-11 Bayer Ag, 5090 Leverkusen Verfahren zum Verfestigen und Abdichten von geologischen und geschütteten Gesteins- und Erdformationen
USRE31946E (en) * 1979-03-06 1985-07-16 Bergwerksverband Gmbh Process for consolidating and sealing off geological and artificially deposited rock and earth formations
DE2965176D1 (en) * 1979-03-06 1983-05-19 Bergwerksverband Gmbh Process for consolidating and sealing geological and heaped rock and earth formations
DE3227580A1 (de) * 1982-07-23 1984-01-26 Basf Ag, 6700 Ludwigshafen Stabile wasserglasloesungen, verfahren zu deren herstellung und verwendung fuer organosilikatschaumstoffe sowie ein herstellungsverfahren hierfuer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3826769A (en) * 1969-07-14 1974-07-30 Minnesota Mining & Mfg Self-emulsified polyurethanes prepared by direct sulfonation of isocyanate
US3975316A (en) * 1972-05-04 1976-08-17 Thiokol Corporation Curing liquid polyurethane prepolymers
DE2310559C3 (de) * 1973-03-02 1975-09-11 Bayer Ag, 5090 Leverkusen Schaumbeton, ein Verfahren zu seiner Herstellung und seine Verwendung zur Herstellung von Bauelementen
US4097423A (en) * 1972-06-03 1978-06-27 Bayer Aktiengesellschaft Inorganic-organic compositions
DE2325090C3 (de) * 1973-05-17 1980-11-06 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von als kolloides Xerosol vorliegendem anorganischorganischem Polymer-Polykieselsäure-Verbundmaterial
US4057519A (en) * 1974-09-05 1977-11-08 H. H. Robertson Company Sodium silicate extended polyurethane foam
DE2512170C3 (de) * 1975-03-20 1981-06-11 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von gegebenenfalls schaumförmigem, harten anorganisch-organischem Verbundmaterial
DE2524191C3 (de) * 1975-05-31 1980-04-03 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung bochgeffillter hydrophober Harnstoffgruppen enthaltender Leichtschaumstoffe

Also Published As

Publication number Publication date
US4198487A (en) 1980-04-15
JPS5821924B2 (ja) 1983-05-04
EP0000580A1 (de) 1979-02-07
DE2734690A1 (de) 1979-02-08
IT1106860B (it) 1985-11-18
JPS5428399A (en) 1979-03-02
IT7850515A0 (it) 1978-07-28
DE2860168D1 (en) 1980-12-18

Similar Documents

Publication Publication Date Title
DE2310559C3 (de) Schaumbeton, ein Verfahren zu seiner Herstellung und seine Verwendung zur Herstellung von Bauelementen
DE3035677A1 (de) Zelliges polymerisat
CH653350A5 (de) Verfahren zur herstellung eines polyurethans sowie polymer-modifizierter polyole.
EP0542806B1 (de) Verfahren zur herstellung polyolhaltiger dispersionen und deren verwendung
EP0905160B1 (de) Lagerstabile, treibmittelhaltige Emulsionen zur Herstellung von Hartschaumstoffen auf Isocyanatbasis
DE2559255A1 (de) Verfahren zur herstellung anorganisch-organischer kunststoffe
DE2227147B2 (de) Als kolloides Xerosol vorliegendes homogenes anorganisch-organisches Ionomer-Polykieselsäure-gel-Verbundmaterial
DE1643594A1 (de) Polyisocyanatmassen
DE3421086C2 (de)
EP3601404B1 (de) Transluzente polyurethanschaumstoffe
EP0000580B1 (de) Verfahren zur Herstellung anorganisch-organischer Kunststoffe
EP0000579B1 (de) Verfahren zur Herstellung anorganisch-organischer Kunststoffe
DE2359613A1 (de) Fluessige, loesungsmittelfreie, aromatische carboxyl- und/oder carboxylatgruppen aufweisende polyisocyanate
DE2600183C2 (de) Polyurethanschäume und ihre Verwendung
WO1992021713A1 (de) Polykieselsäure-polyisocyanat-werkstoffe, -verbundmaterialien und -schäume und ein verfahren zu ihrer herstellung
DE3836598A1 (de) Reaktivsysteme und ein verfahren zur herstellung von polyurethankunststoffen
DE1236185B (de) Verfahren zur Herstellung von Polyurethanschaumstoffen
DE2246696A1 (de) Polyurethanschaum und verfahren zu seiner herstellung
DE10394054B4 (de) Zusammensetzung für die Herstellung von starrem Polyurethanschaumstoff und daraus gebildeter starrer Polyurethanschaumstoff
DE4322601C2 (de) Verfahren zur Herstellung von Hartschaum-Formkörper auf Polyurethan-Basis
DE2360941A1 (de) Polyurethanschaeume
DE3625278A1 (de) Verfahren zur herstellung von anorganisch-organischen schaumstoffen
DE2546181A1 (de) Verfahren zur herstellung von gipsschaum und daraus bestehenden bauelementen
DE19728792A1 (de) Polyurethan-Isolierstege mit kleiner Wärmeleitzahl sowie die Verwendung von Isocyanurat aufweisenden Gießmassen zu deren Herstellung
DE4121153C2 (de) Polykieselsäure-Polyisocyanat-Werkstoffe, -Verbundmaterialien und -Schäume und ein Verfahren zu ihrer Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed
AK Designated contracting states

Designated state(s): BE DE FR GB

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB

REF Corresponds to:

Ref document number: 2860168

Country of ref document: DE

Date of ref document: 19801218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890617

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890717

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19890726

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890731

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19900731

BERE Be: lapsed

Owner name: BAYER A.G.

Effective date: 19900731

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910403

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT