EP0000572B1 - Verfahren zur Herstellung von kugelförmigen, expandierbaren Styrolpolymerisaten - Google Patents

Verfahren zur Herstellung von kugelförmigen, expandierbaren Styrolpolymerisaten Download PDF

Info

Publication number
EP0000572B1
EP0000572B1 EP78100482A EP78100482A EP0000572B1 EP 0000572 B1 EP0000572 B1 EP 0000572B1 EP 78100482 A EP78100482 A EP 78100482A EP 78100482 A EP78100482 A EP 78100482A EP 0000572 B1 EP0000572 B1 EP 0000572B1
Authority
EP
European Patent Office
Prior art keywords
styrene
spherical
suspension
polymer
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP78100482A
Other languages
English (en)
French (fr)
Other versions
EP0000572A1 (de
Inventor
Uwe Dr. Guhr
Rolf Dr. Moeller
Erhard Dr. Stahnecker
Wilhelm Dr. Kniese
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0000572A1 publication Critical patent/EP0000572A1/de
Application granted granted Critical
Publication of EP0000572B1 publication Critical patent/EP0000572B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/20Making expandable particles by suspension polymerisation in the presence of the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F257/00Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00
    • C08F257/02Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00 on to polymers of styrene or alkyl-substituted styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene

Definitions

  • the invention relates to a process for the preparation of spherical, expandable styrene polymers with a narrow bead size distribution by polymerizing styrene which is absorbed in particulate styrene polymers.
  • Spherical, expandable styrene polymers are usually prepared by polymerizing styrene in aqueous suspension in the presence of a blowing agent. This creates a pearl size distribution that corresponds to a Gaussian distribution. From this spectrum of pearls, only selected fractions can usually be sold on the market, while others cannot be used directly for processing reasons. This is especially true for those particles whose size is less than about 0.4 to 0.5 mm. Attempts are being made to feed these inevitable fractions back into suspension polymerization by redissolving them in monomeric styrene. However, this generally results in products of poor quality.
  • Expandable styrene polymers can also be melted in an extruder under pressure at elevated temperatures, pressed out through nozzles and the resulting polystyrene strands can be cooled in a water bath and converted into cylindrical expandable granules of uniform size in a granulator. These extruder granulate particles can then be converted into an essentially uniform, spherical bead material in aqueous suspension at temperatures above their softening point and elevated pressures (DT-OS 25 34 833). However, one has to work at relatively high temperatures of around 125 ° C., which means that the styrene polymer particles obtained have a relatively high internal water content.
  • DT-OS 23 38 132 describes a process in which selected sieve fractions are suspended in aqueous phase before styrene polymers, monomeric styrene is added dropwise to this suspension at elevated temperature with stirring and this is polymerized in the presence of an organic peroxide and a polymerization retarder. With this time-consuming procedure it is achieved that the added styrene is absorbed in the polymer particles and polymerized there, whereby, depending on the proportions, differently enlarged particles with an essentially uniform size are obtained.
  • the task of the polymerization retarder here is to suppress the polymerization of the monomeric styrene in favor of diffusion into the polymeric particles. If the polymerization were carried out without a polymerization retarder, then besides the desired uniformly large styrene polymer beads, fine powdered polystyrene would be obtained.
  • the object of the invention was to develop a simple process for producing spherical expandable styrene polymers of essentially uniform particle size. It should be assumed that particulate styrene polymers are enlarged by polymerizing monomeric styrene, the shape of the particles being converted into a spherical shape, provided that it is not spherical from the outset.
  • Styrene polymers are to be understood as homopolymers or copolymers of styrene which can contain up to 50% by weight of comonomers in copolymerized form.
  • Possible comonomers are: a-methylstyrene, ring-halogenated or ring-alkylated styrenes, acrylonitrile, methacrylonitrile, esters of acrylic and methacrylic acid with alcohols with 1 to 8 carbon atoms, maleic anhydride or even small amounts of compounds which contain two polymerizable double bonds, such as butadiene , Divinylbenzene or butanediol acrylate.
  • the styrene polymers can contain conventional additives, such as e.g. Dyes, especially lightfast pigment dyes, also plasticizers, stabilizers, other plastics, e.g. Polyethylene or polyisobutylene, fillers, cell regulators or flame retardants.
  • Dyes especially lightfast pigment dyes
  • plasticizers especially lightfast pigment dyes
  • stabilizers e.g. Polyethylene or polyisobutylene
  • other plastics e.g. Polyethylene or polyisobutylene, fillers, cell regulators or flame retardants.
  • the particle size of the styrene polymer used can vary within wide limits between 0.1 and 5 mm. You can e.g. start from unsaleable or hard-to-sell fractions from a styrene suspension polymer with an average particle diameter between 0.2 and 0.5 mm. They are expediently separated into partial fractions with a substantially uniform particle size by sieving. You can also use regrind that was produced by grinding edge fractions with too large a particle diameter. This regrind is also expediently broken down into partial fractions with a uniform particle size by sieving. Finally, extruder granules can be used which were obtained from edge fractions by melting, extruding through perforated nozzles and granulating. Due to the method of manufacture, these granules have essentially uniform particle sizes. Cylindrical particles with a diameter between 0.2 and 2 mm and a length between 0.3 and 3 mm are preferably used here.
  • the blowing agent-containing styrene polymer particles are suspended in water, preferably with the addition of an inorganic or organic suspension stabilizer, with stirring.
  • Stabilizers include in question: water-soluble or water-dispersible homo- or copolymers of vinyl pyrrolidone and acrylic acid, polyvinyl alcohols and cellulose ethers; also poorly soluble alkaline earth metal phosphates, carbonates or sulfates, optionally together with emulsifiers or surfactants. They are preferably used in amounts of 0.01 to 4% by weight, based on the styrene polymer.
  • the absorbed styrene is polymerized in a polymerization step B by increasing the temperature to 90 to 140 ° C., preferably to 100 to 125 ° C.
  • This polymerization is advantageously carried out directly in the suspension obtained in impregnation step A 'in the presence of the same suspension stabilizers and under the same pressure, likewise with stirring.
  • the polymerization is triggered by organic peroxides in amounts of 0.01 to 1% by weight (based on the monomers). These peroxides can either only be added to the suspension in the polymerization stage, but they are preferably already present in the suspension during the impregnation step.
  • the volume of the styrene polymer particles increases in accordance with the ratio of polymer to monomer, and cylindrical or otherwise irregularly shaped particles are converted into spherical ones.
  • the process according to the invention makes it easy to enlarge the particles in such a way that they can be used in practice for the production of foam moldings. You can also repeat process steps A + B two or more times if you want to achieve a correspondingly large increase in particle size.
  • the process according to the invention has the additional advantage that the treatment temperature can be reduced by about 10 to 15 ° C. because of the softening effect of the absorbed monomers on the polymer. As a result, the internal water content of the styrene polymer beads drops and they no longer need to be dried as much or not at all.
  • soluble auxiliaries such as amines or bromine compounds
  • the expandable styrene polymers produced according to the invention can be converted into foams in a customary manner by treatment with hot gases with the liberation of the blowing agents.
  • Example 1 is repeated, but the expandable polystyrene beads are colored dark blue with a pigment. A product with an even color distribution in the pearl is obtained. White, uncolored polystyrene particles that would result from separate polymerization of the styrene are not formed.
  • Example 1 is repeated, using 100% monomeric styrene, based on expandable polystyrene, in which 0.36% of tert-butyl perbenzoate is dissolved. 1.5 l of pentane are also added.
  • the correspondingly processed end product has a blowing agent content of 6.8% and an average pearl diameter of 0.6 mm.
  • the very fine-celled material with 12 cells / mm shows the same foaming behavior as described in Example 1.
  • Example 2 17 l of water are filled in, in which 110 g of trisodium phosphate are dissolved. 6.5 kg of a polystyrene granulate with a length of 0.5 mm and a diameter of 0.8 mm, which contains 5% pentane, are added. Then 330 ml of a 35% calcium chloride solution are added, then 15 ml of an emulsifier and 680 ml of a 10% aqueous solution of polyvinylpyrrolidone and finally 6.5 kg of styrene in which 0.36% of tert-butyl perbenzoate are dissolved. The mixture is stirred at 20 ° C.
  • the round beads obtained after working up have an average diameter of 1.0 mm with a narrow distribution width.
  • the product coated with 0.04% zinc stearate produces foam beads with a bulk density of less than 12 g / l and a cell count of 10 to 12 cells / mm when pre-foaming.
  • Example 5 is repeated, but using blowing agent-containing polystyrene extruder granules to which 1% hexabromocyclododecane and 1,000 ppm n-hexylamine have been added during extrusion.
  • the result is a pearl-shaped material with an average diameter of 1.0 mm and the distribution breadth remains narrow.
  • pre-foaming a coarse-celled product with 6 to 8 cells / mm is obtained.

Description

  • Die Erfindung betrift ein Verfahren zur Herstellung von kugelförmigen, expandierbaren Styrolpolymerisaten mit enger Perlgrößenverteilung durch Polymerisation von Styrol, welches in teilchenförmigen Styrolpolymerisaten absorbiert ist.
  • Kugelförmige, expandierbare Styrolpolymerisate werden üblicherweise durch Polymerisation von Styrol in wäßriger Suspension in Gegenwart eines Treibmittels hergestellt. Dabei entsteht eine Perlgrößenverteilung, die einer Gauss'schen Verteilung entspricht. Aus diesem Perlspektrum lassen sich meist nur ausgewählte Fraktionen auf dem Markt verkaufen, während andere aus verarbeitungstechnischen Gründen nicht direkt verwertbar sind. Dies gilt vor allem für solche Teilchen, deren Größe unter etwa 0,4 bis 0,5 mm liegt. Man versucht zwar, diese zwangsläufig anfallenden Randfraktionen durch Wiederauflösen in monomerem Styrol erneut der Suspensionspolymerisation zuzuführen. Dabei entstehen jedoch im allgemeinen Produkte minderer Qualität.
  • Man kann auch expandierbare Styrolpolymerisate in einem Extruder unter Druck bei erhöhten Temperaturen aufschmelzen, durch Düsen auspressen und die entstandenen Polystyrolstränge in einem Wasserbad abkühlen und in einem Granulator in zylinderförmige expandierbare Granulate einheitlicher Größe überführen. Diese Extrudergranulat-Teilchen lassen sich dann in wäßriger Suspension bei Temperaturen oberhalb ihres Erweichungspunktes und erhöhten Drücken unter Rühren in ein im wesentlichen einheitliches, kugelförmiges Perlmaterial umwandeln (DT-OS 25 34 833). Man muß allerdings bei verhältnismäßig hohen Temperaturen um etwa 125°C arbeiten, was zur Folge hat, daß die erhaltenen Styrolpolymerisat-Teilchen einen verhältnismäßig hohen Innenwassergehalt aufweisen.
  • In der DT-OS 23 38 132 ist ein Verfahren beschrieben, bei dem man ausgewählte Siebfraktionen vor Styrolpolymerisaten in wäßriger Phase suspendiert, zu dieser Suspension bei erhöhter Temperatur unter Rühren tropfenweise monomeres Styrol zusetzt und dieses in Gegenwart eines organischen Peroxids und eines Polymerisationsverzögerers polymerisiert. Bei diesem zeitraubenden Vorgehen wird erreicht, daß das zugegebene Styrol in den Polymerteilchen absorbiert und dort polymerisiert wird, wobei je nach den Mengenverhältnissen unterschiedlich stark vergrößerte Teilchen mit im wesentlichen einheitlicher Größe erhalten werden. Die Aufgabe des Polymerisationsverzögerers ist eshierbei, die Polymerisation des monomeren Styrols zugunsten der Diffusion in die polymeren Teilchen zurückzudrängen. Würde man die Polymerisation ohne Polymerisationsverzögerer durchführen, so erhielte man neben den erwünschten einheitlich großen Styrolpolymerisat-Perlen feinpulvriges Polystyrol.
  • Der Erfindung lag die Aufgabe zugrunde, ein einfaches Verfahren zur Herstellung von Kugelförmigen expandierbaren Styrolpolymerisaten vonim wesentlichen einheitlicher Teilchengröße zu entwickeln. Dabei sollte ausgegangen werden von teilchenförmigen Styrolpolymerisaten, die durch Aufpolymerisieren von monomerem Styrol vergrößert werden, wobei die Form der Teilchen - sofern sie nicht von vornherein schon kugelförmig ist - in ein kugelförmige Gestalt umgewandelt wird.
  • Es wurde nun gefunden, daß diese Aufgabe gelöst wird, wenn man die teilchenförmigen Styrolpolymerisate in wäßriger Suspension zunächst bei Temperaturen unter 100°C mit Styrol imprägniert und dann bei erhöhter Temperatur in Gegenwart von organischen Peroxiden polymerisiert.
  • Gegenstand der Erfindung ist demzufolge ein Verfahren zur Herstellung von kugelförmigen, expandierbaren Styrolpolymerisaten durch Polymerisation von Stryol in Gegenwart von teilchenförmigem, treibmittelhaltigem Styrolpolymerisat in wäßriger Suspension mit folgenden Verfahrensschritten:
    • A. treibmittelhaltiges Styrolpolymerisat einer Teilchengröße zwischen 0,1 und 5 mm wird in wäßriger Suspension bei Temperaturen H: 0 und 75°C 0,5 bis 5 Stunden lang mit 10 bis 100 Gew.% (bezogen auf das treibmittelhaltige Polymerisat) Styrol imprägniert,
    • B. das in den Styrolpolymerisat-Teilchen absorbierte Styrol wird anschließend in der wäßrigen Suspension bei Temperaturen zwischen 90 und 140°C in Gegenwart von 0,01 bis 1 Gew.% (bezogen auf das Styrol) organischem Peroxid polymerisiert.
  • Unter Styrolpolymerisaten sind Homo- oder Copolymerisate des Styrols zu verstehen, die bis zu 50 Gew.% Comonomere einpolymerisiert enthalten können. Als Comonomere kommen dabei in Frage: a-Methylstyrol, kernhalogenierte oder kernalkylierte Styrole, Acrylnitril, Methacrylnitril, Ester der Acrylund Methacrylsäure mit Alkoholen mit 1 bis 8 C-Atomen, Maleinsäureanhydrid oder auch geringe Mengen an Verbindungen, die zwei polymerisierbare Doppelbindungen enthalten, wie Butadien, Divinylbenzol oder Butandiolacrylat.
  • Die Styrolpolymerisate können übliche Zusatzstoffe enthalten, wie z.B. Farbstoffe, insbesondere lichtechte Pigmentfarbstoffe, ferner Weichmacher, Stabilisatoren, andere Kunststoffe, z.B. Polyäthylen oder Polyisobutylen, Füllstoffe, Zellregulatoren oder Flammschutzmittel.
  • Die erfindungsgemäß eingesetzen Styrolpolymerisate enthalten in homogener Verteilung Treibmittel oder eine Treibmittelkombination, die das Styrolpolymerisat nicht lösen und deren Siedepunkt unter dem Erweichungspunkt des entsprechenden Styrolpolymerisats liegt, z.B. niedrig siedende aliphatische Kohlenwasserstoffe, CnH2,1 + 2 (mit n = 3 bis 6), Cycloaliphaten oder halogenierte aliphatische Kohlenwasserstoffe, vorzugsweise in Mengen von 2 bis 12 Gew.%, bezogen auf das-Polymerisat.
  • Die Teilchengröße des eingesetzten Styrolpolymerisats kann in weiten Grenzen zwischen 0,1 und 5 mm schwanken. Man kann z.B. ausgehen von unverkäuflichen oder schwer verkäuflichen Randfraktionen aus einem Styrol-Suspensionspolymerisat mit einem mittleren Teilchendurchmesser zwischen 0,2 und 0,5 mm. Sie werden zweckmäßigerweise durch Aussieben in Teilfraktionen mit im wesentlichen einheitlicher Teilchengröße aufgetrennt. Mann kann auch Mahlgut einsetzen, das durch Vermahlen von Randfraktionen mit zu großem Teilchendurchmesser hergestellt wurde. Auch dieses Mahlgut wird zweckmäßigerweise durch Sieben in Teilfraktionen mit einheitlicher Teilchengröße zerlegt. Schließlich kann man Extrudergranulat verwenden, das aus Randfraktionen durch Aufschmelzen, Extrudieren durch Lochdüsen und Granulieren gewonnen wurde. Bedingt durch die Herstellungsweise hat dieses Granulat im wesentlichen einheitlich Teilchengröße. Hier werden bevorzugt zylinderförmige Teilchen mit einem Durchmesser zwischen 0,2 und 2 mm und einer Länge zwischen 0,3 und 3 mm eingesetzt.
  • Die treibmittelhaltigen Styrolpolymerisat-Teilchen werden, vorzugsweise unter Zusatz eines anorganischen oder organischen Suspensionsstabilisators, unter Rühren in Wasser suspendiert. Als Stabilisatoren kommen z.B. in Frage: wasserlösliche oder in Wasser dispergierbare Homo- oder Copolymerisate des Vinylpyrrolidons und der Acrylsäure, Polyvinylalkohole und Celluloseäther; ferner schwerlösliche Erdalkaliphosphate, -carbonate oder - sulfate, gegebenenfalls zusammen mit Emulgatoren oder Tensiden. Sie werden vorzugsweise in Mengen von 0,01 bis 4 Gew.%, bezogen auf das Styrolpolymerisat, eingesetzt.
  • Dieser Suspension werden 10 bis 100, vorzugsweise 50 bis 90 Gew.% (bezogen auf das treibmittelhaltige Styrolpolymerisat) monomeres Styrol zugesetzt. Das Styrol kann wieder zu bis zu 50 % seines Gewichts durch die oben gannanten Comonomeren ersetzt sein. Die Suspension wird dann 0,5 bis 5 Stunden, vorzugsweise 1 bis 3 Stunden lang bei Temperaturen zwischen 0 und 75°C und insbesondere zwischen 20 und 50°C gehalten. Dabei soll das Styrol - auch in Gegenwart von üblichen organischen Peroxiden - noch nicht polymerisieren. Es diffundiert jedoch in das Styrolpolymerisat ein, so daß dieses mit Monomeren imprägniert wird. Die Diffusion mit Monomeren in die' Polymerteilchen ist dann besonders vollständig und gleichmäßig, wenn das Imprägnieren unter Druck bis zu 20 bar, vorzugsweise zwischen 3 und 10 bar erfolgt, und wenn die Suspension, z.B. durch kräftiges Rühren, in Bewegung gehalten wird.
  • Anschließend an den Imprägnierschritt A wird in einem Polymerisationsschritt B das absorbierte Styrol durch Erhöhung der Temperatur auf 90 bis 140°C, vorzugsweise auf 100 bis 125°C polymerisiert. Diese Polymerisation erfolgt zweckmäßigerweise direkt in der Suspension, die beim Imprägnierschritt A anfällt' in Gegenwart der selben Suspensionsstabilisatoren und unter dem gleichen Druck, ebenfalls unter Rühren. Die Polymerisation wird durch organische Peroxide in Mengen von 0,01 bis 1 Gew.% (bezogen auf die Monomeren) ausgelöst. Diese Peroxide können der Suspension entweder erst in der Polymersationsstufe zugesetzt werden, vorzugsweise sind sie jedoch bereits beim Imprägnierschritt in der Suspension anwesend. Dabei können sie schon von der Polymerisation her im Styrolpolymerisat enthalten gewesen sein, oder sie können diesem beim Extrudieren zugemischt worden sein. Es ist aber auch möglich, die Peroxide in Styrol gelöst der Suspension beim Imgrägnierschritt zuzugeben.
  • Im Verlauf des Polymerisationsschritts nimmt das Volumen der Styrolpolymerisat-Teilchen entsprechend dem Mengenverhältnis Polymerisat zu Monomeres zu, außerdem werden zylinderförmige oder sonstwie unregelmäßig geformte Teilchen in kugelförmige umgewandelt.
  • Geht man im Fall von runden Teilchen von Randfraktionen mit zu geringer Teilchengröße aus, so gelingt es durch das erfindungsgemäße Verfahren auf einfache Weise, die Teilchen so zu vergrößern, daß sie in der Praxis zur Herstellung von Schaumstoff-Formkörpern Verwendung finden können. Man kann die Verfahrensschritte A + B dabei auch zwei oder mehrere Male wiederholen, wenn man eine entsprechend starke Erhöhung der Teilchengröße erreichen will.
  • Bei der Umwandlung von zylinderförmigem Extrudergranulat in kugelförmige Perlen hat das erfindungsgemäße Verfahren darüber hinaus noch den Vorteil, daß wegen der weichmachenden Wirkung der absorbierten Monomeren auf das Polymerisat die Behandlungstemperatur um etwa 10 bis 15°C gesenkt werden kann. Dadurch sinkt der Innenwassergehalt der Styrolpolymerisat-Perlen und diese brauchen nicht mehr so stark oder gar nicht mehr getrocknet werden. Außerdem ist es möglich, lösliche Hilfsstoffe, wie Amine oder Bromverbindungen, gezielt in das Styrolpolymerisat einzuführen, wodurch eine einfache Regulierung der Zellstruktur der anschließend hergestellten Schaumstoffe möglich wird.
  • Die erfindungsgemäß hergestellten expandierbaren Styrolpolymerisate können auf übliche Weise durch Behandlung mit heißen Gasen unter Freisetzung der Treibmittel in Schaumstoffe überführt werden.
  • Die in den Beispielen genannten Teile und Prozente beziehen sich auf das Gewicht.
  • BEISPIEL 1
  • In einen verschlossenen 40 I-Rührdruckkessel werden 17 I Wasser gegeben. Anschlißend werden 110 g Trinatriumphosphat und 13 kg eines kugelförmigen Polystyrols eingefüllt, welches 6,2 % Pentan als Treibmittel enthält, und einen mittleren Perldurchmesser von 0,5 mm aufweist. Die Suspension wird unter Rühren mit 330 ml einer 35 %igen Calziumchorid-Lösung versetzt, danach werden 15 ml eines Arylalkylsulfonates als Emulgierhilfsmittel und 680 ml einer 10 %igen wäßrigen Lösung von Polyvinylpyrrolidon eingefüllt. Dieser wäßrigen Lösung werden 3,25 kg Styrol, welches 0,36 % tert.-Butylperbenzoat enthält, zugegeben. Nach Aufpressen von 1 bar Stickstoff wird bei 20°C 1 Stunde lang gerührt, danach wird die Temperatur innerhalb von 3 Stunden auf 90°C und weitere 2,5 Stunden auf 115°C erhöht und dort 6 Stunden belassen. Nach dem Abkühlen werden Perlen mit einem mittleren Durchmesser von 0,54 mm erhalten, ohne daß nebenher feinpulvriges Polystyrol enstanden ist. Die Perlen werden von der wäßrigen Phase abgetrennt, gewaschen, getrocknet und mit 0,04 % Zinkstearat oberflächlich beschichtet. Beim Vorschäumen mit Wasserdampf neigt das Produkt zum Verkleben. Beim Ausschäumen in einem Formkörperautomaten bei einem Druck von 1,0 bar werden Mindestformverweilzeiten von 200 Sekunden erreicht.
  • BEISPIEL 2
  • Beispiel 1 wird wiederholt, wobei jedoch die expandierbaren Polystyrolperlen mit einem Pigmentfarbstoff dunkelblau eingefärbt sind. Man erhält ein Produkt mit gleichmäßiger Farbverteilung in der Perle. Wieße, nicht eingefärbte Polystyrolteilchen, die bei einer separaten Polymerisation des Styrols entstehen würden, werden nicht gebildet.
  • BEISPIEL 3
  • In einen 40 i-Rührdruckkessel werden 17 1, Wasser gegeben, in dem 110 g Trinatriumphosphat gelöst sind. Hierzu werden innerhalb von 15 Minuten 330 ml einer 35 %igen Calziumchlorid-Lösung getropft. Dann werden 10,8 kg eines 6 %. Pentan enthaltenden Polystyrols mit einem mittleren Perldurchmesser von 0,2 mm eingefüllt. Anschließend werden 5,42 kg Styrol, in dem 19,5 g tert.-Butylperbenzoat gelöst sind, zugegeben. Nach einstündigem Rühren bei 20°C werden 1,5 ml Emulgator und 680 ml einer 10 %igen Polyvinylpyrrolidon Lösung zugegeben. Danach wird unter Rühren innerhalb von 5 Stunden auf 105°C aufgeheizt. Bei dieser Temperatur werden 1 350 ml Pentan mit Hilfe von Stickstoff dem Reaktionsgemisch zugedrückt. Anschließend heizt man auf 115°C auf und beläßt bei dieser Temperature für weitere 4 Stunden. Nach dem Abkühlen werden die erhaltenen Perlen mit einem mittleren Durchmesser von 0,22 mm wie in Beispiel 1 beschrieben aufgearbeitet. Beim 6-minütigen Vorschäumen mit Wasserdampf werden Schaumperlen mit sehr niedrigem Schüttgewicht von 10 g/I erhalten.
  • BEISPIEL 4
  • Beispiel 1 wird wiederholt, wobei 100 % monomeres Styrol, bezogen auf expandierbares Polystyrol, eingesetzt wird, in dem 0,36 % tert.-Butylperbenzoat gelöst ist. Ferner werden 1,5 I Pentan zugesetzt. Das entsprechend aufgearbeitete Endprodukt weist einen Treibmittelgehalt von 6,8 % auf und besitzt einen mittleren Perldurchmesser von 0,6 mm. Das mit 12 Zellen/mm sehr feinzellige Material zeigt das gleiche Schäumverhalten wie in Beispiel 1 beschrieben.
  • BEISPIEL 5
  • In der in Beispiel 1 beschriebenen Apparatur werden 17 I Wasser eingefüllt, in welchem 110 g Trinatriumphosphat gelöst sind. Dazu gibt man 6,5 kg eines Polystyrolgranulates mit einer Länge von 0,5 mm und einem Durchmesser von 0,8 mm, welches 5 % Pentan enthält. Danach werden 330 ml einer 35 %igen Calziumchlorid-lösung zugegeben, dann 15 ml eines Emulgators und 680 ml einer 10 %igen wäßrigen Lösung von Polyvinylpyrrolidon und schließlich 6,5 kg Styrol, in dem 0,36 % tert.-Butylperbenzoat gelöst sind. Man rührt die Mischung bei 20°C 2 Stunden lang, preßt 5 bar Stickstoff auf, danach wird innerhalb von 3 Sunden gleichmäßig auf 100°C erhitzt, wonach 700 g Pentan mit Stickstoff zugedrückt werden. Dann wird innerhalb von 2 Stunden auf 115°C aufgeheizt. Diese Temperature wird für 6 Stunden beibehalten. Die nach der Aufarbeitung erhaltenen runden Perlen besitzen einen mittleren Durchmesser von 1,0 mm bei einer engen Verteilungsbreite. Das mit 0,04 % Zinkstearat beschichtete Produkt ergibt beim Vorschäumen Schaumperlen mit einem Schüttgewicht unter 12 g/I und einer Zellzahl von 10 bis 12 Zellen/mm.
  • BEISPIEL 6
  • Beispiel 5 wird wiederholt, wobei jedoch ein treibmittelhaltiges Polystyrol-Extrudergranulat eingesetzt wird, dem 1 % Hexabromcyclododecan und 1 000 ppm n-Hexylamin beim Extrudieren zugesetzt wurden. Es entsteht ein perlförmiges Material mit einem mittleren Durchmesser von 1,0 mm bei unverändert enger Verteilungsbriete. Beim Vorschäumen wird ein grobzelliges Produkt mit 6 bis 8 Zellen/mm erhalten.

Claims (3)

1. Verfahren zur Herstellung von kugelförmigen, expandierbaren Styrolpolymerisaten durch Polymerisation von Styrol in Gegenwart von teilchenförmigem, treibmittelhaltigem Styrolpolymerisat in wäßriger Suspension, gekennzeichnet durch folgende Verfahrensschritte:
A. treibmittelhaltiges Styrolpolymerisat mit einer Teilchengröße zwischen 0,1 und 5 mm wird in wäßriger Suspension bei Temperaturen zwischen 0 und 75°C 0,5 bis 5 Stunden lang mit 10 bis 100 Gew.% (bezogen auf das treibmittelhaltige Polymerisat) Styrol imprägniert,
B. das in den Styrolpolymerisat-Teilchen absorbierte Styrol wird anschließend in der wäßrigen Suspension bei Temperaturen zwischen 90 und 140°C in Gegenwart von 0,01 bis 1 Gew.% (bezogen auf das Styrol) organischem Peroxid polymerisiert.
2. Verfahren zur Herstellung von Styrolpolymerisaten nach Anspruch 1, dadurch gekennzeichnet, daß man in Stufe A ausgeht von kugelförmigen Styrolpolymerisat-Teilchen mit einem mittleren Durchmesser zwischen 0,2 und 0,5 mm, wobei in Stufe B durch das polymerisierende Styrol der Durchmesser vergrößert wird.
3. Verfahren zur Herstellung von Styrolpolymerisaten nach Anspruch 1, dadurch gekennzeichnet, daß man in Stufe A ausgeht von zylinderförmigen Styrolpolymerisat-Teilchen mit einem Durchmesser zwischen 0,2 und 2 mm und einer Läng zwischen 0,3 und 3 mm, wobei in Stufe B unter Volumenvergrößerung durch das polymerisierende Styrol die Zylinderform in eine Kugelform umgewandelt wird.
EP78100482A 1977-08-01 1978-07-24 Verfahren zur Herstellung von kugelförmigen, expandierbaren Styrolpolymerisaten Expired EP0000572B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19772734607 DE2734607A1 (de) 1977-08-01 1977-08-01 Verfahren zur herstellung von kugelfoermigen, expandierbaren styrolpolymerisaten
DE2734607 1977-08-01

Publications (2)

Publication Number Publication Date
EP0000572A1 EP0000572A1 (de) 1979-02-07
EP0000572B1 true EP0000572B1 (de) 1980-07-23

Family

ID=6015358

Family Applications (1)

Application Number Title Priority Date Filing Date
EP78100482A Expired EP0000572B1 (de) 1977-08-01 1978-07-24 Verfahren zur Herstellung von kugelförmigen, expandierbaren Styrolpolymerisaten

Country Status (3)

Country Link
EP (1) EP0000572B1 (de)
DE (2) DE2734607A1 (de)
IT (1) IT1107662B (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE429238B (sv) * 1978-06-08 1983-08-22 Kema Nord Ab Sett att reducera monomerhalten i expanderbara termoplastperlor
ZA818026B (en) * 1980-11-26 1982-10-27 Cellofoam Ag Method of making uniformly-sized expandable polymeric particles
DE3901329A1 (de) * 1989-01-18 1990-07-19 Basf Ag Expandierbare styrolpolymerisate mit hoher oelbestaendigkeit und verfahren zu ihrer herstellung
EP2364329B1 (de) 2008-12-12 2018-09-26 Jackon GmbH Verfahren zur herstellung einer expandierbaren polymerzusammensetzung in perlenform
EP2356173B1 (de) * 2008-12-12 2018-06-13 Jackon GmbH Verfahren zur herstellung einer schäumbaren polymerzusammensetzung in der form von kügelchen
PL3090004T3 (pl) 2013-12-30 2019-04-30 Averis As Sposób wytwarzania kompozycji polimeru winyloaromatycznego w postaci stałych cząstek
NL2033188B1 (en) 2022-09-29 2024-04-08 Unipol Holland B V Method for preparing expandable polystyrene beads.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1165270B (de) * 1962-09-06 1964-03-12 Basf Ag Verfahren zur Herstellung von feinteiligen verschaeumbaren Styrolpolymerisaten
US3553112A (en) * 1967-09-14 1971-01-05 Foster Grant Co Inc Expandable alkenyl aromatic polymers containing incorporated expandable alkenyl aromatic polymers
FR2238718A1 (en) * 1973-07-27 1975-02-21 Sekisui Chemical Co Ltd Polystyrene particles of uniform size, esp. for foams - by polymerising in suspension of fine polystyrene particles, contg. catalyst and polymn retarder

Also Published As

Publication number Publication date
DE2734607A1 (de) 1979-02-15
DE2860065D1 (en) 1980-11-13
IT1107662B (it) 1985-11-25
EP0000572A1 (de) 1979-02-07
IT7850422A0 (it) 1978-07-21

Similar Documents

Publication Publication Date Title
DE1218149C2 (de) Flammschutzmittel fuer kunststoffe
EP1366110B1 (de) Kohlenstoffpartikel enthaltende expandierbare styrolpolymerisate
EP0846141A1 (de) Kontinuierliches verfahren zur herstellung von expandierbaren perlen aus styrolpolymerisaten
EP0046494B1 (de) Teilchenförmige, treibmittelhaltige Styrolpolymerisate und deren Verwendung
DE1570238B2 (de) Verfahren zur Herstellung feinteiliger expandierbarer Styrolpolymerisate
EP0000572B1 (de) Verfahren zur Herstellung von kugelförmigen, expandierbaren Styrolpolymerisaten
DE2338132A1 (de) Verfahren zur herstellung von styrolpolymerisatteilchen
EP0711800A1 (de) Recyclat enthaltende, expandierbare Styrolpolymerisate
EP0106127B1 (de) Schaumkunststoffteilchen auf Basis von Poly-p-methylstyrol
DE4219379A1 (de) Verfahren zur Herstellung von perlförmigen expandierbaren Styrolpolymerisaten
DE3620683C1 (de) Treibmittelhaltige Styrolpolymerisate
EP0137916A2 (de) Verfahren zum Steuern der Grösse der Perlen bei der Herstellung von expandierbaren Styrolpolymerisaten durch Suspensionspolymerisation
EP0134414B1 (de) Feinteilige, expandierbare Styrolpolymerisate, die zur Herstellung schnellentformbarer Zellkörper geeignet sind
EP0689563B1 (de) Verfahren zur herstellung von perlförmigen expandierbaren styrolcopolymerisaten
EP0071717B1 (de) Verfahren zur Herstellung feinteiliger, expandierbarer Styrolpolymerisate mit verbesserten Eigenschaften
DE2338133C3 (de) Verfahren zur Herstellung von Styrolpolymerisaten
DE2807710A1 (de) Feinteilige expandierbare styrolpolymerisate
DE1241975C2 (de) Verfahren zur Herstellung verschaeumbarer Formmassen aus alkenylaromatischen Polymerisaten
DE1248935C2 (de) Verhinderung des verklebens von styrolpolymerisaten waehrend der vorschaeumung
DE2834908A1 (de) Verfahren zur herstellung verschaeumbarer perlen
EP1994085B1 (de) Verfahren zur herstellung von expandierbaren styrolpolymerisaten
DE3347279A1 (de) Verfahren zur herstellung expandierbarer styrolpolymerisate sowie daraus gewonnene formkoerper
DE2255397C3 (de) Expandierbare Styrolpolymerisate, die zur Herstellung schnellentformbarer Zellkörper geeignet sind
DE2461130A1 (de) Verfahren zur herstellung von schaeumbaren teilchen auf der grundlage von polystyrol und geformten koerpern aus diesen
DE2420298A1 (de) Zu schaumstoffen niederer dichte expandierbare styrolpolymerisate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB NL SE

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB NL SE

REF Corresponds to:

Ref document number: 2860065

Country of ref document: DE

Date of ref document: 19801113

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: HOECHST AKTIENGESELLSCHAFT

Effective date: 19810404

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19810708

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19810731

Year of fee payment: 4

Ref country code: NL

Payment date: 19810731

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19810930

Year of fee payment: 4

Ref country code: BE

Payment date: 19810930

Year of fee payment: 4

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19820515

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

GBPC Gb: european patent ceased through non-payment of renewal fee
EUG Se: european patent has lapsed

Ref document number: 78100482.5

Effective date: 19850611