EA024400B1 - Method for producing gaseous compressed oxygen product by low-temperature air separation - Google Patents

Method for producing gaseous compressed oxygen product by low-temperature air separation Download PDF

Info

Publication number
EA024400B1
EA024400B1 EA201201485A EA201201485A EA024400B1 EA 024400 B1 EA024400 B1 EA 024400B1 EA 201201485 A EA201201485 A EA 201201485A EA 201201485 A EA201201485 A EA 201201485A EA 024400 B1 EA024400 B1 EA 024400B1
Authority
EA
Eurasian Patent Office
Prior art keywords
compressed
pressure
air
stream
cooled
Prior art date
Application number
EA201201485A
Other languages
Russian (ru)
Other versions
EA201201485A1 (en
Inventor
Тобиас Лаутеншлагер
Original Assignee
Линде Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Линде Акциенгезелльшафт filed Critical Линде Акциенгезелльшафт
Publication of EA201201485A1 publication Critical patent/EA201201485A1/en
Publication of EA024400B1 publication Critical patent/EA024400B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04084Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/04096Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of argon or argon enriched stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04175Hot end purification of the feed air by adsorption of the impurities at a pressure of substantially more than the highest pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04296Claude expansion, i.e. expanded into the main or high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column

Abstract

The invention discloses a method for producing a gaseous compressed oxygen product by low-temperature separation of air in a distillation column system. The use of the invented method is especially beneficial in economical respect due to higher productivity, higher purity of the product, lower operation costs and/or capital expenditures. The method according to the invention comprises the use of a distillation column system (50, 51) comprising a high-pressure column (50) and a low-pressure column (51), a main air compressor, a main heat-exchange system (3), a booster compressor (5), a first turbine (11), and a second turbine (22). The method according to the invention is characterised by that the first turbine (11) drives the booster compressor (5), and the second turbine (22) drives a generator (23), or the second turbine (22) drives the booster compressor (5), and the first turbine (11) drives the generator (23).

Description

Настоящее изобретение относится к способу согласно ограничительной части в п.1 формулы изобретения.The present invention relates to a method according to the restrictive part in claim 1 of the claims.

Способы и устройства для низкотемпературного разделения воздуха известны, например, из книги Низкотемпературная технология, 2 издание 1985 г., глава 4, с. 281-337.Methods and devices for low-temperature air separation are known, for example, from the book Low-Temperature Technology, 2nd edition, 1985, chapter 4, p. 281-337.

Дистилляционная колонная система согласно настоящему изобретению может иметь конструкцию двухколонной системы (например, как классическая двухколонная система Ьшбе), или, в качестве альтернативы, это может быть трехколонная или многоколонная система. Она может помимо колонн для разделения азота и кислорода включать дополнительные устройства для изготовления высокочистых продуктов и/или других компонентов воздуха, в частности, благородных газов, например, для производства аргона и/или для производства криптона и ксенона.The distillation column system of the present invention may be a two-column system (for example, as a classic two-column system), or, alternatively, it may be a three-column or multi-column system. In addition to columns for the separation of nitrogen and oxygen, it may include additional devices for the manufacture of high-purity products and / or other air components, in particular, noble gases, for example, for the production of argon and / or for the production of krypton and xenon.

В этом процессе жидкий поток сжатого кислородного продукта испаряется теплоносителем, и в итоге его получают как газообразный сжатый продукт. Этот способ также называется термином внутреннее сжатие и служит для производства сжатого кислорода. В случае сверхкритического давления фазовый переход фактически не происходит и поток продукта затем псевдоиспаряется.In this process, the liquid stream of compressed oxygen product is evaporated by the coolant, and as a result, it is obtained as gaseous compressed product. This method is also called the term internal compression and serves to produce compressed oxygen. In the case of supercritical pressure, the phase transition actually does not occur and the product flow is then pseudo-evaporating.

Теплоноситель при высоком давлении сжижают (или псевдосжижают, если он находится при сверхкритическом давлении) (псевдо)испарившимся потоком продукта. В качестве теплоносителя часто используют некоторое количество воздуха, в данном случае это третий воздушный поток и четвертый воздушный поток, которые оба ответвляются от исходного подаваемого сжатого воздуха.The high pressure coolant is liquefied (or pseudo-liquefied if it is at supercritical pressure) (pseudo) by evaporated product flow. Some amount of air is often used as a heat carrier, in this case it is the third air flow and the fourth air flow, both of which branch off from the original supplied compressed air.

Способы внутреннего сжатия известны, например, из следующих патентных документов:Methods of internal compression are known, for example, from the following patent documents:

БЕ 830805, БЕ 901542 (= ϋ3BU 830805, BU 901542 (= ϋ3

2712738/05 2784572), БЕ 952908, БЕ 1103363 (= УЗ 3033544), БЕ 1112997 (= из 3214925), БЕ 1124529, БЕ 1117616 (= ОЗ 3280574),2712738/05 2784572), BU 952908, BU 1103363 (= UZ 3033544), BU 1112997 (= of 3214925), BU 1124529, BU 1117616 (= OZ 3280574),

БЕ 1226616 (= из 3216206), БЕ 1229561 (= иЗ 3222878), БЕ 1199293, БЕ 1187248 (= 03 3371496), БЕ 1235347, БЕ 1258882 (=BU 1226616 (= of 3216206), BU 1229561 (= iZ 3222878), BU 1199293, BU 1187248 (= 03 3371496), BU 1235347, BU 1258882 (=

3426543), БЕ 1263037 (= 05 3401531), БЕ 1501722 ( = 03 3416323), БЕ 1501723 (= 03 3500651), БЕ 253132 {= 05 4279631),3426543), BU 1263037 (= 05 3401531), BU 1501722 (= 03 3416323), BU 1501723 (= 03 3500651), BU 253132 {= 05 4279631),

БЕ 2646690, BU 2646690, ЕР 93448 EP 93448 В1 ( = B1 (= из of 4555256), 4555256) ЕР EP 384483 384483 В1 IN 1 (= (= из of 5036672), 5036672) ЕР EP 505812 505812 В1 ( = B1 (= из of 5263328), 5263328) ЕР EP 716230 716230 В1 IN 1 А BUT из of 5644934), 5644934) ЕР EP 842385 842385 В1 ( = B1 (= из of 5953937), 5953937), ЕР EP 758733 758733 В1 IN 1 (= (= из of 5845517), 5845517), ЕР EP 895045 895045 В1 ( = B1 (= из of 6039885), 6039885), БЕ BU 19803437 19803437 А1, A1, ЕР EP 949471 В1 949471 B1 ( = (= □3 6185960 В1), □ 3 6185960 B1) ЕР EP 955509 А1 955509 A1 (= ОЗ 6196022 (= OZ 6196022 В1) , IN 1) , ЕР EP

1031804 А1 (= ОЗ 6314755), БЕ 19909744 А1, ЕР 1067345 А1 (= из 6336345), ЕР 1074805 А1 (= 03 6332337), БЕ 19954593 А1, ЕР1031804 A1 (= OZ 6314755), BU 19909744 A1, EP 1067345 A1 (= of 6336345), EP 1074805 A1 (= 03 6332337), BU 19954593 A1, EP

1134525 А1 (= 05 6477860), БЕ 10013073 А1, ЕР 1139046 А1, ЕР 1146301 А1, ЕР 1150082 А1, ЕР 1213552 А1, БЕ 10115258 А1, ЕР 1284404 А1 (= 03 2003051504 А1) , ЕР 1308680 А1 (= ОЗ 6612129 В2), БЕ 10213212 А1, БЕ 10213211 А1, ЕР 1357342 А1 или БЕ 10238282 А1, БЕ 10302389 А1, БЕ 10334559 А1, БЕ 10334560 А1, БЕ 10332863 А1, ЕР 1544559А1, ЕР 1585926 А1, БЕ 102005029274 А1,1134525 A1 (= 05 6477860), BU 10013073 A1, EP 1139046 A1, EP 1146301 A1, EP 1150082 A1, EP 1213552 A1, BU 10115258 A1, EP 1284404 A1 (= 03 2003051504 A1), EP 1308680 A1 (= OS 6621) ), BU 10213212 A1, BU 10213211 A1, EP 1357342 A1 or BU 10238282 A1, BU 10302389 A1, BU 10334559 A1, BU 10334560 A1, BU 10332863 A1, EP 1544559A1, EP 1585926 A1, BU 102005029274 A1,

ЕР 1666824 А1, ЕР 1672301 А1, БЕ 102005028012 А1, МО 2007033838 А1, ИО 2007104449 А1, ЕР 1845324 А1, БЕ 102006032731 А1, ЕР 1892490 А1, ВЕ 102007014643 А1, ЕР 2015012 А2, ЕР 2015013 А2,EP 1666824 A1, EP 1672301 A1, BE 102 005 028 012 A1, MO 2007033838 A1 IO 2007104449 A1, EP 1845324 A1, BE 102 006 032 731 A1, EP 1892490 A1, BE 102 007 014 643 A1, EP 2015012 A2, EP 2015013 A2,

ЕР 2026024 А1 , ИО 2009095188 А2 или БЕ 102008016355А1.EP 2026024 A1, IO 2009095188 A2 or BU 102008016355A1.

Основная теплообменная система служит для охлаждения исходного подаваемого воздуха путем косвенного теплообмена с возвратными потоками из дистилляционной колонной системы. Она может состоять из одной или более параллельно или последовательно соединенных теплообменных секций, например, из одного или более пластинчатых теплообменных блоков.The main heat exchange system serves to cool the source air by indirect heat exchange with return flows from the distillation column system. It may consist of one or more parallel or serially connected heat exchange sections, for example, one or more plate heat exchange units.

Способ описанного выше типа известен из патента США № 5329776.A method of the type described above is known from US Pat. No. 5,329,776.

Задача настоящего изобретения заключается в том, чтобы предложить способ описанного выше типа, использование которого является особенно выгодным в экономическом отношении вследствие повышения производительности, повышения чистоты продукта, снижения эксплуатационных расходовThe present invention is to propose a method of the type described above, the use of which is particularly advantageous economically due to increased productivity, improved product purity, reduced operating costs

- 1 024400 и/или снижения капитальных расходов.- 1,04400 and / or lower capital costs.

Данная задача достигается за счет отличительных признаков, приведенных в п.1 формулы изобретения.This task is achieved due to the distinctive features given in claim 1 of the claims.

В принципе, в поджимающем компрессоре также или только дросселированный воздух (третий воздушный поток), или весь турбинный воздух (в частности, первый, второй и третий воздушные потоки в совокупности) можно повторно сжимать до давления, превышающего выходное давление основного воздушного компрессора (первое давление). В контексте настоящего изобретения, однако, показано, что сочетание следующих мер приводит к особенно благоприятному количественному соотношению между турбинным потоком (первым или вторым воздушным потоком, в зависимости от того, какая турбина приводит в действие поджимающий компрессор) и нагнетаемым потоком (третий воздушный поток), составляющему приблизительно 1:1,1:In principle, in the compressing compressor also either only throttled air (third air flow), or all turbine air (in particular, the first, second and third air flows in total) can be re-compressed to a pressure exceeding the outlet pressure of the main air compressor (first pressure ). In the context of the present invention, however, it is shown that a combination of the following measures results in a particularly favorable quantitative ratio between the turbine flow (first or second air flow, depending on which turbine drives the biasing compressor) and the discharge flow (third air flow) approximately 1: 1,1:

повторное сжатие только первого и третьего воздушных потоков;recompressing only the first and third air streams;

отсутствие повторного сжатия второго и четвертого воздушных потоков;no re-compression of the second and fourth air streams;

расширение первого турбинного потока (первого воздушного потока) от второго давления;expansion of the first turbine flow (first air flow) from the second pressure;

расширение второго турбинного потока (второго воздушного потока) от первого давления.expansion of the second turbine flow (second air flow) from the first pressure.

Благоприятное количественное соотношение при сочетании турбины и нагнетания повышает технологичность изготовления соответствующего устройства и обеспечивает особенно высокую эффективность поджимающего компрессора.Favorable quantitative ratio with a combination of turbine and injection improves the manufacturability of the corresponding device and ensures a particularly high efficiency of the compressing compressor.

В величинах давления, приведенных в формуле изобретения, естественные перепады давления не включены. Здесь величины давления считаются равными, если разность давления между соответствующими положениями не превышает естественных потерь давления в трубопроводе, которые вызваны перепадами давления в трубах, теплообменниках, холодильниках, адсорберах и т.д. Аналогичным образом, два потока тогда также считаются имеющими одинаковую температуру, если их температуры различаются на величину, которая соответствует разности температур, вызванной естественными колебаниями или обычными потерями в изоляции вдоль линии.In the pressure values given in the claims, the natural pressure drops are not included. Here, pressure values are considered equal if the pressure difference between the respective positions does not exceed the natural pressure losses in the pipeline, which are caused by pressure drops in pipes, heat exchangers, refrigerators, adsorbers, etc. Similarly, the two streams are then also considered to have the same temperature if their temperatures differ by an amount that corresponds to the temperature difference caused by natural fluctuations or normal insulation losses along the line.

Каждая из турбин механически присоединена непосредственно к поджимающему компрессору или к генератору для производства электроэнергии. Здесь термин непосредственное механическое соединение означает непосредственное соединение расширительным устройством и поджимающим компрессором или генератором, например, через общий вал, а не через коробку передач. Соединенные устройства, таким образом, имеют одинаковую скорость вращения. Считается особенно благоприятным, когда первая турбина присоединена к поджимающему компрессору, и вторая турбина сконструирована в качестве генераторной турбины.Each turbine is mechanically connected directly to a biasing compressor or to a generator for generating electricity. Here, the term direct mechanical connection means direct connection by an expansion device and a biasing compressor or generator, for example, through a common shaft, and not through a gearbox. Connected devices thus have the same rotational speed. It is considered particularly favorable when the first turbine is connected to a biasing compressor, and the second turbine is designed as a generating turbine.

Первое давление (выходное давление из основного воздушного компрессора) в настоящем изобретении составляет, например, от 6 до 30 бар (0,6-3 МПа), предпочтительно от 10 до 25 бар (1-2,5 МПа); второе давление (выходное давление из поджимающего компрессора) составляет, например, от 8 до 50 бар (0,8-5 МПа), предпочтительно от 12 до 40 бар (1,2-4 МПа).The first pressure (output pressure from the main air compressor) in the present invention is, for example, from 6 to 30 bar (0.6-3 MPa), preferably from 10 to 25 bar (1-2.5 MPa); the second pressure (the outlet pressure from the compressing compressor) is, for example, from 8 to 50 bar (0.8-5 MPa), preferably from 12 to 40 bar (1.2-4 MPa).

Предпочтительно вторая промежуточная температура (Т2) составляет по меньшей мере на 2 К меньше, чем первая промежуточная температура (Т1). Например, первая промежуточная температура (входная температура первой турбины) составляет от 115 до 135 К, и вторая промежуточная температура (входная температура второй турбины) составляет от 110 до 130 К.Preferably, the second intermediate temperature (T2) is at least 2 K lower than the first intermediate temperature (T1). For example, the first intermediate temperature (the input temperature of the first turbine) is 115 to 135 K, and the second intermediate temperature (the input temperature of the second turbine) ranges from 110 to 130 K.

Помимо потока сжатого кислородного продукта можно также получать азот в качестве газообразного сжатого продукта, где поток жидкого азотного продукта выводят из дистилляционной колонной системы, доводят в жидком состоянии до повышенного давления, испаряют или псевдоиспаряют при этом повышенном давлении в основной теплообменной системе, нагревают приблизительно до температуры окружающей среды и, наконец, выводят в виде потока газообразного сжатого азотного продукта.In addition to the compressed oxygen product stream, it is also possible to produce nitrogen as a gaseous compressed product, where the liquid nitrogen product stream is removed from the distillation column system, brought to an elevated pressure in a liquid state, evaporated or pseudo-evaporated at this increased pressure in the main heat exchange system, heated to approximately environment, and finally output as a stream of gaseous compressed nitrogen product.

В контексте настоящего изобретения считается целесообразным, чтобы поджимающий компрессор был сконструирован как холодный компрессор, другими словами, чтобы его входная температура составляла ниже 210 К, в частности ниже 170 К, например ниже 160 К. Однако она часто оказывается выше, чем первая промежуточная температура (входная температура первой турбина). Например, входная температура поджимающего компрессора составляет от 125 до 160 К.In the context of the present invention, it is considered expedient that the biasing compressor is designed as a cold compressor, in other words, its inlet temperature is lower than 210 K, in particular lower than 170 K, for example lower than 160 K. However, it often turns out to be higher than the first intermediate temperature ( first turbine inlet temperature). For example, the inlet temperature of the compressing compressor ranges from 125 to 160 K.

Далее настоящее изобретение и дополнительные характеристики настоящего изобретения будут разъяснены более подробно со ссылкой на примерный вариант осуществления, схематически представленный на чертеже. Дистилляционная колонная система согласно примерному варианту осуществления в первом варианте содержит колонну 50 высокого давления и колонну 51 низкого давления как единственные дистилляционные колонны, а также главный конденсатор, который не представлен на чертеже и через который верхняя часть колонны высокого давления и нижняя часть колонны низкого давления находятся в теплообменном соединении. Рабочие давления (в каждом случае в верхней части) составляют 5,4 бар (0,54 МПа) в колонне высокого давления и 1,3 бар (0,13 МПа) в колонне низкого давления.Further, the present invention and additional features of the present invention will be explained in more detail with reference to the exemplary embodiment shown schematically in the drawing. The distillation column system according to the exemplary embodiment in the first embodiment comprises a high pressure column 50 and a low pressure column 51 as the only distillation columns, as well as a main condenser that is not shown in the drawing and through which the upper part of the high pressure column and the lower part of the low pressure column are in the heat exchange connection. The working pressures (in each case in the upper part) are 5.4 bar (0.54 MPa) in the high-pressure column and 1.3 bar (0.13 MPa) in the low-pressure column.

Атмосферный воздух сжимают до первого давление р1, составляющего 12 бар (1,2 МПа) в основном воздушном компрессоре, который не показан. Исходный подаваемый воздух (1), сжатый до первого давления, затем (после предварительного охлаждения и очистки, которые также не показаны) подразделяют на четыре воздушных потока, первый воздушный поток 10, второй воздушный поток 20, третийAtmospheric air is compressed to a first pressure p1 of 12 bar (1.2 MPa) in the main air compressor, which is not shown. The original feed air (1), compressed to the first pressure, then (after pre-cooling and cleaning, which are also not shown) is divided into four air streams, the first air stream 10, the second air stream 20, the third

- 2 024400 воздушный поток 30 и четвертый воздушный поток 40. Предпочтительно эти четыре подразделенных потока (помимо каких-либо возможных фракций, таких как, например, воздух, используемый в пневматических устройствах) образуют весь исходный воздух, и не существуют никакие другие части воздушного потока, которые поступают в разделительное устройство.- 2 024400 air stream 30 and fourth air stream 40. Preferably, these four subdivided streams (besides any possible fractions, such as, for example, air used in pneumatic devices) form all the original air, and no other parts of the air stream exist which enter the separation device.

Первый воздушный поток проходит через линию 2 в теплый конец основной теплообменной системы 3 и сначала охлаждается до промежуточной температуры 136 К. Он проходит при этой промежуточной температуре через линию 4 в поджимающий компрессор 5, который сконструирован как холодный компрессор, и в нем повторно сжимается до второго давления р2, составляющего 17 бар (1,7 МПа). Повторно сжатый первый подпоток проходит через линию 6 при температуре 156 К обратно в основную теплообменную систему 3. Первый подпоток 10 выходит из нее при первой промежуточной температуре, составляющей 119 К, и поступает на производящее работу расширение в первую турбину 11, которая приводит в действие поджимающий компрессор 5 через общий вал. Производящий работу при расширении первый подпоток 12, наконец, поступает при давлении 5,5 бар (0,55 МПа) в колонну 50 высокого давления.The first air flow passes through line 2 to the warm end of the main heat exchange system 3 and is first cooled to an intermediate temperature of 136 K. It passes at this intermediate temperature through line 4 to a biasing compressor 5, which is designed as a cold compressor, and re-compressed to a second pressure p2 of 17 bar (1.7 MPa). The recompressed first sub-stream passes through line 6 at a temperature of 156 K back to the main heat exchange system 3. The first sub-stream 10 leaves it at the first intermediate temperature of 119 K and enters the work-producing expansion into the first turbine 11, which actuates the clamped compressor 5 through a common shaft. The first substream 12, which performs the expansion work, finally arrives at a pressure of 5.5 bar (0.55 MPa) in the high-pressure column 50.

Второй воздушный поток охлаждается в основной теплообменной системе 3 до второй промежуточной температуры, составляющей 115 К. Охлажденный второй подпоток 21 поступает на производящее работу расширение во вторую турбину 22, которая приводит в действие электрический генератор 23. Производящий работу при расширении второй подпоток 24, наконец, проходит при давлении 5,5 бар (0,55 МПа) через линию 7 в колонну 50 высокого давления.The second air flow is cooled in the main heat exchange system 3 to a second intermediate temperature of 115 K. The cooled second sub-stream 21 enters the work-producing expansion into the second turbine 22, which drives the electric generator 23. The second sub-stream 24 that performs the work while expanding passes at a pressure of 5.5 bar (0.55 MPa) through line 7 into the high-pressure column 50.

Третий воздушный поток 30 проходит вместе с первым потоком через линии 2, 4 и 6 и 20в поджимающий компрессор 5, но затем проходит через основную теплообменную систему 3 в холодный конец. В ходе этого процесса он сжижается. После дросселирования 31 до давления колонны высокого давления дросселированный третий воздушный поток 32 поступает в колонну 50 высокого давления через линию 7.The third air flow 30 passes along with the first flow through lines 2, 4 and 6 and 20B of the compressing compressor 5, but then passes through the main heat exchange system 3 to the cold end. During this process, it liquefies. After throttling 31 to the pressure of the high pressure column, the throttled third air stream 32 enters the high pressure column 50 through line 7.

Четвертый воздушный поток 40 проходит через основную теплообменную систему 3 от теплого конца до холодного конца при первом давлении р1. После дросселирования 41 до давления колонны высокого давления дросселированный четвертый воздушный поток 42 поступает в колонну 50 высокого давления через линию 7.The fourth air stream 40 passes through the main heat exchange system 3 from the warm end to the cold end at the first pressure p1. After throttling 41 to the pressure of the high pressure column, the throttled fourth air flow 42 enters the high pressure column 50 through line 7.

Поток 52 жидкого кислородного продукта выходит из колонны 51 низкого давления и в жидком состоянии доводится в кислородном насосе 53 до повышенного давления 28 бар (2,8 МПа). Имеющий высокое давление кислород 54 испаряется в основной теплообменной системе 3, нагревается приблизительно до температуры окружающей среды и, наконец, выходит через линию 55 в виде потока газообразного сжатого кислородного продукта (ООХ-1С).The flow 52 of the liquid oxygen product leaves the low pressure column 51 and, in the liquid state, is brought in the oxygen pump 53 to an increased pressure of 28 bar (2.8 MPa). High-pressure oxygen 54 evaporates in the main heat exchange system 3, is heated to approximately ambient temperature, and finally exits through line 55 as a stream of gaseous compressed oxygen product (OOX-1C).

Поток 56 жидкого азотного продукта выводят из колонны 50 высокого давления или из основного конденсатора и в азотном насосе 57 доводится в жидком состоянии до повышенного давления 28 бар (2,8 МПа). При этом повышенном давлении он испаряется в основной теплообменной системе 3, нагревается приблизительно до температуры окружающей среды и, наконец, выходит через линию 59 в виде потока газообразного сжатого азотного продукта (ΟΑΝ-ΙΟ).The stream 56 of the liquid nitrogen product is withdrawn from the high-pressure column 50 or from the main condenser and, in the nitrogen pump 57, is brought in a liquid state to an elevated pressure of 28 bar (2.8 MPa). At this increased pressure, it evaporates in the main heat exchange system 3, is heated to approximately ambient temperature and, finally, leaves through line 59 as a stream of gaseous compressed nitrogen product (ΟΑΝ-ΙΟ).

Далее поток 60 азотного продукта и поток 62 азота с примесями выходят в газообразном состоянии из колонны 51 низкого давления, нагреваются в основной теплообменной системе 3 приблизительно до температуры окружающей среды и используются как имеющий низкое давление азотный продукт (ΟΑΝ) через линию 61 или как регенерационный газ через линию 63.Next, the nitrogen product stream 60 and the nitrogen stream 62 with impurities exit in a gaseous state from the low pressure column 51, are heated in the main heat exchange system 3 to approximately ambient temperature and are used as a low pressure nitrogen product () through line 61 or as regeneration gas through line 63.

Во втором варианте дистилляционная колонная система согласно примерному варианту осуществления дополнительно включает производство аргона; в частности, она содержит колонну неочищенного аргона и колонну чистого аргона (обе они не представлены на чертеже). Жидкий чистый аргон 70 выходит из колонны чистого аргона и доводится в жидком состоянии в аргоновом насосе 71 до повышенного давления 31 бар (3,1 МПа). Имеющий высокое давление аргон 72 испаряется в основной теплообменной системе 3, нагревается приблизительно до температуры окружающей среды и, наконец, выходит через линию 73 в виде потока газообразного сжатого аргонового продукта (ОАК-1С).In the second embodiment, the distillation column system according to the exemplary embodiment further comprises producing argon; in particular, it contains a column of crude argon and a column of pure argon (both are not shown in the drawing). Liquid pure argon 70 leaves the column of pure argon and is brought in a liquid state in an argon pump 71 to an elevated pressure of 31 bar (3.1 MPa). The high pressure argon 72 evaporates in the main heat exchange system 3, is heated to approximately ambient temperature, and finally exits through line 73 as a stream of gaseous compressed argon product (OAK-1C).

Claims (4)

1. Способ генерирования газообразного сжатого кислородного продукта низкотемпературным разделением воздуха в дистилляционной колонной системе (50, 51), которая содержит колонну (50) высокого давления и колонну (51) низкого давления, в котором весь исходный воздух сжимают в основном воздушном компрессоре с образованием сжатого исходного воздуха (1) до первого давления (р1), которое по меньшей мере на 4 бар выше, чем рабочее давление колонны (50) высокого давления, по меньшей мере часть (2, 20, 40) сжатого исходного воздуха (1) охлаждают в основной теплообменной системе (3) в косвенном теплообмене по меньшей мере с одним возвратным потоком (54, 58, 60, 62, 72) из дистилляционной колонной системы (50, 51) и вводят в дистилляционную колонную систему (50, 51), первый воздушный поток (2), который образуется из первой части сжатого исходного воздуха (1),1. A method of generating a gaseous compressed oxygen product by low temperature separation of air in a distillation column system (50, 51), which comprises a high pressure column (50) and a low pressure column (51) in which all of the feed air is compressed in a main air compressor to form compressed the source air (1) to the first pressure (p1), which is at least 4 bar higher than the working pressure of the high pressure column (50), at least a portion (2, 20, 40) of the compressed source air (1) is cooled in main heat system (3) in indirect heat exchange with at least one return stream (54, 58, 60, 62, 72) from the distillation column system (50, 51) and introduced into the distillation column system (50, 51), the first air stream (2) which is formed from the first part of the compressed source air (1), 2. Способ по п.1, отличающийся тем, что вторая промежуточная температура (Т2) по меньшей мере на 2 К ниже, чем первая промежуточная температура (Т1).2. The method according to claim 1, characterized in that the second intermediate temperature (T2) is at least 2 K lower than the first intermediate temperature (T1). 3. Способ по п.1 или 2, отличающийся тем, что полученный поток (56) жидкого азотного продукта выводят из дистилляционной колонной системы (50, 51), доводят в жидком состоянии до повышенного давления, испаряют или псевдоиспаряют при этом повышенном давлении в основной теплообменной системе (3), нагревают приблизительно до температуры окружающей среды и, наконец, выводят как поток (59) газообразного сжатого азотного продукта.3. The method according to claim 1 or 2, characterized in that the obtained stream (56) of a liquid nitrogen product is removed from the distillation column of the system (50, 51), brought to a high pressure in a liquid state, evaporated or pseudo-evaporated at this increased pressure in the main the heat exchange system (3) is heated to approximately ambient temperature and finally discharged as a stream (59) of a gaseous compressed nitrogen product. - 3 024400 сжатого до упомянутого первого давления (р1), вводят в основную теплообменную систему (3) и охлаждают с образованием потока (4), который повторно сжимают в поджимающем компрессоре (5) с образованием повторно сжатого первого воздушного потока (6) до второго давления (р2), которое выше, чем первое давление (р1), повторно сжатый первый воздушный поток (6) вводят при втором давлении (р2) в основную теплообменную систему (3) и там охлаждают до первой промежуточной температуры (Т1) с образованием охлажденного первого воздушного потока (10), охлажденный первый воздушный поток (10) направляют в первую турбину (11), где он производит работу при расширении, по меньшей мере часть (12) охлажденного первого воздушного потока (10), производящего работу при расширении, вводят в дистилляционную колонную систему (50, 51), второй воздушный поток (20), который образуется из второй части сжатого исходного воздуха (1), сжатого до первого давления (р1), вводят в основную теплообменную систему (3) и там охлаждают до второй промежуточной температуры (Т2) с образованием охлажденного второго воздушного потока (21), охлажденный второй воздушный поток (21) направляют во вторую турбину (22), где он производит работу при расширении, по меньшей мере часть (24) охлажденного второго воздушного потока (21), производящего работу при расширении, вводят в дистилляционную колонную систему (50, 51), третий воздушный поток (2), который образуется из третьей части исходного сжатого воздуха (1), сжатого до первого давления (р1), вводят в основную теплообменную систему (3) и охлаждают с образованием потока (4), который повторно сжимают в поджимающем компрессоре (5) с образованием повторно сжатого третьего воздушного потока (6) до второго давления (р2), повторно сжатый третий воздушный поток (6) вводят при втором давлении (р2) в основную теплообменную систему (3), охлаждают в основной теплообменной системе (3) и сжижают или псевдосжижают с образованием сжиженного или псевдоожиженного потока (30, 32, 7), который затем вводят в дистилляционную колонную систему (50, 51), четвертый воздушный поток (40), который образуется из четвертой части сжатого исходного воздуха (1), сжатого до первого давления (р1), вводят при первом давлении (р1) в основную теплообменную систему (3), охлаждают в основной теплообменной системе (3), сжижают с образованием сжиженного потока (42), который затем вводят в дистилляционную колонную систему (50, 51), полученный поток (52) жидкого кислородного продукта выводят из дистилляционной колонной системы (50, 51), доводят в жидком состоянии до повышенного давления, испаряют или псевдоиспаряют при этом повышенном давлении в основной теплообменной системе (3), нагревают приблизительно до температуры окружающей среды и, наконец, выводят как поток (55) газообразного сжатого кислородного продукта, отличающийся тем, что поджимающий компрессор (5) приводят в действие при помощи первой турбины (11) и генератор (23) приводят в действие при помощи второй турбины (22) или поджимающий компрессор (5) приводят в действие при помощи второй турбины (22) и генератор (23) приводят в действие при помощи первой турбины (11).- 3,224,400 compressed to the aforementioned first pressure (p1), introduced into the main heat exchange system (3) and cooled to form a stream (4), which is re-compressed in a booster compressor (5) to form a re-compressed first air stream (6) to a second pressure (p2), which is higher than the first pressure (p1), the re-compressed first air stream (6) is introduced at the second pressure (p2) into the main heat exchange system (3) and there it is cooled to the first intermediate temperature (T1) to form a cooled first air flow (10), cooled the first air stream (10) is directed to the first turbine (11), where it performs work during expansion, at least part (12) of the cooled first air stream (10) that works during expansion, is introduced into the distillation column system (50, 51 ), the second air stream (20), which is formed from the second part of the compressed source air (1), compressed to the first pressure (p1), is introduced into the main heat exchange system (3) and there it is cooled to a second intermediate temperature (T2) to form a cooled second air stream (21), chilled the second second air stream (21) is directed to the second turbine (22), where it performs work during expansion, at least part (24) of the cooled second air stream (21), which works during expansion, is introduced into the distillation column system (50, 51), the third air stream (2), which is formed from the third part of the original compressed air (1), compressed to the first pressure (p1), is introduced into the main heat exchange system (3) and cooled to form a stream (4), which is re-compressed in the booster compressor (5) with the formation of re-compressed about the third air stream (6) to the second pressure (p2), the re-compressed third air stream (6) is introduced at the second pressure (p2) into the main heat exchange system (3), cooled in the main heat exchange system (3) and liquefied or fluidized with the formation of a liquefied or fluidized stream (30, 32, 7), which is then introduced into the distillation column system (50, 51), the fourth air stream (40), which is formed from the fourth part of the compressed source air (1), compressed to the first pressure ( p1), is introduced at the first pressure (p1) into the main heat system (3), cooled in the main heat exchange system (3), liquefied to form a liquefied stream (42), which is then introduced into the distillation column system (50, 51), the resulting stream (52) of liquid oxygen product is removed from the distillation column system (50, 51), brought to a high pressure in a liquid state, evaporated or pseudo-evaporated at this increased pressure in the main heat exchange system (3), heated to approximately ambient temperature and, finally, gaseous compressed oxygen is removed as a stream (55) characterized in that the compression compressor (5) is driven by a first turbine (11) and the generator (23) is driven by a second turbine (22) or the compression compressor (5) is driven by a second turbine (22) and the generator (23) are driven by the first turbine (11). 4. Способ по любому из пп.1-3, отличающийся тем, что поджимающий компрессор (5) сконструирован как холодный компрессор.4. The method according to any one of claims 1 to 3, characterized in that the booster compressor (5) is designed as a cold compressor.
EA201201485A 2011-12-16 2012-11-29 Method for producing gaseous compressed oxygen product by low-temperature air separation EA024400B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201110121314 DE102011121314A1 (en) 2011-12-16 2011-12-16 Method for producing gaseous oxygen product in main heat exchanger system in distillation column system, involves providing turbines, where one of turbines drives compressor, and other turbine drives generator

Publications (2)

Publication Number Publication Date
EA201201485A1 EA201201485A1 (en) 2013-08-30
EA024400B1 true EA024400B1 (en) 2016-09-30

Family

ID=48521978

Family Applications (1)

Application Number Title Priority Date Filing Date
EA201201485A EA024400B1 (en) 2011-12-16 2012-11-29 Method for producing gaseous compressed oxygen product by low-temperature air separation

Country Status (2)

Country Link
DE (1) DE102011121314A1 (en)
EA (1) EA024400B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3438585A3 (en) 2017-08-03 2019-04-17 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for defrosting a device for air separation by cryogenic distillation and device adapted to be defrosted using this method
EP3696486A1 (en) * 2019-02-13 2020-08-19 Linde GmbH Method and apparatus for providing one or more gaseous oxygen rich air products
US20210348839A1 (en) * 2020-05-05 2021-11-11 Jeremiah J. Rauch System and method for cryogenic air separation using a booster loaded liquid turbine for expansion of a liquid air stream

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329776A (en) * 1991-03-11 1994-07-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the production of gaseous oxygen under pressure
US6305191B1 (en) * 1999-05-07 2001-10-23 The Boc Group Plc Separation of air
US7219514B2 (en) * 2001-10-17 2007-05-22 L'Air Liquide, Société Anonyme á Directoire et Conseil de Surveillance our l'Etude et l'Exploitation des Procédés Georges Claude Method for separating air by cryogenic distillation and installation therefor
RU2387934C2 (en) * 2005-12-15 2010-04-27 Л'Эр Ликид Сосьете Аноним Пур Л'Этюд Э Л'Эксплуатасьон Де Проседе Жорж Клод Method to separate air into components by cryogenic distillation

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE253132C (en)
DE830805C (en) 1944-11-19 1952-02-07 Linde Eismasch Ag Process for gas, especially air, separation
DE901542C (en) 1952-01-10 1954-01-11 Linde Eismasch Ag Process for the separation of air by liquefaction and rectification
US2784572A (en) 1953-01-02 1957-03-12 Linde S Eismaschinen Ag Method for fractionating air by liquefaction and rectification
DE952908C (en) 1953-10-11 1956-11-22 Linde Eismasch Ag Process for the separation of air
DE1124529B (en) 1957-07-04 1962-03-01 Linde Eismasch Ag Method and device for carrying out heat exchange processes in a gas separation plant working with upstream regenerators
DE1103363B (en) 1958-09-24 1961-03-30 Linde Eismasch Ag Method and device for generating a balanced cold budget when extracting gas mixtures and / or gas mixture components under higher pressure by rectification
DE1112997B (en) 1960-08-13 1961-08-24 Linde Eismasch Ag Process and device for gas separation by rectification at low temperature
DE1117616B (en) 1960-10-14 1961-11-23 Linde Eismasch Ag Method and device for obtaining particularly pure decomposition products in cryogenic gas separation plants
DE1226616B (en) 1961-11-29 1966-10-13 Linde Ag Process and device for the production of gaseous pressurized oxygen with simultaneous production of liquid decomposition products by low-temperature air separation
DE1229561B (en) 1962-12-21 1966-12-01 Linde Ag Method and device for separating air by liquefaction and rectification with the aid of an inert gas cycle
DE1199293B (en) 1963-03-29 1965-08-26 Linde Eismasch Ag Method and device for air separation in a single column rectifier
DE1187248B (en) 1963-03-29 1965-02-18 Linde Eismasch Ag Process and device for the production of oxygen gas with 70 to 98% O-content
DE1258882B (en) 1963-06-19 1968-01-18 Linde Ag Process and system for air separation by rectification using a high pressure gas refrigeration cycle for the pressure evaporation of liquid oxygen
DE1235347B (en) 1964-05-13 1967-03-02 Linde Ag Method and device for the operation of switchable heat exchangers in low-temperature gas separation
DE1263037B (en) 1965-05-19 1968-03-14 Linde Ag Method for the separation of air in a rectification column and the separation of a gas mixture containing hydrogen
DE1501722A1 (en) 1966-01-13 1969-06-26 Linde Ag Process for cryogenic air separation for the production of highly compressed gaseous and / or liquid oxygen
DE1501723A1 (en) 1966-01-13 1969-06-26 Linde Ag Method and device for generating gaseous high-pressure oxygen in the low-temperature rectification of air
DE2535132C3 (en) 1975-08-06 1981-08-20 Linde Ag, 6200 Wiesbaden Process and device for the production of pressurized oxygen by two-stage low-temperature rectification of air
DE2646690A1 (en) 1976-10-15 1978-04-20 Linde Ag Oxygen and steam mixer for cellulose bleaching - has air fractionating plant supplying liquid oxygen to steam nozzle
DE3367023D1 (en) 1982-05-03 1986-11-20 Linde Ag Process and apparatus for obtaining gaseous oxygen at elevated pressure
EP0383994A3 (en) 1989-02-23 1990-11-07 Linde Aktiengesellschaft Air rectification process and apparatus
DE4109945A1 (en) 1991-03-26 1992-10-01 Linde Ag METHOD FOR DEEP TEMPERATURE DISPOSAL OF AIR
DE4443190A1 (en) 1994-12-05 1996-06-13 Linde Ag Method and apparatus for the cryogenic separation of air
DE19526785C1 (en) 1995-07-21 1997-02-20 Linde Ag Method and device for the variable production of a gaseous printed product
DE19529681C2 (en) 1995-08-11 1997-05-28 Linde Ag Method and device for air separation by low-temperature rectification
DE19732887A1 (en) 1997-07-30 1999-02-04 Linde Ag Air separation process
DE19803437A1 (en) 1998-01-29 1999-03-18 Linde Ag Oxygen and nitrogen extracted by low-temperature fractional distillation
DE19815885A1 (en) 1998-04-08 1999-10-14 Linde Ag Air separation method producing gas, or gas and liquid e.g. for steel plant
EP0955509B1 (en) 1998-04-30 2004-12-22 Linde Aktiengesellschaft Process and apparatus to produce high purity nitrogen
EP1031804B1 (en) 1999-02-26 2004-02-04 Linde AG Air separation process with nitrogen recycling
DE19908451A1 (en) 1999-02-26 2000-08-31 Linde Tech Gase Gmbh A low temperature air fractionating system uses a rectification unit comprising pressure and low pressure columns and a nitrogen fraction recycle to the system air feed inlet, to provide bulk nitrogen
DE19909744A1 (en) 1999-03-05 2000-05-04 Linde Ag Low-temperature air fractionating system re-compresses nitrogen-containing fraction separate from input air using indirect exchange for fraction heating.
DE59909750D1 (en) 1999-07-05 2004-07-22 Linde Ag Method and device for the low-temperature separation of air
DE19936816A1 (en) 1999-08-05 2001-02-08 Linde Ag Method and device for extracting oxygen under superatmospheric pressure
DE19954593B4 (en) 1999-11-12 2008-04-10 Linde Ag Method and apparatus for the cryogenic separation of air
DE10013073A1 (en) 2000-03-17 2000-10-19 Linde Ag Low temperature separation of air in distillation column system uses integrated heat exchanger system for cooling e.g. air supply by indirect heat exchange during vaporization of first liquid fraction
DE10013075A1 (en) 2000-03-17 2001-09-20 Linde Ag Process for recovering gaseous nitrogen by the decomposition of air in a distillation column system comprises removing a part of the nitrogen-rich liquid from the condenser-vaporizer as a liquid product
DE10015602A1 (en) 2000-03-29 2001-10-04 Linde Ag Method and device for obtaining a printed product by low-temperature separation of air
DE10018200A1 (en) 2000-04-12 2001-10-18 Linde Gas Ag Method and device for obtaining pressurized nitrogen by low-temperature separation of air
DE10021081A1 (en) 2000-04-28 2002-01-03 Linde Ag Heat exchange method and apparatus
DE10060678A1 (en) 2000-12-06 2002-06-13 Linde Ag Machine system for work relaxation of two process streams
DE10115258A1 (en) 2001-03-28 2002-07-18 Linde Ag Machine system comprises relaxation machine for reducing pressure of first process fluid mechanically coupled to pump for increasing pressure of second process fluid present in liquid form
DE10139727A1 (en) 2001-08-13 2003-02-27 Linde Ag Method and device for obtaining a printed product by low-temperature separation of air
DE10153252A1 (en) 2001-10-31 2003-05-15 Linde Ag Process for recovering krypton and/or xenon by low temperature decomposition of air, comprises passing compressed purified process air to a rectifier system, removing a fraction containing krypton and xenon, and further processing
DE10213211A1 (en) 2002-03-25 2002-10-17 Linde Ag Air fractionation in columns producing liquid and gaseous products, exchanges heat with circuit containing recirculated cryogenic liquid
DE10213212A1 (en) 2002-03-25 2002-10-17 Linde Ag Air fractionation plant in which product stream is split, carries out all compression stages in common dual flow pump
DE10217091A1 (en) 2002-04-17 2003-11-06 Linde Ag Three-column system for low-temperature air separation with argon extraction
DE10238282A1 (en) 2002-08-21 2003-05-28 Linde Ag Process for the low temperature decomposition of air comprises feeding a first process air stream into a high pressure column, producing a first oxygen-enriched fraction in the high pressure column, and further processing
RU2005122894A (en) 2002-12-19 2006-01-20 Каргес-Фолконбридж, Инк. (Us) METHOD OF LIQUID EXTRACTION
DE10302389A1 (en) 2003-01-22 2003-06-18 Linde Ag Device for the low temperature decomposition of air comprises a rectification system consisting of a high pressure column, a low pressure column, and a condenser-evaporator system for heating the low pressure column
DE10334560A1 (en) 2003-05-28 2004-12-16 Linde Ag Method for recovering krypton and xenon from air, comprises separating nitrogen and oxygen and feeding krypton- and xenon-containing fraction into enrichment column, stream of pure air being decompressed and fed into column
DE10334559A1 (en) 2003-05-28 2004-12-16 Linde Ag Process for recovering krypton/xenon by the cryogenic separation of air comprises feeding an argon-enriched vapor from a crude argon rectification system into a sump evaporator
DE10332863A1 (en) 2003-07-18 2004-02-26 Linde Ag Krypton and xenon recovery by low-temperature fractionation of air yields higher purity products and higher argon productivity, using low nitrogen content scrubbing liquid stream
EP1544559A1 (en) 2003-12-20 2005-06-22 Linde AG Process and device for the cryogenic separation of air
DE102005029274A1 (en) 2004-08-17 2006-02-23 Linde Ag Obtaining gaseous pressure product, by cryogenic separation of air implementing normal operation, emergency operation, and bypass operation
EP1666823A1 (en) 2004-12-03 2006-06-07 Linde Aktiengesellschaft Apparatus for the cryogenic separation of a gaseous mixture in particular of air
EP1666824A1 (en) 2004-12-03 2006-06-07 Linde Aktiengesellschaft Process and device for the recovery of Argon by cryogenic separation of air
DE102005028012A1 (en) 2005-06-16 2006-09-14 Linde Ag Separation of air into nitrogen and oxygen at low temperatures, with a distillation column system, uses liquefied natural gas
WO2007033838A1 (en) 2005-09-23 2007-03-29 Linde Aktiengesellschaft Air cryogenic separation method and device
DE102006012241A1 (en) 2006-03-15 2007-09-20 Linde Ag Method and apparatus for the cryogenic separation of air
EP1845323A1 (en) 2006-04-13 2007-10-17 Linde Aktiengesellschaft Process and device for producing a high pressure product by cryogenic separation of air
DE102006032731A1 (en) 2006-07-14 2007-01-18 Linde Ag Air separation process for producing nitrogen-enriched and oxygen-enriched streams comprises introducing an instrument air stream into a gas pressure reservoir
EP1892490A1 (en) 2006-08-16 2008-02-27 Linde Aktiengesellschaft Method and device for the production of variable amounts of a pressurized product by cryogenic gas separation
DE102007014643A1 (en) 2007-03-27 2007-09-20 Linde Ag Method for producing gaseous pressurized product by low temperature separation of air entails first and fourth partial air flows being expanded in turbines, and second and third partial flows compressed in post-compressors
DE102007031765A1 (en) 2007-07-07 2009-01-08 Linde Ag Process for the cryogenic separation of air
DE102007031759A1 (en) 2007-07-07 2009-01-08 Linde Ag Method and apparatus for producing gaseous pressure product by cryogenic separation of air
EP2026024A1 (en) 2007-07-30 2009-02-18 Linde Aktiengesellschaft Process and device for producing argon by cryogenic separation of air
EP2235460B1 (en) 2008-01-28 2018-06-20 Linde Aktiengesellschaft Process and device for the cryogenic separation of air
DE102008016355A1 (en) 2008-03-29 2009-10-01 Linde Ag Air cryogenic separation method for electrical energy at integrated gasification combined cycle power plant, involves bringing nitrogen flow into indirect exchange with partial flow in condenser-evaporator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329776A (en) * 1991-03-11 1994-07-19 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the production of gaseous oxygen under pressure
US6305191B1 (en) * 1999-05-07 2001-10-23 The Boc Group Plc Separation of air
US7219514B2 (en) * 2001-10-17 2007-05-22 L'Air Liquide, Société Anonyme á Directoire et Conseil de Surveillance our l'Etude et l'Exploitation des Procédés Georges Claude Method for separating air by cryogenic distillation and installation therefor
RU2387934C2 (en) * 2005-12-15 2010-04-27 Л'Эр Ликид Сосьете Аноним Пур Л'Этюд Э Л'Эксплуатасьон Де Проседе Жорж Клод Method to separate air into components by cryogenic distillation

Also Published As

Publication number Publication date
DE102011121314A1 (en) 2013-06-20
EA201201485A1 (en) 2013-08-30

Similar Documents

Publication Publication Date Title
TW201607599A (en) Method and device for the low-temperature separation of air at variable energy consumption
US20080223077A1 (en) Air separation method
JP2009529648A (en) Cryogenic air separation method and apparatus
KR20010093765A (en) Process and apparatus for producing a pressurized product by low-temperature fractionation of air
US9810103B2 (en) Method and device for generating electrical energy
CN101925790A (en) Method and device for low-temperature air separation
RU2681901C2 (en) Method and device for low-temperature air separation
JP2009509120A (en) Method and apparatus for separating air by cryogenic distillation.
JP2002327981A (en) Cryogenic air-separation method of three-tower type
US20180023890A1 (en) Method And Apparatus For Obtaining A Compressed Nitrogen Product
US10488106B2 (en) Method and apparatus for producing compressed nitrogen and liquid nitrogen by cryogenic separation of air
TWI663373B (en) Method and apparatus for the cryogenic separation of air
US8191386B2 (en) Distillation method and apparatus
CN102901322B (en) Pressure nitrogen and the method and apparatus of pressure oxygen is obtained by Cryogenic air separation
EA024400B1 (en) Method for producing gaseous compressed oxygen product by low-temperature air separation
US20110083469A1 (en) Process and Device for Obtaining Liquid Nitrogen by Low Temperature Air Fractionation
AU2012323524A1 (en) Method and device for generating two purified partial air streams
EP1726900A1 (en) Process and apparatus for the separation of air by cryogenic distillation
KR20160032160A (en) Method for producing at least one air product, air separation system, method and device for producing electrical energy
US20160161181A1 (en) Method and device for producing compressed nitrogen
US20130139548A1 (en) Method and apparatus for producing pressurized oxygen by low-temperature separation of air
US20160245585A1 (en) System and method for integrated air separation and liquefaction
RU2647297C2 (en) Method and plant for producing liquid and gaseous oxygenates by low-temperature air separation
RU2696846C2 (en) Method and device for production of compressed gaseous product by means of low-temperature air separation
RU2433363C1 (en) Method and apparatus for air separation by cryogenic distillation

Legal Events

Date Code Title Description
MM4A Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s)

Designated state(s): AM AZ BY KG TJ TM