EA013127B1 - Способ получения пропиленгликоля - Google Patents

Способ получения пропиленгликоля Download PDF

Info

Publication number
EA013127B1
EA013127B1 EA200800292A EA200800292A EA013127B1 EA 013127 B1 EA013127 B1 EA 013127B1 EA 200800292 A EA200800292 A EA 200800292A EA 200800292 A EA200800292 A EA 200800292A EA 013127 B1 EA013127 B1 EA 013127B1
Authority
EA
Eurasian Patent Office
Prior art keywords
reaction zone
glycerol
catalyst
stream
reaction
Prior art date
Application number
EA200800292A
Other languages
English (en)
Other versions
EA200800292A1 (ru
Inventor
Майкл Уильям Маршалл Так
Original Assignee
Дэйви Проусесс Текнолоджи Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дэйви Проусесс Текнолоджи Лимитед filed Critical Дэйви Проусесс Текнолоджи Лимитед
Publication of EA200800292A1 publication Critical patent/EA200800292A1/ru
Publication of EA013127B1 publication Critical patent/EA013127B1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/60Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by elimination of -OH groups, e.g. by dehydration
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Предложен способ получения пропиленгликоля путем взаимодействия исходного сырья, содержащего глицерин, в присутствии водорода, который включает стадии: (а) подачи потока, содержащего исходное сырье, в первую зону выпаривания и контактирования указанного сырья с циркулирующим газом, содержащим водород, таким образом, чтобы по меньшей мере часть исходного сырья испарялась и поступала в поток циркулирующего газа; (б) подачи по меньшей мере части циркулирующего газа и испарившегося исходного сырья в первую зону реакции, содержащую катализатор, и проведения процесса при таких реакционных условиях, которые обеспечивают гидрирование и дегидратацию таким образом, что происходит конверсия большей части глицерина; (в) выделения из первой зоны реакции потока промежуточного продукта, содержащего циркулирующий газ, незначительные количества непревращенного глицерина и желаемый(ые) продукт(ы); (г) подачи потока промежуточного продукта из предыдущей зоны реакции в последнюю зону выпаривания и контактирования его с дополнительным количеством исходного сырья таким образом, что количество глицерина, примерно эквивалентное количеству, испарившемуся в предыдущей зоне реакции, испаряется и поступает в поток промежуточного продукта; (д) подачи потока со стадии (г) в последнюю зону реакции, содержащую катализатор, и проведения процесса при таких условиях реакции, которые обеспечивают гидрирование и дегидратацию таким образом, что происходит конверсия большей части глицерина; и (е) выделения из последней зоны реакции конечного потока продукта, содержащего циркулирующий газ, небольшие количества непревращенного исходного глицерина и желаемый(ые) продукт(ы).

Description

Настоящее изобретение относится к способу гидрирования в паровой фазе 1,2,3-пропантриола, также известного как глицерин. Более конкретно, оно относится к способу, который сводит до минимума потребность в циркуляции водорода во время поддержания высокой селективности и конверсии.
Глицерин производится в большом количестве и, как ожидают, его поставки возрастут, так как он является побочным продуктом в способах, которые становятся значительно более привлекательными, так как они основаны на натуральных продуктах, таких как масла и жиры, которые используются как исходные материалы. Примеры масел и жиров включают пальмовое масло, рапсовое масло, говяжий жир и т. п.
Однако несмотря на то, что глицерин имеется в большом количестве, его настоящее применение ограничено по объему. Поэтому желательно создать способы, которые дают возможность конвертировать глицерин в полезный материал. Поэтому будет понятно, что соединение способов, которые используют глицерин как сырьевой материал, со способами, в которых глицерин является побочным продуктом, предлагает экономические преимущества. Таким образом, способы, в которых используется глицерин, включают способы, использующие биодизельные установки и установки для расщепления жиров, такие как установки на заводах по получению натуральных моющих средств и т.п.
Несмотря на то, что потребление глицерина не соответствует его наличию, он может быть конвертирован в 1,2-пропандиол и 2-пропанол, которые являются ценными продуктами, имеющими различные области применения. Таким образом, любые новые способы, в которых применяется глицерин в качестве сырьевого продукта, служат улучшению экономических показателей способов, в которых глицерин получается как побочный продукт, таких как способы, использующие биодизельные установки, расщепители жиров и т.п.
Различные способы были предложены для более эффективного превращения глицерина в 1,2пропандиол.
В патенте США № 5426249 описан способ, в котором глицерин в газообразном потоке дегидратируется в акролеин. Акролеин затем конденсируют и гидратируют в 3-гидроксипропиональдегид, который затем подвергается гидрированию в жидкой фазе. Этот многоступенчатый способ позволяет одновременно получать 1,2- и 1,3-пропандиол.
Патент США № 5214219 раскрывает способ, в котором глицерин конвертируется в 1,2-пропандиол и 1,2-этандиол. В этом способе гидрирование глицерина производится в жидкой фазе в присутствии медь/цинкового катализатора при температуре около 220°С.
Альтернативный способ гидрирования глицерина в жидкой фазе описан в патенте США № 5616817. Способ, который направлен на получение 1,2-пропандиола, требует применения глицерина с содержанием воды не более 20 вес.%. Гидрирование производится в присутствии катализатора, который содержит кобальт, медь, марганец и молибден.
Сйатшаий с1 а1. Сгееи Сйет. 6, (2004), 359-361 описывают способ, в котором глицерин гидрируется в жидкой фазе в присутствии металлического катализатора на носителе. В условиях способа при температуре 180°С и давлении 85 бар реакция протекает медленно с конверсией, равной только 20%, которая достигается через 168 ч.
Альтернативный способ описан Эехап е1 а1. в С’аЫуъй А 281, (2005), 225-231, в котором используется катализатор медь/хром для гидрирования глицерина в жидкой фазе. Однако конверсия была низкой, со степенью конверсии меньше 30%. Предполагают, что это происходило из-за того, что катализатор становился дезактивированным и требовалась реактивация катализатора между опытами.
Патенты ΌΕ 4302464 и ΌΕ 524101 описывают в деталях жидкофазные способы получения 1,2пропандиола из глицерина. Хотя каждый из них дает ссылки на возможность производства в паровой фазе, ни один из документов не описывает того, как способ может быть эффективно и в промышленном масштабе проведен в паровой фазе с целью получения высокой конверсии и селективности.
Способ гидрогенолиза глицерина в паровой фазе описан в заявке № РСТ/СВ 2006/050181. Этот способ имеет преимущества в условиях повышенной конверсии и селективности при низком давлении по сравнению с эквивалентными способами в жидкой фазе. Хотя этот способ имеет различные преимущества по сравнению с известными способами в этой области, низкая летучесть глицерина требует, чтобы большее количество водорода, значительно превышающее стехиометрические потребности, было использовано для поддержания питания реактора в паровой фазе. Так как расход водорода может быть минимизирован путем отделения стехиометрического избытка от пропандиола и его рециркулирования, способ остается не экономичным, что связано с компрессией, нагревом и охлаждением требуемого количества водорода.
Хотя требуемое количество водорода может быть уменьшено путем применения высоких температур, способ имеет недостаток из-за сниженной селективности. Поэтому существует необходимость в способе, который минимизирует потребность в циркуляции водорода во время поддержания высокой селективности и конверсии.
Было установлено, что глицерин может быть эффективно превращен в желаемые продукты с доведением до минимума потребности в водороде путем осуществления многостадийной реакции.
Таким образом, в соответствии с одним аспектом настоящего изобретения предусматривается спо
- 1 013127 соб получения пропиленгликоля путем взаимодействия исходного материала, содержащего глицерин, с водородом, который состоит из следующих стадий:
(а) подачи потока, содержащего исходный материал, в первую испарительную зону и контакта указанного выше исходного материала с циркулирующим газом, который содержит водород, когда по меньшей мере часть исходного материала испаряется при помощи газа и в циркулирующий газ;
(б) подачи по меньшей мере части циркулирующего газа и испарившегося исходного материала в первую реакционную зону, которая содержит катализатор, и проведения процесса в реакционных условиях с целью осуществления гидрирования и дегидрирования таким образом, что большая часть глицерина конвертируется;
(в) выделения из первой реакционной зоны потока промежуточного продукта, содержащего циркулирующий газ, незначительное количество не конвертированного глицерина и желаемый продукт (продукты);
(г) подачи потока с промежуточным продуктом из предыдущей реакционной зоны в конечную испарительную зону и контакта с дополнительным количеством исходного материала с тем, чтобы количество глицерина, приблизительно эквивалентное количеству, испарившемуся в предыдущей испарительной зоне, испарялось при помощи промежуточного продукта и в поток промежуточного продукта;
(д) подачи потока со стадии, описанной в пункте (г), в конечную реакционную зону, содержащую катализатор, и проведения процесса в реакционных условиях с целью осуществления гидрирования и дегидратирования таким образом, что большая часть глицерина конвертируется; и (е) выделения из конечной реакционной зоны потока конечного продукта, который содержит циркулирующий газ, небольшое количество не конвертированного исходного глицерина и желаемый продукт (продукты).
Так как большая часть глицерина конвертируется, авторы полагают, что эта величина составляет более 50%, предпочтительно более 60%, предпочтительно более 70%, более предпочтительно свыше 80%, более предпочтительно свыше 85%, еще более предпочтительно свыше 90%, даже более предпочтительно свыше 95% и наиболее предпочтительно, когда, по существу, конвертируется весь глицерин.
При применении способа по настоящему изобретению решаются проблемы известных способов в этой области, а эффективность и стоимость применения процесса становятся оптимальными, в то время как поддерживается желаемый уровень конверсии и селективности.
В предпочтительной схеме по настоящему изобретению дополнительные зоны испарения и соответствующей реакции будут располагаться между первой реакционной зоной и конечной испарительной зоной. Таким образом, реакция может включать другие стадии способа:
(в1) подачу потока промежуточного продукта из предыдущей реакционной зоны в соответствующую испарительную зону и его контактирование с дополнительным количеством исходного материала таким образом, что количество глицерина, приблизительно эквивалентное количеству, испарившемуся в предыдущей испарительной зоне, испаряется при помощи промежуточного продукта и в этот продукт;
(в2) подачу продукта со стадии (в1) в соответствующую промежуточную реакционную зону, содержащую катализатор, и проведения процесса в реакционных условиях с целью осуществления гидрирования и дегидратирования таким образом, что большая часть глицерина конвертируется; и (в3) выделения из соответствующей реакционной зоны потока промежуточного продукта, содержащего циркулирующий газ, небольшое количество не конвертированного исходного глицерина и желаемый продукт (продукты). Термин «большая часть» на стадии (в2) определен выше.
Стадии от (в1) до (в3) могут быть повторены столько раз, как это будет необходимо. Данное изобретение может быть осуществлено с любым количеством испарительных зон и связанных с ними реакционных зон. В предпочтительной схеме по настоящему изобретению может быть от 2 до 9 испарительных зон и связанных с ними реакционных зон, более предпочтительно 3 или 4 испарительные зоны и связанные с ними реакционные зоны.
Оптимальное количество испарительных и реакционных стадий определяется экономическими факторами, которые являются специфическими для условий каждой установки. Эти факторы включают основную стоимость оборудования и операционные расходы на осуществление реакции по способу и, в частности, стоимость электроэнергии и других тепло- и водопотребностей. Известно, что увеличение числа стадий увеличивает основную стоимость из-за стоимости дополнительного оборудования, уменьшение скорости циркулирующего газа приводит к уменьшению размера и стоимости теплообменников и внутрикоммуникационных трубопроводов. Кроме того, увеличение числа стадий снизит поток под давлением и, таким образом, расход электроэнергии. Конечно здесь есть взаимосвязь, когда увеличение числа стадий добавляет потери давления в системе, что увеличивает энергопотребление компрессором. Табл. 1 иллюстрирует отношение между числом реакционных стадий и потребностью в циркулирующем газе для конкретного отношения глицерина к водороду в реакционных зонах. Таблица также показывает, как энергопотребление компрессора проходит через минимальное значение, в то время как число стадий увеличивается.
- 2 013127
Таблица 1
Число испарительных / реакционных стадий Реакционная зона водород /глицерин отношение Суммарное отношение водород/глицерин Энергопотребление соответствующего компрессора
1 500: 1 500 : 1 1,00
2 500:1 250:1 0,71
3 500: 1 167: 1 0,57
4 500: 1 125: 1 0,51
5 500 : 1 100 : 1 0,47
6 500 : 1 83 : 1 0,46
7 500: 1 71 : 1 0,46
8 500 : 1 62 : 1 0,46
9 500: 1 56:1 0,47
Неожиданным признаком настоящего изобретения является то, что оно может быть осуществлено без значительных потерь селективности по желаемому продукту, пропиленгликолю.
Способ по настоящему изобретению может проводиться в любых приемлемых условиях. Исходный материал предпочтительно подается в первый испаритель, где он частично испаряется в атмосфере газа, содержащего водород, при температурах от около 180 до около 240°С, одна из проблем, связанных с использованием глицерина, состоит в том, что он может образовывать очень вязкие остатки. В предпочтительной схеме по настоящему изобретению количество поданного водорода регулируется таким образом, чтобы не весь присутствующий глицерин испарялся. Не конвертированный глицерин возвращается в систему для того, чтобы не наблюдалось суммарного снижения конверсии. Некоторое количество не испарившегося глицерина минимизирует образование остатков и способствует очистке системы от образованных остатков.
Водородсодержащий циркулирующий газ, поданный в испаритель, может иметь любой приемлемый состав. В одной схеме он содержит большее количество водорода и самое маленькое количество одного или нескольких инертных газов, таких как азот, метан и другие низкомолекулярные углеводороды, такие как этан, пропан, н-бутан, изобутан, окиси углерода, неон, аргон и т.п. Циркулирующий газ может также содержать конденсируемые вещества, такие как вода и метанол.
Поток с исходным глицерином может быть чистым или с примесями. В частности, питающим материалом может быть глицерин, полученный как побочный продукт в способах гидролиза, омыления или трансэтерификации триглицеридов. Исходный глицерин может также содержать вещества, рециклированные из последующих установок по очистке продуктов получения пропиленгликоля. Например, любой гидроксипропанон, который является промежуточным продуктом при производстве желаемого продукта и который остается в потоке продукта, может быть выделен из него и рециркулирован. К исходному глицерину может добавляться вода. Любой исходный материал, который не испарился в первом испарителе, может быть рециркулирован в первый или в любой последующий испаритель.
Может применяться любое приемлемое отношение водорода к глицерину. Приемлемыми отношениями являются отношения от около 200:1 до около 1100:1.
В первой реакционной зоне может применяться любой приемлемый катализатор. В одной схеме по настоящему изобретению катализатор представляет собой неподвижный слой восстановленного активированного медного катализатора, такого как медь/окись алюминия/марганец, хромит меди, медькремнезем или медь-цинковый катализатор, восстановленный никелевый катализатор или восстановленный кобальтовый катализатор. В случаях, когда используется смесь катализаторов, для облегчения ссылок, термин «катализатор» будет использован и пониматься как в применении и к единичному катализатору, так и к смеси двух или более различных катализаторов. Катализатор, использованный в последующей реакционной зоне, может отличаться от катализатора, использованного в первой реакционной зоне. В схемах, в которых содержится более двух реакционных зон, катализатор, использованный в одной или в каждой зоне, может быть тем же или отличным от катализатора, использованного в первой и/или в последующей реакционной зоне.
В одной схеме может быть применен слой с различными катализаторами. Каталитические слои, содержащие более одного вида катализатора, могут содержать раздельные слои катализатора в общем слое, расположенные раздельно или в смеси различных видов катализатора.
Когда один или каждый катализатор содержит медь, частички активного катализатора могут, по меньшей мере, частично находиться на носителе, выбранном из окиси хрома, окиси цинка, окиси алюминия, двуокиси кремния, двуокиси кремния, окиси алюминия, карбида кремния, окиси циркония, окиси титана, углерода или смеси двух или более из указанных выше веществ, например смеси окиси хрома и
- 3 013127 углерода.
Любые приемлемые реакционные условия могут быть применены для того, чтобы глицерин превращался в пропиленгликоль и другие продукты и смесь продукта была, в основном, свободна от глицерина. Обычно конверсия глицерина должна быть по меньшей мере около 90%, более предпочтительно она должна быть по меньшей мере около 95% и еще более предпочтительно около 98% и более.
В одной схеме температура в одной или в каждой реакционной зоне может быть от около 160 до около 260°С, более предпочтительно быть от около 205 до около 220°С. В одной схеме температура в первой реакционной зоне может быть от около 205 до около 220°С и температура в конечной реакционной зоне может быть от около 180 до около 240°С.
Реакционная зона может работать адиабатически, и так как реакция конверсии глицерина в пропиленгликоль является экзотермической, температура процесса возрастает в реакторе. Горячий газообразный продукт, покидающий реакционную зону, направляется в соответствующий испаритель, где исходный материал затем испаряется. Таким образом, в этой схеме по меньшей мере часть тепла, требуемого для испарения дополнительного количества исходного глицерина в последующем испарителе, получается от самого потока горячего продукта.
Может применяться любое приемлемое давление. Приемлемым может быть давление от около 5 до около 40 бар ман.
Может применяться любая приемлемая скорость подачи исходного материала. Могут применяться объемные скорости подачи исходного материала в пределах от около 0,1 до около 0,5 ч-1.
Настоящее изобретение будет описано путем приведения примера со ссылкой на соответствующий чертеж, на котором схематически изображен способ по настоящему изобретению.
Специалистам в этой области будет понятно, что чертеж является схематическим и что другие элементы оборудования, такие как барабаны для флегмы, насосы, вакуумные насосы, компрессоры, компрессоры для рециркуляции газов, датчики температуры, датчики давления, вентили для сброса давления, контрольные вентили, контрольно-измерительные приборы для определения скорости потока, контрольно-измерительные приборы для определения уровня, сборные емкости, емкости для хранения и т.п., могут потребоваться на промышленной установке. Обеспечение таким вспомогательным оборудованием не является частью настоящего изобретения и соответствует стандартной практике химического проектирования.
Хотя для удобства описание и чертеж подразумевают отдельный теплообменник, испаритель и реакционное оборудование, будет понятно, что некоторые или все из них могут быть представлены одним резервуаром или каждая испарительная зона и реакционная зона могут содержаться в одном сосуде.
Исходный материал, содержащий глицерин, подается по линии 1 и по линии 18 поступает в первый испаритель 3, где он контактирует с циркулирующим газом, содержащим водород, поступающим по линии 2, где он испаряется при помощи потока и в поток циркулирующего газа перед его направлением по линии 4 в первый реактор 5. Любое количество неиспарившегося глицерина может быть удалено по линии 17 и рециркулировано по линиям 18, 15 и 16 в один или более испарителей 3, 7 и 11. Реактор 5 содержит восстановленный медный катализатор и эксплуатируется при давлении и температуре, достаточных для осуществления реакции, таким образом, чтобы, в основном, весь глицерин конвертировался.
Поток циркулирующего газа, в котором теперь содержится продукт, пропускается по линии 6 во второй испаритель 7. Предусмотренное количество исходного глицерина добавляется по линии 15. Количество испарившегося исходного материала будет приблизительно равным количеству, испарившемуся в первом испарителе 3. Глицерин и циркулирующий газ, содержащий продукт, затем пропускают по линии 8 во второй реактор 9. Любое количество не прореагировавшего глицерина может быть удалено по линии 19 и рециркулировано по линиям 18, 15 и 16 в один или более испарителей 3, 7 и 11. Реактор 9 содержит восстановленный медный катализатор и эксплуатируется при температуре и давлении, достаточных для проведения реакции таким образом, чтобы конвертировался, в основном, весь глицерин.
Поток циркулирующего газа, содержащего продукт, направляется по линии 10 в третий испаритель
11. Количество испарившегося исходного материала будет приблизительно равным количеству, испарившемуся во втором испарителе 7. Любое количество не испарившегося глицерина может быть удалено по линии 21 и рециркулировано по линиям 18, 15 или 16 в один из испарителей 8, 7 и 11. Циркулирующий газ, содержащий глицерин и продукт, затем подают по линии 12 в третий реактор 13. Реактор 13 содержит восстановленный медный катализатор и эксплуатируется при температуре и давлении, достаточных для проведения реакции таким образом, чтобы конвертировался, в основном, весь глицерин.
Циркулирующий газ, содержащий целевой продукт и побочный продукт, затем удаляют по линии 14 и обрабатывают, как предписано.
Настоящее изобретение будет далее описано со ссылкой на следующие примеры.
Примеры 3-7.
Примеры непрерывных процессов, которые проводятся на катализаторах на основе меди в цилиндрическом реакторе с диаметром 0,75 дюймов. Катализатор затем восстанавливается известными методами.
Исходный материал подается в нагретый сосуд с требуемым количеством водорода при реакцион
- 4 013127 ном давлении. Это вызывает полное испарение исходной смеси до того, когда получающийся поток проходит над катализатором. Условия реакции приведены в табл. 2, анализ сырья - в табл. 3 и анализ полученного продукта - в табл. 4.
Сравнительные примеры 1-2.
Повторяли способ, описанный в примере 3, используя в качестве исходного соединения глицерин. В свете известных из уровня техники сведений можно было бы ожидать, что применение ряда испарителей приведет к потере селективности. Из этих сравнительных примеров видно, что когда применяют пропиленгликоль, эта потеря имеет место. Однако при сравнении с данными по примерам 3-7 неожиданно видно, что добавление глицерина в каждый испаритель решает эту проблему и потери не наблюдается.
Таблица 2
Пример 1 Сравнит Пример! Сравнит Пример2 3 4 5 6 7
Сырьё Пропиленгликоль Пропиленгликоль + 10%воды Глицерин Глицерин Глицерин + 10% воды Вторая зона, глицерин Третья зона, глицерин
Общий объём слоя, 1 0,283 0,283 0,283 0,1 0,1 0,1 0,1
Вес слоя, кг 0,410 0,410 0,410 0,089 0,089 0,089 0,089
Температура поступления в слой, °С 199 199 199 210 210 211 210
Темп, выхода из слоя, °С 201 200 206 215 215 217 216
Давление, бар 19,7 19,7 19,7 20,0 20,0 19,7 19,7
Скорость рецикла, г/час-1 1204 1206 1203 400 399 400 401
Скорость рецикла ΝΣΚΗ 12446 12762 12565 4407 4397 4402 4401
Время пребывания. с-' 0,98 0,96 0,96 0,95 0,95 0,94 0,95
Отношение водорода к глицерину 458 422 489 520 521 467 487
Общее время оп Нпе 1294 1325 1048 16666 1709 2053 2195
ЬН5У 0,379 0,422 0,296 0,276 0,281 0,307 0,295
Вес загрузки, г/ч 111,4 124,2 105,5 34,8 38,5 76,8 109,3
Выход продукта в час, г 116,0 128,8 105,4 34,6 38,9 83,5 116,5
- 5 013127
Таблица 3
1 2 3 4 5 6 7
Плотность исх. сырья 1,04 1,04 1,26 1,26 1,23 1,26 1,26
Метанол 0,29 0.40
Вода 10,00 10,00 12,44 14,01
Этанол 0,12 0,17
2-пропанол 0,47 0,58
1-пропанол 0,34 0,45
Г идроксипропанон 0,71 1,09
Этиленгликоль 0,45 0.63
Пропиленгликоль 100,00 90,00 34.78 48,65
Глицерин 100,00 100,00 90,00 50,41 33,99
1-гептанол 0,01
Другие 0,00 0,04
Всего 100,00 100,00 100,00 100,00 100,00 100,00 100,00
Таблица 4
1 2 3 4 5 б 7
Метанол 0,25 0,18 1,01 0,67 0,58 0,61 0,59
Вода 2.68 9,43 18,06 17,93 24,14 20,77 19,92
Этанол 0,94 0.61 0,79 0,31 0,23 0,23 0,25
Ацетон 0,04 0,03
2-пропанол 1,67 1,20 1,73 1,25 0,90 0,83 0,82
1-пропанол 0,97 0,88 1,29 0,80 0,65 0,65 0,67
2-бутанол
Г идроксипропанон 0,82 0.93 1,11 1,59 1,43 1,62 1,68
1 -бутанол
Этиленгликоль 0,04 1.44 0,99 0,89 0,92 1,03
Пропиленгликоль 90,39 85,54 72,63 75,77 70,32 73,02 74,25
1-пентанол 0,10 0,05 0,06
3-гексанол
2-гексанол 0,12 0,06 0,07
1,2-бутандиол 0,69 0,38 0,47
1-гексанол 0,05
Глицерин 0,32 0,61 0,83 1,35 0,78
1-гептанол 0,03
2,5’гександиол
Другие 1,33 0,74 0,97 0,02 0,01
ФОРМУЛА ИЗОБРЕТЕНИЯ

Claims (17)

1. Способ получения пропиленгликоля путем взаимодействия исходного сырья, содержащего глицерин, в присутствии водорода, который включает стадии:
(а) подачи потока, содержащего исходное сырье, в первую зону выпаривания и контактирования указанного сырья с циркулирующим газом, содержащим водород, таким образом, чтобы по меньшей мере часть исходного сырья испарялась и поступала в поток циркулирующего газа;
(б) подачи по меньшей мере части циркулирующего газа и испарившегося исходного сырья в первую зону реакции, содержащую катализатор, и проведения процесса при таких реакционных условиях, которые обеспечивают гидрирование и дегидратацию таким образом, что происходит конверсия большей части глицерина;
(в) выделения из первой зоны реакции потока промежуточного продукта, содержащего циркулирующий газ, незначительные количества непревращенного глицерина и желаемый(ые) продукт(ы);
(г) подачи потока промежуточного продукта из предыдущей зоны реакции в последнюю зону выпаривания и контактирования его с дополнительным количеством исходного сырья таким образом, что количество глицерина, примерно эквивалентное количеству, испарившемуся в предыдущей зоне реакции, испаряется и поступает в поток промежуточного продукта;
(д) подачи потока со стадии (г) в последнюю зону реакции, содержащую катализатор, и проведения процесса при таких условиях реакции, которые обеспечивают гидрирование и дегидратацию таким образом, что происходит конверсия большей части глицерина; и (е) выделения из последней зоны реакции конечного потока продукта, содержащего циркулирую- 6 013127 щий газ, небольшие количества непревращенного исходного глицерина и желаемый(ые) продукт(ы).
2. Способ по п.1, отличающийся тем, что реакционные условия на стадии (б) и/или стадии (д) обеспечивают практически полную конверсию глицерина.
3. Способ по п.1 или 2, отличающийся тем, что он дополнительно включает следующие стадии между стадией (в) и стадией (г):
(в1) подача потока промежуточного продукта из предыдущей зоны реакции в следующую зону выпаривания и контактирования его с дополнительным количеством исходного сырья таким образом, что количество глицерина, примерно эквивалентное количеству, испарившемуся в предыдущей зоне реакции, испаряется и поступает в поток промежуточного продукта;
(в2) подача продукта со стадии (в1) в следующую промежуточную зону реакции, содержащую катализатор, и проведение процесса в таких условиях, которые обеспечивают гидрирование и дегидратацию таким образом, что происходит превращение большей части глицерина; и (в3) выделение из последующей зоны реакции потока промежуточного продукта, содержащего циркулирующий газ, незначительные количества непревращенного исходного глицерина и желаемые продукты.
4. Способ по п.3, отличающийся тем, что условия реакции на стадии (в2) обеспечивают практически полную конверсию глицерина.
5. Способ по п.3 или 4, отличающийся тем, что стадии (в1)-(в3) повторяются.
6. Способ по п.5, отличающийся тем, что имеются от 3 до 9 зон выпаривания и связанных с ними зон реакции.
7. Способ по п.6, отличающийся тем, что имеются 3 или 4 зоны выпаривания и связанные с ними зоны реакции.
8. Способ по любому из пп.1-7, отличающийся тем, что исходное сырье подают в первый испаритель, где оно частично испаряется в водородсодержащий газ при температурах от примерно 180 до примерно 240°С.
9. Способ по одному из пп.1-8, отличающийся тем, что любое исходное сырье, которое не испарилось в первом испарителе, возвращают в цикл в первый или любой последующий испаритель.
10. Способ по любому из пп.1-9, отличающийся тем, что отношение водорода к глицерину составляет от примерно 200:1 до примерно 1100:1.
11. Способ по любому из пп.1-10, отличающийся тем, что катализатор представляет собой восстановленный медный катализатор, восстановленный никелевый катализатор или восстановленный кобальтовый катализатор.
12. Способ по любому из пп.1-11, отличающийся тем, что температура реакционной зоны или каждой реакционной зоны составляет от примерно 160 до примерно 260°С.
13. Способ по любому из пп.1-12, отличающийся тем, что температура реакционной зоны или каждой реакционной зоны составляет от примерно 205 до примерно 220°С.
14. Способ по любому из пп.1-11, отличающийся тем, что температура реакционной зоны или каждой реакционной зоны составляет от примерно 180 до примерно 240°С.
15. Способ по любому из пп.1-14, отличающийся тем, что реакционная зона работает в адиабатических условиях.
16. Способ по любому из пп.1-15, отличающийся тем, что давление составляет от примерно 5 до примерно 40 бар ман.
17. Способ по любому из пп.1-15, отличающийся тем, что скорость подачи исходного сырья, представляющая собой скорость потока жидкости, проходящей через данный объем контактного пространства, составляет от примерно 0,1 до примерно 0,5 ч-1.
EA200800292A 2006-07-26 2007-07-17 Способ получения пропиленгликоля EA013127B1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0614823.3A GB0614823D0 (en) 2006-07-26 2006-07-26 Process
PCT/EP2007/057400 WO2008012244A1 (en) 2006-07-26 2007-07-17 Process for the hydrogenation of glycerol to propyleneglycol

Publications (2)

Publication Number Publication Date
EA200800292A1 EA200800292A1 (ru) 2008-06-30
EA013127B1 true EA013127B1 (ru) 2010-02-26

Family

ID=37006174

Family Applications (1)

Application Number Title Priority Date Filing Date
EA200800292A EA013127B1 (ru) 2006-07-26 2007-07-17 Способ получения пропиленгликоля

Country Status (19)

Country Link
US (1) US8227646B2 (ru)
EP (1) EP2043983B1 (ru)
JP (1) JP5378212B2 (ru)
KR (1) KR101431488B1 (ru)
CN (1) CN101346332B (ru)
AR (1) AR062026A1 (ru)
AU (1) AU2007278278B2 (ru)
BR (1) BRPI0707453A2 (ru)
CA (1) CA2624394C (ru)
DK (1) DK2043983T3 (ru)
EA (1) EA013127B1 (ru)
ES (1) ES2526714T3 (ru)
GB (1) GB0614823D0 (ru)
MY (1) MY146953A (ru)
NZ (1) NZ565785A (ru)
PL (1) PL2043983T3 (ru)
TW (1) TWI403495B (ru)
WO (1) WO2008012244A1 (ru)
ZA (1) ZA200801471B (ru)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007027372A1 (de) * 2007-06-11 2008-12-18 Cognis Oleochemicals Gmbh Verfahren zur Hydrierung von Glycerin
EP2200959A2 (de) 2007-08-31 2010-06-30 Basf Se Verfahren zur herstellung von 1,2-propandiol durch hydrierung von glycerin in wenigstens drei hintereinandergeschalteten reaktoren
PL2200960T3 (pl) 2007-08-31 2016-04-29 Basf Se Sposób wytwarzania 1,2-propanodiolu przez niskociśnieniowe uwodornianie glicerolu
CN101918344A (zh) * 2007-08-31 2010-12-15 巴斯夫欧洲公司 通过在两步反应器级联中将甘油氢化制备1,2-丙二醇的方法
GB0724232D0 (en) * 2007-12-12 2008-01-23 Davy Process Techn Ltd Process
US8071820B2 (en) * 2008-12-23 2011-12-06 Uop Llc Method for converting glycerol to propanol
BRPI1000430A2 (pt) 2010-02-24 2011-10-25 Petroleo Brasileiro Sa produção de propilenoglicol a partir de glicerina
EP2683679B1 (en) * 2011-03-10 2017-06-14 GTC Technology US LLC Process for converting glycerin into propylene glycol
US8686198B2 (en) 2012-05-18 2014-04-01 Uop Llc Integrated hydrolysis/hydroprocessing process for converting feedstocks containing renewable glycerides to paraffins and polyols
CN104557452B (zh) * 2015-01-04 2017-02-22 南京工业大学 一种利用镍基催化剂催化甘油一步氢解反应的方法
PL3253486T3 (pl) * 2015-02-03 2020-04-30 Archer Daniels Midland Company Jednozbiornikowy sposób wytwarzania 1,2-propanodiolu z surowca wysokofruktozowego
CN111036277A (zh) * 2018-10-15 2020-04-21 中国石油化工股份有限公司 负载型催化剂及其制备方法以及甘油加氢方法
CN111036287A (zh) * 2018-10-15 2020-04-21 中国石油化工股份有限公司 负载型催化剂及其制备方法以及甘油加氢方法
CN112791737B (zh) * 2019-10-28 2023-04-07 中国石油化工股份有限公司 负载型催化剂及制备方法和应用
CN112717968B (zh) * 2019-10-28 2022-09-27 中国石油化工股份有限公司 甘油制备1,2-丙二醇的系统和方法
CN112791721B (zh) * 2019-10-28 2023-02-17 中国石油化工股份有限公司 负载型催化剂前体、负载型催化剂及制备方法和活化方法
CN112791723A (zh) * 2019-10-28 2021-05-14 中国石油化工股份有限公司 负载型催化剂及其制备方法和应用
CN112090424A (zh) * 2020-08-18 2020-12-18 北京石油化工学院 甘油氢解制备1,2-丙二醇的催化剂、其制备方法及甘油氢解制备1,2-丙二醇的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE524101C (de) * 1926-01-13 1931-05-11 I G Farbenindustrie Akt Ges Verfahren zur UEberfuehrung von hoeherwertigen Alkoholen in niedrigerwertige
DE4302464A1 (de) * 1993-01-29 1994-08-04 Henkel Kgaa Herstellung von 1,2-Propandiol aus Glycerin
WO2005095536A2 (en) * 2004-03-25 2005-10-13 Suppes Galen J Method of producing lower alcohols from glycerol

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3264280D1 (en) * 1981-08-20 1985-07-25 Davy Mckee London Hydrogenation process
GB8917862D0 (en) * 1989-08-04 1989-09-20 Davy Mckee London Process
IT1249955B (it) * 1991-07-10 1995-03-30 Menon S R L Procedimento di idrogenazione della glicerina
DE4238492C2 (de) 1992-11-14 1995-06-14 Degussa Verfahren zur Herstellung von 1,2- und 1,3-Propandiol
DE4442124A1 (de) * 1994-11-26 1996-05-30 Basf Ag Verfahren zur Herstellung von Propandiol-1,2
GB0117090D0 (en) * 2001-07-12 2001-09-05 Kvaerner Process Tech Ltd Process
CN100448826C (zh) * 2003-05-06 2009-01-07 纳幕尔杜邦公司 化学衍生1,3-丙二醇的氢化
GB0514593D0 (en) 2005-07-15 2005-08-24 Davy Process Techn Ltd Process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE524101C (de) * 1926-01-13 1931-05-11 I G Farbenindustrie Akt Ges Verfahren zur UEberfuehrung von hoeherwertigen Alkoholen in niedrigerwertige
DE4302464A1 (de) * 1993-01-29 1994-08-04 Henkel Kgaa Herstellung von 1,2-Propandiol aus Glycerin
WO2005095536A2 (en) * 2004-03-25 2005-10-13 Suppes Galen J Method of producing lower alcohols from glycerol

Also Published As

Publication number Publication date
AU2007278278A1 (en) 2008-01-31
CA2624394A1 (en) 2008-01-31
EA200800292A1 (ru) 2008-06-30
PL2043983T3 (pl) 2015-04-30
WO2008012244A1 (en) 2008-01-31
EP2043983B1 (en) 2014-10-08
KR20090033412A (ko) 2009-04-03
NZ565785A (en) 2010-09-30
ES2526714T3 (es) 2015-01-14
KR101431488B1 (ko) 2014-08-20
MY146953A (en) 2012-10-15
CA2624394C (en) 2014-04-22
GB0614823D0 (en) 2006-09-06
JP5378212B2 (ja) 2013-12-25
CN101346332A (zh) 2009-01-14
CN101346332B (zh) 2012-08-01
AR062026A1 (es) 2008-08-10
TWI403495B (zh) 2013-08-01
US8227646B2 (en) 2012-07-24
DK2043983T3 (da) 2014-11-03
TW200817317A (en) 2008-04-16
ZA200801471B (en) 2009-11-25
BRPI0707453A2 (pt) 2011-05-03
US20100204527A1 (en) 2010-08-12
AU2007278278B2 (en) 2011-09-15
JP2009544654A (ja) 2009-12-17
EP2043983A1 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
EA013127B1 (ru) Способ получения пропиленгликоля
JP5149796B2 (ja) プロセス
TWI417272B (zh) 製程
FI128062B (en) A process for the preparation of ketones for fuel and oil applications

Legal Events

Date Code Title Description
MM4A Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s)

Designated state(s): AM AZ BY KZ KG MD TJ TM

MM4A Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s)

Designated state(s): RU