DK2326713T3 - Fremgangsmåde til fremstilling af et tilsætningsstof til enzymatisk nedbrydning af mycotoksiner samt tilsætningsstof og anvendelse deraf - Google Patents

Fremgangsmåde til fremstilling af et tilsætningsstof til enzymatisk nedbrydning af mycotoksiner samt tilsætningsstof og anvendelse deraf Download PDF

Info

Publication number
DK2326713T3
DK2326713T3 DK09775638.1T DK09775638T DK2326713T3 DK 2326713 T3 DK2326713 T3 DK 2326713T3 DK 09775638 T DK09775638 T DK 09775638T DK 2326713 T3 DK2326713 T3 DK 2326713T3
Authority
DK
Denmark
Prior art keywords
sequence
additive
fumonisin
enzyme
fumonisins
Prior art date
Application number
DK09775638.1T
Other languages
English (en)
Inventor
Gerd Schatzmayr
Karin Griessler
Doris Hartinger
Eva Maria Binder
Wulf-Dieter Moll
Original Assignee
Erber Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Erber Ag filed Critical Erber Ag
Application granted granted Critical
Publication of DK2326713T3 publication Critical patent/DK2326713T3/da

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/14Pretreatment of feeding-stuffs with enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • A23K10/18Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions of live microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01087Fumonisin B1 esterase (3.1.1.87)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Physiology (AREA)
  • Food Science & Technology (AREA)
  • Animal Husbandry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

The present invention relates to an additive for the enzymatic degradation of fumonisins, in vegetable raw materials and mixtures containing vegetable raw materials, as well as the use of genes.
Mycotoxins very frequently occur on agricultural vegetable products and, depending on the type of mycotoxins, inflict severe economic damage, in particular, in the foods produced from agricultural products and even in animals and humans fed with such foods, said damage being extremely manifold. Numerous methods have already been developed, trying to detoxify or degrade, or render harmless, such mycotoxins in order to inhibit any damage caused by mycotoxins in the fields of animal and human nutrition, animal breeding, food and feed processing and the like.
Known mycotoxins comprise a plurality of structurally interrelated mycotoxins such as, for instance, fumonisins, among which fumonisin B1 is the most frequently occurring toxin of the group. There are, however, numerous derivatives and related molecules which are also known to exhibit noxious effects in humans and animals. Thus, it is known that fumonisins impair the sphingolipid metabolism by interacting with the enzyme ceramide synthase. Sphingolipids not only are components of cell membranes, but also play an important role as signal and messenger molecules in many elementary cellular processes like cell growth, cell migration and cell binding, in inflammatory processes and intracellular transport procedures. Due to this impairment of the sphingolipid metabolism, fumonisins have been made responsible for the toxic effects on various animal species and also humans. It could, thus, demonstrated that fumonisins have cancerogenic effects in rodents, and, based on epidemiologic data, they have been associated with esophageal cancer and neural tube defects in humans. They have been held responsible for the typical toxicosis caused by pulmonary edemas, for instance, in various animal species such as, e.g., swine. In this context, fumonisins constitute an almost ubiquitous contamination source on various cereal crops, in particular corn as well as nuts and vegetables, and this strongly negative effect relating to the health of humans and animals is not to be neglected.
The microbial degradation of fumonisins has already been described in EP-A 1 860 954, according to which microorganisms are used to detoxify fumonisins and fumonisin derivatives by adding to feeds detoxifying bacteria or yeasts selected from precisely defined strains for detoxifying fumonisins.
Catabolic metabolic paths for the biological degradation of fumonisins and the genes and enzymes responsible therefor have already been described too. Thus, EP 0 988 383, for instance, describes fumonisin-detoxifying compositions and methods, wherein the fumonisin-degrading enzymes used are above all produced in transgenic plants in which the detoxification of fumonisins is effected using an amine oxidase that requires molecular oxygen for its enzymatic activity.
Moreover, WO 2004/085624 describes transaminases, deaminsases and aminomutases as well as compositions and methods for the enzymatic detoxification to detoxify, in particular, aminated toxins, e.g. fumonisins. In this context, polypeptides possessing deaminase activity are used for detoxification.
From WO 00/04158, the use of fumonisin-degrading amine oxidases in the production of foods or feeds and in the processing of vegetable raw materials has become known.
Hitherto known methods, however, have in common that, in order to detoxify mycotoxins, they require molecular oxygen for the described catabolic metabolic paths, yet the amine oxidases, which are particularly required, cannot work under oxygen-independent conditions. The use of such genes and enzymes for the detoxification of feeds, for instance in the digestive tracts of animals, is not possible because of the substantially oxygen-free environment in the digestive tracts of animals, the known genes and enzymes thus exhibiting no activity.
The invention aims to provide an additive for the enzymatic degradation of fumonisins, by which it is feasible in a safe and reliable manner to degrade or detoxify such mycotoxins, particularly in an oxygen-independent environment.
Vegetable raw materials in this context include cereals or cereal products, grasses, fruits or vegetables and intermediate products containing these substances for the production of foods and feeds such as, for instance, silage, fruit mash or the like.
Additives in this context include feed additives, food additives as well as additives for the production of bioethanol.
The nucleic acid sequences used for degradation of mycotoxins or the enzymes expressed in prokaryotic and eukaryotic host cells by said nucleic acid sequences and catalytically acting in an oxygen-independent environment, are listed below.
Nucleic acids Sequences : >Seq ID 1 (fum (fumonisin catabolism) gene cluster, 15,420 bp)
TGTCGGCGATCRGTAAACTTCTACCGTGGTCCTCGTTCGCCCACAKCATACATCACAGACRTCGGGATTTCCAACTGAAC
GGGTCCCGGCCTGCCGGCCCACATTTCCCGGAACGCCATATGGGTGATTTCGACAATCCGGTTCCAGGCGAAGATGGGTG
CGCCCCATTTAACCGCGGGTCGAAAGAGGTCGATCTGGTCTTGTCCCTGAAAGGTTTTTGGCGTGCAGGGATAAACGACA
CCAAGTTGATGCTGGGACGTTATTGCGACGAAGGGAACCCCTTCGTGGCGTGCCGTCACGACTCCAGGCAGAAGGTTTGC
CGTACCGGGACCCGGATTCGTGACAATCGCGGCGACCTGTCCGGTGGTCTTGTAAATGCCCTCGGCCATATAGGCTGCGG
CGGCCTCGTGCCGCACCGGGACGAACAATATCCCATTGTCTTCGAGCGCAGCCAGGAGCGGATCCACCTCCGGCGACATG
AGGCCGAAGACATACCGGACGCCTTCGACGGCCAAACATCGTGCCAATAATTCTCCGCCCGTGAGGCGCATGACGATCTC
CAGTACGAAAGGTGAGTGCCCAGGTTCCGGCACATTCGCTGTGGTTAGTTGATGCGCTGATCGGCCAACCGACTGAGTGG
AGTTGGATGGCCGCACCTTACCCTGTCGCGCATAACTCTCAGATCCGGAAACGGACCCCGACATTAAAATAGCGGCCGAC
CGGATCATAGGCAGAGCTGGTCGGGCTGGAAAAACTGCTGGGGTCGTTCGTCGCTATTGGCGGATCTCGGTCGAACAAAT
TATTGACCGATAGAAACAGCTGCTGCTTCTGGCCAAAAGCCGCGATGTCGAAGGTCAATGTCGCGTCGGTGTACCAAACC
GCCGGAGCGTGGTTCAAATTCGTATCGACGCCCTCCACATTGTCGGCATTGAACACCGATGCTGCGATGAAGCGCTGCTG
CACGAGAAGCGCCCAATCGTCGGTCGAATATCGCGCCTGGAAGTTGGCCGACCATTTTGGCGTGTCCGGTTGTCCGAGCG
AACGGATGGGCGCCGAGCCGGTCGCGATGCGATAGGCAGAGGTATGGTGCGTTGCCAGCGCACGAAGACTGAACGTGCCG
CCGCCGACGGGGCGTGAGTAATAGGCCTCGAAGTCAATTCCCGCCGCTTTCTGGACAGCCAGGTTGAGATTGGGACCCGT
CACTGTGATGGTGCCGTCCGGATTCTCCGTTATGAGGTCGCAGAAGAAGGTGTTTCCTGCATCGCACGCGTCGATTTCCT
GCTGGGGAAGGAGGAAATCGATCGCGCCCTTCACCTTCACCACATAGCGATCGACCGAAAACTGAAACCCCGGCACGAAG
GCGGGGCGTAGCACCGCGCCGAATGTAAGGACGTCCGCCTTTTCAGGGCGCAAATCCGCGTTGCCGGCGGTAAAGAACCG
CGTCTGCACAGCCTGTCCGCCATAAATTGAATTGAGCGTCGCCTGACGGCCGGGGTCGAATAGCTCGACAAGGCTTGGCC
CGCGGATATCTCGCGAACGGGTCGCGCGGAACCTGAGGCCGTCGATCGGCTCATATTCTCCGCCCAGCTTCCAGGTTGTT
ACTCCACCGGACTGGCTGTAATCGGCATATCGGACGGCGCCGTTTAAGTTCAGCGAACGTCCCAGCGCGCTGTCCTTCAG
AATCGGGACGCCGATTTCGACAAAACCTTCCTTGATGTCATAGCTTCCCGAGAAGGGAAGTGGGTTGTAGAGATTGAAGC
CTCCAGGCCGACCTGCCTGCGCCGCCGGAGCCCCCCTGATTCCCGTGATCGAGGTCGTCGCCTGCGATATCGCGTCGGTT
TCCTGCCGGGCCTTCTCCTTGCGATATTCGATACCAGCGGCGACCGAGACCGGGCCCGCGCCGAACGACAGGCTATCGCC
GAGGTCGCCGGAAATCGTGAGTCCCGCCACATATTGCTCAAGCCTCAGCTGAGCGACGCCATCAGCGGTGACATAGTCGA
TGGCCGACGCGCTCGGCGAGCCTGTGCCGAAGAGATTGAGCGGCACGCAATCTTGGTCGAGGCCGGCCAGTGTTGAACGG
CAGACGATATTGCCCGCGGGATCGCGGACCGCATCGACGGCGGCGTAGAGATTGCGGTTGATGGTGAGATTGTTTTCACG
AAGCTCGAGGTCCGTAAGGCCAAAGGAGGCCGAGCCATCGAGTTTCCAGCCATTGCCAATGTCTGCCCGGAAGCCGGCAG
CGCCGCGGTAGACCTTTGCGAAATTCTCGATTTCGACCAAGGGAAAGTCGCTTGAGAAGCGACCGACAACGATCGAAGCC
TGGGCATTTCTGTCCATGAGCGTCGCGAGTGGAGCCGGAAGGAAGGCGTTATCACGGAAGATCCGGAAATTATTCGAGCC
ACCGACATGCGATATTACGAATGCACCCAGGTTGGTGTGGGAATAAGCATAGGTGCCCTCCGCATACACCTGCACAGTGT
CGGACACATCATATGCGGCGCGTAGGAACGCGTTGTAGCGAAGCTGATCCGGGGCGAAGCCGATATTCACGCGCGGTCCA
TCGCCGCCGCTCTGGAACGACGAGCTCGTAAAATTCCCGTAGTCGAAGGTCCCTAGGACTCCTCCGGGCAAAAACGCGAT
GCCTTTCAGAGGGCCGGACGTGACAAGTCCGCCGTAGGATCCGCGAGAACTGCGAATATCGGGCACGACCGTGACGCCTG
TCGTAGCGCCGGGCACGGGATATTGGCCGGCGGCGATGTCGAACCAGCGGCGACCCGTTGCTTCATCGGCCCGGATTCCG
TCCTGTCGAAAATATTCGAAGCTGCCGAGCAAGTGCAACCGGTCGTCGGCAAACGAAGTGCCGAAGGCGATCGAACCGCC
GTAGGACGGGAGGTCGCCGCGGGTTGAAACACCCGACTGGAGCTCGGCCCTGATGCCTTCCAGATCTTCGTCGAGCACGA
AGTTGATGACGCCCGAAACGGCATCGGAACCGTAGGCGGCCGAGGCGCCGCCCGTCACGACATCGACGCGCTTGACCAAC
GCCTGCGGCAGCACGTTGATATCGACCGAGCCTGTGAAATTGGTCGCGACGAAACGGTTGCCGTTCAGCAGGACGAGGTT
CCGGTTTGACCCGAGGCCGCGCATGTTGAGCAGGTTCTGACCGCTGTTCCCCGTTCCGGGTGTCGTGCCAGGGTTGGAGG
TCTTCAAGCTGTCGTTGAACACGGGCAGCTGGTTGAGTGCGTCGGCAAGGTTGGTCGGAGATGCCTCCTTCAACTGCTCG
CTGGATACGGCTGTAACCGGCGTCGGCGAATTGAAGCCGTTCTGGAGGCGGCTGCCGGTCACGACGATTTCGCTCGTTCC
CCGGTCCGTGTCCGCTTCGTCCGGCTGACCTATCGATGCGGGATCGCTATCCTGAGCACTGGCAGAGACAGGAAATGCGA
GGGTGCCGAGCGCTACTGCGCCGAGCAAACTATTTGCCTTGCCGGGCTTTTCGATTCTGAACTTCCGATACATCTGCAGT
CCCTCCCGAATTGATAGGGACTCCGTTTGAGTCCCCTTGTTTCTTGACGCCGCCGTCGCTCACCACGGTCCGGTCGGAGG
CTAAGCGTCGGGCCTAAGGACCCGCAATTTGAACATCAAATGCAATGATCGGAGGCTTCATTGCACTTCGCGCATAGACC
GGCGCGGTAGCTGAAAGTGCCAATAATCAGGGATTTTGCTGAACAGTTGCGGCATGACGTCCGGCATCGGCCACGCGGTT
GGCGGCATCGACGTGGCTTTCGCGTCGCCGCCCCTCAAGCACCGGCGAGTTGCATTAAAATGGGATGAGGCTGGAGAGAC
GCAAAATCTCTGAGGACCGCGCTGAACGCGCGATCCGTCGCCTCGAGGGTCTCCGTTACATCGTCAACTGTATGGGCCGC
AGAGAGAAACATATTGTGATAGGGATGAACATAGACGCCGCCCTTCAGGCACGCCGCGGCCCACGCATAGCCGATCCGAA
AATCGGGATCGTCCGCAAAGAATATTTGCGGCATCTGCGCCGGGCCCGTCTGCTTCAACTCAAGACCATGGCGCTGAGAC
TGTGCCTCCAGGCCTGCCCGCAGGGCGGCGCCGCTGGCGATCAGCGTTTCGAGATAAGGCGTCTCTCGAATGATCCTGAG
GGTTTCGATCGCGGCCGCCATCGGTACCGCAGAGAACCAGAAGGAGCCGGTCACAAATATATCCCGCGCCGCATCGCGCG
CCTTGTTCGAGCCCAGCAGGGCGGAGATCGGATAGCCATTCGCAAAGCATTTTCCCCAGCAACTGAGATCGGGTTCGATA
CCCAAATGCGTCCAGCTGCAATCGCGCGCCACCCGGAAACCTGCGCGCACATCGTCAACGACCAGAAGCGCACCGGTCTC
GTCACAACATTTTCGAGCGGTGCGCGCGAACTCAAGCTGGGCGAGGGCCTGGTCCTCAAATACTTCGTGTCGGAAAGGTG
TGGCAAAGACAGCCGCAATATCGCCATCGTGCGCCTTGAACGCGTCCGATAAGCTTTGGGCGTCGTTATAGGTATAATAT
GCGACATGCACGCGATCGGAAGCGAGAATCCCGGCAGTATGCGGAGTGTTCCACGGGGAAGCGCCATGATAGGCGCCTTT
GGCGCATAATATGGTTTTGCGCCCCGTATGGGCACGCGCGAGAACCATCGCCGTTGAGGTGGCATCGCTGCCATTTTTGC
AGAACATCGCCCAATCCGCATGACGGACCATGCCCACAAAGGCTTCGGCGAGGTTGACCATGATCTCCGAAGGACCGGTC
ATGGTGTCGCCGAGAAGTCGCTGCGCATCAGCCGCGGCTTCGATTTCGGATTGCCGGTAACCGAGCAAATTTGGCCCATA
CGCGCACATATAGTCGATATAGGGCTGCTCGTCGGCGTCCCAAATTCGTGCCCCCAGCGCGCGCCTGAAGAACTGGGGGA
ATTCTGGCGGCAGCAACCGTGTCGACTCGTGGCCGTACATCCCGCCCGGAATGACCCGTTCGGCGCGTTCTCTGAGATCT
TTCTGCCTTGTTCCGTTCGCCATAATGCACCTCTCGCGATAAATAATGGGTAAAAATCCACGAAATTCAACGATTCGTGA
TCTGAAAGAGATATATCTTGTAATATACTGTATAATTATACACAATGCGCAATCGGACGACGGGATAGCGGGGCAGGGAG
GACGGGGAAATCTATGCGGAACGTCAGCGACAAGGCGCCGCCCCACGAGACGCTCACCGTAGTCGTCGCGGCAATGATCG
TTGGCACGGCCGCCTTGATGGTGCTTGGAATACAGCCCATCCTTCTCGGCGCCCTTGTAGAGGAGGGGCGTATTCCCGCC
GAGGGGTTGGGATCGGCGGCAACGGTGGAAATACTGGCGATCGCGGCGGGAACATGCATCGGACCCGTTCTTATGAAGAC
GGGATATCTGCGGGCGAAATGCGCGGCACTCTGCTTAATGCTCGCCGCAATCAACTTCGGATTGACGTTGCCGGGTTTCG
ATTTGCCCATCGTGGCTTGCCGAGCGGCAGCGGGAGCCCTGGAAGGTCTTTCGCTCAGCGCGGCGATCCTGATCATGACT
CATAATCGGCGGCCGGACCGGCTGAGCGGAATATTTCTGGGCGCGCAGACGATACCGCAGGTAATATCTGCTTATTTGCT
CCCGACGGAGATTATTCCGCGCTGGGGGAGCGCAGGCGGCTTCACGATCCTGGGCATTCTCGCGGCGATCGCCGCGATCG
CGGCTCTGTGCCTCGTCGATCGCGTTGAGCTCGATCCGACGACCGTTAACGACGACTTGCAGTGGTCACCCGCGGCGATC
GTCATTTCGATGGCGGCATTCGTTCAATTCTCGGGGGTCGGTGCCGCATGGAGCTATCTGGAGCGACTGGCTGCGCAGCA
CGGATTTTCGGGAGAAACGATCGGTATCGCCATTTCCGGGAGTTTGCTTTGCCAGGTAGGCGGGGCTTGGCTGGCCGCTT
GGATCGGTGGGCGGGTCGGATATCGCTTCGCCTTAATCGCTGGGAGCCTGCTTCAGGCGGGCAACGTGATCGCATTGGCG
GTGGCCGATCAGCCAAGCTGGTTTATTTCCGCTTCCTGTGCTTTCGGCCTGTTCTGGTTGGCGATGCAGCCCTTCCAAAT
CCGCTTCGCGATCGCGATAGATAACAGCCGGCAGCTTGCTGTACTGCTGACGCCGATCGCCCTCGTCGGGTTGAGCGCGG
GGCCCTTGTTGCTCTCTCGCTTTGCCGGGGCGACCGACTTGCGCTGGATCTTTGTGGGGAGTTCGACCTTGTTGCTGGCC
AGCGCGCTTCTGTATCTTTGCGCTTCTCTGTTTCAACCGCGCGGAAAGGTGATCGCTGAAACGGTGGACGTATGAAAAAG
ACGGATCGGGGTTCGCGATGACATCGCAGGTCAAGCTTCGTAGCGCGGCAAAGCGGCCGCGCAGTCCTAAAAGCGAGCGA
GGTCTTGCTCGTTACGAGTCCTTGCTTGATGCGACCGACAGGCTGTTGGTCGATCTAGACCCCGATCAGGTCGGTCTCTA
TCAGATTGCAGAGGAAGCGGGTGCCTCACCGTCGTCCGTCTATCATTTCTTTCCGACCAAGGAAGTGGCTCATCTCGCTC
TGATGCGCCGCTATCTGGAGGGGCTCCGGAATCTCGACGCGATGGAAGTCGACATCGGCCAGCTCGAAAGCTGGCAGGAC
CTGATGAAGTTGGATCAGATCAGGGCGCGAGACTATTATAATAGCCACCCGCCCGCCCTCAAGCTTCTGTTCGGCGGATA
TGGCGGGGTCGAGGCCAGAAAGCTTGACGAGCGATACTCCGAGGAAATCGTGAGCTCCATGTATGGCAGATACAACGGCA
TTTTCCATATGCCGCAAATGGAGAATGAGGCTCTCATGTTCACGATCTGCTTCGCAATTCTCGACGCGGTATGGGCCGTC
TCCTTTCGCCGGTTCGGTGAAATTACGTCGGATTTTCTTCGGGAGGGGCAAGCGGCTTGCATTGCCTATTGCCGACACTA
TCTGCCCGAGCGAACGCCATCAGCGTGAATCCGTTCAACGATATGCAGGAATGTCCGTTGCGTTGAGTTCGGTTCTGAGT
TCGGTCGGTTAGGAGGCCCCGCGATAAACCAACGCTCTTCTGTCGAAGGGATGTCGCCTGGTTCGACCAGGCCCTGCGAA
GTCAGCCGCAATCAACGAGGCAGATGTCAACGTGGCCAGCAAGTTCAACTGTGAGTTACTCGATCTGCGATCATTTGTTG
CGGTGTATGAAACGCGAAGTTTTAGCCACGCCGCGCGGCTTCTGAATCAATCGCAGCCCGCGCTCAGCCGGAGAATCCAG
CGCCTCGAGAGTCTCGTGGGCGGTCCGTTGTTCGAGCGGACCAGTCGGTCGCTTGCCGAAACGGCGCTCGGCAAAGAGTT
GCTCCCGGTCGCCCACCGAGCGTTGGAACTTGTCGATACGTCGCTGTTTGCGTCGCCCAATGTCCGGGAGTTCCGCTGGA
CAGACATCACGATTGCCTGTGTACAGACCGCCGCCTTCCATGTTCTCCCGCGAGCTGCGCGCTTGTACATGGATCAAAAT
CCGAGGGTCCGACTCCGCATCCTTGACGTGCCGGCGGTCGAGGCTGCGGACCTGGTTGCGAGCGGCGAGGCGGAGTTCGG
CATCAGCATTGAGAGCCTGTTGCCATCAAGCCTGCGGTTCGATGCGCTCCACGAGGACCCGTTCGGCCTGGCATGCCACC
GAAGCCATCCGCTGGCGTCGCTCGAGATCCTTGAATGGACGCAATTGAAAGGTGAAAGCCTGATCGCCGTTCACCGTGCG
AGCCGGAACCGCACGTTGCTCGATGCCGAACTCGCGCGCAACAATATCGCGCTGGAATGGCGGTATGAGGTCGCGCATCT
GACGACGGCGCTGGGATTGATCGATGCGCAATTGGGTGTCGCTGTTATGCCCCGCATGGTTATGCCCCGCTCGGGTCGGT
CGGAGGTCGTCTGGCGCCCCGTCGTCGCGCCGGTCGTCCAACGCACGATCGGCATCGTTCAGCGCCGCACCGGCTCGATG
CACCCTGCCGCACAGCAATTGCTTGCGCGGCTCCGCGCGGCCTGGTCGTCCGCCAATCTGGGCGACATCGCGTCTCGCGA
AGATGGGGCATCGTGACACGCGTTCTATGCGCCTGCAGCATCGATGCTCACGATCATTGCATTTGCTGAGAGACGAACGC
GAAGATACCGCTGGGTCACAGGATATCAGTCCATCGAGGCGGGAGAGAAATGTGTGAAAGAGCACCAATGCCGTGGCGGC
CGGGCGTCCCCCGCTGCGCCCGCCACGTGGCTTGCGCGGATCAGCGTTTCCCGGGGGGCCTCCGCCATCGCCTGGACCTT
CATGCTTGGCGCAACTGCCATTCCCGTGGCTGCGCAAACTGACGATCCGAAGCTCGTTCGTCATACCCAGTCGGGCGCCG
TCGAGGGCGTCGAGGGCGACGTCGAGACTTTTTTGGGAATACCCTTCGCGGCTCCGCCGGTCGGCGACCTGCGATGGCGG
CCGCCGGCTCCGCCGAGGGCGTGGGCGGGCACCAGGGACGGCCGCCGCTTTGCGCCCGATTGCATCGGGAACGAGCGGCT
TAGAGAGGGGAGCCGGGCTGCCGGGACGAGCGAAGACTGCCTCTATCTGAATATCTGGTCTCCCAAACAGGTCGGTAAGG
GGGGGCTCCCCGTCATGATCTGGGTTTACGGCGGTGGGTTTAGCGGCGGTTCTGGCGCGGTGCCATATTATGACGGCTCT
GCGCTCGCGCAGAAGGGCGTGGTGGTCGTCACGTTCAACTATCGCGCCGGGATTCTGGGCTTTCTTGCCCATCCGGCGCT
TTCAAAGGAAAGTCCGAATGGCGTGTCGGGCAACTATGGTCTTCTCGACATGCTCGCGGCGTTCAAATGGGTTCAGAACA
ACATAAGGGAGTTCGGCGGAGACCCGAACCGTGTCACGGTCTTTGGCGAGTCCGCCGGCGCGAGCGCGCTCGGACTGCTC
CTGACCTCGCCGCTCAGTGAGAGCGCCTTCAATCAGGCGATACTGCAAAGTCCGGGTCTGGCCAGGCCGCTCGCCACGCT
TTCTGAAAGCGAAGCGAATGGGCTGGAGCTGGGAGCCGATATTTCTGCTCTACGGCGTGCCGATGCGGGCGAATTGACGA
AGATCGCGCAATCGCGAATACCCATGTCGCGCCAGTTCACCAAGCCGCGGCCGATGGGTCCGATTCTGGACGGCTATGTT
TTGCGCACCCTTGACGTCGATGCCTTCGCCAAGGGGGCCTTCCGCAAGATACCCGTTCTGGTCGGCGGAAACGCCGACGA
AGGGCGCGCTTTTACGGATCGCCTGCCGGTCAAAACGGTCCTTGAATATCGAGCCTATCTCACAGAACAATTTGGTGACG
AGGCGGACGCATGGGAGCGTTGTTATCCCGCGAACTCCGACGCCGACGTCCCCGCCGCCGTTGCCCGTCTTTTTGGGGAT
AGTCAGTTCAACAACGGGATCGAGCTGCTCTCGGCAGCCTTCGCGAAATGGCGAACGCCGCTTTGGAGATATCGCTTTAC
GGGCATTCCAGGAGCCGGCCGTCGCCCCGCCACGCATGGAGACGAAATTCCCTATGTCTTCGCAAATCTGGGGCCGTCGT
CCGTATCTATGTTTGGGTCGCTCGAAGGCGGCGCCGGGGCGTCGGACATCAAACTTGCGACCGAAATGTCCGCGGCCTGG
GTGAGCTTCGCGGTGCACGGGGTCCCCGATCAGGGCACGAAATCGCACTGGCCGCGCTTCGAGCGGCGAGGGGAGATCAT
GACTTTTGGTTCGCAGGTTGGCTCTGGGGAAGGTCTTGGAGTTTCGCCGAGCAAAGCCTGCCAACCCTCAAAATAGCGCC
CGGCCTGTGCGTGCTTCAGCACGCCGTCCCGCTTTGCGGGCGACGGGCTGTGCCCTCTGCCTAGAAGGAAGTAAGTTGCG
CTACGACGTCGCGATAATTGGAGGTGGCAACGCTGCATTGACGGCAGCCGTGACGGCGCGTGAAGCGGGGGCCTCGGTTC
TTGTGATCGAGCATGCGCCGCGCGCCATGCGCGGCGGCAACAGTCGTCACACACGCAATATGCGTACGATGCACGAACGT
CCCCTGTCGCCGTTGACCGGTGAATATTCGGCGGACGAATATTGGAATGATCTTGTCCGCGTCACGGGGGGGCGCACCGA
CGAAGAACTCGCGCGGCTCGTTATCCGCAACACCACCGACGCTATTCCCTTCATGACGCGCTGCGGTGTGCGTTTCCAGC
CCTCGCTGTCGGGCACGCTGAGTTTATCGCGAACCAACGCATTCTTCCTTGGCGGCGGGAAGGCGCTTGTAAACGCATAT
TACGCCACGGCCGAACGGCTAGGCGTCGATATTCTCTATGATTCTGAGGTGACCGAGATCAACCTTCAGCAAGGCGTCGT
GCAGCGTCTGCAATTGCGCAGCCGGGGATTCCCTGTCGAAGTGGAAGCCAAGGCTGCCATCGCCTCGTCCGGAGGATTCC
AGGCAAATCTTGACTGGCTCTCAAGCGCATGGGGGCCTGCTGCGGCGAACTTCATCGTACGGGGCACGCCATATGCGACT
GGCACGGTGCTCAAGAACCTGTTGGAGCAAGGCGTCGCCTCGGTGGGAGATCCAACCCAATGCCATGCTGTCGCGATCGA
TGGGCGAGCGCCCAAATACGACGGCGGCATCGTCACACGACTGGACTGCGTTCCCTTCTCGATCGTCGTCAACAAGGACG
CCTTGCGCTTCTACGATGAAGGCGAAGATGTGTGGCCGAAGCGTTACGCCATATGGGGTCGCTTGGTGGCACAGCAGCCT
GATCAGATCGCTTTCAGCATAATCGATCGGCAGGCCGAAGACCTCTTCATGCCGTCAGTGTTCCCCCCCGTGCAAGCGGA
CACGATCGCGGGTCTGGCCGAGAAACTCGGTCTGAATCCCGTAACCCTGGAACGCACGGTGGCCGAATTCAACGCCGCAT
GCGTGCCCGGCGAATTCGGCGGCCAAGATCTCGACGACCTCCACACCGAGGGAATCGAACCAAAGAAATCCAACTGGGCC
CGACCGATTATTGTGCCCCCGTTCAGCGCCTATCCTCTCCGGCCCGGGATCACCTTCACCTATCTCGGCGTCAAGGTAGA
CAGCCGTGCGCGGGTCATCATGGAGACAGGTGAGCCGACAAAAAACCTGTTTGCTTCGGGGGAAATAATGGCGGGCAGCA
TTCTCGGCCAAGGTTATCTCGCTGGATTTGGAATGGCGATTGGTACCGTATTCGGCCGCATCGCGGGTTGGGAGGCCGCA
CGTCATGCAGGATTTTGATCTCGTAAAAATGCTGTCTGACTTGCCGTCGGCGCCGGAGCTGGAAGCCAGGCGCGTTATGG
AGGTGTGCAACGCGTGCCGCTATTGCGAAGGGTTCTGCGCGGTATTTCCTGCAATGACCTTGCAGCGTCATTTCGCCAGC
GGCGATCTCAGCCACCTCGCCAATCTCTGCCACTCGTGCCAAGGTTGCTATTACGCCTGCCAATACGCCCCTCCGCATGA
GTTCGGAATAAACGTTCCAAAGGCGCTGTCGGAGTTGCGGCTCGAGAGCTACGAGCAGCATGCTTGGCCCCGGCCGGTCG
CCGCTCTCTATCGCAAGAATGCGCTCATCATTTCCATCTTGTCGGCGGCATGCATAACCGGCGTCCTTCTGCTTGCCGCC
ATCTTCAACGGGGATGCACTTTTCGCGAAACACGCATCGGTGCCCGGCGGCGGGTTTTACAACGTTATTCCTTATCAGGC
GATGATTGCCGTCGCGGCGACCACATTTCTTTATTCCGCGCTGGCGCTGGCGATCAGTCTCGTTCGCTTTTCGCGGACGA
TCGGTCTGGGAATTAAGGTTCTTTATCAGCACGTGCCGGTTCTTCGGGCGCTACGCGATGCGGCGACTCTGCGATATCTC
GGCGGCAGCGACGGCGAGGGGTGTAACGACGCGGACGAGACATTTTCGACGACCCGGCGAAAATTTCATCACGCCCTTGC
CTATGGCTTCGGACTTTGTTTCGCGGCCACAGCCACGGGCACGATCTACGATCATATGTTCGGCTGGCCGGCGCCCTATG
CGCTTTTCAGCTTGCCGGTCGTCCTAGGGACCGTTGGGGGGATCGGAATGGTCGTGGGCGCGATCGGCCTACTCTGGCTC
AAGCTGGCCGGCGAAGACGCTCCTCGATCACCGGCACTGCTTGGGCCGGATGTTGCCCTGTTGGTGCTTCTGCTTGCCAT
AGCGGCAACGGGCCTCCTCCTTTTAGCGGTCCGCAGCACCGAAGTCATGGGCGTCGCGCTCGCCGTCCATCTCGGCGTCG
TCTTGGCCTTCTTTTTGGTGATGCCATACAGCAAATTTGTCCACGGTATCTTCAGGCTCACGGCTCTCGTGCGCCATCAT
GCTGACCGCGAGGCAAGTAATGGCTTCGCCTCCAGCCCTCCCACGAAAAAGGGTTAAACAATGGAACATATGAAGTCCGT
TCGCGATCGCAGTAGCGTCATGCAGATCGTGAGAGTGGCGAGTGGCAACTGTCTCGAGCAATATGATTTCTTCGTTTACG
GCTTCTATGCGGCATATATTGCGAGAAGCTTTTTTCCGACCGGCGATAACGCGACATCGCTCATGCTTTCATTGGCCACT
TTTGGCGCTGGTTTCCTCATGAGGCCCTTGGGGGCGATTTTTCTCGGGTCCTACATCGATCGCGTCGGGCGTCGGAAAGG
CCTGATCGTGACACTCGCGATCATGGCCGTCGGAACCCTCACCATTGCGATGACTCCAAGCTATGAGGCAATTGGATTAC
TCGCACCGGTTATCGTGCTCGTCGGGCGACTTTTGCAGGGTTTTTCCGCTGGAGCAGAGTCGGGTGGCGTCTCAGTGTAC
TTGGCGGAAATTGCGTCGCCCAAATCGAGAGGCTTCTTCACCTCGTGGCAGTCTGCCAGCCAGCAGGTGGCCGTCATGAT
CGCCGCCGCGATCGGTCTTGCGCTGCAATCAACGCTTTCACCGGAGCAAATGAACGACTGGGGATGGCGGGTGCCCTTGT
TGATCGGATGCTTGATTATCCCCGTGATACTCTGGCTGCGCCGGTCTCTCCCGGAAACGAAAGCCTATCTCCACATGGAG
CACAAGGCGCATTCGATCGGCGAATCCCTCCGCGAATTGCAACAGAGCTGGGGGCTGATCTTGACGGGCATGGCGATGTC
GATCCTCACGACGACCACCTTTTACATGATTACCGCCTATACGCCGACATTTGGCGAGAAAGCACTCGGACTGAGCCCGC
AAGATGTCCTGCTGGTTACCATCATGGTCGGCGTGTCGAACTTCCTGTGGCTTCCGATCGGGGGTGCTCTCTCGGATCGT
ATCGGTAGAACCCCGATCCTACTGGTCGTGCCGGTCACCGTTCTCGCCATCGCCTTTCCCCTGATGAGCTGGCTCGTCGC
GGCACCGACATTCGGAGCGCTTGCAGCTGTTCTGCTGACTTTCTCCGCATGCTTTGGACTCTATAATGGGGCGCTCATCG
CGAGACTCACCGAGATTATGCCTCCCGCCATTAGAACCCTTGGCTTCTCGCTGGCGTTCAGTCTCGCGACCTCGCTGTTC
GGCGGCTTCACCCCATTGGTAAGTACGGCGCTAATCCACGCGACGGGCAGCAATTCCGCGCCTGCAATCTGGCTCTGTTT
TGCGGCTTTCATCAGCTTCGTCGGTGTGGCCGCATCGACCCGGCTGAGCCGGCCAATCGCCGAAGGCGCCAGATAGGACA
ATCAGAGAATGCCCGTGCGGCAATGAAGCGAGATTCGGGCGGTAGGTGCGCTGGCGGCACTTCGCGAAGAGCCGTTGCGG
ACGGCTGAAACGATGATGGTATGAATGGGCTAAGACATGAGAGCAGTAGTTTACCGAAATGGCGAACTTGTCCTGGGGGC
CTATGCTGATCCGATACCCGCCGCCGGGCAGGTGCTCGTCAAGACCAGAGCATGCGGCATCTGCGGATCTGACCTTCATT
TTTGCGATCATGCGCAGGCGTTTACGAACCTTGCATCGCGGGCGGGTATCGCCTCTATGGAAGTTGATTTGTGTCGAGAC
ATCGTTCTGGGGCATGAATTCTGTGGCGAGATTATGGAGTTCGGGCCCTCTGCGGATCGTCGCTTCAAACCCGGACAGCT
TGTGTGCTCGCTGCCGCTGGCGATCGGTCCGACCGGAGCGCGGACGATTGGCTACTCGGATGAGTATCCCGGCGGGCTCG
GCGAATATATGGTCCTCACGGAAGCGCTCTTGCTGCCTGTTCCGAACGGCCTTCCGGCGACCTGCGCGGCGTTGACGGAG
CCGATGGCGGTGGGATGGCATGCCGTCGAGATCGCGCAGGTTCAACCACATCACATCCCTGTGGTGATCGGGTGCGGACC
GGTCGGGTTGGCAGTCGTCGCTGCCCTGAAACATAAGCAAGTTGCTCCGATTATTGCGTCGGATCCATCGCCCGATCGGC
GTGCTCTTGCTCTGCGGATGGGCGCCGACGCCGTTGTCGATCCGCGCGAAGAATCACCCTTTCGCCAGGCCGAGAAGATC
GCACGCCCGGTCGGACAAGGTGGGGCCCTGTCCAGCTCATTGCTGTCAAAGTCTCAAATGATATTCGAATGCGTAGGGGT
GCCGGGCATGCTTCGGCATGCGATGGACGGCGCGTCCGACGGGTCCGAGATCATGGTCGTTGGCGCATGCATGCAGCCGG
ACGCGATCGAGCCCATGATCGGGATGTTTAAAGCGCTCACGATCAAATTCTCGCGAACTTACACGGGTGAGGAATTCGCC
GCGGTGCTTCACATGATAGGTGAGGGCGCACTCGACGTATCTCCGCTCGTTACCGATGTGATTGGCCTGTCCGATGTCCC
GTCCGCGTTTGAGGCTCTACGGAGTCCAGGCGCCCAAGCAAAAGTGATTGTGGACCCTTGGCGCTGAGCCTGAGGATGCC
AAGGGTGCGACGTTGGGCATCGTCAAAGAAGGCGACGTTGACCCGGTATGTGAACATCCCCATATTCTTCCGCAGCTGAA
GCAGTTGGTAAACATGCCAAAATATGAACTGTAGTATTGCGTCGGGGTTCTCATTGTGGGGTTTGCCATTGTCATCGCTC
GCACCCGGCGACAAAGATTAGATGTACTTCCGATAATCCGTGCTCTCGACCTGGCCTTCCTTCATATATTTCAGGACCTC
TCCGACCATGCGTGCGGCGCGGATCGGGATCGGCAGGCGTTGGTTCATCTGGGTCGAGTTCCAGTTGATCTTCGTAAGAG
AGAACACCTCCTCGGCTAACTGCGCCGCGGTACTATCGCAGGATCGTCTCGAGCGTYCGC >Seq ID 8 (fumD)
GTGAAAGAGCACCAATGCCGTGGCGGCCGGGCGTCCCCCGCTGCGCCCGCCACGTGGCTTGCGCGGATCAGCGTTTCCCG
GGGGGCCTCCGCCATCGCCTGGACCTTCATGCTTGGCGCAACTGCCATTCCCGTGGCTGCGCAAACTGACGATCCGAAGC
TCGTTCGTCATACCCAGTCGGGCGCCGTCGAGGGCGTCGAGGGCGACGTCGAGACTTTTTTGGGAATACCCTTCGCGGCT
CCGCCGGTCGGCGACCTGCGATGGCGGCCGCCGGCTCCGCCGAGGGCGTGGGCGGGCACCAGGGACGGCCGCCGCTTTGC
GCCCGATTGCATCGGGAACGAGCGGCTTAGAGAGGGGAGCCGGGCTGCCGGGACGAGCGAAGACTGCCTCTATCTGAATA
TCTGGTCTCCCAAACAGGTCGGTAAGGGGGGGCTCCCCGTCATGATCTGGGTTTACGGCGGTGGGTTTAGCGGCGGTTCT
GGCGCGGTGCCATATTATGACGGCTCTGCGCTCGCGCAGAAGGGCGTGGTGGTCGTCACGTTCAACTATCGCGCCGGGAT
TCTGGGCTTTCTTGCCCATCCGGCGCTTTCAAAGGAAAGTCCGAATGGCGTGTCGGGCAACTATGGTCTTCTCGACATGC
TCGCGGCGTTCAAATGGGTTCAGAACAACATAAGGGAGTTCGGCGGAGACCCGAACCGTGTCACGGTCTTTGGCGAGTCC
GCCGGCGCGAGCGCGCTCGGACTGCTCCTGACCTCGCCGCTCAGTGAGAGCGCCTTCAATCAGGCGATACTGCAAAGTCC
GGGTCTGGCCAGGCCGCTCGCCACGCTTTCTGAAAGCGAAGCGAATGGGCTGGAGCTGGGAGCCGATATTTCTGCTCTAC
GGCGTGCCGATGCGGGCGAATTGACGAAGATCGCGCAATCGCGAATACCCATGTCGCGCCAGTTCACCAAGCCGCGGCCG
ATGGGTCCGATTCTGGACGGCTATGTTTTGCGCACCCTTGACGTCGATGCCTTCGCCAAGGGGGCCTTCCGCAAGATACC
CGTTCTGGTCGGCGGAAACGCCGACGAAGGGCGCGCTTTTACGGATCGCCTGCCGGTCAAAACGGTCCTTGAATATCGAG
CCTATCTCACAGAACAATTTGGTGACGAGGCGGACGCATGGGAGCGTTGTTATCCCGCGAACTCCGACGCCGACGTCCCC
GCCGCCGTTGCCCGTCTTTTTGGGGATAGTCAGTTCAACAACGGGATCGAGCTGCTCTCGGCAGCCTTCGCGAAATGGCG
AACGCCGCTTTGGAGATATCGCTTTACGGGCATTCCAGGAGCCGGCCGTCGCCCCGCCACGCATGGAGACGAAATTCCCT
ATGTCTTCGCAAATCTGGGGCCGTCGTCCGTATCTATGTTTGGGTCGCTCGAAGGCGGCGCCGGGGCGTCGGACATCAAA
CTTGCGACCGAAATGTCCGCGGCCTGGGTGAGCTTCGCGGTGCACGGGGTCCCCGATCAGGGCACGAAATCGCACTGGCC
GCGCTTCGAGCGGCGAGGGGAGATCATGACTTTTGGTTCGCAGGTTGGCTCTGGGGAAGGTCTTGGAGTTTCGCCGAGCA
AAGCCTGCCAACCCTCAAAATAG >Seq ID 18 (fuml)
ATGGCGAACGGAACAAGGCAGAAAGATCTCAGAGAACGCGCCGAACGGGTCATTCCGGGCGGGATGTACGGCCACGAGTCGACACG
GTTGCTGCCGCCAGAATTCCCCCAGTTCTTCAGGCGCGCGCTGGGGGCACGAATTTGGGACGCCGACGAGCAGCCCTATATCGACT
ATATGTGCGCGTATGGGCCAAATTTGCTCGGTTACCGGCAATCCGAAATCGAAGCCGCGGCTGATGCGCAGCGACTTCTCGGCGAC
ACCATGACCGGTCCTTCGGAGATCATGGTCAACCTCGCCGAAGCCTTTGTGGGCATGGTCCGTCATGCGGATTGGGCGATGTTCTG
CAAAAATGGCAGCGATGCCACCTCAACGGCGATGGTTCTCGCGCGTGCCCATACGGGGCGCAAAACCATATTATGCGCCAAAGGCG
CCTATCATGGCGCTTCCCCGTGGAACACTCCGCATACTGCCGGGATTCTCGCTTCCGATCGCGTGCATGTCGCATATTATACCTAT
AACGACGCCCAAAGCTTATCGGACGCGTTCAAGGCGCACGATGGCGATATTGCGGCTGTCTTTGCCACACCTTTCCGACACGAAGT
ATTTGAGGACCAGGCCCTCGCCCAGCTTGAGTTCGCGCGCACCGCTCGAAAATGTTGTGACGAGACCGGTGCGCTTCTGGTCGTTG
ACGATGTGCGCGCAGGTTTCCGGGTGGCGCGCGATTGCAGCTGGACGCATTTGGGTATCGAACCCGATCTCAGTTGCTGGGGAAAA
TGCTTTGCGAATGGCTATCCGATCTCCGCCCTGCTGGGCTCGAACAAGGCGCGCGATGCGGCGCGGGATATATTTGTGACCGGCTC
CTTCTGGTTCTCTGCGGTACCGATGGCGGCCGCGATCGAAACCCTCAGGATCATTCGAGAGACGCCTTATCTCGAAACGCTGATCG
CCAGCGGCGCCGCCCTGCGGGCAGGCCTGGAGGCACAGTCTCAGCGCCATGGTCTTGAGTTGAAGCAGACGGGCCCGGCGCAGATG
CCGCAAATATTCTTTGCGGACGATCCCGATTTTCGGATCGGCTATGCGTGGGCCGCGGCGTGCCTGAAGGGCGGCGTCTATGTTCA
TCCCTATCACAATATGTTTCTCTCTGCGGCCCATACAGTTGACGATGTAACGGAGACCCTCGAGGCGACGGATCGCGCGTTCAGCG
CGGTCCTCAGAGATTTTGCGTCTCTCCAGCCTCATCCCATTTTAATGCAACTCGCCGGTGCTTGA
Enzymes Sequences: >Seq ID 9 (FumD)
VKEHQCRGGRASPAAPATWLARISVSRGASAIAWTFMLGATAIPVAAQTDDPKLVRHTQS GAVEGVEGDVETFLGIPFAAPPVGDLRWRPPAPPRAWAGTRDGRRFAPDCIGNERLREGS RAAGTSEDCLYLNIWSPKQVGKGGLPVMIWVYGGGFSGGSGAVPYYDGSALAQKGWWT FNYRAGILGFLAHPALSKESPNGVSGNYGLLDMLAAFKWVQNNIREFGGDPNRVTVFGES AGASALGLLLTSPLSESAFNQAILQSPGLARPLATLSESEANGLELGADISALRRADAGE LTKIAQSRIPMSRQFTKPRPMGPILDGYVLRTLDVDAFAKGAFRKIPVLVGGNADEGRAF TDRLPVKTVLEYRAYLTEQFGDEADAWERCYPANSDADVPAAVARLFGDSQFNNGIELLS AAFAKWRTPLWRYRFTGIPGAGRRPATHGDEIPYVFANLGPSSVSMFGSLEGGAGASDIK LATEMSAAWVSFAVHGVPDQGTKSHWPRFERRGEIMTFGSQVGSGEGLGVSPSKACQPSK >Seq ID 19 (Fuml)
MANGTRQKDLRERAERVIPGGMYGHESTRLLPPEFPQFFRRALGARIWDADEQPYIDYMC AYGPNLLGYRQSEIEAAADAQRLLGDTMTGPSEIMVNLAEAFVGMVRHADWAMFCKNGSD ATSTAMVLARAHTGRKTILCAKGAYHGASPWNTPHTAGILASDRVHVAYYTYNDAQSLSD AFKAHDGDIAAVFATPFRHEVFEDQALAQLEFARTARKCCDETGALLWDDVRAGFRVAR DCSWTHLGIEPDLSCWGKCFANGYPISALLGSNKARDAARDIFVTGSFWFSAVPMAAAIE TLRIIRETPYLETLIASGAALRAGLEAQSQRHGLELKQTGPAQMPQIFFADDPDFRIGYA WAAACLKGGVYVHPYHNMFLSAAHTVDDVTETLEATDRAFSAVLRDFASLQPHPILMQLA GA
To solve these objects, an additive of this type is characterized in that it contains an enzyme of the sequence ID No. 9 as well as optionally, in addition, a cosubstrate for at the used enzyme, an enzyme of the sequence ID No. 19 and an inert carrier.
Such an additive which contains an enzyme of the sequence ID No. 9 as well as optionally, in addition, a cosubstrate for the used enzyme, an enzyme of the sequence ID No. 19 and an inert carrier, excels by selectively degrading, and hence detoxifying fumonisins. The use of an additive according to the invention, which essentially consists of isolated enzymes as well as, optionally, their cosubstrates and carriers, offers the advantage that the former will keep their catalytic activities in an environment and under conditions in which, for instance, complete microorganisms would not or hardly be active, while, at the same time, allowing for significantly higher specific activities and the catalyzation of defined reactions with the avoidance of undesired side reactions.
In addition, problems caused according the prior art on agricultural raw products by the use of reproducible germs will be safely avoided, and additives merely containing isolated enzymes will, moreover, provide an enhanced formulation aptitude for a selective and controlled activation, i.e., for instance, in a particular site of the digestive tract, as well as the avoidance of an undesired, elevated consumption of substrate.
Furthermore the sphingolipid metabolism impaired by the interaction of fumonisins with the enzyme ceramide synthase is maintained while, at the same, biologically degrading the fumonisins to non-toxic substances. Finally, technological detoxification applications will be achieved.
Such an additive, on the one hand, allows for to completely and reliably degrade, for instance, mycotoxins directly on raw materials, with the specific enzymes produced by this method catalyzing the degradation of fumonisins and intermediates of the degradation path, and, on the other hand, allows for to degrade mycotoxins, for instance directly during the production of bioethanol in the mash for the production of alcohol, or to degrade and render harmless mycotoxins even during the production of foods directly in the production process.
By designing the additive in a manner that the enzyme is used sheathed with a protective coating, as in correspondence with a preferred further development of the invention, it will be safeguarded that the enzyme will be secured against any premature loss of activity so as to safely and reliably develop their action in the intended site, for instance in the gastrointestinal tract.
By encapsulating the enzyme in a protective coating, it is feasible to transport the enzyme to its destination of use, for instance, in particular, into the digestive tract without being changed and, in particular, degraded or damaged, so that the enzyme will not start acting before the dissolution of the protective coating, for instance in the gastrointestinal tracts of humans or animals, thus ensuring an even more selective, rapid and complete degradation of the mycotoxins in the oxygen-independent environment of the gastrointestinal tract while, at the same time, preventing fumonisins from exerting their noxious effects on living creatures which have taken in the same together with food.
By preferably further developing the additive in a manner that the enzyme is a carboxylesterase of the sequence ID No. 9 the enzyme qualified for substrate catabolism will be substantially applied so as to ensure, in addition to a reduced amount of the enzyme to be applied, that no undesired side reaction will occur when using said enzyme.
According to a preferred further development of the invention, the additive is designed such that it contains a carboxylesterase of the sequence ID No. 9, an aminotransferase of the sequence ID No. 19, an α-keto acid as a cosubstrate and an inert carrier. By the additive containing a carboxylesterase, an aminotransferase, an α-keto acid as a cosubstrate besides an inert carrier, it is, in particular, feasible to initially hydrolyse fumonisins contained in foods by cleaving tricarballylic acid residues from the fumonisins using carboxylesterase, and to subsequently further react the thus hydrolysed fumonisin under the action of the aminotransferase and α-keto acid as a cosubstrate, preferably pyruvic acid in the present case, by substituting a keto group for an amino group of the hydrolysed fumonisin molecule so as to form a 2-keto-hydrolyzed fumonisin, which is totally harmless, for instance, for mammals and can be excreted unchanged, and alanine as a side product, which too does not exert or have any negative effects, for instance, on organisms.
According to a preferred further development of the invention, the additive is further developed such that it contains a carboxylesterase of the sequence ID No. 9, at least one adsorbent like a clay mineral as well as, optionally, an inert carrier. When using but one carboxylesterase of the sequence ID No. 9 and at least one adsorbent, the detoxification of the fumonisins may also be performed in a manner that only the tricarballylic acid residues are cleaved and the thus formed, hydrolysed fumonisin is adsorbed on said adsorbent. By cleaving the tricarballylic acid residues by the aid of carboxylesterase, a substantially long-chain molecule is formed, which can be readily and reliably adsorbed so as to ensure the complete detoxification merely by the selected use of a single enzyme, in particular, by the oxygen-independent degradation of fumonisin and subsequent adsorption.
By additionally using at least one adsorbent selected, in particular, from clay minerals when using the carboxylesterase of the sequence ID No. 9, it is possible to render fumonisins totally harmless even without the addition of any further enzymes, by cleaving the two tricarballylic acid side chains by the carboxylesterase from the fumonisin molecule in a first step and forming what is called hydrolysed fumonisin. Hydrolysed fumonisin, which is a substantially chain-like molecule, can subsequently be adsorbed, for instance, on clay minerals so as to enable fumonisins to be rendered completely harmless even in a one-step enzymatic degradation process.
By degrading the fumonisins in an oxygen-independent manner, it is feasible to further develop the method according to the invention to the effect that the nucleic acid sequences of genes or enzymes will perform the degradation reactions safely and reliably without any addition of molecular oxygen so as to make the thus produced additive usable in any oxygen-independent or anaerobic media where mycotoxins will possibly have to be degraded, such as, for instance, in foods for humans and animals, in the production of bioethanol, but also for the production of genetically modified agricultural crops.
By selecting the enzymes from the carboxylesterase of the sequence ID No. 9, and optionally the aminotransferase of the sequence ID No. 19, fumonisins can be smoothly and completely degraded in an oxygen-independent environment. In this case, the transcription of the open reading frames in the FUM gene clusters isolated from the gene cluster of the nucleic acid of the sequence ID No. 1, which is derived from a prokaryotic strain having the accession number DSM 16254, is controlled by a bidirectional promoter located between FumA and Fuml, as is apparent from Table 1 below. The clusters encode proteins which are involved in the regulation of the gene expression, like e.g. FumB and FumC, in the sampling of the substrate and its transport, like e.g. FumA, FumJ, FumG, and in the catabolism of the substrate, like e.g. FumD, FumE, FumF, FumH, Fuml, FumK. From these nucleic acid sequences which encode special genes and enzymes, those genes were selected according to a preferred further development of the method according to the invention, which are responsible for the catabolism of the substrate, thus enabling the respectively formed enzymes to completely catabolise the substrate, i.e. fumonisins.
In this case, open reading frames selected, for instance, from the gene cluster of the nucleic acid sequence having ID No. 1 are expressed in prokaryotic or eukaryotic host cells. The transcription of the open reading frames contained in the gene cluster having SEQ ID No. 1, in the bacterial strain with the accession number DSM 16254, takes place in a manner controlled by a bidirectional promoter located between fumA and fuml, as is apparent from the annexed Fig. 1. The genes encode proteins which are involved in the regulation of the gene expression, such as in the recognition of the substrate and its transport, like e.g. FumA, FumJ, FumG, and in the catabolism of the substrate, like e.g. FumD, and Fuml.
In the Table 1 below, the designations of the genes of the fumonisin-catabolized gene cluster are listed, wherein 0 indicates the orientation, namely f forward and r reverse.
Table 1
In that, as in correspondence with a further development of the invention, the additive is used in an oxygen-independent environment during the production of bioethanol, along with a mash or a vegetable starting material, by selecting the additive such that the enzymes contained therein are completely derived from bacteria catalysing the catabolism of fumonisins via a highly specific degradation path, it is feasible to use the same with high specificity, activity and efficiency so as to enable the additive to be also used technologically in an oxygen-independent environment.
Finally, the present invention relates to the use of genes as represented in the sequences ID Nos. 8 and 18, or of a cosubstrate, a carboxylesterase sequences ID No. 9, optionally an aminotransferase sequences ID No. 19 as well as an a-keto acid as a cosubstrate for producing an additive for the degradation of fumonisins, in the processing or use of vegetable raw materials. An additive produced in this manner allows for the complete and reliable degradation of fumonisins, particularly in an oxygen-independent environment. Especially such use allows for the safe and reliable degradation to harmless components of the total of fumonisins in, for instance, vegetable raw materials or starting materials. A further use is the use of a carboxylesterase, at least one adsorbent, such as a clay mineral, as well as an inert carrier. When using a carboxylesterase of the sequence ID No. 9 and at least one adsorbent, it is feasible to safely and reliably detoxify fumonisins by the mere use of a single enzyme in that the tricarballylic acid side residues are cleaved from the fumonisin by, or by the aid of, said enzyme and the thus formed long-chain hydrolysed fumonisin is subsequently adsorbed on the adsorbent so as to render the toxin harmless in a safe and reliable manner.
According to a further use, the additive according to the invention is used for the oxygen-independent or anaerobic treatment of a vegetable starting material or a mash in the production of bioethanol. In this case, it is feasible to safely and reliably render the mycotoxins contained in the vegetable starting material or raw material harmless during the production of bioethanol in an oxygen-independent environment so as to subsequently allow for the use of the residue from ethanol production, namely the pomace or dried vinasse, either directly or after drying and pelletizing without further processing and, in particular, detoxification as a feed that is free of fumonisins.
By using the additive in a vegetable starting material to be fermented or in a mash for the production of bioethanol, it is feasible to free coproducts occurring in the production of ethanol, namely pomace, i.e. the dried grain residues and undissolved components, or dried vinasse (dried distiller's grains with solubles - DDGS) from fumonisins or mycotoxins, particularly in an oxygen-independent environment.
In the following, the invention will be explained in more detail by way of exemplary embodiments and Figures. Therein:
Fig. 1 depicts the fumonisin-catabolic gene cluster;
Fig. 2 illustrates the Michaelis-Menten curve for fumonisin carboxylesterase FumD;
Fig. 3 shows a degradation curve of hydrolyzed fumonisin Bi;
Fig. 4 illustrates the conversion of fumonisin FBI into hydrolysed fumonisin HFB1 after the addition of carboxylesterase ID No. 9; and
Fig. 5 illustrates the degradation of hydrolysed fumonisin HFB1 by the addition of aminotransferase ID No. 19.
Fig. 1 depicts a fumonisin-catabolic gene cluster as a partial sequence of 15420 base pairs of a microbial strain having the accession number DSM 16254. In the hum-gene cluster of the prokaryotic strain DSM 16254, the transcription of the open reading frame is controlled by a bidirectional promoter located between fumA and fuml. The cluster encodes proteins involved in the regulation of the gene expression, like e.g. FumB and FumC, in the recognition of the substrate and its transport, like e.g. FumA, FumJ, FumG, and in the catabolism of a substrate, like e.g. FumD, FumE, FumF, FumH, Fuml and FumK.
Examples
Example 1: The enzyme kinetics of fumonisin carboxylesterase
The fumO gene (sequence ID No. 8), which encodes a fumonisin carboxylesterase, was cloned and expressed in Pichia pastoris using standard procedures. The his-tagged enzyme was recovered and purified from the supernatant culture solution by affinity chromatography. The enzyme concentration was determined and the enzyme-kinetic parameters were determined with seven different substrate concentrations ranging from 50 pg to 25 mg FBi per litre and an enzyme concentration of 0.33 ng/ml. The reactions were buffered in 20 mM Tris-Cl buffer (pH 8.0) with 0.1 mg/ml bovine serum albumin and incubated at 30°C. Samples were taken after 0, 30, 60, 120 and 240 minutes of incubation and analysed by HPLC-MS/MS. Fumonisin Bi (FBi) and hydrolysed fumonisin Bi were quantified, based on a calibration with the purified reference substances and a completely 13C-labelled internal FBi-standard.
Fig. 2 illustrates the Michaelis-Menten curve for the hydrolysis of fumonisin Bi (FBi) by fumonisin carboxylesterase FumD, which was determined at an enzyme concentration of 0.33 ng/ml in Tris-Cl buffer (pH 8.0), with initial enzyme speeds having been plotted against the substrate concentrations. The Michaelis-Menten curve shows a drop at higher substrate concentrations, since the enzyme speed was calculated based on the product, i.e. the formation of hydrolysed FBi. Since hydrolysed FBi is formed from FBi in a two-step reaction via partially hydrolysed FBi with but one tricarballylic acid side chain which was retained and a side chain which was cleaved, the formation of the end product was delayed at high substrate concentrations. The Michaelis-Menten constant Km was calculated as 0.90 pmol/1, which was equivalent to 650 ppb, and the conversion rate was 900 per second.
From Fig. 2 results that fumonisins can be rapidly and completely hydrolysed with the carboxylesterase in the relevant concentration ranges.
Example 2: The catalytic activity of HFB1 (hydrolysed fumonisin
Bl) aminotransferase
Sequences ID Nos. 18 and 24 were cloned using standard procedures and expressed in E. coli under the control of a bacteriophage T7 promoter. The bacterial cells were collected, resuspended in 50 mM sodium phosphate buffer and lysed under ultrasonic action. Hydrolysed fumonisin was added, and the samples were incubated at 25°C. Samples were taken at time intervals and analysed by HPLC-MS/MS. No reduction of the hydrolysed FBi concentration was observed. When a cosubstrate such as, for instance, an α-keto acid like e.g. pyruvic acid, or oxalacetate was added to the reaction, the complete degradation of the hydrolysed fumonisin to 2-keto-HFBi could be observed as illustrated in Fig. 3. This substance is totally harmless for mammals .
Example 3: Enzyme activity in the intestinal environment
To examine the enzymatic activity of FUM-carboxylesterase in the digestive tract, freshly butchered swine guts were used and transported to the lab under oxygen-exclusion and examined in an anaerobic sterile bench. Approximately 10-cm-long pieces of duodenum and jejunum were secured and cut out. Fumonisin Bl, diluted to a final concentration of about 10 ppm in a concentrated aqueous solution, was injected by needles and mixed with intestinal contents. After this, 5 pg fumonisin carboxylesterase in an aqueous solution, or the same volume of water in the negative controls, respectively, was injected and incorporated. The intestinal sections were incubated at 39°C.
Samples were drawn by the aid of needles and analysed by HPLC-MS/MS. It was shown that, at the time of the first sampling after two hours, fumonisin B1 had already been completely hydrolysed in the duodenum and jejunum.
Example 4: Determination of the temperature range of the activity of fumonisin carboxylesterase
To determine the temperature range in which fumonisin carboxylesterase is active, 1.6 ng/ml FUM-carboxylesterase in 20 mM Tris-Cl buffer, pH 7.0, was incubated with 0.1 mg/ml BSA and 10 ppm fumonisin B1 at different temperatures. It was shown that the temperature optimum for the enzyme was 30°C. Enzymatic activity was still clearly determined at 40°C and even 50°C. FUM-carboxylesterase is, thus, suitable for application under the temperature conditions prevailing in the digestive tract, or in the course of process steps in the production of foods and feeds, which take place at elevated temperatures.
Example 5: Determination of the pH range of the activity of fumonisin carboxylesterase
To determine the pH range in which fumonisin carboxylesterase is active, Teorell-Stenhagen buffer was used. This buffer can be
adjusted over a range of 10 pH units with the same buffer capacity by the combination of citrate, phosphate and borate. FUM-carboxylesterase was incubated in this buffer with 10 ppm fumonisin B1 at different pH values and 25°C, at a concentration of 3.3 ng/ml. The highest activity was shown at pH 8.0, yet activity could be determined in the whole range from pH 5 to pH 10. This activity within this broad pH range has enabled the technological application of the enzyme as a feed additive or in the course of food and feed processing.
Example 6: Feeding test with piglets
The test was performed in a test stable with 12 stalls for 10 animals each. The stable was equipped with a slatted floor, pan troughs and a computer-controlled feeding system. The automats were arranged along the stall walls. Every day, the stable climate was automatically recorded, and the temperature was set according to the standard recommendations for piglet breeding.
For this test, 120 mixed-sex weaned pigs (age: about 4 weeks, average setting weight: 8.21 kg) were used. Each piglet was earmarked and individually weighed. The 120 piglets were randomly distributed among 12 stalls. All piglets came from the Austrian Breeding Program OHYB (= (large white x landrace) x Pietrain) .
Immediately upon weaning, the piglets were fed with a starter feed for two days, after this settling-in period the changeover to the test feed took place. Feeding was effected in two phases: Weaning phase days 1 - 14, breeding phase days 15 - 42. The test feed was mixed individually per stall via the spotmix feeding installation and allotted in dry form twice a day as a function of the number of piglets, weight development and feed consumption. Water was available ad libitum. The 12 stalls were divided into four different application groups at three repetitions each and received the following admixtures in the above-described feed:
Respiratory problems were observed in the positive control with almost half of the animals, even one dropout occurred. All other groups appeared healthy.
Performance data
Example 7: Enzymatic degradation of fumonisins in bioethanol mash
Samples of corn mash for the production of bioethanol were taken and incubated at 30 to 65°C under stirring, the degradation of fumonisin B1 having been investigated after the addition of 770 units of carboxylesterase ID No. 9 per cubic meter of mash under stirring (stirring time in minutes). Samples were inactivated by boiling-up after having been taken and subsequently centrifuged for analysis, and an aliquot of the supernatant was evaporated. The residue was taken up in 200 μΐ sample buffer containing C13-labelled internal fumonisin standard, shaken for 1.5 min, centrifuged off, and then subjected to LC-MS-analysis. From this results that, as illustrated in Fig. 4, fumonisin FBI is completely converted into hydrolysed fumonisin HFB1. After the addition of aminotransferase ID No. 19, the hydrolysed fumonisin HFB1 is completely degraded to harmless components as illustrated in Fig. 5.
Example 8: Degradation of fumonisins and their derivatives in corn tortilla mush and cornflake mush
The activity of the fumonisin-degrading enzymes was examined in corn mush samples (corn grits) for the production of corn tortillas and cornflakes. Fumonisin-contaminated corn (about 1 ppm) was ground to corn flour, mixed with water and boiled up. For the production of tortillas, the corn mush cooled to about 50 to 60°C was supplemented with a mixture of proteinases in alkaline solution. After 30 to 180 min, when the pH had fallen below 9, preferably below 8, a mixture of carboxylesterase and aminotransferase (500 - 1000 U/m3 each) was added and incubated for further 30 to 60 min. Concerning the production of cornflakes, a corn mush of ground corn and barley malt was boiled up in a pressure vessel for about one hour/ after cooling to below 60°C (preferably 50°C), an enzymatic mixture comprising carboxylesterase and aminotransferase (500 - 1000 U/m3 each) was added and incubated for further 30 to 60 min. Samples were then drawn from this mixture and examined for FBI and HFB1 residues as in Example 7. HFB1 levels were below 80 ppb in all of the samples, the HFB1 formed of FBI apparently had been continuously further reacted. The measured values for FBI are indicated in the Table below.
Table: Enzymatic degradation of FBI and HFB1 in corn mush; fumonisin concentration in ppb (pg/kg)
Organization Applicant Street: Industriest^e 21 City : Herzogenburg State :
Country : Austria PostalCode : 3130 PhoneNumber:
FaxNumber:
EmailAddress : <110> OrganizationName : Biomin Holding GmbH Application Project <120> Title verfahren zur Herstelllung eines zusatzstoffes fur den enzymatischen Abbau von Mykotoxinen sowie Zusatzstoff und Verwendung desselben <130> AppFileReference : P04569 <140> CurrentAppNumber: < 141 > CurrentFilingDate : - -
Earlier Applications <150> PriorAppNumber: AT GM501/2008 < 151 > PriorFilingDate : 2008-09-18
Sequence <213> OrganismName : sphingopyxis sp. <400> PreSequenceString : tgtcggcgat crgtaaactt ctaccgtggt cctcgttcgc ccacakcata catcacagac 60 rtcgggattt ccaactgaac gggtcccggc ctgccggccc acatttcccg gaacgccata 120 tgggtgattt cgacaatccg gttccaggcg aagatgggtg cgccccattt aaccgcgggt 180 cgaaagaggt cgatctggtc ttgtccctga aaggtttttg gcgtgcaggg ataaacgaca 240 ccaagttgat gctgggacgt tattgcgacg aagggaaccc cttcgtggcg tgccgtcacg 300 actccaggca gaaggtttgc cgtaccggga cccggattcg tgacaatcgc ggcgacctgt 360 ccggtggtct tgtaaatgcc ctcggccata taggctgcgg cggcctcgtg ccgcaccggg 420 acgaacaata tcccattgtc ttcgagcgca gccaggagcg gatccacctc cggcgacatg 480 aggccgaaga cataccggac gccttcgacg gccaaacatc gtgccaataa ttctccgccc 540 gtgaggcgca tgacgatctc cagtacgaaa ggtgagtgcc caggttccgg cacattcgct 600 gtggttagtt gatgcgctga tcggccaacc gactgagtgg agttggatgg ccgcacctta 660 ccctgtcgcg cataactctc agatccggaa acggaccccg acattaaaat agcggccgac 720 cggatcatag gcagagctgg tcgggctgga aaaactgctg gggtcgttcg tcgctattgg 780 cggatctcgg tcgaacaaat tattgaccga tagaaacagc tgctgcttct ggccaaaagc 840 cgcgatgtcg aaggtcaatg tcgcgtcggt gtaccaaacc gccggagcgt ggttcaaatt 900 cgtatcgacg ccctccacat tgtcggcatt gaacaccgat gctgcgatga agcgctgctg 960 cacgagaagc gcccaatcgt cggtcgaata tcgcgcctgg aagttggccg accattttgg 1020 cgtgtccggt tgtccgagcg aacggatggg cgccgagccg gtcgcgatgc gataggcaga 1080 ggtatggtgc gttgccagcg cacgaagact gaacgtgccg ccgccgacgg ggcgtgagta 1140 ataggcctcg aagtcaattc ccgccgcttt ctggacagcc aggttgagat tgggacccgt 1200 cactgtgatg gtgccgtccg gattctccgt tatgaggtcg cagaagaagg tgtttcctgc 1260 atcgcacgcg tcgatttcct gctggggaag gaggaaatcg atcgcgccct tcaccttcac 1320 cacatagcga tcgaccgaaa actgaaaccc cggcacgaag gcggggcgta gcaccgcgcc 1380 gaatgtaagg acgtccgcct tttcagggcg caaatccgcg ttgccggcgg taaagaaccg 1440 cgtctgcaca gcctgtccgc cataaattga attgagcgtc gcctgacggc cggggtcgaa 1500 tagctcgaca aggcttggcc cgcggatatc tcgcgaacgg gtcgcgcgga acctgaggcc 1560 gtcgatcggc tcatattctc cgcccagctt ccaggttgtt actccaccgg actggctgta 1620 atcggcatat cggacggcgc cgtttaagtt cagcgaacgt cccagcgcgc tgtccttcag 1680 aatcgggacg ccgatttcga caaaaccttc cttgatgtca tagcttcccg agaagggaag 1740 tgggttgtag agattgaagc ctccaggccg acctgcctgc gccgccggag cccccctgat 1800 tcccgtgatc gaggtcgtcg cctgcgatat cgcgtcggtt tcctgccggg ccttctcctt 1860 gcgatattcg ataccagcgg cgaccgagac cgggcccgcg ccgaacgaca ggctatcgcc 1920 gaggtcgccg gaaatcgtga gtcccgccac atattgctca agcctcagct gagcgacgcc 1980 atcagcggtg acatagtcga tggccgacgc gctcggcgag cctgtgccga agagattgag 2040 cggcacgcaa tcttggtcga ggccggccag tgttgaacgg cagacgatat tgcccgcggg 2100 atcgcggacc gcatcgacgg cggcgtagag attgcggttg atggtgagat tgttttcacg 2160 aagctcgagg tccgtaaggc caaaggaggc cgagccatcg agtttccagc cattgccaat 2220 gtctgcccgg aagccggcag cgccgcggta gacctttgcg aaattctcga tttcgaccaa 2280 gggaaagtcg cttgagaagc gaccgacaac gatcgaagcc tgggcatttc tgtccatgag 2340 cgtcgcgagt ggagccggaa ggaaggcgtt atcacggaag atccggaaat tattcgagcc 2400 accgacatgc gatattacga atgcacccag gttggtgtgg gaataagcat aggtgccctc 2460 cgcatacacc tgcacagtgt cggacacatc atatgcggcg cgtaggaacg cgttgtagcg 2520 aagctgatcc ggggcgaagc cgatattcac gcgcggtcca tcgccgccgc tctggaacga 2580 cgagctcgta aaattcccgt agtcgaaggt ccctaggact cctccgggca aaaacgcgat 2640 gcctttcaga gggccggacg tgacaagtcc gccgtaggat ccgcgagaac tgcgaatatc 2700 gggcacgacc gtgacgcctg tcgtagcgcc gggcacggga tattggccgg cggcgatgtc 2760 gaaccagcgg cgacccgttg cttcatcggc ccggattccg tcctgtcgaa aatattcgaa 2820 gctgccgagc aagtgcaacc ggtcgtcggc aaacgaagtg ccgaaggcga tcgaaccgcc 2880 gtaggacggg aggtcgccgc gggttgaaac acccgactgg agctcggccc tgatgccttc 2940 cagatcttcg tcgagcacga agttgatgac gcccgaaacg gcatcggaac cgtaggcggc 3000 cgaggcgccg cccgtcacga catcgacgcg cttgaccaac gcctgcggca gcacgttgat 3060 atcgaccgag cctgtgaaat tggtcgcgac gaaacggttg ccgttcagca ggacgaggtt 3120 ccggtttgac ccgaggccgc gcatgttgag caggttctga ccgctgttcc ccgttccggg 3180 tgtcgtgcca gggttggagg tcttcaagct gtcgttgaac acgggcagct ggttgagtgc 3240 gtcggcaagg ttggtcggag atgcctcctt caactgctcg ctggatacgg ctgtaaccgg 3300 cgtcggcgaa ttgaagccgt tctggaggcg gctgccggtc acgacgattt cgctcgttcc 3360 ccggtccgtg tccgcttcgt ccggctgacc tatcgatgcg ggatcgctat cctgagcact 3420 ggcagagaca ggaaatgcga gggtgccgag cgctactgcg ccgagcaaac tatttgcctt 3480 gccgggcttt tcgattctga acttccgata catctgcagt ccctcccgaa ttgataggga 3540 ctccgtttga gtccccttgt ttcttgacgc cgccgtcgct caccacggtc cggtcggagg 3600 ctaagcgtcg ggcctaagga cccgcaattt gaacatcaaa tgcaatgatc ggaggcttca 3660 ttgcacttcg cgcatagacc ggcgcggtag ctgaaagtgc caataatcag ggattttgct 3720 gaacagttgc ggcatgacgt ccggcatcgg ccacgcggtt ggcggcatcg acgtggcttt 3780 cgcgtcgccg cccctcaagc accggcgagt tgcattaaaa tgggatgagg ctggagagac 3840 gcaaaatctc tgaggaccgc gctgaacgcg cgatccgtcg cctcgagggt ctccgttaca 3900 tcgtcaactg tatgggccgc agagagaaac atattgtgat agggatgaac atagacgccg 3960 cccttcaggc acgccgcggc ccacgcatag ccgatccgaa aatcgggatc gtccgcaaag 4020 aatatttgcg gcatctgcgc cgggcccgtc tgcttcaact caagaccatg gcgctgagac 4080 tgtgcctcca ggcctgcccg cagggcggcg ccgctggcga tcagcgtttc gagataaggc 4140 gtctctcgaa tgatcctgag ggtttcgatc gcggccgcca tcggtaccgc agagaaccag 4200 aaggagccgg tcacaaatat atcccgcgcc gcatcgcgcg ccttgttcga gcccagcagg 4260 gcggagatcg gatagccatt cgcaaagcat tttccccagc aactgagatc gggttcgata 4320 cccaaatgcg tccagctgca atcgcgcgcc acccggaaac ctgcgcgcac atcgtcaacg 4380 accagaagcg caccggtctc gtcacaacat tttcgagcgg tgcgcgcgaa ctcaagctgg 4440 gcgagggcct ggtcctcaaa tacttcgtgt cggaaaggtg tggcaaagac agccgcaata 4500 tcgccatcgt gcgccttgaa cgcgtccgat aagctttggg cgtcgttata ggtataatat 4560 gcgacatgca cgcgatcgga agcgagaatc ccggcagtat gcggagtgtt ccacggggaa 4620 gcgccatgat aggcgccttt ggcgcataat atggttttgc gccccgtatg ggcacgcgcg 4680 agaaccatcg ccgttgaggt ggcatcgctg ccatttttgc agaacatcgc cCaatccgca 4740 tgacggacca tgcccacaaa ggcttcggcg aggttgacca tgatctccga aggaccggtc 4800 atggtgtcgc cgagaagtcg ctgcgcatca gccgcggctt cgatttcgga ttgccggtaa 4860 ccgagcaaat ttggcccata cgcgcacata tagtcgatat agggctgctc gtcggcgtcc 4920 caaattcgtg cccccagcgc gcgcctgaag aactggggga attctggcgg cagcaaccgt 4980 gtcgactcgt ggccgtacat cccgcccgga atgacccgtt cggcgcgttc tctgagatct 5040 ttctgccttg ttccgttcgc cataatgcac ctctcgcgat aaataatggg taaaaatcca 5100 cgaaattcaa cgattcgtga tctgaaagag atatatcttg taatatactg tataattata 5160 cacaatgcgc aatcggacga cgggatagcg gggcagggag gacggggaaa tctatgcgga 5220 acgtcagcga caaggcgccg ccccacgaga cgctcaccgt agtcgtcgcg gcaatgatcg 5280 ttggcacggc cgccttgatg gtgcttggaa tacagcccat ccttctcggc gcccttgtag 5340 aggaggggcg tattcccgcc gaggggttgg gatcggcggc aacggtggaa atactggcga 5400 tcgcggcggg aacatgcatc ggacccgttc ttatgaagac gggatatctg cgggcgaaat 5460 gcgcggcact ctgcttaatg ctcgccgcaa tcaacttcgg attgacgttg ccgggtttcg 5520 atttgcccat cgtggcttgc cgagcggcag cgggagccct ggaaggtctt tcgctcagcg 5580 cggcgatcct gatcatgact cataatcggc ggccggaccg gctgagcgga atatttctgg 5640 gcgcgcagac gataccgcag gtaatatctg cttatttgct cccgacggag attattccgc 5700 gctgggggag cgcaggcggc ttcacgatcc tgggcattct cgcggcgatc gccgcgatcg 5760 cggctctgtg cctcgtcgat cgcgttgagc tcgatccgac gaccgttaac gacgacttgc 5820 agtggtcacc cgcggcgatc gtcatttcga tggcggcatt cgttcaattc tcgggggtcg 5880 gtgccgcatg gagctatctg gagcgactgg ctgcgcagca cggattttcg ggagaaacga 5940 tcggtatcgc catttccggg agtttgcttt gccaggtagg cggggcttgg ctggccgctt 6000 ggatcggtgg gcgggtcgga tatcgcttcg ccttaatcgc tgggagcctg cttcaggcgg 6060 gcaacgtgat cgcattggcg gtggccgatc agccaagctg gtttatttcc gcttcctgtg 6120 ctttcggcct gttctggttg gcgatgcagc ccttccaaat ccgcttcgcg atcgcgatag 6180 ataacagccg gcagcttgct gtactgctga cgccgatcgc cctcgtcggg ttgagcgcgg 6240 ggcccttgtt gctctctcgc tttgccgggg cgaccgactt gcgctggatc tttgtgggga 6300 gttcgacctt gttgctggcc agcgcgcttc tgtatctttg cgcttctctg tttcaaccgc 6360 gcggaaaggt gatcgctgaa acggtggacg tatgaaaaag acggatcggg gttcgcgatg 6420 acatcgcagg tcaagcttcg tagcgcggca aagcggccgc gcagtcctaa aagcgagcga 6480 ggtcttgctc gttacgagtc cttgcttgåt gcgaccgaca ggctgttggt cgatctagac 6540 cccgatcagg tcggtctcta tcagattgca gaggaagcgg gtgcctcacc gtcgtccgtc 6600 tatcatttct ttccgaccaa ggaagtggct catctcgctc tgatgcgccg ctatctggag 666Q gggctccgga atctcgacgc gatggaagtc gacatcggcc agctcgaaag ctggcaggac 6720 ctgatgaagt tggatcagat cagggcgcga gactattata atagccaccc gcccgccctc 6780 aagcttctgt tcggcggata tggcggggtc gaggccagaa agcttgacga gcgatactcc 6840 gaggaaatcg tgagctccat gtatggcaga tacaacggca ttttccatat gccgcaaatg 6900 gagaatgagg ctctcatgtt cacgatctgc ttcgcaattc tcgacgcggt atgggccgtc 6960 tcctttcgcc ggttcggtga aattacgtcg gattttcttc gggaggggca agcggcttgc 7020 attgcctatt gccgacacta tctgcccgag cgaacgccat cagcgtgaat ccgttcaacg 7080 atatgcagga atgtccgttg cgttgagttc ggttctgagt tcggtcggtt aggaggcccc 7140 gcgataaacc aacgctCLtc Lgtcgaaggg aiiytcgcctg gttcgaccag gccctgcgaa 7200 gtcagccgca atcaacgagg cagatgtcaa cgtggccagc aagttcaact gtgagttact 7260 cgatctgcga tcatttgttg cggtgtatga aacgcgaagt tttagccacg ccgcgcggct 7B20 tctgaatcaa tcgcagcccg cgctcagccg gagaatccag cgcctcgaga gtctcgtggg 7380 cggtccgttg ttcgagcgga ccagtcggtc gcttgccgaa acggcgctcg gcaaagagtt 7440 gctcceggtc gcccaccgag cgttggaact tgtcgatacg tcgctgtttg cgtcgcccaa 7500 tgtccgggag ttccgctgga cagacatcac gattgcctgt gtacagaccg ccgccttcca 7560 tgttctcccg cgagctgcgc gcttgtacat ggatcaaaat ccgagggtcc gactccgcat 7620 ccttgacgtg ccggcggtcg aggctgcgga cctggttgcg agcggcgagg cggagttcgg 7680 catcagcatt gagagcctgt tgccatcaag cctgcggttc gatgcgctcc acgaggaccc 7740 gttcggcctg gcatgccacc gaagccatcc gctggcgtcg ctcgagatcc ttgaatggac 7800 gcaattgaaa ggtgaaagcc tgatcgccgt tcaccgtgcg agccggaacc gcacgttgct 7860 cgatgccgaa ctcgcgcgca acaatatcgc gctggaatgg cggtatgagg tcgcgcatct 7920 gacgacggcg ctgggattga tcgatgcgca attgggtgtc gctgttatgc cccgcatggt 7980 tatgccccgc tcgggtcggt cggaggtcgt ctggcgcccc gtcgtcgcgc cggtcgtcca 8040 acgcacgatc ggcatcgttc agcgccgcac cggctcgatg caccctgccg cacagcaatt 8100 gcttgcgcgg ctccgcgcgg cctggtcgtc cgccaatctg ggcgacatcg cgtctcgcga 8160 agatggggca tcgtgacacg cgttctatgc gcctgcagca tcgatgctca cgatcattgc 8220 atttgctgag agacgaacgc gaagataccg ctgggtcaca ggatatcagt ccatcgaggc 8280 gggagagaaa tgtgtgaaag agcaccaatg ccgtggcggc cgggcgtccc ccgctgcgcc 8340 cgccacgtgg cttgcgcgga tcagcgtttc ccggggggcc tccgccatcg cctggacctt 8400 catgcttggc gcaactgcca ttcccgtggc tgcgcaaact gacgatccga agctcgttcg 8460 tcatacccag tcgggcgccg tcgagggcgt cgagggcgac gtcgagactt ttttgggaat 8520 acccttcgcg gctccgccgg tcggcgacct gcgatggcgg ccgccggctc cgccgagggc 8580 gtgggcgggc aceagggacg gccgccgctt tgcgcccgat tgcatcggga acgagcggct 8640 tagagagggg agccgggctg ccgggacgag cgaagactgc ctctatctga atatctggtc 8700 tcccaaacag gtcggtaagg gggggctccc cgtcatgatc tgggtttacg gcggtgggtt 8760 tagcggcggt tctggcgcgg tgccatatta tgacggctct gcgctcgcgc agaagggcgt 8820 ggtggtcgtc acgttcaact atcgcgccgg gattctgggc tttcttgccc atccggcgct 8880 ttcaaaggaa agtccgaatg gcgtgtcggg caactatggt cttctcgaca tgctcgcggc 8940 gttcaaatgg gttcagaaca acataaggga gttcggcgga gacccgaacc gtgtcacggt 9000 ctttggcgag tccgccggcg cgagcgcgct cggactgctc ctgacctcgc cgctcagtga 9060 gagcgccttc aatcaggcga tactgcaaag tccgggtctg gccaggccgc tcgccacgct 9120 ttctgaaagc gaagcgaatg ggctggagct gggagccgat atttctgctc tacggcgtgc 9180 cgatgcgggc gaattgacga agatcgcgca atcgcgaata cccatgtcgc gccagttcac 9240 caagccgcgg ccgatgggtc cgattctgga cggctatgtt ttgcgcaccc ttgacgtcga 9300 tgccttcgcc aagggggcct tccgcaagat acccgttctg gtcggcggaa acgccgacga 9360 agggcgcgct tttacggatc gcctgccggt caaaacggtc cttgaatatc gagcctatct 9420 cacagaacaa tttggtgacg aggcggacgc atgggagcgt tgttatcccg cgaactccga 9480 cgccgacgtc cccgccgccg ttgcccgtct ttttggggat agtcagttca acaacgggat 9540 cgagctgctc tcggcagcct tcgcgaaatg gcgaacgccg ctttggagat atcgctttac 9600 gggcattcca ggagccggcc gtcgccccgc cacgcatgga gacgaaattc cctatgtctt 9660 cgcaaatctg gggccgtcgt ccgtatctat gtttgggtcg ctcgaaggcg gcgccggggc 9720 gtcggacatc aaacttgcga ccgaaatgtc cgcggcctgg gtgagcttcg cggtgcacgg 9780 ggtccccgat cagggcacga aatcgcactg gccgcgcttc gagcggcgag gggagatcat 9840 gacttttggt tcgcaggttg gctctgggga aggtcttgga gtttcgccga gcaaagcctg 9900 ccaaccctca aaatagcgcc cggcctgtgc gtgcttcagc acgccgtccc gctttgcggg 9960 cgacgggctg tgccctctgc ctagaaggaa gtaagttgcg ctacgacgtc gcgataattg 10020 gaggtggcaa cgctgcattg acggcagccg tgacggcgcg tgaagcgggg gcctcggttc 10080 ttgtgatcga gcatgcgccg cgcgccatgc gcggcggcaa cagtcgtcac acacgcaata 10140 tgcgtacgat gcacgaacgt cccctgtcgc cgttgaccgg tgaatattcg gcggacgaat 10200 attggaatga tcttgtccgc gtcacggggg ggcgcaccga cgaagaactc gcgcggctcg 10260 ttatccgcaa caccaccgac gctattccct tcatgacgcg ctgcggtgtg cgtttccagc 10320 cctcgctgtc gggcacgctg agtttatcgc gaaccaacgc attcttcctt ggcggcggga 10380 aggcgcttgt aaacgcatat tacgccacgg ccgaacggct aggcgtcgat attctctatg 10440 attctgaggt gaccgagatc aaccttcagc aaggcgtcgt gcagcgtctg caattgcgca 10500 gccggggatt ccctgtcgaa gtggaagcca aggctgccat cgcctcgtcc ggaggattcc 10560 aggcaaatct tgactggctc tcaagcgcat gggggcctgc tgcggcgaac ttcatcgtac 10620 ggggcacgcc atatgcgact ggcacggtgc tcaagaacct gttggagcaa ggcgtcgcct 10680 cggtgggaga tccaacccaa tgccatgctg tcgcgatcga tgggcgagcg cccaaatacg 10740 acggcggcat cgtcacacga ctggactgcg ttcccttctc gatcgtcgtc aacaaggacg 10800 ccttgcgctt ctacgatgaa ggcgaagatg tgtggccgaa gcgttacgcc atatggggtc 10860 gcttggtggc acagcagcct gatcagatcg ctttcagcat aatcgatcgg caggccgaag 10920 acctcttcat gccgtcagtg ttcccccccg tgcaagcgga cacgatcgcg ggtctggccg 10980 agaaactcgg tctgaatccc gtaaccctgg aacgcacggt ggccgaattc aacgccgcat 11040 gcgtgcccgg cgaattcggc ggccaagatc tcgacgacct ccacaccgag ggaatcgaac 11100 caaagaaatc caactgggcc cgaccgatta ttgtgccccc gttcagcgcc tatcctctcc 11160 ggcccgggat caccttcacc tatctcggcg tcaaggtaga cagccgtgcg cgggtcatca 11220 tggagacagg tgagccgaca aaaaacctgb "ttgcttcggg ggaaa*aa£g gcgggcagca 112S0 ttctcggcca aggttatctc gctggatttg gaatggcgat tggtaccgta ttcggccgca 11340 tcgcgggttg ggaggccgca cgtcatgcag gattttgatc tcgtaaaaat gctgtctgac 11400 ttgccgtcgg cgccggagct ggaagccagg cgcgttatgg aggtgtgcaa cgcgtgccgc 11460 tattgcgaag ggttctgcgc ggtatttcct gcaatgacct tgcagcgtca tttcgccagc 11520 ggcgatctca gccacctcgc caatctctgc cactcgtgcc aaggttgcta ttacgcctgc 11580 caatacgccc ctccgcatga gttcggaata aacgttccaa aggcgctgtc ggagttgcgg 11640 ctcgagagct acgagcagca tgcttggccc cggccggtcg ccgctctcta tcgcaagaat 11700 gcgctcatca tttccatctt gtcggcggca tgcataaccg gcgtccttct gcttgccgcc 11760 atcttcaacg gggatgcact tttcgcgaaa cacgcatcgg tgcccggcgg cgggttttac 11820 aacgttattc cttatcaggc gatgattgcc gtcgcggcga ccacatttct ttattccgcg 11880 ctggcgctgg cgatcagtct cgttcgcttt tcgcggacga tcggtctggg aattaaggtt 11940 ctttatcagc acgtgccggt tcttcgggcg ctacgcgatg cggcgactct gcgatatctc 12000 ggcggcagcg acggcgaggg gtgtaacgac gcggacgaga cattttcgac gacccggcga 12060 aaatttcatc acgcccttgc ctatggcttc ggactttgtt tcgcggccac agccacgggc 12120 acgatctacg atcatatgtt cggctggccg gcgccctatg cgcttttcag cttgccggtc 12180 gtcctaggga ccgttggggg gatcggaatg gtcgtgggcg cgatcggcct actctggctc 12240 aagctggccg gcgaagacgc tcctcgatca ccggcactgc ttgggccgga tgttgccctg 12300 ttggtgcttc tgcttgccat agcggcaacg ggcctcctcc ttttagcggt ccgcagcacc 12360 gaagtcatgg gcgtcgcgct cgccgtccat ctcggcgtcg tcttggcctt ctttttggtg 12420 atgccataca gcaaatttgt ccacggtatc ttcaggctca cggctctcgt gcgccatcat 12480 gctgaccgcg aggcaagtaa tggcttcgcc tccagccctc ccacgaaaaa gggttaaaca 12540 atggaacata tgaagtccgt tcgcgatcgc agtagcgtca tgcagatcgt gagagtggcg 12600 agtggcaact gtctcgagca atatgatttc ttcgtttacg gcttctatgc ggcatatatt 12660 gcgagaagct tttttccgac cggcgataac gcgacatcgc tcatgctttc attggccact 12720 tttggcgctg gtttcctcat gaggcccttg ggggcgattt ttctcgggtc ctacatcgat 12780 cgcgtcgggc gtcggaaagg cctgatcgtg acactcgcga tcatggccgt cggaaccctc 12840 accattgcga tgactccaag ctatgaggca attggattac tcgcaccggt tatcgtgctc 12900 gtcgggcgac ttttgcaggg tttttccgct ggagcagagt cgggtggcgt ctcagtgtac 12960 ttggcggaaa ttgcgtcgcc caaatcgaga ggcttcttca cctcgtggca gtctgccagc 13020 cagcaggtgg ccgtcatgat cgccgccgcg atcggtcttg cgctgcaatc aacgctttca 13080 ccggagcaaa tgaacgactg gggatggcgg gtgcccttgt tgatcggatg cttgattatc 13140 cccgtgatac tctggctgcg ccggtctctc ccggaaacga aagcctatct ccacatggag 13200 cacaaggcgc attcgatcgg cgaatccctc cgcgaattgc aacagagctg ggggctgatc 13260 ttgacgggca tggcgatgtc gatcctcacg acgaccacct tttacatgat taccgcctat 13320 acgccgacat ttggcgagaa agcactcgga ctgagcccgc aagatgtcct gctggttacc 13380 atcatggtcg gcgtgtcgaa cttcctgtgg cttccgatcg ggggtgctct ctcggatcgt 13440 atcggtagaa ccccgatcct actggtcgtg ccggtcaccg ttctcgccat cgcctttccc 13500 ctgatgagct ggctcgtcgc ggcaccgaca ttcggagcgc ttgcagctgt tctgctgact 13560 ttctccgcat gctttggact ctataatggg gcgctcatcg cgagactcac cgagattatg 13620 cctcccgcca ttagaaccct tggcttctcg ctggcgttca gtctcgcgac ctcgctgttc 13680 ggcggcttca ccccattggt aagtacggcg ctaatccacg cgacgggcag caattccgcg 13740 cctgcaatct ggctctgttt tgcggctttc atcagcttcg tcggtgtggc cgcatcgacc 13800 cggctgagcc ggccaatcgc cgaaggcgcc agataggaca atcagagaat gcccgtgcgg 13860 caatgaagcg agattcgggc ggtaggtgcg ctggcggcac ttcgcgaaga gccgttgcgg 13920 acggctgaaa cgatgatggt atgaatgggc taagacatga gagcagtagt ttaccgaaat 13980 ggcgaacttg tcctgggggc ctatgctgat ccgatacccg ccgccgggca ggtgctcgtc 14040 aagaccagag catgcggcat ctgcggatct gaccttcatt tttgcgatca tgcgcaggcg 14100 tttacgaacc ttgcatcgcg ggcgggtatc gcctctatgg aagttgattt gtgtcgagac 14160 atcgttctgg ggcatgaatt ctgtggcgag attatggagt tcgggccctc tgcggatcgt 14220 cgcttcaaac ccggacagct tgtgtgctcg ctgccgctgg cgatcggtcc gaccggagcg 14280 cggacgattg gctactcgga tgagtatccc ggcgggctcg gcgaatatat ggtcctcacg 14340 gaagcgctct tgctgcctgt tccgaacggc cttccggcga cctgcgcggc gttgacggag 14400 ccgatggcgg tgggatggca tgccgtcgag atcgcgcagg ttcaaccaca tcacatccct 14460 gtggtgatcg ggtgcggacc ggtcgggttg gcagtcgtcg ctgccctgaa acataagcaa 14520 gttgctccga ttattgcgtc ggatccatcg cccgatcggc gtgctcttgc tctgcggatg 14580 ggcgccgacg ccgttgtcga tccgcgcgaa gaatcaccct ttcgccaggc cgagaagatc 14640 gcacgcccgg tcggacaagg tggggccctg tccagctcat tgctgtcaaa gtctcaaatg 14700 atattcgaat gcgtaggggt gccgggcatg cttcggcatg cgatggacgg cgcgtccgac 14760 gggtccgaga tcatggtcgt tggcgcatgc atgcagccgg acgcgatcga gcccatgatc 14820 gggatgttta aagcgctcac gatcaaattc tcgcgaactt acacgggtga ggaattcgcc 14880 gcggtgcttc acatgatagg tgagggcgca ctcgacgtat ctccgctcgt taccgatgtg 14940 attggcctgt ccgatgtccc gtccgcgttt gaggctctac ggagtccagg cgcccaagca 15000 aaagtgattg tggacccttg gcgctgagcc tgaggatgcc aagggtgcga cgttgggcat 15060 cgtcaaagaa ggcgacgttg acccggtatg tgaacatccc catattcttc cgcagctgaa 15120 gcagttggta aacatgccaa aatatgaact gtagtattgc gtcggggttc tcattgtggg 15180 gtttgccatt gtcatcgctc gcacccggcg acaaagatta gatgtacttc cgataatccg 15240 tgctctcgac ctggccttcc ttcatatatt tcaggacctc tccgaccatg cgtgcggcgc 15300 ggatcgggat cggcaggcgt tggttcatct gggtcgagtt ccagttgatc ttcgtaagag 15360 agaacacctc ctcggctaac tgcgccgcgg tactatcgca ggatcgtctc gagcgtycgc 15420
<212> Type : DNA <211> Length : 15420 SequenceName : sequence 1 SequenceDescription :
Feature sequence: sequence 1: <221 > FeatureKey : Seq ID 1 (fum) < 222> LocationFrom : 1 < 222> LocationTo : 15420 Other Information : CDSJoin : No
Sequence <213> OrganismName : Sphingopyxis sp. <400> PreSequenceString : atgcggaacg tcagcgacaa ggcgccgccc cacgagacgc tcaccgtagt cgtcgcggca 60 atgatcgttg gcacggccgc cttgatggtg cttggaatac agcccatcct tctcggcgcc 120 cttgtagagg aggggcgtat tcccgccgag gggttgggat cggcggcaac ggtggaaata 180 ctggcgatcg cggcgggaac atgcatcgga cccgttctta tgaagacggg atatctgcgg 240 gcgaaatgcg cggcactctg cttaatgctc gccgcaatca acttcggatt gacgttgccg 300 ggtttcgatt tgcccatcgt ggcttgccga gcggcagcgg gagccctgga aggtctttcg 360 ctcagcgcgg cgatxctgat catgactcat aatcggcggc cggaccggct gagcggaata 420 tttctgggcg cgcagacgat accgcaggta atatctgctt atttgctccc gacggagatt 480 attccgcgct gggggagcgc aggcggcttc acgatcctgg gcattctcgc ggcgatcgcc 540 gcgatcgcgg ctctgtgcct cgtcgatcgc gttgagctcg atccgacgac cgttaacgac 600 gacttgcagt ggtcacccgc ggcgatcgtc atttcgatgg cggcattcgt tcaattctcg 660 ggggtcggtg ccgcatggag ctatctggag cgactggctg cgcagcacgg attttcggga 720 gaaacgatcg gtatcgccat ttccgggagt ttgctttgcc aggtaggcgg ggcttggctg 780 gccgcttgga tcggtgggcg ggtcggatat cgcttcgcct taatcgctgg gagcctgctt 840 caggcgggca acgtgatcgc attggcggtg gccgatcagc caagctggtt tatttccgct 900 tcctgtgctt tcggcctgtt ctggttggcg atgcagccct tccaaatccg cttcgcgatc 960 gcgatagata acagccggca gcttgctgta ctgctgacgc cgatcgccct cgtcgggttg 1020 agcgcggggc ccttgttgct ctctcgcttt gccggggcga ccgacttgcg ctggatcttt 1080 gtggggagtt cgaccttgtt gctggccagc gcgcttctgt atctttgcgc ttctctgttt 1140 caaccgcgcg gaaaggtgat cgctgaaacg gtggacgtat ga 1182
<212> Type : DNA <211> Length :1182 SequenceName : sequence 2 SequenceDescription :
Feature sequence: sequence 2: <221 > FeatureKey : Seq ID 2 (fumA) < 222> LocationFrom : 1 < 222> LocationTo : 1182 Other Information : CDSJoin : No
Datebase
Sequence: sequence 2: <308> DBAccessionNumber: FJ426269 < 309> DBEntryDate : 2009-06-11 < 313> From : 1 < 313> To: 1182
Sequence <213> OrganismName : Sphingopyxis sp. <400> PresequenceString : MRNVSDKAPP HETLTVWAA MIVGTAALMV LGIQPILLGA LVEEGRIPAE GLGSAATVEI 60 LAIAAGTCIG PVLMKTGYLR AKCAALCLML AAINFGLTLP GFDLPIVACR AAAGALEGLS 120 LSAAILIMTH NRRPDRLSGI FLGAQTIPQV I5AYLLPTEI IPRWGSAGGF TILGILAA1A 180 AIAALCLVDR VELDPTTVND DLQWSPAAIV ISMAAFVQFS GVGAAWSYLE RLAAQHGFSG 240 ETIG1AISGS LLCQVGGAWL AAWIGGRVGY RFALIAGSLL QAGNVIALAV ADQPSWFISA 300 SCAFGLFWLA MQPFQIRFAI AIDNSRQLAV LLTPIALVGL SAGPLLLSRF AGATDLRWIF 360 VGSSTLLLAS ALLYLCASLF QPRGKVIAET VDV 393
<212> Type : PRT < 211 > Length : 393 SequenceName : sequence 3 SequenceDescription :
Feature
Sequence: sequence 3: <221 > FeatureKey : Seq ID 3 (FumA) < 222> LocationFrom : 1 < 222> LocationTo : 393 Other Information : CDSJoin : No
Datebase
Sequence: sequence 3: <308> DBAccessionNumber: FJ426269 < 309> DBEntryDate : 2009-06-11 < 313> From : 1 < 313> To :393
Sequence <213> OrganismName : Sphingopyxis sp. <400> PreSequenceString : atgacatcgc åggtcaagct tcgtagcgcg gcaaagcggc cgcgcagtcc taaaagcgag 60 cgaggtcttg ctcgttacga gtccttgctt gatgcgaccg acaggctgtt ggtcgatcta 120 gaccccgatc aggtcggtct ctatcagatt gcagaggaag cgggtgcctc accgtcgtcc 180 gtctatcatt tctttccgac caaggaagtg gctcatctcg ctctgatgcg ccgctatctg 240 gaggggctcc ggaatctcga cgcgatggaa gtcgacatcg gccagctcga aagctggcag 300 gacctgatga agttggatca gatcagggcg cgagactatt ataatagcca cccgcccgcc 360 ctcaagcttc tgttcggcgg atatggcggg gtcgaggcca gaaagcttga cgagcgatac 420 tccgaggaaa tcgtgagctc catgtatggc agatacaacg gcattttcca tatgccgcaa 480 atggagaatg aggctctcat gttcacgatc tgcttcgcaa ttctcgacgc ggtatgggcc S40 gtctcctttc gccggttcgg tgaaattacg tcggattttc ttcgggaggg gcaagcggct 600 tgcattgcct attgccgaca ctatctgccc gagcgaacgc catcagcgtg a 651
<212> Type : DNA < 211 > Length : 651 SequenceName : sequence 4 SequenceDescription :
Feature
Sequence: sequence 4: <221 > FeatureKey : seq ID 4 (fumB) < 222> LocationFrom : 1 < 222> LocationTo : 651 Other Information : CDSJoin : No
Datebase
Sequence: sequence 4: <308> DBAccessionNumber: FJ426269 < 309> DBEntryDate : 2009-06-11 < 313> From : 1 < 313> To : 651
Sequence <213> OrganismName : sphingopyxis sp. <400> PreSequenceString : MTSQVKLRSA AKRPRSPKSE RGLARYESLL DATDRLLVDL DPDQVGLYQI AEEAGASPSS 60 VYHFFPTKEV AHLALMRRYL EGLRNLDAME VDIGQLESWQ DLMKLDQIRA RDYYNSHPPA 120 LKLLFGGYGG VEARKLDERY SEEIVSSMYG RYNGXFHMPQ MENEALMFTI CFAXLDAVWA 180 VSFRRFGEIT SDFLREGQAA CIAYCRHYLP ERTPSA 216
<212> Type : PRT < 211> Length : 216 SequenceName : sequence 5 SequenceDescription :
Feature
Sequence: sequence 5: <221 > FeatureKey : Seq ID 5 (FumB) < 222> LocationFrom : 1 < 222> LocationTo : 216 Other Information : CDSJoin : No
Datebase
Sequence: sequence 5: <308> DBAccessionNumber: FJ426269 < 309> DBEntryDate : 2009-06-11 < 313> From : 1 < 313> To :216
Sequence <213> OrganismName : sphingopyxis sp. <400> PreSequenceString : gtggccagca ågttcaactg tgagttactc gatctgcgat catttgttgc ggtgtatgaa 60 acgcgaagtt ttagccacgc cgcgcggctt ctgaatcaat cgcagcccgc gctcagccgg 120 agaatccagc gcctcgagag tctcgtgggc ggtccgttgt tcgagcggac cagtcggtcg 180 cttgccgaaa cggcgctcgg caaagagttg ctcccggtcg cccaccgagc gttggaactt 240 gtcgatacgt cgctgtttgc gtcgcccaat gtccgggagt tccgctggac agacatcacg 300 attgcctgtg tacagaccgc cgccttccat gttctcccgc gagctgcgcg cttgtacatg 360 gatcaaaatc cgagggtccg actccgcatc cttgacgtgc cggcggtcga ggctgcggac 420 ctggttgcga gcggcgaggc ggagttcggc atcagcattg agagcctgtt gccatcaagc 480 ctgcggttcg atgcgctcca cgaggacccg ttcggcctgg catgccaccg aagccatccg 540 ctggcgtcgc tcgagatcct tgaatggacg caattgaaag gtgaaagcct gatcgccgtt 600 caccgtgcga gccggaaccg cacgttgctc gatgccgaac tcgcgcgcaa caatatcgcg 660 ctggaatggc ggtatgaggt cgcgcatctg acgacggcgc tgggattgat cgatgcgcaa 720 ttgggtgtcg ctgttatgcc ccgcatggtt atgccccgct cgggtcggtc ggaggtcgtc 780 tggcgccccg tcgtcgcgcc ggtcgtccaa cgcacgatcg gcatcgttca gcgccgcacc 840 ggctcgatgc accctgccgc acagcaattg cttgcgcggc tccgcgcggc ctggtcgtcc 900 gccaatctgg gcgacatcgc gtctcgcgaa gatggggcat cgtga 945
<212> Type : DNA < 211 > Length : 945 SequenceName : sequence 6 SequenceDescription :
Feature
Sequence: sequence 6: < 221 > FeatureKey : Seq ID 6 (fumC) < 222> LocationFrom : 1 < 222> LocationTo : 945 Other Information : CDSJoin : No
Datebase
Sequence: sequence 6: < 308> DBAccessionNumber: FJ426269 < 309> DBEntryDate : 2009-06-11 < 313> From : 1 < 313> To :945
Sequence <213> OrganismName : Sphingopyxis sp. <400> PreSequenceString : VASKFNCELL DLRSFVAVYE TRSFSHAARL LNQSQPALSR RIQRLESLVG GPLFERTSRS 60 LAETALGKEL LPVAHRALEL VDTSLFASPN VREFRWTDIT IACVQTAAFH VLPRAARLYM 120 DQNPRVRLRI LDVPAVEAAD LVASGEAEFG I5IESLLPSS LRFDALHEDP FGLACHRSHP 180 LASLEILEWT QLKGESLIAV HRASRNRTLL DAELARNNIA LEWRYEVAHL TTALGLIDAQ 240 LGVAVMPRMV MPRSGRSEW WRPWAPWQ RTIGIVQRRT GSMHPAAQQL LARLRAAWSS 300 ANLGDXASRE DGAS 314
<212> Type : PRT < 211 > Length : 314
SequenceName : sequence 7 SequenceDescription :
Feature
Sequence: sequence 7: <221 > FeatureKey : Seq ID 7 (FumC) < 222> LocationFrom : 1 < 222> LocationTo : 314 Other Information : CDSJoin : No
Datebase sequence: sequence 7: <308> DBAccessionNumber: FJ426269 < 309> DBEntryDate : 2009-06-11 < 313> From : 1 < 313> To :314
Sequence <213> OrganismName : Sphingopyxis sp. <400> PresSequenceString : gtgaaagagc accaatgccg tggcggccgg gcgtcccccg ctgcgcccgc cacgtggctt 60 gcgcggatca gcgtttcccg gggggcctcc gccatcgcct ggaccttcat gcttggcgca 120 actgccattc ccgtggctgc gcaaactgac gatccgaagc tcgttcgtca tacccagtcg 180 ggcgccgtcg agggcgtcga gggcgacgtc gagacttttt tgggaatacc cttcgcggct 240 ccgccggtcg gcgacctgcg atggcggccg ccggctccgc cgagggcgtg ggcgggcacc 300 agggacggcc gccgctttgc gcccgattgc atcgggaacg agcggcttag agaggggagc 360 cgggctgccg ggacgagcga agactgcctc tatctgaata tctggtctcc caaacaggtc 420 ggtaaggggg ggctccccgt catgatctgg gtttacggcg gtgggtttag cggcggttct 480 ggcgcggtgc catattatga cggctctgcg ctcgcgcaga agggcgtggt ggtcgtcacg 540 ttcaactatc gcgccgggat tctgggcttt cttgcccatc cggcgctttc aaaggaaagt 600 ccgaatggcg tgtcgggcaa ctatggtctt ctcgacatgc tcgcggcgtt caaatgggtt 660 cagaacaaca taagggagtt cggcggagac ccgaaccgtg tcacggtctt tggcgagtcc 720 gccggcgcga gcgcgctcgg actgctcctg acctcgccgc tcagtgagag cgccttcaat 780 caggcgatac tgcaaagtcc gggtctggcc aggccgctcg ccacgctttc tgaaagcgaa 840 gcgaatgggc tggagctggg agccgatatt tctgctctac ggcgtgccga tgcgggcgaa 900 ttgacgaaga tcgcgcaatc gcgaataccc atgtcgcgcc agttcaccaa gccgcggccg 960 atgggtccga ttctggacgg ctatgttttg cgcacccttg acgtcgatgc cttcgccaag 1020 ggggccttcc gcaagatacc cgttctggtc ggcggaaacg ccgacgaagg gcgcgctttt 1080 acggatcgcc tgccggtcaa aacggtcctt gaatatcgag cctatctcac agaacaattt 1140 ggtgacgagg cggacgcatg ggagcgttgt tatcccgcga actccgacgc cgacgtcccc 1200 gccgccgttg cccgtctttt tggggatagt cagttcaaca acgggatcga gctgctctcg 1260 gcagccttcg cgaaatggcg aacgccgctt tggagatatc gctttacggg cattccagga 1320 gccggccgtc gccccgccac gcatggagac gaaattccct atgtcttcgc aaatctgggg 1380 ccgtcgtccg tatctatgtt tgggtcgctc gaaggcggcg ccggggcgtc ggacatcaaa 1440 cttgcgaccg aaatgtccgc ggcctgggtg agcttcgcgg tgcacggggt ccccgatcag 1500 ggcacgaaat cgcactggcc gcgcttcgag cggcgagggg agatcatgac ttttggttcg 1560 caggttggct ctggggaagg tcttggagtt tcgccgagca aagcctgcca accctcaaaa 1620 tag 1623
<212> Type : DNA < 211 > Length : 1623 SequenceName : sequence 8 SequenceDescription :
Feature
Sequence: sequence 8: <221 > FeatureKey : Seq ID 8 (fumD) < 222> LocationFrom : 1 < 222> LocationTo : 1623 Other Information : CDSJoin : No
Datebase
Sequence: sequence 8: <308> DBAccessionNumber: FJ426269 < 309> DBEntryDate : 2009-06-11 < 313> From : 1 < 313> To : 1623
Sequence <213> OrganismName : sphingopyxis sp. <400> PreSequenceString : VKEHQCRGGR ASPAAPATWL ARISVSRGAS AIAWTFMLGA TAIPVAAQTD DPKLVRHTQS 60 GAVEGVEGDV ETFLGIPFAA PPVGDLRWRP PAPPRAWAGT RDGRRFAPDC IGNERLREGS 120 RAAGTSEDCL YLNIWSPKQV GKGGLPVMIW VYGGGFSGGS GAVPYYDGSA LAQKGVWVT 180 FNYRAGILGF LAHPALSKES PNGVSGNYGL LDMLAAFKWV QNNIREFGGD PNRVTVFGES 240 AGASALGLLL TSPLSESAFN QAILQSPGLA RPLATLSESE ANGLELGADI SALRRADAGE 300 LTKIAQSRIP MSRQFTKPRP MGPILDGYVL RTLDVDAFAK GAFRKIPVLV GGNADEGRAF 360 TDRLPVKTVL EYRAYLTEQF GDEADAWERC YPANSDADVP AAVARLFGDS QFNNGIELLS 420 AAFAKWRTPL WRYRFTGIPG AGRRPATHGD EIPYVFANLG PSSV5MFG5L EGGAGASDIK 480 LATEMSAAWV SFAVHGVPDQ GTKSHWPRFE RRGEIMTFGS QVGSGEGLGV SPSKACQPSK 540
<212> Type : PRT < 211 > Length : 540 SequenceName : sequence 9 SequenceDescription :
Feature sequence: sequence 9: <221 > FeatureKey : Seq ID 9 (FumD) < 222> LocationFrom : 1 < 222> LocationTo : 540 Other Information : CDSJoin : No
Datebase
Sequence: sequence 9: <308> DBAccessionNumber: FJ426269 < 309> DBEntryDate : 2009-06-11 < 313> From : 1 < 313> To : 540
Sequence <213> OrganismName : Sphingopyxis sp. <400> PreSequenceString : ttggagtttc gccgagcaaa gcctgccaac cctcaaaata gcgcccggcc tgtgcgtgct 60 tcagcacgcc gtcccgcttt gcgggcgacg ggctgtgccc tctgcctaga aggaagtaag 120 ttgcgctacg acgtcgcgat aattggaggt ggcaacgctg cattgacggc agccgtgacg 180 gcgcgtgaag cgggggcctc ggttcttgtg atcgagcatg cgccgcgcgc catgcgcggc 240 ggcaacagtc gtcacacacg caatatgcgt acgatgcacg aacgtcccct gtcgccgttg 300 accggtgaat attcggcgga cgaatattgg aatgatcttg tccgcgtcac gggggggcgc 360 accgacgaag aactcgcgcg gctcgttatc cgcaacacca ccgacgctat tcccttcatg 420 acgcgctgcg gtgtgcgttt ccagccctcg ctgtcgggca cgctgagttt atcgcgaacc 480 aacgcattct tccttggcgg cgggaaggcg cttgtaaacg catattacgc cacggccgaa 540 cggctaggcg tcgatattct ctatgattct gaggtgaccg agatcaacct tcagcaaggc 600 gtcgtgcagc gtctgcaatt gcgcagccgg ggattccctg tcgaagtgga agccaaggct 660 gccatcgcct cgtccggagg attccaggca aatcttgact ggctctcaag cgcatggggg 720 cctgctgcgg cgaacttcat cgtacggggc acgccatatg cgactggcac ggtgctcaag 780 aacctgttgg agcaaggcgt cgcctcggtg ggagatccaa cccaatgcca tgctgtcgcg 840 atcgatgggc gagcgcccaa atacgacggc ggcatcgtca cacgactgga ctgcgttccc 900 ttctcgatcg tcgtcaacaa ggacgccttg cgcttctacg atgaaggcga agatgtgtgg 960 ccgaagcgtt acgccatatg gggtcgcttg gtggcacagc agcctgatca gatcgctttc 1020 agcataatcg atcggcaggc cgaagacctc ttcatgccgt cagtgttccc ccccgtgcaa 1080 gcggacacga tcgcgggtct ggccgagaaa ctcggtctga atcccgtaac cctggaacgc 1140 acggtggccg aattcaacgc cgcatgcgtg cccggcgaat tcggcggcca agatctcgac 1200 gacctccaca ccgagggaat cgaaccaaag aaatccaact gggcccgacc gattattgtg 1260 cccccgttca gcgcctatcc tctccggccc gggatcacct tcacctatct cggcgtcaag 1320 gtagacagcc gtgcgcgggt catcatggag acaggtgagc cgacaaaaaa cctgtttgct 1380 tcgggggaaa taatggcggg cagcattctc ggccaaggtt atctcgctgg atttggaatg 1440 gcgattggta ccgtattcgg ccgcatcgcg ggttgggagg ccgcacgtca tgcaggattt 1500 tga 1503
<212> Type : DNA < 211 > Length : 1503
SequenceName : sequence 10 SequenceDescription :
Feature sequence: sequence 10: <221 > FeatureKey : Seq ID 10 (fumE) < 222> LocationFrom : 1 < 222> LocationTo : 1503
Other Information : CDSJoin : No
Datebase sequence: sequence 10: <308> DBAccessionNumber: FJ426269 < 309> DBEntryDate : 2009-06-11 < 313> From : 1 < 313> To: 1503
Sequence <213> OrganismName : Sphingopyxis sp. <400> PreSequenceString : <400> Présequencestri ng : LEFRRAKPAN PQNSARPVRA SARRPALRAT GCALCLEGSK LRYDVAIXGG GNAALTAAVT 60 AREAGASVLV IEHAPRAMRG GNSRHTRNMR TMHERPLSPL TGEYSADEYW NDLVRVTGGR 120 TDEELARLVI RNTTDAIPFM TRCGVRFQPS LSGTLSLSRT NAFFLGGGKA LVNAYYATAE 180 RLGVOILYOS EVTEINLQQG WQRLQLRSR GFPVEVEAKA AIASSGGFQA NLDWLSSAWG 240 PAAANFIVRG TPYATGTVLK NLLEQGVASV GDPTQCHAVA IDGRAPKYDG GIVTRLDCVP 300 fsiwnkdal rfydegedvw PKRYAIWGRL vaqqpdqiaf SIIDRQAEDL FMPSVFPPVQ 360 ADTIAGLAEK LGLNPVTLER TVAEFNAACV PGEFGGQDLD DLHTEGIEPK KSNWARPIIV 420 PPFSAYPLRP gitftylgvk VDSRARVXME TGEPTKNLFA SGEIMAGSIL GQGYLAGFGM 480 aigtvfgria GWEAARHAGF 500
<212> Type : PRT < 211 > Length : 500 SequenceName : sequence 11 SequenceDescription :
Feature
Sequence: sequence 11: <221 > FeatureKey : seq ID 11 (FumE) < 222> LocationFrom : 1 < 222> LocationTo : 500
Other Information ; CDSJoin : No
Datebase
Sequence: sequence 11: <308> DBAccessionNumber: FJ426269 < 309> DBEntryDate : 2009-06-11 < 313> From : 1 < 313> To :500
Sequence <213> OrganismName : Sphingopyxis sp. <400> PresequenceString : atgcaggatt ttgatctcgt åaaaatgctg tctgacttgc cgtcggcgcc ggagctggaa 60 gccaggcgcg ttatggaggt gtgcaacgcg tgccgctatt gcgaagggtt ctgcgcggta 120 tttcctgcaa tgaccttgca gcgtcatttc gccagcggcg atctcagcca cctcgccaat 180 ctctgccact cgtgccaagg ttgctattac gcctgccaat acgcccctcc gcatgagttc 240 ggaataaacg ttccaaaggc gctgtcggag ttgcggctcg agagctacga gcagcatgct 300 tggccccggc cggtcgccgc tctctatcgc aagaatgcgc tcatcatttc catcttgtcg 360 gcggcatgca taaccggcgt ccttctgctt gccgccatct tcaacgggga tgcacttttc 420 gcgaaacacg catcggtgcc cggcggcggg ttttacaacg ttattcctta tcaggcgatg 480 attgccgtcg cggcgaccac atttctttat tccgcgctgg cgctggcgat cagtctcgtt 540 cgcttttcgc ggacgatcgg tctgggaatt aaggttcttt atcagcacgt gccggttctt 600 cgggcgctac gcgatgcggc gactctgcga tatctcggcg gcagcgacgg cgaggggtgt 660 aacgacgcgg acgagacatt ttcgacgacc cggcgaaaat ttcatcacgc ccttgcctat 720 ggcttcggac tttgtttcgc ggccacagcc acgggcacga tctacgatca tatgttcggc 780 tggccggcgc cctatgcgct tttcagcttg ccggtcgtcc tagggaccgt tggggggatc 840 ggaatggtcg tgggcgcgat cggcctactc tggctcaagc tggccggcga agacgctcct 900 cgatcaccgg cactgcttgg gccggatgtt gccctgttgg tgcttctgct tgccatagcg 960 gcaacgggcc tcctcctttt agcggtccgc agcaccgaag tcatgggcgt cgcgctcgcc 1020 gtccatctcg gcgtcgtctt ggccttcttt ttggtgatgc catacagcaa atttgtccac 1080 ggtatcttca ggctcacggc tctcgtgcgc catcatgctg accgcgaggc aagtaatggc 1140 ttcgcctcca gccctcccac gaaaaagggt taa 1173
<212> Type : DNA < 211 > Length : 1173
SequenceName : sequence 12 SequenceDescription :
Feature
Sequence: sequence 12: <221 > FeatureKey : Seq ID 12 (fumF) < 222> LocationFrom : 1 < 222> LocationTo :1173 Other information : CDSJoin : No
Datebase
Sequence: sequence 12: <308> DBAccessionNumber: FJ426269 < 309> DBEntryDate : 2009-06-11 < 313> From : 1 < 313> To: 1173 sequence <213> OrganismName : Sphingopyxis sp. <400> PreSequenceString : MQDFDLVKML SDLPSAPELE ÅRRVMEVCNA CRYCEGFCAV FPAMTLQRHF ASGDLSHLAN 60 LCHSCQGCYY ACQYAPPHEF GINVPKALSE LRLESYEQHA WPRPVAALYR KNALIISILS 120 AACITGVLLL AA1FNGDALF AKHASVPGGG FYNVIPYQAM IAVAATTFLY SALALAISLV 180 RFSRTIGLGI KVLYQHVPVL RALRDAATLR YLGGSDGEGC NDADETFSTT RRKFHHALAY 240 GFGLCFAATA TGTIYDHMFG WPAPYALFSL PVVLGTVGGI GMWGAIGLL WLKLAGEDAP 300 RSPALLGPDV ALLVLLLAIA ATGLLLLAVR STEVMGVALA VHLGWLAFF LVMPYSKFVH 360 GIFRLTALVR HHADREA5NG FAS5PPTKKG 390
<212> Type : PRT < 211 > Length : 390 SequenceName : sequence 13 SequenceDescription :
Feature
Sequence: sequence 13: <221 > FeatureKey : Seq ID 13 (FumF) < 222> LocationFrom : 1 < 222> LocationTo : 390 Other Information : CDSJoin : No
Datebase
Sequence: sequence 13: <308> DBAccessionNumber: FJ426269 < 309> DBEntryDate : 2009-06-11 < 313> From : 1 < 313> To :390
Sequence <213> OrganismName : Sphingopyxis sp. <400> PresequenceString : atggaacata tgaagtccgt tcgcgatcgc agtagcgtca tgcagatcgt gagagtggcg 60 agtggcaact gtctcgagca atatgatttc ttcgtttacg gcttctatgc ggcatatatt 120 gcgagaagct tttttccgac cggcgataac gcgacatcgc tcatgctttc attggccact 180 tttggcgctg gtttcctcat gaggcccttg ggggcgattt ttctcgggtc ctacatcgat 240 cgcgtcgggc gtcggaaagg cctgatcgtg acactcgcga tcatggccgt cggaaccctc 300 accattgcga tgactccaag ctatgaggca attggattac tcgcaccggt tatcgtgctc 360 gtcgggcgac ttttgcaggg tttttccgct ggagcagagt cgggtggcgt ctcagtgtac 420 ttggcggaaa ttgcgtcgcc caaatcgaga ggcttcttca cctcgtggca gtctgccagc 480 cagcaggtgg ccgtcatgat cgccgccgcg atcggtcttg cgctgcaatc aacgctttca 540 ccggagcaaa tgaacgactg gggatggcgg gtgcccttgt tgatcggatg cttgattatc 600 cccgtgatac tctggctgcg ccggtctctc ccggaaacga aagcctatct ccacatggag 660 cacaaggcgc attcgatcgg cgaatccctc cgcgaattgc aacagagctg ggggctgatc 720 ttgacgggca tggcgatgtc gatcctcacg acgaccacct tttacatgat taccgcctat 780 acgccgacat ttggcgagaa agcactcgga ctgagcccgc aagatgtcct gctggttacc 840 atcatggtcg gcgtgtcgaa cttcctgtgg cttccgatcg ggggtgctct ctcggatcgt 900 atcggtagaa ccccgatcct actggtcgtg ccggtcaccg ttctcgccat cgcctttccc 960 ctgatgagct ggctcgtcgc ggcaccgaca ttcggagcgc ttgcagctgt tctgctgact 1020 ttctccgcat gctttggact ctataatggg gcgctcatcg cgagactcac cgagattatg 1080 cctcccgcca ttagaaccct tggcttctcg ctggcgttca gtctcgcgac ctcgctgttc 1140 ggcggcttca ccccattggt aagtacggcg ctaatccacg cgacgggcag caattccgcg 1200 cctgcaatct ggctctgttt tgcggctttc atcagcttcg tcggtgtggc cgcatcgacc 1260 cggctgagcc ggccaatcgc cgaaggcgcc agatag 1296
<212> Type : DNA < 211> Length : 1296 SequenceName : sequence 14 SequenceDescription :
Feature
Sequence: sequence 14: <221 > FeatureKey : Seq ID 14 (fumG) < 222> LocationFrom : 1 < 222> LocationTo : 1296
Other Information : CDSJoin : No
Datebase
Sequence: sequence 14: <308> DBAccessionNumber: FJ426269 < 309> DBEntryDate : 2009-06-11 < 313> From : 1 < 313> To: 1296
Sequence <213> OrganismName : sphingopyxis sp. <400> PresequenceString : MEHMKSVRDR SSVMQIVRVA SGNCLEQYDF FVYGFYAAYI ARSFFPTGDN ATSLMLSLAT 60 FGAGFLMRPL GAIFLGSYID RVGRRKGLIV TLAIMAVGTL TIAMTPSYEA IGLLAPVIVL 120 VGRLLQGFSA GAESGGVSVY LAEIASPKSR GFFTSWQSAS QQVAVMIAAA IGLALQSTLS 180 PEQMNDWGWR VPLLIGCLII PVILWLRRSL PETKAYLHME HKAHSIGESt RELQQSWGLI 240 LT6MAMSILT TTTFYMITAY TPTFGEKALG LSPQDVLLVT IMVGVSNFLW LPIGGALSDR 300 IGRTPILLW PVTVLAIAFP LMSWLVAAPT FGALAAVLLT FSACFGLYNG ALIARLTEIM 360 PPAIRTLGFS LAFSLATSLF GGFTPLVSTA LIHATGSNSA PAIWLCFAAF ISFVGVAAST 420 RLSRPIAEGA R 431
<212> Type : PRT < 211 > Length : 431 SequenceName : sequence 15 SequenceDescription :
Feature
Sequence: sequence 15: <221 > FeatureKey : Seq ID 15 (FumG) < 222> LocationFrom : 1 < 222> LocationTo : 431 Other Information : CDSJoin : No
Datebase
Sequence: sequence 15: <308> DBAccessionNumber: FJ426269 < 309> DBEntryDate : 2009-06-11 < 313> From : 1 < 313> To : 431
Sequence <213> OrganismName : Sphingopyxis sp. <400> PreSequenceString : <400> PresequenceString : atgagagcag tagtttaccg aaatggcgaa cttgtcctgg gggcctatgc tgatccgata 60 cccgccgccg ggcaggtgct cgtcaagacc agagcatgcg gcatctgcgg atctgacctt 120 catttttgcg atcatgcgca ggcgtttacg aaccttgeat cgcgggcggg tatcgtctct 180 atggaagttg atttgtgtcg agacatcgtt ctggggcåtg aattctgtgg cgagattatg 240 gagttcgggc cctctgcgga tcgtcgcttc aaacccggac agcttgtgtg ctcgctgccg 300 ctggcgatcg gtccgaccgg agcgcggacg attggctact cggatgagta tcccggcggg 360 ctcggcgaat atatggtcct cacggaagcg ctcttgctgc ctgttccgaa cggccttccg 420 gcgacctgcg cggcgttgac ggagccgatg gcggtgggat ggcatgccgt cgagatcgcg 480 caggttcaåc cacatcacat ccctgtggtg atcgggtgcg gaccggtcgg gttggcagtc 540 gtcgctgccc tgaaacataa gcaagttgct ccgattattg cgtcggatcc atcgcccgat 600 cggcgtgctc ttgctctgcg gatgggcgcc gacgccgttg tcgatccgcg cgaagaatca 660 ccctttcgcc aggccgagaa gatcgcacgc ccggtcggac aaggtggggc cctgtccagc 720 tcattgctgt caaagtctea aatgatattc gaatgcgtag gggtgccggg catgcttcgg 780 catgcgatgg acggcgcgtc cgacgggtcc gagatcatgg tcgttggcgc atgcatgcag 840 ccggacgcga tcgagcccat gatc'gggatg tttaaagcgc tcacgatcaa attctcgcga 900 acttacacgg gtgaggaatt cgccgcggtg cttcacatga taggtgaggg cgcactcgac 960 gtatctccgc tcgttaccga tgtgattggc ctgtccgatg tcccgtccgc gtttgaggct 1020 ctacggagtc caggcgccca agcaaaagtg attgtggacc cttggcgctg a 1071
<212> Type : DNA < 211 > Length : 1071 SequenceName : sequence 16 SequenceDescription :
Feature
Sequence: sequence 16: <221 > FeatureKey : Seq ID 16 (fumH) < 222> LocationFrom : 1 < 222> LocationTo : 1071 Other Information : CDSJoin : No
Datebase
Sequence: sequence 16: <308> DBAccessionNumber: FJ426269 < 309> DBEntryDate : 2009-06-11 < 313> From : 1 < 313> To : 1071
Sequence <213> OrganismName : Sphingopyxis sp. <400> PreSequenceString : MRAWYRNGE LVLGAYADPI PAAGQVLVKT RACGICGSDL HFCDHAQAFT NLASRAGIAS 60 MEVDLCRDIV LGHEFCGEIM EFGPSADRRF KPGQLVCSLP LAIGPTGART IGYSDEYPGG 120 LGEYMVLTEA LLLPVPNGLP ATCAALTEPM AVGWHAVEXA QVQPHHIPW IGCGPVGLAV 180 VAALKHKQVA PIIASDPSPD RRALALRMGA DAWDPREES PFRQAEKIAR PVGQGGALSS 240 SLL5KSQMIF ECVGVPGMLR HAMDGASDGS EIMWGACMQ PDAIEPMIGM FKALTIKFSR 300 TYTGEEFAAV LHMIGEGALD VSPLVTDVIG LSDVPSAFEA LRSPGAQAKV IVDPWR 356
<212> Type : PRT < 211 > Length : 356 SequenceName : sequence 17 SequenceDescription :
Feature
Sequence: sequence 17: <221 > FeatureKey : Seq ID 17 (FumH) < 222> LocationFrom : 1 < 222> LocationTo : 356 Other Information : CDSJoin : No
Datebase
Sequence: sequence 17: <308> DBAccessionNumber: FJ426269 < 309> DBEntryDate : 2009-06-11 < 313> From : 1 < 313> To : 356
Sequence <213> OrganismName : Sphingopyxis sp. <400> PreSequenceString : atggcgaacg gaacaaggca gaaagatctc agagaacgcg ccgaacgggt cattccgggc 60 gggatgtacg gccacgagtc gacacggttg ctgccgccag aattccccca gttcttcagg 120 cgcgcgctgg gggcacgaat ttgggacgcc gacgagcagc cctatatcga ctatatgtgc 180 gcgtatgggc caaatttgct cggttaccgg caatccgaaa tcgaagccgc ggctgatgcg 240 cagcgacttc tcggcgacac catgaccggt ccttcggaga tcatggtcaa cctcgccgaa 300 gcctttgtgg gcatggtccg tcatgcggat tgggcgatgt tctgcaaaaa tggcagcgat 360 gccacctcaa cggcgatggt tctcgcgcgt gcccatacgg ggcgcaaaac catattatgc 420 gccaaaggcg cctatcatgg cgcttccccg tggaacactc cgcatactgc cgggattctc 480 gcttccgatc gcgtgcatgt cgcatattat acctataacg acgcccaaag cttatcggac 540 gcgttcaagg cgcacgatgg cgatattgcg gctgtctttg ccacaccttt ccgacacgaa 600 gtatttgagg accaggccct cgcccagctt gagttcgcgc gcaccgctcg aaaatgttgt 660 gacgagaccg gtgcgcttct ggtcgttgac gatgtgcgcg caggtttccg ggtggcgcgc 720 gattgcagct ggacgcattt gggtatcgaa cccgatctca gttgctgggg aaaatgcttt 780 gcgaatggct atccgatctc cgccctgctg ggctcgaaca aggcgcgcga tgcggcgcgg 840 gatatatttg tgaccggctc cttctggttc tctgcggtac cgatggcggc cgcgatcgaa 900 accctcagga tcattcgaga gacgccttat ctcgaaacgc tgatcgccag cggcgccgcc 960 ctgcgggcag gcctggaggc acagtctcag cgccatggtc ttgagttgaa gcagacgggc 1020 ccggcgcaga tgccgcaaat attctttgcg gacgatcccg attttcggat cggctatgcg 1080 tgggccgcgg cgtgcctgaa gggcggcgtc tatgttcatc cctatcacaa tatgtttctc 1140 tctgcggccc atacagttga cgatgtaacg gagaccctcg aggcgacgga tcgcgcgttc 1200 agcgcggtcc tcagagattt tgcgtctctc cagcctcatc ccattttaat gcaactcgcc 1260 ggtgcttga 1269
<212> Type : DNA < 211 > Length : 1269 SequenceName : sequence 18 SequenceDescription :
Feature sequence: sequence 18: <221 > FeatureKey : Seq ID 18 (fuml) < 222> LocationFrom : 1 < 222> LocationTo : 1269 Other Information : CDSJoin : No
Datebase
Sequence: sequence 18: <308> DBAccessionNumber: FJ426269 < 309> DBEntryDate : 2009-06-11 < 313> From : 1 < 313> To: 1269
Sequence <213> OrganismName : Sphingopyxis sp. <400> PreSequenceString : MANGTRQKDL RERAERVIPG GMYGHESTRL LPPEFPQFFR RALGARIWDA DEQPYIDYMC 60 AYGPNLLGYR QSEIEAAADA QRLLGDTMTG PSEIMVNLAE AFVGMVRHAD WAMFCKNGSD 120 ATSTAMVLAR AHTGRKTILC AKGAYHGASP WNTPHTAGIL ASDRVHVAYY TYNDAQSLSD 180 AFKAHDGDIA AVFATPFRHE VFEDQALAQL EFARTARKCC DETGALLWD DVRAGFRVAR 240 DCSWTHLGIE PDLSCWGKCF ANGYPISALL GSNKARDAAR DIFVTGSFWF SAVPMAAAIE 300 TLRIIRETPY LETLIASGAA LRAGLEAQSQ RHGLELKQTG PAQMPQIFFA DDPDFRIGYA 360 WAAACLKGGV YVHPYHNMFL SAAHTVDDVT ETLEATDRAF SAVLRDFASL QPHPILMQLA 420 GA 422
<212> Type : PRT < 211 > Length : 422 SequenceName : sequence 19 SequenceDescription :
Feature Séquence: sequence 19: <221 > FeatureKey : Seq ID 19 (Fuml) < 222> LocationFrom : 1 < 222> LocationTo : 422 Other Information : CDSJoin : No
Datebase
Sequence: sequence 19: <308> DBAccessionNumber: FJ426269 < 309> DBEntryDate : 2009-06-11 < 313> From : 1 < 313> To :422
Sequence <213> OrganismName : Sphingopyxis sp. <400> PreSequenceSjtring : atgtatcgga agttcagaat cgaaaagccc ggcaaggcaa atagtttgct cggcgcagta 60 gcgctcggca ccctcgcatt tcctgtctct gccagtgctc aggatagcga tcccgcatcg 120 ataggtcagc cggacgaagc ggacacggac cggggaacga gcgaaatcgt cgtgaccggc 180 agccgcctcc agaacggctt caattcgccg acgccggtta cagccgtatc cagcgagcag 240
ttgaaggagg catctccgac caaccttgcc gacgcactca accagctgcc cgtgttcaac BOO gacagcttga agacctccaa ccctggcacg acacccggaa cggggaacag cggtcagaac 360 ctgctcaaca tgcgcggcct cgggtcaaac cggaacctcg tcctgctgaa cggcaaccgt 420 ttcgtcgcga ccaatttcac aggctcggtc gatatcaacg tgctgccgca ggcgttggtc 480 aagcgcgtcg atgtcgtgac gggcggcgcc tcggccgcct acggttccga tgccgtttcg 540 ggcgtcatca acttcgtgct cgacgaagat ctggaaggca tcagggccga gctccagtcg 600 ggtgtttcaa cccgcggcga cctcccgtcc tacggcggtt cgatcgcctt cggcacttcg 660 tttgccgacg accggttgca cttgctcggc agcttcgaat attttcgaca ggacggaatc 720 cgggccgatg aagcaacggg tcgccgctgg ttcgacatcg ccgccggcca atatcccgtg 780 cccggcgcta cgacaggcgt cacggtcgtg cccgatattc gcagttctcg cggatcctac 840 ggcggacttg tcacgtccgg ccctctgaaa ggcatcgcgt ttttgcccgg aggagtccta 900 gggaccttcg actacgggaa ttttacgagc tcgtcgttcc agagcggcgg cgatggaccg 960 cgcgtgaata tcggcttcgc cccggatcag cttcgctaca acgcgttcct acgcgccgca 1020 tatgatgtgt ccgacactgt gcaggtgtat gcggagggca cctatgctta ttcccacacc 1080 aacctgggtg cattcgtaat atcgcatgtc ggtggctcga ataatttccg gatcttccgt 1140 gataacgcct tccttccggc tccactcgcg acgctcatgg acagaaatgc ccaggcttcg 1200 atcgttgtcg gtcgcttctc aagcgacttt cccttggtcg aaatcgagaa tttcgcaaag 1260 gtctaccgcg gcgctgccgg cttccgggca gacattggca atggctggaa actcgatggc 1320 tcggcctcct ttggccttac ggacctcgag cttcgtgaaa acaatctcac catcaaccgc 1380 aatctctacg ccgccgtcga tgcggtccgc gatcccgcgg gcaatatcgt ctgccgttca 1440 acactggccg gcctcgacca agattgcgtg ccgctcaatc tcttcggcac aggctcgccg 1500 agcgcgtcgg ccatcgacta tgtcaccgct gatggcgtcg ctcagctgag gcttgagcaa 1560 tatgtggcgg gactcacgat ttccggcgac ctcggcgata gcctgtcgtt cggcgcgggc 1620 ccggtctcgg tcgccgctgg tatcgaatat cgcaaggaga aggcccggca ggaaaccgac 1680 gcgatatcgc aggcgacgac ctcgatcacg ggaatcaggg gggctccggc ggcgcaggca 1740 ggtcggcctg gaggcttcaa tctctacaac ccacttccct tctcgggaag ctatgacatc 1800 aaggaaggtt ttgtcgaaat cggcgtcccg attctgaagg acagcgcgct gggacgttcg 1860 ctgaacttaa acggcgccgt ccgatatgcc gattacagcc agtccggtgg agtaacaacc 1920 tggaagctgg gcggagaata tgagccgatc gacggcctca ggttccgcgc gacccgttcg 1980 cgagatatcc gcgggccaag ccttgtcgag ctattcgacc ccggccgtca ggcgacgctc 2040 aattcaattt atggcggaca ggctgtgcag acgcggttct ttaccgccgg caacgcggat 2100 ttgcgccctg aaaaggcgga cgtccttaca ttcggcgcgg tgctacgccc cgccttcgtg 2160 ccggggtttc agttttcggt cgatcgctat gtggtgaagg tgaagggcgc gatcgatttc 2220 ctccttcccc agcaggaaat cgacgcgtgc gatgcaggaa acaccttctt ctgcgacctc 2280 ataacggaga atccggacgg caccatcaca gtgacgggtc ccaatctcaa cctggctgtc 2340 cagaaagcgg cgggaattga cttcgaggcc tattactcac gccccgtcgg cggcggcacg 2400 ttcagtcttc gtgcgctggc aacgcaccat acctctgcct atcgcatcgc gaccggctcg 2460 gcgcccatcc gttcgctcgg acaaccggac acgccaaaat ggtcggccaa cttccaggcg 2520 cgatattcga ccgacgattg ggcgcttctc gtgcagcagc gcttcatcgc agcatcggtg 2580 ttcaatgccg acaatgtgga gggcgtcgat acgaatttga accacgctcc ggcggtttgg 2640 tacaccgacg cgacattgac cttcgacatc gcggcttttg gccagaagca gcagctgttt 2700 ctatcggtca ataatttgtt cgaccgagat ccgccaatag cgacgaacga ccccagcagt 2760 ttttccagcc cgaccagctc tgcctatgat ccggtcggcc gctattttaa tgtcggggtc 2820 cgtttccgga tctga 2835
<212> Type : DNA < 211 > Length : 2835 SequenceName : sequence 20 SequenceDescription :
Feature sequence: sequence 20: <221 > FeatureKey : Seq ID 20 (fumJ) < 222> LocationFrom : 1 < 222> LocationTo : 2835 Other Information : CDSJoin : No
Datebase
Sequence: sequence 20: <308> DBAccessionNumber: FJ426269 < 309> DBEntryDate : 2009-06-11 < 313> From : 1 < 313> To :2835
Sequence <213> OrganismName : Sphingopyxis sp. <400> PreSequenceString : MYRKFRIEKP GKANSLLGAV ÅLGTLAFPVS ASAQDSDPAS IGQPDEADTD RGTSEIWTG 60 SRLQNGFNSP TPVTAVSSEQ LKEASPTNLA dalnqlpvfn DSLKTSNPGT TPGTGNSGQN 120 LLNMRGLGSN RNLVLLNGNR FVATNFTGSV DINVLPQALV KRVDWTGGA SAAYGSDAVS 180 GVINFVLDED LEGIRAELQS GV5TRGDLPS YGGSIAFGT5 FADDRLHLLG SFEYFRQDG1 240 RADEATGRRW FDXAAGQYPV PGATTGVTW PDIRSSRGSY GGLVTSGPLK GIAFLPGGVL 300 GTFDYGNFTS SSFQSGGDGP RVNIGFAPDQ LRYNAFLRAA YDVSDTVQVY AEGTYAYSHT 360 NLGAFVISHV GGSNNFRIFR DNAFLPAPLA TLMDRNAQAS IWGRFSSDF PLVEIENFAK 420 VYRGAAGFRA DIGNGWKLOG SASFGLTDLE LRENNLTINR NLYAAVDAVR DPAGNIVCRS 480 TLAGLDQDCV PLNLFGTGSP SASAIDYVTA DGVAQLRLEQ YVAGLTISGD LGDSLSFGAG 540 PVSVAAGIEY RKEKARQETD AISQATTSIT GIRGAPAAQA GRPGGFNLYN PLPFSGSYDI 600 KEGFVEIGVP ILKDSALGRS LNLNGAVRYA DYSQSGGVTT WKLGGEYEPI DGLRFRATRS 660 RDIRGPSLVE LFDPGRQATL NSIYGGQAVQ TRFFTAGNAD LRPEKADVLT FGAVLRPAFV 720 PGFQFSVDRY WKVKGAXDF LLPQQEIDAC DAGNTFFCDL ITENPDGTIT VTGPNLNLAV 780 QKAAGIDFEA YYSRPVGGGT FSLRALATHH TSAYRIATGS APIRSLGQPD TPKWSANFQA 840 RYSTDDWALL VQQRFIAASV FNADNVEGVD TNLNHAPAVW YTDATLTFDI AAFGQKQQLF 900 LSVNNLFDRD PPIATNDPSS FSSPTSSAYD PVGRYFNVGV RFRI 944
<212> Type : PRT < 211 > Length : 944 SequenceName : sequence 21 SequenceDescription :
Feature sequence: sequence 21: <221 > FeatureKey : Seq ID 21 (FumJ) < 222> LocationFrom : 1 < 222> LocationTo : 944 Other Information : CDSJoin : No
Datebase
Sequence: sequence 21: <308> DBAccessionNumber: FJ426269 < 309> DBEntryDate : 2009-06-11 < 313> From : 1 < 313> To : 944
Sequence <213> OrganismName : Sphingopyxis sp. <400> PreSequenceString : atgcgcctca cgggcggaga åttattggca cgatgtttgg ccgtcgaagg cgtccggtat 60 gtcttcggcc tcatgtcgcc ggaggtggat ccgctcctgg ctgcgctcga agacaatggg 120 atattgttcq tcccggtgcg gcacgaggcc gccgcagcct atatggccga gggcatttac 180 aagaccaccg gacaggtcgc cgcgattgtc acgaatccgg gtcccggtac ggcaaacctt 240 ctgcctggag tcgtgacggc acgccacgaa ggggttccct tcgtcgcaat aacgtcccag 300 catcaacttg gtgtcgttta tccctgcacg ccaaaaacct ttcagggaca agaccagatc 360 gacctctttc gacocgcggt taaatggggc gcacccatct tcgcctggaa ccggatt 417
<212> Type : DNA < 211> Length : 417 SequenceName : sequence 22 SequenceDescription :
Feature
Sequence: sequence 22: <221 > FeatureKey : seq ID 22 (fumK) < 222> LocationFrom : 1 < 222> LocationTo : 417 Other Information : CDSJoin : No
Datebase
Sequence: sequence 22: <308> DBAccessionNumber: FJ426269 < 309> DBEntryDate : 2009-06-11 < 313> From : 1 < 313> To :417
Sequence <213> OrganismName : Sphingopyxis sp. <400> PreSequenceString : MRLTGGELLA RCLAVEGVRY VFGLMSPEVD PLLAALEDNG ILFVPVRHEA AAAYMAEGIY 60 KTTGQVAAIV TNPGPGTANL LPGWTARHE GVPFVAITSQ HQLGWYPCT PKTFQGQDQI 120 DLFRPAVKWG APIFAWNRI 139
<212> Type : PRT < 211> Length : 139 SequenceName : sequence 23 SequenceDescription :
Feature
Sequence: sequence 23: <221 > FeatureKey : Seq ID 23 (FumK) < 222> LocationFrom : 1 < 222> LocationTo : 139 Other Information : CDSJoin : No
Datebase
Sequence: sequence 23: <308> DBAccessionNumber: FJ426269 < 309> DBEntryDate : 2009-06-11 < 313> From : 1 < 313> To: 139
Sequence <213> OrganismName : Caulobacter sp. <400> PreSequenceString : atggaattga gccgccaacg agaccaggcc ttgagggagc gcgcccaagc ggtgatcccg 60 ggcgggatgt acggtcacga gtcgacctat ctgatgcccg agggcacgcc acagttcttc 120 agtcgcggca aaggcgcccg actttgggac gccgacggca acgagtatgt cgattacatg 180 tgcgcctatg gccccaacct gctgggttac ggcttcgaac ccgtcgaagc ggccgccgca 240 gcccagcaag cccggggcga taccctgacc gggccgtcgg aggtgatggt gcagttggcg 300 gaagacttcg tcgcgcaaat cagccacgcg gactgggcca tgttctgcaa gaacggcaca 360 gacgccacct caatggcgat ggtcatcgcg cgcgcacaca ccggccggaa gacgatcctc 420 tgcgcgaaag gcgcctatca tggggccgcg ccttggtgca cgccgatcct ggccggaacg 480 ctaccggagg atcgcgcctt tgtagtctac tacgactaca atgacgccca aagcctcgtc 540 gacgccttcg aggcccatca ggacgacgtc gcggcgatct tcgccacccc tcaccgtcac 600 gaggtgttca gcgaccagat cgatcctgat ccggaatatg cggccagcgt gcgggcgctc 660 tgcgacaaga gcggcgccct gctcgtcgtc gacgaagttc gagccgggtt caggatcgcg 720 cgcgactgca gctgggccaa gatcggcgtc gctccggatc tgagcacctg gggcaagtgc 780 ttcgccaacg gctatccgat ctcggcggtc ctagggggcg aaaaggtgcg cagcgcggca 840 aaggccgtct acgtcaccgg ctcgttctgg ttctcggcca cgcccatggc cgcagccgtc 900 gaaaccctga agcaaatccg cgagaccgac tatctcgagc ggatcaacgc ggccgggacc 960 cgcctgcgcg agggcctgca gcagcaggct gctcacaacg gctttacgtt gcgccaaacg 1020 gggcccgtct ccatgcccca agtcctcttc gaggaagatc ccgattttcg ggtcggctac 1080 ggctgggttc gcgaatgcct gaagcgaggg gtgtacttca gcccctacca taacatgttc 1140 ctgtcggcgg cccatagcga ggcggacctg gccaagaccc ttgcggctac cggcgacgcc 1200 ttcgtcgagc tacgcgccaa gcttccgagc ctagaaatcc accaacccct cctcgccctg 1260 agagcggcct aa 1272
<212> Type : DNA < 211> Length : 1272 SequenceName : sequence 24 SequenceDescription :
Feature
Sequence: sequence 24: <221 > FeatureKey : Seq ID 24 < 222> LocationFrom : 1 < 222> LocationTo : 1272 Other Information : CDSJoin : No
Datebase sequence: sequence 24: <308> DBAccessionNumber: FJ426269 < 309> DBEntryDate : 2009-06-11 < 313> From : 1 < 313> To: 1272
Sequence <213> OrganismName : Caulobacter-sp. <400> PreSequenceString : MELSRQRDQA LRERAQAVIP GGMYGHESTY LMPEGTPQFF SRGKGARLWD ADGNEYVDYM 60 CAYGPNLLGY GFEPVEAAAA AQQARGDTLT GPSEVMVQLA EDFVAQISHA DWAMFCKNGT 120 DATSMAMVIA RAHTGRKTIL CAKGAYHGAA PWCTPILAGT LPEDRAFWY YDYNDAQSLV 180 DAFEAHQDDV AAXFATPHRH EVFSDQIDPD PEYAASVRAL CDKSGALLW DEVRAGFRIA 240 RDCSWAKIGV APDLSTWGKC FANGYPISAV LGGEKVRSAA KAVYVTGSFW FSATPMAAAV 300 ETLKQIRETD YLERINAAGT RLREGLQQQA AHNGFTLRQT GPVSMPQVLF EEDPDFRVGY 360 GWVRECLKRG VYFSPYHNMF LSAAHSEADL AKTLAATGDA FVELRAKLPS LEIHQPLLAL 420 RAA 423
<212> Type : PRT < 211> Length : 423 SequenceName : sequence 25 SequenceDescription :
Feature
Sequence: sequence 25: <221 > FeatureKey : Seq ID 25 < 222> LocationFrom : 1 < 222> LocationTo : 423 Other Information : CDSJoin : No
Datebase
Sequence: sequence 25: <308> DBAccessionNumber: FJ426269 < 309> DBEntryDate : 2009-06-11 < 313> From : 1 < 313> To : 423

Claims (6)

1. Tilsætningsstof, som er egnet til enzymatisk nedbrydning af fumonisiner, i et vegetabilsk råstof og blandinger, som indeholder vegetabilske råstoffer, kendetegnet ved, at det indeholder et enzym af sekvensen ID-nr. 9 samt i givet fald yderligere et cosubstrat for det anvendte enzym, et enzym af sekvensen ID-nr. 19 og et inaktivt bærestof.
2. Tilsætningsstof ifølge krav 1, kendetegnet ved, at enzymet dækket i en beskyttelseskappe anvendes.
3. Tilsætningsstof ifølge krav 1 eller 2, kendetegnet ved, at det indeholder en carboxylesterase med sekvens ID-nr. 9, en aminosyretransferase med sekvens ID-nr. 19, en α-ketonsyre som cosubstrat og et inaktivt bærestof.
4. Tilsætningsstof ifølge krav 1, 2 eller 3, kendetegnet ved, at det indeholder en carboxylesterase med sekvensen ID-nr. 9, i det mindste ét adsorbens, såsom et lermineral, samt et inaktivt bærestof.
5. Anvendelse af et tilsætningsstof ifølge ethvert af kravene 1 til 4, kendetegnet ved, at tilsætningsstoffet anvendes i et oxygenuafhængigt miljø ved bioethanolfremstilling, samt med en mask hhv. et vegetabilsk udgangsmateriale.
6. Anvendelse af et tilsætningsstof ifølge ethvert af kravene 1 til 4, kendetegnet ved, at tilsætningsstoffet anvendes i et vegetabilsk råstof, som skal fermenteres, hhv. i en mask til bioethanolfremstilling.
DK09775638.1T 2008-09-18 2009-09-18 Fremgangsmåde til fremstilling af et tilsætningsstof til enzymatisk nedbrydning af mycotoksiner samt tilsætningsstof og anvendelse deraf DK2326713T3 (da)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT5012008 2008-09-18
PCT/AT2009/000364 WO2010031101A1 (de) 2008-09-18 2009-09-18 Verfahren zur herstellung eines zuatzstoffes für den enzymatischen abbau von mykotoxinen sowie zusatzstoff und verwendung desselben

Publications (1)

Publication Number Publication Date
DK2326713T3 true DK2326713T3 (da) 2016-02-29

Family

ID=41549865

Family Applications (2)

Application Number Title Priority Date Filing Date
DK15000331.7T DK2896691T3 (da) 2008-09-18 2009-09-18 Additiv til enzymatisk nedbrydning af micotoxiner samt anvendelse deraf
DK09775638.1T DK2326713T3 (da) 2008-09-18 2009-09-18 Fremgangsmåde til fremstilling af et tilsætningsstof til enzymatisk nedbrydning af mycotoksiner samt tilsætningsstof og anvendelse deraf

Family Applications Before (1)

Application Number Title Priority Date Filing Date
DK15000331.7T DK2896691T3 (da) 2008-09-18 2009-09-18 Additiv til enzymatisk nedbrydning af micotoxiner samt anvendelse deraf

Country Status (16)

Country Link
US (1) US8703460B2 (da)
EP (2) EP2326713B8 (da)
JP (1) JP5833442B2 (da)
CN (1) CN102159706B (da)
AR (1) AR073602A1 (da)
BR (1) BRPI0919406B1 (da)
CA (1) CA2736566C (da)
DK (2) DK2896691T3 (da)
ES (2) ES2643541T3 (da)
HU (2) HUE033878T2 (da)
MX (1) MX2011002742A (da)
PL (2) PL2896691T3 (da)
RU (1) RU2481397C2 (da)
UA (1) UA103335C2 (da)
WO (1) WO2010031101A1 (da)
ZA (1) ZA201102068B (da)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102827881B (zh) * 2012-09-11 2013-11-27 国家粮食局科学研究院 一种粮食和/或其副产物中真菌毒素的生物降解方法
PL3262163T3 (pl) * 2015-02-24 2019-12-31 Erber Aktiengesellschaft Warianty polipeptydowe rozszczepiające toksynę Fusarium, zawierający je dodatek i ich zastosowanie oraz sposób rozszczepiania toksyn Fusarium
CA2979288C (en) * 2015-03-27 2023-03-28 Erber Aktiengesellschaft Use of a trichothecene-transforming alcohol dehydrogenase, method for transforming trichothecenes and trichothecene-transforming additive
CN108251399B (zh) * 2016-12-29 2020-08-21 中粮营养健康研究院有限公司 伏马毒素降解酶、编码基因、重组载体、细胞、添加剂及其应用
CN108251405B (zh) * 2016-12-29 2020-08-21 中粮营养健康研究院有限公司 复合酶和添加剂及它们的应用以及脱除真菌毒素的方法
ES2847202T3 (es) 2017-07-20 2021-08-02 Tolsa Sa Composición para la unión de micotoxinas y su uso
CN109337886B (zh) * 2018-10-09 2021-07-20 天津科技大学 伏马毒素降解酶FumDXA及其基因和应用
CN109439639B (zh) * 2018-10-09 2021-07-20 天津科技大学 伏马毒素降解酶FumDPS及其基因和应用
CN109439640B (zh) * 2018-10-09 2021-07-20 天津科技大学 伏马毒素降解酶FumDSB及其基因和应用
US20210403841A1 (en) 2020-03-12 2021-12-30 Poet Research, Inc. Enzymatic degradation of mycotoxins during grain processing
CN111607575B (zh) * 2020-04-07 2022-10-04 天津科技大学 一种转氨酶phta、制备方法和应用
CN111549007B (zh) * 2020-04-07 2022-10-04 天津科技大学 一种转氨酶tsta、制备方法和应用
CN113774040B (zh) * 2020-11-24 2022-05-31 中国科学院上海营养与健康研究所 B族伏马菌素降解酶、其构建方法及其应用
WO2023144753A2 (en) * 2022-01-26 2023-08-03 Danstar Ferment Ag Recombinant expression of fumonisin esterase, compositions and uses thereof
EP4357460A1 (en) * 2022-10-21 2024-04-24 Consejo Superior De Investigaciones Científicas Fumonisin enzymatic degradation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3151290C2 (de) * 1981-12-24 1986-08-14 Ernst Leitz Wetzlar Gmbh, 6330 Wetzlar Lamelle für lichtoptische Verschlüsse optischer Geräte
FR2529064B1 (fr) * 1982-06-28 1986-11-07 Guinard Michel Vitrine d'exposition d'objets precieux tels que des bijoux
DE69808758T2 (de) 1997-07-07 2003-02-27 Pioneer Hi Bred Int Fumonisinentgiftungszusammensetzungen und verfahren
US6538177B1 (en) 1998-07-15 2003-03-25 Pioneer Hi-Bred International, Inc. Compositions and methods for fumonisin detoxification
BR9912079A (pt) 1998-07-15 2004-06-22 Pioneer Hi Bred Int Polinucleotìdeos de amino poliol amina oxidase e polipeptìdeos relacionados, e métodos de uso
WO2004085624A2 (en) 2003-03-24 2004-10-07 Diversa Corporation Transaminases, deaminases and aminomutases and compositions and methods for enzymatic detoxification
AT501359B1 (de) * 2004-11-16 2007-10-15 Erber Ag Verfahren und mikroorganismus zur entgiftung von fumonisinen sowie verwendung und futtermittelzusatz

Also Published As

Publication number Publication date
BRPI0919406A2 (pt) 2016-05-17
ZA201102068B (en) 2011-12-28
ES2563084T3 (es) 2016-03-10
HUE033878T2 (hu) 2018-01-29
EP2326713B8 (de) 2016-02-17
CN102159706A (zh) 2011-08-17
JP5833442B2 (ja) 2015-12-16
US8703460B2 (en) 2014-04-22
JP2012502633A (ja) 2012-02-02
HUE026735T2 (en) 2016-07-28
CA2736566A1 (en) 2010-03-25
DK2896691T3 (da) 2017-10-23
ES2643541T3 (es) 2017-11-23
RU2011115100A (ru) 2012-10-27
PL2896691T3 (pl) 2018-01-31
EP2326713B1 (de) 2015-11-25
US20110189755A1 (en) 2011-08-04
PL2326713T3 (pl) 2016-05-31
AR073602A1 (es) 2010-11-17
BRPI0919406B1 (pt) 2021-01-19
EP2326713A1 (de) 2011-06-01
CA2736566C (en) 2018-01-02
EP2896691B1 (de) 2017-07-12
EP2896691A1 (de) 2015-07-22
UA103335C2 (ru) 2013-10-10
WO2010031101A1 (de) 2010-03-25
RU2481397C2 (ru) 2013-05-10
CN102159706B (zh) 2013-10-23
MX2011002742A (es) 2011-08-17

Similar Documents

Publication Publication Date Title
DK2326713T3 (da) Fremgangsmåde til fremstilling af et tilsætningsstof til enzymatisk nedbrydning af mycotoksiner samt tilsætningsstof og anvendelse deraf
Jana et al. Biosynthesis, structural architecture and biotechnological potential of bacterial tannase: a molecular advancement
AU2015384258B2 (en) Fusarium toxin-cleaving polypeptide variants, additives containing same, use of same, and method for splitting fusarium toxins
AT514775A1 (de) Polypeptid zur hydrolytischen Spaltung von Zearalenon und/oder Zearalenon Derivaten, isoliertes Polynukleotid davon sowie Zusatzstoff enthaltend das Polypeptid
EA021178B1 (ru) Фитазы, кодирующие их нуклеиновые кислоты и способы их получения и применения
WO2011159178A1 (en) New strain of lactobacillus plantarum s, the use of the strain of lactobacillus plantarum s and the preparation for roughages ensiling
KR102430377B1 (ko) 악취 제거 또는 저감 효과를 나타내는 락토바실러스 파라카세이 l002 균주, 이를 포함하는 악취 제거 또는 저감용 조성물 및 이를 이용하여 악취를 제거 또는 저감하는 방법
Singh et al. Enhanced phytase production by Bacillus subtilis subsp. subtilis in solid state fermentation and its utility in improving food nutrition
CN114457181A (zh) 识别样本中玉米事件4588.259的方法和使用其的方法
Anggriani et al. Lipase-producing ability of bacteria from inasua (fish fermented product) from Central Moluccas, Indonesia
US8361764B1 (en) Genes and enzymes for degradation of ferulic acid crosslinks
US20200359652A1 (en) Bacterial strain compositions and methods of using same
DE102004032216A1 (de) Polypeptide mit Tannase- und/oder Lipase-Aktivität
Zainuddin et al. Effect of amino acids in the stability study of hydrolase enzymes produced via solid-state fermentation using empty fruit bunch and palm oil mill sludge
CN117887681B (zh) 一种辣根过氧化物酶在制备脱霉饲料中的应用
AT507364B1 (de) Verfahren zur herstellung eines futtermittelzusatzes zum sauerstoffunabhängigen, enzymatischen abbau von mykotoxinen sowie futtermittelzusatz und verwendung desselben
EP2116136A1 (en) Novel phytases
Marcus et al. Identity and some properties of the L-threonine aldolase activity manifested by pure 2-amino-3-ketobutyrate ligase of Escherichia coli
JP2009240177A (ja) トリコテセン生合成遺伝子破壊株を用いたデオキシニバレノール系トリコテセンのアセチル化方法
Kandaiah et al. Deproteinization of Distillery Yeast Biomass Waste by Protease-producing Bacillus megaterium PB4. J Bioremed Biodeg 6: 319. doi: 10.4172/2155-6199.1000 319 Volume 6• Issue 6• 1000319 J Bioremed Biodeg ISSN: 2155-6199 JBRBD, an open access journal Page 2 of 8 proteases are produced by Mucor sp
Fu et al. Two different types of hydrolases co-degrade ochratoxin A in a highly efficient degradation strain Lysobacter sp. CW239
Kim et al. A Methylobacillus isolate growing only on methanol
AT507363A1 (de) Verfahren zur herstellung eines zusatzstoffes für den enzymatischen abbau von mykotoxinen sowie zusatzstoff und verwendung desselben
Tetiker et al. Determination of Some Properties of Free and Immobilized Urease from Aspergillus fumigatus and Its Application in Urea Assay.
Bandani et al. Production improvement of recombinant epidermal axolotls in Escherichia coli batch culture