DK167985B1 - PROCEDURE FOR REGULATING A COMPRESSION COOLING SYSTEM AND HEATING / COOLING DEVICE FOR EXERCISING THE PROCEDURE - Google Patents

PROCEDURE FOR REGULATING A COMPRESSION COOLING SYSTEM AND HEATING / COOLING DEVICE FOR EXERCISING THE PROCEDURE Download PDF

Info

Publication number
DK167985B1
DK167985B1 DK214690A DK214690A DK167985B1 DK 167985 B1 DK167985 B1 DK 167985B1 DK 214690 A DK214690 A DK 214690A DK 214690 A DK214690 A DK 214690A DK 167985 B1 DK167985 B1 DK 167985B1
Authority
DK
Denmark
Prior art keywords
refrigerant
pressure side
container
high pressure
evaporator
Prior art date
Application number
DK214690A
Other languages
Danish (da)
Other versions
DK214690D0 (en
DK214690A (en
Inventor
Gustav Lorentzen
Original Assignee
Sinvent As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=19891609&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DK167985(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sinvent As filed Critical Sinvent As
Publication of DK214690D0 publication Critical patent/DK214690D0/en
Publication of DK214690A publication Critical patent/DK214690A/en
Application granted granted Critical
Publication of DK167985B1 publication Critical patent/DK167985B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0415Refrigeration circuit bypassing means for the receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Description

DK 167985 Bl iDK 167985 Bl i

Opfindelsen angår en fremgangsmåde ved regulering af kompressionskølesystemer såsom køleapparater, luftkonditioneringsanlæg og varmepumper, og af den i krav l's indledning angivne art.The invention relates to a method of controlling compression cooling systems such as refrigerators, air conditioners and heat pumps, and of the kind set out in the preamble of claim 1.

55

Et konventionelt kompressionskølekredsløb til køling, luftkonditionering eller varmepumpeformål er vist i princippet i fig. 1. Apparatet består af en kompressor 1, en kondensationsvarmeveksler 2, en drøvlende ventil 3 og en 10 fordampningsvarmeveksler 4. Disse komponenter er forbundet i et lukket kredsløb, i hvilket et kølemiddel cirkuleres. Virkemåden af kompressionskøleanlægget er som følger: kølemiddeldampens tryk og temperatur forøges af kompressoren 1, før dampen træder ind i kondensatoren 2, 15 hvor den afkøles og kondenseres, idet den afgiver varme til et sekundært kølemiddel. Højtrykskølemiddelvæsken bliver derefter drøvlet til fordampningstryk og -temperatur ved hjælp af ekspansionsventilen 3. I fordamperen 4 koger kølemidlet og absorberer varme fra omgivelserne.A conventional compression cooling circuit for cooling, air conditioning or heat pump purposes is shown in principle in FIG. 1. The apparatus consists of a compressor 1, a condensation heat exchanger 2, a rumbling valve 3 and a vaporizing heat exchanger 4. These components are connected in a closed circuit in which a refrigerant is circulated. The operation of the compression refrigeration system is as follows: the pressure and temperature of the refrigerant vapor are increased by the compressor 1 before the vapor enters the condenser 2, 15 where it is cooled and condensed, giving off heat to a secondary refrigerant. The high pressure coolant liquid is then swirled to evaporative pressure and temperature by means of the expansion valve 3. In the evaporator 4, the refrigerant boils and absorbs heat from the surroundings.

20 Kølémiddeldampen ved fordamperudgangen trækkes ind i kompressoren, hvorved kredsløbet fuldføres.20 The refrigerant vapor at the evaporator output is drawn into the compressor, completing the circuit.

Konventionelle kompressionskøleanlæg, som f.eks. anvender kølemidlet R-12, CF2C12, arbejder helt ved underkritiske 25 tryk. Der kan anvendes flere forskellige stoffer eller blandinger af stoffer som kølemiddel. Valget af kølemiddel bestemmes bl.a. af kondensationstemperaturen, idet fluidets kritiske temperatur sætter en øvre grænse for kondensation. For at opretholde en rimelig virkningsgrad 30 er det normalt ønskeligt at anvende et kølemiddel med en kritisk temperatur på mindst 20-30°C over kondensationstemperaturen. Nærkritiske temperaturer undgås sædvanligvis ved konstruktion og drift af konventionelle systemer.Conventional compression refrigeration systems, such as uses the refrigerant R-12, CF2C12, works completely at sub-critical 25 pressures. Several different substances or mixtures of substances can be used as refrigerant. The choice of refrigerant is determined, among other things. of the condensation temperature, the critical temperature of the fluid setting an upper limit of condensation. In order to maintain a reasonable efficiency 30, it is usually desirable to use a refrigerant having a critical temperature of at least 20-30 ° C above the condensation temperature. Post-critical temperatures are usually avoided in the design and operation of conventional systems.

35 Den nuværende teknologi er detaljeret behandlet i litteraturen, f.eks. i "Handbooks" fra American Society of Heating, Refrigerating and Air Conditioning Engineers DK 167985 B1 235 The present technology is discussed in detail in the literature, e.g. in "Handbooks" from the American Society of Heating, Refrigerating and Air Conditioning Engineers DK 167985 B1 2

Inc. ("Fundamentals" 1989 og "Refrigeration" 1986).Inc. ("Fundamentals" 1989 and "Refrigeration" 1986).

Den ozonnedbrydende virkning af de nu almindelige kølemidler (chlor-fluor-carboner CFC) har resulteret i omfat-5 ‘ tende internationale aftaler til reduktion af eller for bud mod anvendelse af disse fluider. Der er følgelig et påtrængende behov for at finde alternativer til den nuværende teknologi.The ozone depleting effect of the now common refrigerants (chlorofluorocarbons CFC) has resulted in extensive international agreements for reducing or bidding against the use of these fluids. Consequently, there is an urgent need to find alternatives to current technology.

10 Kapacitetsstyring af konventionelle kompressionskøleanlæg opnås hovedsagelig ved regulering af massestrømmen af kølemiddel, der passerer gennem fordamperen. Dette gøres f.eks. ved styring af kompressorkapaciteten, drøvling eller shuntning. Disse fremgangsmåder involverer mere kom-15 plicerede systemer, reduceret effektivitet og andre komplikationer .10 Capacity control of conventional compression refrigeration systems is mainly achieved by regulating the mass flow of refrigerant passing through the evaporator. This is done e.g. by controlling the compressor capacity, dribbling or shunting. These approaches involve more complicated systems, reduced efficiency and other complications.

En almindelig type drøvleorgan er en termostatisk ekspansionsventil, der styres af overhedningen i fordamperud-20 gangen. Korrekt ventilfunktion under varierende arbejdsbetingelser opnås ved anvendelse af en betydelig del af fordamperen til at overhede kølemidlet, hvilket resulterer i en lav varmeoverføringskoefficient.A common type of throttle means is a thermostatic expansion valve which is controlled by the superheater in the evaporator outlet. Proper valve operation under varying operating conditions is achieved by using a significant portion of the evaporator to superheat the refrigerant, resulting in a low heat transfer coefficient.

25 Varmeafgivelse i kondensatoren i konventionelle kompressionskøleanlæg finder hovedsagelig sted ved konstant temperatur. Der forekommer derfor termodynamiske tab på . grund af store temperaturforskelle, når der afgives varme til et sekundært kølemiddel med stor temperaturforøgelse, 30 som det er tilfældet ved varmepumper, eller når den disponible strøm af sekundært kølemiddel er lille.25 Heat transfer in the condenser in conventional compression refrigeration systems takes place mainly at constant temperature. Therefore, thermodynamic losses occur. due to large temperature differences when heat is supplied to a secondary refrigerant with high temperature increase, as is the case with heat pumps, or when the available flow of secondary refrigerant is small.

Drift af et kompressionskøleanlæg under transkritiske • forhold er tidligere praktiseret i en vis udstrækning. Op 35 til det tidspunkt, da CFC-stofferne tog over - for 40 til 50 år siden - blev CO^ almindeligt anvendt som kølemiddel, navnlig i skibskøleanlæg for proviant og last. An- DK 167985 B1 3 læggene blev indrettet til at arbejde normalt ved underkritiske tryk med fordampning og kondensation og med havvand til kondensatorkøling. Lejlighedsvis, typisk når et skib passerede tropiske områder, kunne temperaturen af 5 det kølende havvand blive for høj til at udvirke normal kondensation på højtryksssiden. (Den kritiske temperatur for C02 er 31°C). I denne situation blev det praktiseret at forøge kølemiddelmængden på højtrykssiden til et punkt, hvor trykket ved kompressorens afgang blev hævet 10 til 90-100 bar for at opretholde kølekapaciteten på et rimeligt niveau. C02-køleteknologien er beskrevet i ældre litteratur, f.eks. P. Ostertag "Kalteprozesse", Springer 1933 eller H.J. Maclntire "Refrigeration Engineering", Wiley 1937.Operation of a compression cooling system under transcritical conditions has been practiced to some extent in the past. Up to 35 when CFCs took over - 40 to 50 years ago - CO 2 was commonly used as a refrigerant, especially in ship refrigeration systems for supplies and cargo. Application was designed to operate normally at sub-critical pressures with evaporation and condensation and with seawater for condenser cooling. Occasionally, typically when a ship is passing through tropical areas, the temperature of the cooling seawater could become too high to effect normal condensation on the high-pressure side. (The critical temperature for CO 2 is 31 ° C). In this situation, it was practiced to increase the refrigerant quantity on the high pressure side to a point where the pressure at the outlet of the compressor was raised 10 to 90-100 bar to maintain the cooling capacity at a reasonable level. The CO 2 cooling technology is described in older literature, e.g. P. Ostertag "Cold Processing", Springer 1933 or H.J. Maclntire "Refrigeration Engineering", Wiley 1937.

1515

Den sædvanlige praksis i ældre C02-systemer gik ud på at tilføre den nødvendige ekstra mængde fra særskilte lagerbeholdere. En væskesamler installeret efter kondensatoren på den sædvanlige måde vil ikke være i stand til at til-20 vejebringe de funktioner, der tilsigtes med den foreliggende opfindelse.The usual practice in older C02 systems was to supply the necessary extra volume from separate storage containers. A liquid collector installed after the capacitor in the usual manner will not be able to provide the functions contemplated by the present invention.

En anden mulighed for forøgelse af kapaciteten og virkningsgraden af et givet kompressionskøleanlæg, der arbej-25 der med overkritisk højtryksside, er kendt fra beskrivelsen til tysk patent nr. 278 095 (1912). Denne metode involverer 2-trins-kompression med mellemkøling i det overkritiske område. Sammenlignet med standardsystemet medfører dette installation af en ekstra kompressor eller pum-30 pe og en ekstra varmeveksler.Another possibility of increasing the capacity and efficiency of a given compression refrigeration system operating on the supercritical high pressure side is known from the specification of German Patent No. 278 095 (1912). This method involves 2-step compression with intermediate cooling in the supercritical range. Compared to the standard system, this results in the installation of an extra compressor or pump and an extra heat exchanger.

Bogen "Principles of Refrigeration" af W.B. Gosney (Cambridge University Press 1982) påpeger nogle af de særlige forhold ved drift med nærkritisk tryk. Det foreslås, at 35 forøgelse af kølemiddelmængden på højtrykssiden kunne foretages ved kortvarig lukning af drøvleventilen, så at der overføres en vis mængde fra fordamperen. Det fremhæ- DK 167985 B1 4 ves dog, at dette ville efterlade fordamperen med underskud af væske, hvilket ville forårsage reduceret kapacitet på det tidspunkt, hvor der er størst behov for kapaciteten.The book "Principles of Refrigeration" by W.B. Gosney (Cambridge University Press 1982) points out some of the peculiarities of near-critical pressure operation. It is suggested that increasing the amount of refrigerant on the high pressure side could be accomplished by briefly closing the throttle valve to transfer a certain amount from the evaporator. However, it is emphasized that this would leave the evaporator with liquid deficit, which would cause reduced capacity at the time when capacity is most needed.

55

Det er derfor et formål med opfindelsen at angive en fremgangsmåde af den omhandlede art .til på enkel og effektiv måde at styre et transkritisk kompressionskøleanlæg, og at undgå de ovenfor nævnte mangler og ulemper ved 10 den kendte teknik.It is therefore an object of the invention to provide a method of the present invention for controlling a transcritical compression refrigeration system in a simple and effective manner and to avoid the above-mentioned drawbacks and disadvantages of the prior art.

Et andet formål med opfindelsen er at angive en kølepro ces, der undgår anvendelse af CFC-kølemidler og samtidig giver mulighed for anvendelse af flere med hensyn til 15 sikkerhed, miljøskadevirkninger og pris attraktive køle midler .Another object of the invention is to provide a cooling process which avoids the use of CFC refrigerants and at the same time allows the use of several with regard to safety, environmental damage and price attractive refrigerants.

Et yderligere formål med opfindelsen er at angive en ny fremgangsmåde ved kapacitetsstyring, hvilken fremgangsmå-20 de involverer drift med i hovedsagen konstant kølemiddel-massestrøm og simpel kapacitetsstyring ved hjælp af en ventil.It is a further object of the invention to provide a new method of capacity control which involves operating with substantially constant refrigerant mass flow and simple capacity control by means of a valve.

Endnu et formål med opfindelsen er at angive en kompres- 25 sionskøleproces med varmeafgivelse ved glidende tempera tur, således at varmevekslertabene kan reduceres i anlæg, hvor sekundær-kølemiddelstrømmen er lille, eller når det sekundære kølemiddel skal opvarmes til en forholdsvis høj temperatur.Another object of the invention is to provide a compression cooling process with heat release at sliding temperature so that the heat exchanger losses can be reduced in systems where the secondary refrigerant flow is low or when the secondary refrigerant is to be heated to a relatively high temperature.

3030

Ovennævnte og andre formål med opfindelsen opnås ved, at fremgangsmåden udføres som angivet i krav l's kendetegnende del.The above and other objects of the invention are achieved by performing the method as set forth in the characterizing part of claim 1.

35 Opfindelsen indebærer regulering af specifik enthalpi ved fordamperindgangen ved tilsigtet anvendelse af tryk før drøvling, f.eks. ved kapacitetsstyring. Kapaciteten sty- DK 167985 B1 5 res ved variation af kølemiddelenthalpiforskellen over fordamperen ved ændring af den specifikke enthalpi af kølemidlet før drøvling. I den overkritiske tilstand kan dette gøres ved at variere tryk og temperatur uafhængigt 5 af hinanden. Ved en foretrukken udførelse af denne regulering styres den specifikke enthalpi ved variation af trykket før drøvling. Kølemidlet køles ned så langt, som det er muligt, ved hjælp af det til rådighed værende sekundære kølemedium, og trykket reguleres til tilvejebrin-10 gelse af den ønskede enthalpi.The invention involves the regulation of specific enthalpy at the evaporator inlet by the intentional application of pressure before drowning, e.g. by capacity management. The capacity is controlled by variation of the refrigerant enthalpy difference across the evaporator by changing the specific enthalpy of the refrigerant before drowning. In the supercritical state, this can be done by varying pressure and temperature independently of one another. In a preferred embodiment of this control, the specific enthalpy is controlled by variation of the pressure before drowning. The refrigerant is cooled as far as possible by the available secondary refrigerant and the pressure is adjusted to provide the desired enthalpy.

Opfindelsen angår også en varme/køleanordning til udøvelse af den angivne fremgangsmåde og af den i krav 6's indledning angivne art, og det ejendommelige ved varme/køle-15 anordningen ifølge opfindelsen er angivet i krav 6's kendetegnende del.The invention also relates to a heating / cooling device for carrying out the method and of the nature specified in the preamble of claim 6, and the characteristic of the heating / cooling device according to the invention is given in the characteristic part of claim 6.

Opfindelsen skal i det følgende forklares nærmere under henvisning til tegningen, hvor 20 fig. 1 skematisk viser et konventionelt (underkritisk) kompressionskøleanlæg, fig. 2 skematisk viser en foretrukken udførelsesform for 25 et transkritisk kompressionskøleanlæg ifølge opfindelsen; • i denne udførelsesform indgår som en integreret bestanddel af fordampersystemet et volumen, der indeholder kølemiddel i væskeform, 30 fig. 3 skematisk viser en anden udførelsesform for et transkritisk kompressionskøleanlæg; denne udførelsesform indeholder en mellemtryksbeholder, der er indskudt direkte i kredsløbet mellem to ventiler, 35 fig. 4 skematisk viser en tredie udførelsesform for et transkritisk kompressionskøleanlæg ifølge opfindelsen; denne udførelsesform indeholder en speciel beholder til DK 167985 B1 6 opbevaring af kølemiddel som væske eller i overkritisk tilstand, fig. 5 er en graf, der illustrerer forholdet mellem tryk 5 og enthalpi i det i fig. 2, 3 eller 4 viste transkritiske kompressionskøleanlæg under forskellige arbejdsbetingelser, fig. 6 er en samling grafer, der illustrerer styringen af 10 kølekapacitet ved fremgangsmåden ifølge opfindelsen; de viste resultater er målt i et laboratorieforsøgsanlæg, der er opbygget i overensstemmelse med en foretrukken udførelsesform for opfindelsen, og 15 fig. 7 er en grafisk afbildning, der baseret på forsøgsresultater viser sammenhængen mellem temperatur og entropi i det i fig. 2 viste transkritiske kompressionskøleanlæg, når dette arbejder med forskellige tryk i højtrykssiden og anvender CO2 som kølemiddel.The invention will now be explained in more detail with reference to the drawing, in which 1 schematically shows a conventional (subcritical) compression cooling system; FIG. 2 schematically shows a preferred embodiment of a transcritical compression cooling system according to the invention; In this embodiment, as an integral component of the evaporator system, a volume containing liquid refrigerant is included; FIG. 3 schematically shows another embodiment of a transcritical compression cooling system; this embodiment contains an intermediate pressure vessel inserted directly into the circuit between two valves; 4 schematically shows a third embodiment of a transcritical compression cooling system according to the invention; this embodiment contains a special container for storing refrigerant as liquid or in supercritical condition, fig. 5 is a graph illustrating the relationship between pressure 5 and enthalpy in the embodiment of FIG. 2, 3 or 4, under different working conditions, shown in FIG. 6 is a collection of graphs illustrating the control of cooling capacity by the method of the invention; the results shown are measured in a laboratory test system constructed in accordance with a preferred embodiment of the invention, and FIG. 7 is a graph showing, based on experimental results, the relationship between temperature and entropy in the embodiment of FIG. 2, when working with different pressures in the high pressure side and using CO2 as a refrigerant.

2020

Et transkritisk kompressionskøleanlæg ifølge opfindelsen indeholder et kølemiddel, hvis kritiske temperatur er . mellem varmetilførselstemperaturen og den gennemsnitlige varmeafgivelsestemperatur, og et lukket fluidkredsløb, 25 hvori kølemidlet cirkuleres.A transcritical compression refrigeration system according to the invention contains a refrigerant whose critical temperature is. between the heat supply temperature and the average heat release temperature, and a closed fluid circuit in which the refrigerant is circulated.

Passende kølemidler er kan eksempelvis: ethylen C2Hdi-boran B2Hg, carbondioxid C02, ethan C2Hg og nitrogenoxid • N2°‘ 30Suitable refrigerants are, for example: ethylene C2Hdi-borane B2Hg, carbon dioxide CO2, ethane C2Hg and nitric oxide.

Det lukkede kølemiddelkredsløb består af en kølemiddelstrømssløjfe med et integreret lagerelement. Fig. 2 viser en foretrukken udførelsesform for opfindelsen, hvor lagerelementet er en integreret bestanddel af fordampersy-35 · stemet. Strømkredsen indeholder en kompressor 10, der er forbundet i serie med en køler 11, en modstrøms-varmeveksler 12 og en drøvlventil 13. Drøvleventilen kan er- DK 167985 B1 7 stattes med et ekspansionsapparat efter ønske. En fordamper-varmeveksler 14, en væskebeholder 16 og lavtrykssiden af modstrøms-varmeveksleren 12 er forbundet i strømningsretningen mellem drøvleventilen 13 og kompressoren 10's 5 indgang 19. Beholderen 16 er forbundet med fordamperudgangen 15, og gasudgangen af beholderen 16 er forbundet med varmeveksleren 12.The closed refrigerant circuit consists of a refrigerant flow loop with an integrated storage element. FIG. 2 shows a preferred embodiment of the invention, wherein the storage element is an integral component of the evaporator system. The current circuit contains a compressor 10 connected in series with a cooler 11, a countercurrent heat exchanger 12 and a throttle valve 13. The throttle valve can be replaced with an expansion apparatus as desired. An evaporator heat exchanger 14, a liquid container 16 and the low pressure side of the countercurrent heat exchanger 12 are connected in the flow direction between the throttle valve 13 and the inlet 19 of the compressor 10. The container 16 is connected to the evaporator output 15 and the gas output of the container 16 is connected to the heat exchanger 12.

Modstrømsvarmeveksleren 12 er ikke absolut nødvendig for 10 anlæggets funktion, men forbedrer dets virkningsgrad, navnlig dets reaktionshastighed over for krav om øget kapacitet. Den tjener også til at føre olie tilbage til kompressoren. Til dette formål er væskeledningen fra beholderen 16 (vist med punkteret linie i fig. 2) forbundet 15 med sugeledningen enten før modstrømsvarmeveksleren 12 ved 17 eller efter denne ved 18 eller et hvilket som helst sted mellem disse punkter. Væskestrømmen, f.eks. kølemiddel og olie, styres af et passende, konventionelt drøvleorgan (ikke vist på tegningen). Ved at tillade en 20 vis overskydende mængde væske at træde ind i sugeledningen opnås et tilsvarende væskeoverskud ved fordamperudgangen.The countercurrent heat exchanger 12 is not absolutely necessary for the operation of the system, but improves its efficiency, in particular its reaction rate against increased capacity requirements. It also serves to return oil to the compressor. For this purpose, the liquid conduit from the container 16 (shown in dotted line in Fig. 2) is connected 15 to the suction conduit either before the countercurrent heat exchanger 12 at 17 or thereafter at 18 or any location between these points. The fluid flow, e.g. refrigerant and oil, are controlled by an appropriate conventional throttle member (not shown in the drawing). By allowing a 20 excess amount of liquid to enter the suction line, a corresponding excess of liquid is obtained at the evaporator outlet.

Ved en anden udførelsesform for opfindelsen vist i fig. 3 25 udgøres kølemiddelkredsløbets lagerelement af en beholder 22, der er integreret i strømkredsen mellem en ventil 21 . og drøvleventilen 13. De andre komponenter 10-14 i strømkredsen er identiske med komponenterne i den tidligere udførelsesform, omend varmeveksleren 12 kan udelades, 30 uden at dette får større konsekvenser. Trykket i beholderen 22 holdes imellem højtrykssidens og lavtrykssidens tryk.In another embodiment of the invention shown in FIG. 3 25, the storage element of the refrigerant circuit is constituted by a container 22 which is integrated in the current circuit between a valve 21. and the throttle valve 13. The other components 10-14 of the circuit are identical to the components of the previous embodiment, although the heat exchanger 12 can be omitted, 30 without having any major consequences. The pressure in the container 22 is maintained between the high pressure side and the low pressure side pressure.

Ved en tredie udførelsesform for opfindelsen vist i fig.In a third embodiment of the invention shown in FIG.

35 4 er strømkredsens lagerelement en speciel beholder 25, hvor trykket holdes mellem højtrykssidens og lavtrykssidens tryk. Lagerelementet består desuden af ventiler 23 8 DK 167985 B1 og 24, der er forbundet med henholdsvis højtrykssiden og lavtrykssiden af strømkredsen.4, the storage element of the circuit is a special container 25 where the pressure is maintained between the high pressure side and the low pressure side pressure. The storage element also consists of valves 23 8 DK 167985 B1 and 24, which are connected to the high-pressure side and the low-pressure side of the circuit respectively.

Under driften komprimeres kølemidlet til et passende 5 overkritisk tryk i kompressoren 10; tilstanden ved kompressorudgangen 20 er vist som tilstand "a" i fig. 5. Kølemidlet cirkuleres gennem køleren 11, hvor det afkøles til tilstand "b", idet det afgiver varme til et passende sekundærmedium, f.eks. luft eller vand. Om ønsket kan kø-10 lemidlet afkøles yderligere til tilstand "c" i modstrømsvarmeveksleren 12, inden det drøvles til tilstand "d".During operation, the refrigerant is compressed to a suitable supercritical pressure in the compressor 10; the state of compressor output 20 is shown as state "a" in FIG. 5. The refrigerant is circulated through the cooler 11 where it cools to state "b", delivering heat to a suitable secondary medium, e.g. air or water. If desired, the refrigerant may be further cooled to state "c" in the countercurrent heat exchanger 12 before being quenched to state "d".

Ved trykreduktionen i drøvleventilen 13 dannes der en to-fase-gas/væskeblanding vist som tilstand "d" i fig. 5. Kølemidlet absorberer varme i fordamperen 14 ved fordamp-15 ning af væskefasen. Fra tilstand "e" ved fordamperudgangen kan kølemiddeldampen overhedes i modstrøms-varmeveks-leren 12 til tilstand "f", og kredsløbet er fuldført. I den i fig. 2 viste foretrukne udførelsesform for opfin-. delsen vil fordamperudgangstilstanden "e" være i tofase-20 området på grund af væskeoverskuddet ved fordamperudgangen.In the pressure reduction in the throttle valve 13, a two-phase gas / liquid mixture is shown as state "d" in FIG. 5. The refrigerant absorbs heat in evaporator 14 by evaporation of the liquid phase. From state "e" at the evaporator output, the refrigerant vapor can be superheated in countercurrent heat exchanger 12 to state "f" and the circuit is completed. In the embodiment shown in FIG. 2 shows the preferred embodiment of the invention. the evaporator output state "e" will be in the two-phase range due to the excess liquid at the evaporator output.

Regulering af det transkritiske anlægs kølekapacitet foretages ved variation af kølemiddeltilstanden ved fordam-25 · perindgangen, se punkt "d" i fig. 5. Kølekapaciteten pr.The cooling capacity of the transcritical system is adjusted by varying the refrigerant state at the evaporator input, see point "d" in fig. 5. The cooling capacity per

enhed kølemiddelmassestrøm svarer til enthalpidifferensen mellem tilstand "d" og tilstand "e". Denne enthalpidifferens findes som en vandret afstand i enthalpi-trykdia-grammet i fig. 5.unit coolant mass flow corresponds to the enthalpy difference between state "d" and state "e". This enthalpy difference is found as a horizontal distance in the enthalpy pressure diagram of FIG. 5th

30 • Drøvling foregår ved konstant enthalpi, så at enthalpien i punkt "d" er lig med enthalpien i "c". Følgelig kan kølekapaciteten (i kW) ved konstant kølemiddelmassestrøm styres ved variation af enthalpien i punkt "c".30 • Throttling occurs at constant enthalpy, so that the enthalpy at point "d" is equal to the enthalpy at "c". Accordingly, the cooling capacity (in kW) at constant refrigerant mass flow can be controlled by variation of the enthalpy at point "c".

Det skal bemærkes, at højtryks-enkeltfasekølemiddel i en transkritisk proces ikke kondenseres, men kun afkøles i 35 DK 167985 B1 9 køleren 11. Udløbstemperaturen fra køleren (punkt "b") vil være nogle grader over indløbs temperaturen af køleluft eller -vand, hvis der anvendes modstrøm. Højtryksdampen kan da køles yderligere nogle grader ned til punkt 5 "c" i modstrøms-varmeveksleren 12. Resultatet er, at tem peraturen i punkt "c" ved konstant indgangstemperaturen af køleluft eller -vand vil være i hovedsagen konstant uafhængig af trykniveauet på højtrykssiden. Regulering af anlæggets kølekapacitet udføres derfor ved at variere 10 trykket på højtrykssiden, mens temperaturen i punkt "c" er i hovedsagen konstant. Isotermernes krumning nær ved det kritiske punkt indebærer en variation af enthalpien med trykket som vist i fig. 5. Figuren viser en referenceproces a-b-c-d-e-f, en proces med reduceret kapacitet 15 på grund af reduceret tryk på højtrykssiden a'-b'-c’-d'-e-f og en proces med forøget kapacitet på grund af højere tryk på højtrykssiden a"-b"-c"-d"-e-f. Fordampertrykket antages at være konstant.It should be noted that in a transcritical process, high pressure single phase refrigerant is not condensed, but only cooled in the cooler 11. The outlet temperature from the cooler (point "b") will be some degrees above the inlet temperature of cooling air or water if countercurrent is used. The high pressure steam can then be cooled a few more degrees down to point 5 "c" in the countercurrent heat exchanger 12. The result is that the temperature in point "c" at the constant inlet temperature of cooling air or water will be substantially constant, independent of the pressure level on the high pressure side. Therefore, the cooling capacity of the system is regulated by varying the pressure on the high pressure side, while the temperature in point "c" is substantially constant. The curvature of the isotherms near the critical point implies a variation of the enthalpy with the pressure as shown in FIG. 5. The figure shows a reference process abcdef, a process with reduced capacity 15 due to reduced pressure on the high pressure side a'-b'-c'-d'-ef and a process with increased capacity due to higher pressure on the high pressure side a "- b "c" d "-ef. The evaporator pressure is assumed to be constant.

20 Trykket på højtrykssiden er uafhængigt af temperaturen, fordi denne side er fyldt med enkeltfasevaeske. Til variation af trykket er det nødvendigt at variere massen af kølemiddel på højtrykssiden, dvs. at tilføje eller fjerne noget af den øjeblikkelige kølemiddelmængde på højtryks-25 siden. Disse variationer må optages af en buffer for at undgå overfyldning eller udtørring af fordamperen.20 The pressure on the high pressure side is independent of the temperature because this side is filled with single-phase fluid. For variation of pressure, it is necessary to vary the mass of refrigerant on the high pressure side, ie. to add or remove some of the instant refrigerant volume on the high pressure 25 page. These variations must be absorbed by a buffer to avoid overfilling or drying of the evaporator.

Ved den i fig. 2 viste foretrukne udførelses form for opfindelsen kan kølemiddelmassen på højtrykssiden forøges 30 ved midlertidig at reducere åbningen af drøvleventilen 13. På grund af den kortvarige reducerede kølemiddelstrøm til fordamperen vil overskudsvæsken i fordamperudgangen 15 blive reduceret. Den væskeformige kølemiddelstrøm fra . beholderen 16 ind i sugeledningen er imidlertid konstant.In the embodiment shown in FIG. 2, the refrigerant mass on the high pressure side may be increased by temporarily reducing the opening of the throttle valve 13. Due to the short-term reduced coolant flow to the evaporator, the excess liquid in the evaporator outlet 15 will be reduced. The liquid refrigerant stream from. however, the container 16 into the suction line is constant.

35 Følgelig ændres balancen mellem den væskestrøm, der træder ind i, og den, der forlader beholderen 16, hvilket resulterer i en nettoreduktion af beholderens væskeind- 10 DK 167985 B1 hold og en tilsvarende akkumulering af kølemiddel i strømkredsens højtryksside.Accordingly, the balance between the fluid flow entering and leaving the vessel 16 changes, resulting in a net reduction of the vessel's liquid content and a corresponding accumulation of refrigerant in the high-pressure side of the circuit.

Mængdeforøgelsen på højtrykssiden medfører forøget tryk 5 og dermed højere kølekapacitet. Denne masseoverføring fra kredsløbets lavtryksside til dets højtryksside vil fortsætte, indtil der opnås balance mellem kølekapaciteten og varmebelastningen.The increase in volume on the high-pressure side results in increased pressure 5 and thus higher cooling capacity. This mass transfer from the low-pressure side of the circuit to its high-pressure side will continue until a balance is achieved between the cooling capacity and the heat load.

10 Åbning af drøvleventilen 13 vil forøge overskudsvæskemængden ved fordamperudgangen 15, fordi den fordampede mængde kølemiddel er i hovedsagen konstant. Forskellen mellem denne væskestrøm, der træder ind i beholderen, og væskestrømmen fra beholderen ind i sugeledningen vil ak-15 kumuleres. Resultatet er en nettotransport af kølemiddelmængde fra strømkredsens højtryksside til dens lavtryksside med reduktionen af højtrykssidemængden oplagret i væskeform i beholderen. Ved reduktion af højtrykssidemængden og dermed trykket reduceres anlæggets kapacitet, 20 indtil der findes balance, mellem kapacitet og belastning.Opening the throttle valve 13 will increase the excess liquid volume at the evaporator outlet 15, because the vaporized amount of refrigerant is substantially constant. The difference between this fluid flow entering the vessel and the fluid flow from the vessel into the suction line will accumulate. The result is a net transport of refrigerant quantity from the high-pressure side of the circuit to its low-pressure side with the reduction of the high-pressure side volume stored in liquid form in the container. By reducing the high pressure side volume and thus the pressure, the capacity of the plant, 20 until there is a balance, is reduced between capacity and load.

En vis væsketransport fra beholderen ind i kompressorens sugeledning er også påkrævet for at undgå smøremiddelak-25 kumulering i beholderens væskefase.Some fluid transport from the container into the suction line of the compressor is also required to avoid lubricant accumulation during the liquid phase of the container.

Ved den anden i fig. 3 viste udførelsesform for opfindelsen kan kølemiddelmassen på højtrykssiden forøges ved samtidig lukning af ventilen 21 og åbning af drøvleventi-30 len 13 for at forsyne fordamperen med en tilstrækkelig væskestrøm. Dette vil reducere kølemiddelstrømmen fra højtrykssiden ind i beholderen gennem ventilen 21, medens der overføres kølemiddel fra lavtrykssiden til højtrykssiden af kompressoren.In the second embodiment of FIG. 3, the refrigerant mass on the high pressure side can be increased by simultaneously closing the valve 21 and opening the throttle valve 13 to provide a sufficient liquid flow to the evaporator. This will reduce the refrigerant flow from the high pressure side into the container through the valve 21 while transferring refrigerant from the low pressure side to the high pressure side of the compressor.

Reduktion af højtrykssidemængden opnås ved åbning af ven- tilen 21, medens strømmen gennem drøvleventilen 13 holdes 35 DK 167985 B1 11 i hovedsagen konstant. Dette vil overføre kølemiddel fra strømkredsens højtryksside til beholderen 22.Reduction of the high-pressure side volume is achieved by opening the valve 21, while the flow through the throttle valve 13 is kept constant. This will transfer refrigerant from the high pressure side of the circuit to the container 22.

Ved den tredie i fig. 4 viste udførelsesform for opfin-5 delsen kan kølemiddelmassen på højtrykssiden forøges ved åbning af ventilen 24 og samtidig reduktion af strømmen gennem drøvleventilen 13. Derved akkumuleres der kølemiddel på højtrykssiden på grund af reduceret strøm gennem drøvleventilen 13. Tilstrækkelig væsketilførsel til for-10 damperen opnås ved åbning af ventilen 24.In the third of FIG. 4, the refrigerant mass on the high pressure side can be increased by opening the valve 24 and at the same time reducing the flow through the throttle valve 13. Thereby accumulating refrigerant on the high pressure side due to reduced flow through the throttle valve 13. Sufficient liquid supply to the steam generator is obtained. at the opening of the valve 24.

Reduktion af mængden på højtrykssiden kan udføres ved åbning af ventilen 23 til overføring af en vis mængde kølemiddel fra højtrykssiden til beholderen. Kapacitetssty-15 ring af anlægget kan da foretages ved regulering af ven-tilerne 23 og 24 og samtidig styring af drøvleventilen 13.Reduction of the amount on the high pressure side can be accomplished by opening the valve 23 to transfer a certain amount of refrigerant from the high pressure side to the container. Capacity control of the system can then be performed by controlling the valves 23 and 24 and simultaneously controlling the throttle valve 13.

Den i fig. 2 viste foretrukne udførelsesform for opfin-20 delsen har den fordel at være enkel med kapacitetsstyring ved betjening af kun en ventil. Endvidere har det ifølge denne udførelsesform opbyggede kompressionskøleanlæg en vis selvregulerende evne ved, at belastninsændringer medfører ændringer af væskeindholdet i beholderen 16, hvil-25 ket indebærer ændringer af højtrykssidemængden og dermed kølekapaciteten. Desuden giver drift med væskeoverskud ved fordamperudgangen favorable varmeoverføringsegenska-ber.The FIG. 2, the preferred embodiment of the invention has the advantage of being simple with capacity control by operating only one valve. Furthermore, the compression cooling system constructed in this embodiment has some self-regulating ability in that load changes cause changes in the liquid content of the container 16, which implies changes in the high pressure side volume and thus the cooling capacity. In addition, operation with excess liquid at the evaporator output provides favorable heat transfer properties.

30 Den anden i fig. 3 viste udførelsesform har fordelen ved forenklet ventilstyring. Ventilen 21 regulerer kun trykket på anlæggets højtryksside, og drøvleventilen 13 sikrer kun, at fordamperen fødes tilstrækkeligt. Der kan så-. ledes anvendes en konventionel termostatisk ekspansions-35 ventil til drøvling. Tilbageføring af olie til kompressoren opnås let ved at tillade kølemidlet at strømme gennem beholderen. Denne udførelsesform giver imidlertid ikke DK 167985 B1 12 mulighed for kapacitetsstyrefunktionen, når trykket i højtrykssiden underskrider det kritiske tryk. Beholderen 22's volumen må være forholdvis stort, da beholderen kun arbejder mellem kompressorafgangstrykket og væskeled-5 ningstrykket.30 The second one in FIG. 3 shows the advantage of simplified valve control. The valve 21 controls only the pressure on the high pressure side of the system, and the throttle valve 13 only ensures that the evaporator is sufficiently fed. There can then-. For example, a conventional thermostatic expansion valve for throttling is used. The return of oil to the compressor is easily achieved by allowing the refrigerant to flow through the container. However, this embodiment does not allow for the capacity control function when the pressure in the high pressure side falls below the critical pressure. The volume of the container 22 must be relatively large, since the container only operates between the compressor discharge pressure and the fluid conduction pressure.

Endnu en anden udførelsesform vist i.fig. 4 har den fordel at arbejde som et konventionelt kompressionskøleanlæg, når det opererer under stabile betingelser. Venti-10 ' lerne 23 og 24, som forbinder beholderen 25 med strøm kredsløbet, aktiveres kun under kapacitetsstyring. Denne udførelsesform kræver brug af tre forskellige ventiler under perioder med kapacitetsregulering.Yet another embodiment shown in FIG. 4 has the advantage of operating as a conventional compression cooling system when operating under stable conditions. The valves 23 and 24 connecting the container 25 to the power circuit are activated only under capacity control. This embodiment requires the use of three different valves during periods of capacity regulation.

15 De sidstnævnte udførelsesformer har den ulempe, at der er højere tryk i beholderen end i den foretrukne udførelsesform. Forskellen mellem de forskellige systemer med hensyn til konstruktion og arbejdsegenskaber er imidlertid ikke af større betydning.The latter embodiments have the disadvantage that there is higher pressure in the container than in the preferred embodiment. However, the difference between the different systems in terms of construction and work characteristics is of no greater importance.

2020

Transkritiske kompressionskøleanlæg opbygget i overensstemmelse med de beskrevne udførelsesformer kan anvendes på flere områder. Teknologien er velegnet i små og middelstore, stationære og mobile luftkonditioneringsanlæg, 25 små og middelstore køleskabe/frysere og i mindre varmepumpeanlæg. En af de mest lovende anvendelser er i personbil-luftkonditioneringsanlæg, hvor der er et stærkt behov for et alternativ, som ikke bruger CFC-stoffer, har lav vægt og god virkningsgrad.Transcritical compression refrigeration systems constructed in accordance with the described embodiments can be used in several areas. The technology is suitable in small and medium sized, stationary and mobile air conditioners, 25 small and medium refrigerators / freezers and in smaller heat pump systems. One of the most promising uses is in passenger car air conditioners, where there is a strong need for an alternative that does not use CFCs, has low weight and good efficiency.

3030

EKSEMPLEREXAMPLES

. Den praktiske anvendelse af opfindelsen til køling eller varmepumpeformål er illustreret ved følgende eksempler, 35 der indeholder forsøgsresultater fra et transkritisk kompressionskøleanlæg, der er opbygget efter den i fig. 2 viste udførelsesform for opfindelsen, og som anvender DK 167985 B1 13 carbondioxid C02 som kølemiddel.. The practical application of the invention for cooling or heat pumping purposes is illustrated by the following Examples, which contain experimental results from a transcritical compression refrigeration system constructed according to the one shown in FIG. 2 which utilizes DK 167985 B1 13 carbon dioxide CO 2 as a refrigerant.

Dette laboratorieforsøgsanlæg anvender vand som varmekilde, dvs. at vandet køles ved varmeveksling med kogende 5 CO2 i fordamperen 14. Der anvendes også vand som sekundær kølemedium, der opvarmes af C0„ i varmeveksleren 11. For- ^ 3 søgsanlægget indeholder en 61 cm stempelkompressor 10 og en beholder 16 med et totalt volumen på 4 liter. Anlægget indeholder også en modstrøms-varmeveksler 12 og væskeled-10 ningsforbindelse fra beholderen til punkt 17 som angivet i fig. 2. Drøvleventilen 13 betjenes manuelt.This laboratory test plant uses water as a heat source, ie. the water is cooled by heat exchange with boiling 5 CO 2 in the evaporator 14. Water is also used as a secondary refrigerant heated by C0 2 in the heat exchanger 11. The test plant contains a 61 cm piston compressor 10 and a container 16 with a total volume of 4 liters. The plant also contains a countercurrent heat exchanger 12 and liquid conduit connection from the container to point 17 as shown in FIG. 2. The throttle valve 13 is operated manually.

EKSEMPEL 1 15 Dette eksempel viser, hvorledes styring af kølekapaciteten opnås ved variation af drøvleventilen 13's stilling, hvorved trykket på højtrykssiden af strømkredsen varie res. Ved variation af trykket styres den specifikke køle-middelenthalpi ved fordamperindgangen, hvilket resulterer 20 i regulering af kølekapaciteten ved konstant massestrøm.EXAMPLE 1 15 This example shows how control of cooling capacity is achieved by varying the position of the throttle valve 13, thereby varying the pressure on the high pressure side of the circuit. By varying the pressure, the specific refrigerant enthalpy is controlled at the evaporator input, which results in the regulation of the cooling capacity at constant mass flow.

Vandindgangstemperaturen til fordamperen 14 holdes konstant på 20 °C, og vandindgangstemperaturen til varmeveksleren 11 holdes konstant på 35 “C. Vandcirkulationen 25 er konstant både i fordamperen 14 og i varmeveksleren 11. Kompressoren løber med konstant hastighed.The water inlet temperature of the evaporator 14 is kept constant at 20 ° C and the water inlet temperature of the heat exchanger 11 is kept constant at 35 ° C. The water circulation 25 is constant both in the evaporator 14 and in the heat exchanger 11. The compressor runs at a constant speed.

Fig. 6 viser variationen af kølekapaciteten Q, kompres-sorakseleffektiviteten W, trykket i højtrykssiden pFIG. 6 shows the variation of the cooling capacity Q, the compressor shaft efficiency W, the pressure in the high pressure side p

HH

30 C02-massestrømmen m, C02-temperaturen ved fordamperudgan gen t , C02-temperaturen ved udgangen af varmeveksleren . 11 og væskeniveauet i receiveren h, når drøvleventilen 11 bliver betjent som angivet øverst i figuren. Indstillingen af drøvleventilpositionen er den eneste manipula-35 tion.The CO 2 mass flow m, the CO 2 temperature at the evaporator output t, the CO 2 temperature at the output of the heat exchanger. 11 and the liquid level in the receiver h when the throttle valve 11 is operated as indicated at the top of the figure. Adjusting the throttle valve position is the only manipulation.

DK 167985 B1 14DK 167985 B1 14

Som det fremgår af figuren, styres kølekapaciteten Q let ved betjening af drøvleventilen 13. Det ses endvidere klart af figuren, at den cirkulerende massestrøm af CO2 ro under stabile betingelser er i hovedsagen konstant og 5 uafhængig af kølekapaciteten. CC^-temperaturen ved udgangen af varmeveksleren 11 t^ er også i hovedsagen konstant. Graferne viser, at kapacitetsvariationen er et resultat alene af varierende tryk i højtrykssiden pH· 10 Det ses også af diagrammet, at forøget tryk i højtrykssiden medfører en reduktion af beholderens væskeniveau h på grund af overføringen af CO 2 til kredsløbets højtryksside.As can be seen in the figure, the cooling capacity Q is easily controlled by operation of the throttle valve 13. It is further clear from the figure that the circulating mass flow of CO2 ro under stable conditions is substantially constant and independent of the cooling capacity. The CC CC temperature at the output of the heat exchanger 11 t ^ is also substantially constant. The graphs show that the capacity variation is the result only of varying pressure in the high pressure side pH · 10 It is also seen from the diagram that increased pressure in the high pressure side results in a reduction of the liquid level h of the container due to the transfer of CO 2 to the high pressure side of the circuit.

15 Det vil endelig bemærkes, at overgangsperioden under kapacitetsforøgelse ikke involverer nogen betydende overhedning ved fordamperudgangen, dvs. at der kun forekommer • små fluktuationer i t .15 Finally, it will be noted that the transitional period during capacity increase does not involve any significant superheating at the evaporator output, ie. that only • small fluctuations occur in t.

e 20 EKSEMPEL 2EXAMPLE 2

Med højere vandindgangstemperatur til varmeveksleren 11 (f.eks. højere temperatur af omgivelserne) er det nødvendigt at forøge trykket i højtrykssiden for at opretholde 25 konstant kølekapacitet. Tabel 1 viser resultater af forsøg, der er udført med forskellige vandindgangstemperaturer til varmeveksleren 11 t .With higher water inlet temperature to the heat exchanger 11 (e.g. higher ambient temperature), it is necessary to increase the pressure in the high pressure side to maintain 25 constant cooling capacity. Table 1 shows results of experiments conducted with different water inlet temperatures for the heat exchanger 11 t.

ww

Vandindgangstemperaturen til fordamperen holdes konstant 30 på 20 0C, og kompressoren løber med konstant hastighed.The water inlet temperature of the evaporator is kept constant at 30 ° C and the compressor runs at a constant speed.

Som tabellen viser, kan kølekapaciteten holdes i hovedsagen konstant, når omgivelsernes temperatur stiger, ved forøgelse af trykket i højtrykssiden. Massestrømmen af 35 kølemiddel er i hovedsagen konstant som vist. Forøget tryk indebærer en reduktion af beholderens væskeindhold, som det fremgår af væskeniveautallene.As the table shows, the cooling capacity can be kept substantially constant as the ambient temperature rises, by increasing the pressure in the high pressure side. The mass flow of 35 refrigerant is substantially constant as shown. Increased pressure implies a reduction in the liquid content of the container, as shown in the liquid level counters.

15 DK 167985 B115 DK 167985 B1

Tabel 1Table 1

Indgangstemperatur t 35,1 45,9 57,3 eCInlet temperature t 35.1 45.9 57.3 eC

55

Kølekapacitet Q 2,4 2,2 2,2 kWCooling capacity Q 2.4 2.2 2.2 kW

Tryk i højtrykssiden pH 84,9 94,3 114,1 barPressure in the high pressure side pH 84.9 94.3 114.1 bar

Massestrøm m 0,026 0,024 0,020 kg/s Væskeniveau h 171 166 115 mm 10 _ EKSEMPEL 3Mass flow m 0.026 0.024 0.020 kg / s Fluid level h 171 166 115 mm 10 EXAMPLE 3

Fig. 7 er en grafisk repræsentation af transkritiske 15 kredsprocesser i entropi/temperaturdiagrammet. De i diagrammet viste proceskurver er baseret på målinger på laboratorieforsøgsanlægget under drift ved fem forskellige tryk i højtrykssiden. Fordampertrykket holdes konstant. Kølemidlet er C02· 20FIG. 7 is a graphical representation of transcritical 15 circuit processes in the entropy / temperature diagram. The process curves shown in the diagram are based on measurements at the laboratory experimental plant during operation at five different pressures in the high pressure side. The evaporator pressure is kept constant. The refrigerant is CO 2 · 20

Diagrammet giver et godt indtryk af kapacitetsstyreprincippet, idet det viser ændringer i specifik enthalpi h ved fordamperindgangen ved af variation af trykket p.The diagram gives a good impression of the capacity control principle, showing changes in specific enthalpy h at the evaporator input by variation of the pressure p.

25 30 3525 30 35

Claims (7)

1. Fremgangsmåde ved regulering af et kompressionskøle-5 system omfattende en kompressor (10), en køler (11), et drøvleorgan (13) og en fordamper (14), der er forbundet i serie i et lukket kredsløb med overkritisk tryk på højtrykssiden, kendetegnet ved, at trykket i højtrykssiden reguleres ved variation af kølemiddelfyld-10 ningen i højtrykssiden af systemet ved at variere kølemiddelindholdet i en beholder, som udgør en integreret del af systemet, og hvor den specifikke ydelse af systemet påvirkes af trykreguleringen.A method of controlling a compression cooling system comprising a compressor (10), a cooler (11), a throttle member (13) and an evaporator (14) connected in series in a closed circuit with supercritical high pressure side , characterized in that the pressure in the high pressure side is regulated by variation of the refrigerant charge in the high pressure side of the system by varying the refrigerant content in a container which forms an integral part of the system and where the specific performance of the system is affected by the pressure regulation. 2. Fremgangsmåde ifølge krav 1, kendetegnet ved, at reguleringen gennemføres ved at variere kølemiddelindholdet i en beholder (16) på lavtrykssiden anbragt . mellem fordamperen (14) og kompressoren (10) alene ved brug af drøvleorganet (13). 20Process according to claim 1, characterized in that the control is carried out by varying the refrigerant content in a container (16) located on the low pressure side. between the evaporator (14) and the compressor (10) alone using the throttle means (13). 20 3. Fremgangsmåde ifølge krav 1, kendetegnet ved, at variation af kølemiddelfyldningen i højtrykssiden opnås ved at bruge en ventil (21) og drøvleorganet (13) til at variere indholdet af kølemiddel ved overkritisk 25 tryk i en beholder (22) indkoblet i systemet mellem ventilen (21) og drøvleorganet (13). 1 Fremgangsmåde ifølge krav 1, kendetegnet ved, at variation af kølemiddelfyldningen i højtrykssiden 30 af systemet opnås ved kontinuerligt at regulere tilførsel eller bortførsel af kølemiddel til eller fra en beholder (25) koblet til høj- og lavtrykssiden af systemet ved hjælp af ledninger med ventiler (23, 24) samtidig med at trykket i beholderen (25) holdes mellem systemets højtryk 35 og lavtryk. 17 DK 167985 B1Process according to claim 1, characterized in that variation of the refrigerant filling in the high pressure side is achieved by using a valve (21) and the throttle (13) to vary the content of refrigerant at supercritical pressure in a container (22) connected in the system between valve (21) and throttle member (13). Method according to claim 1, characterized in that variation of the refrigerant filling in the high pressure side 30 of the system is obtained by continuously controlling the supply or removal of refrigerant to or from a container (25) coupled to the high and low pressure side of the system by means of valves with valves. (23, 24) while maintaining the pressure in the container (25) between the high pressure 35 and the low pressure. 17 DK 167985 B1 5. Fremgangsmåde ifølge krav 1, kendetegnet ved, at carbondioxid anvendes som kølemiddel i systemet.Process according to claim 1, characterized in that carbon dioxide is used as refrigerant in the system. 6. Varme/køleanordning til udøvelse af fremgangsmåden 5 ifølge krav 1 omfattende en kompressor (10), en køler (11), et drøvleorgan (13) og en fordamper (14) forbundet i serie i et lukket kredsløb, som arbejder med overkritisk tryk på højtrykssiden, kendetegnet ved, . at anordningen endvidere omfatter en beholder (16) an-10 bragt mellem fordamperen (14) og kompressoren (10), og hvor drøvleorganet (13) er anbragt i systemet mellem køleren (11) og fordamperen (14) og benyttes til at regulere højtrykket i systemet ved at variere kølemiddelindholdet i beholder (16). 15A heating / cooling device for carrying out the method 5 according to claim 1 comprising a compressor (10), a cooler (11), a throttle member (13) and an evaporator (14) connected in series in a closed circuit operating at supercritical pressure. on the high pressure side, characterized by,. the device further comprising a container (16) disposed between the evaporator (14) and the compressor (10), and wherein the throttle member (13) is arranged in the system between the cooler (11) and the evaporator (14) and is used to regulate the high pressure. in the system by varying the refrigerant content of the container (16). 15 7. Anordning ifølge krav 6, kendetegnet ved, at en yderligere varmeveksler (12) er tilføjet systemet ved, at dens lavtryksindløb (17) er koblet til beholderen (16), og dens højtryksindløb er koblet til udløbet af kø- 20 leren (11), og at varmeveksleren (12) er anbragt i systemet mellem beholderen (16) og kompressoren (10).Device according to claim 6, characterized in that an additional heat exchanger (12) is added to the system in that its low-pressure inlet (17) is coupled to the container (16) and its high-pressure inlet is coupled to the outlet of the cooler (11). ), and that the heat exchanger (12) is arranged in the system between the container (16) and the compressor (10). 8. Anordning ifølge krav 6, kendetegnet ved, at carbondioxid anvendes som kølemiddel i systemet. 25 30 35Device according to claim 6, characterized in that carbon dioxide is used as refrigerant in the system. 25 30 35
DK214690A 1989-01-09 1990-09-07 PROCEDURE FOR REGULATING A COMPRESSION COOLING SYSTEM AND HEATING / COOLING DEVICE FOR EXERCISING THE PROCEDURE DK167985B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
NO890076A NO890076D0 (en) 1989-01-09 1989-01-09 AIR CONDITIONING.
NO890076 1989-01-09
NO8900089 1989-09-06
PCT/NO1989/000089 WO1990007683A1 (en) 1989-01-09 1989-09-06 Trans-critical vapour compression cycle device

Publications (3)

Publication Number Publication Date
DK214690D0 DK214690D0 (en) 1990-09-07
DK214690A DK214690A (en) 1990-11-06
DK167985B1 true DK167985B1 (en) 1994-01-10

Family

ID=19891609

Family Applications (1)

Application Number Title Priority Date Filing Date
DK214690A DK167985B1 (en) 1989-01-09 1990-09-07 PROCEDURE FOR REGULATING A COMPRESSION COOLING SYSTEM AND HEATING / COOLING DEVICE FOR EXERCISING THE PROCEDURE

Country Status (10)

Country Link
EP (1) EP0424474B2 (en)
JP (1) JPH0718602B2 (en)
KR (1) KR0126550B1 (en)
DE (2) DE68908181D1 (en)
DK (1) DK167985B1 (en)
NO (2) NO890076D0 (en)
PL (1) PL285966A1 (en)
RU (1) RU2039914C1 (en)
UA (1) UA27758C2 (en)
WO (1) WO1990007683A1 (en)

Families Citing this family (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245836A (en) * 1989-01-09 1993-09-21 Sinvent As Method and device for high side pressure regulation in transcritical vapor compression cycle
JP2931668B2 (en) * 1991-09-16 1999-08-09 シンヴェント・アクシェセルスカープ High side pressure regulation method in supercritical vapor compression circuit
NO915127D0 (en) * 1991-12-27 1991-12-27 Sinvent As VARIABLE VOLUME COMPRESSION DEVICE
NO175830C (en) * 1992-12-11 1994-12-14 Sinvent As Kompresjonskjölesystem
DE4411281B4 (en) * 1994-03-31 2004-07-22 Daimlerchrysler Ag Motor vehicle with an air conditioner
DE4415326C1 (en) * 1994-05-02 1995-06-08 Buse Gase Gmbh & Co Gas-cooling method using carbon dioxide under pressure
DE4432272C2 (en) * 1994-09-09 1997-05-15 Daimler Benz Ag Method for operating a refrigeration system for air conditioning vehicles and a refrigeration system for performing the same
CH690189A5 (en) * 1995-03-10 2000-05-31 Daimler Benz Ag A method for controlling the power of a system for cooling the passenger compartment of a motor vehicle.
CH689826A5 (en) * 1995-05-10 1999-12-15 Daimler Benz Ag Vehicle air conditioner.
JPH0949662A (en) * 1995-08-09 1997-02-18 Aisin Seiki Co Ltd Compression type air conditioner
DE19650108A1 (en) * 1995-12-04 1997-06-05 Denso Corp Swashplate compressor for cooling system
DE59604923D1 (en) * 1996-01-26 2000-05-11 Konvekta Ag COMPRESSION REFRIGERATION SYSTEM
EP0837291B1 (en) * 1996-08-22 2005-01-12 Denso Corporation Vapor compression type refrigerating system
JP3508465B2 (en) 1997-05-09 2004-03-22 株式会社デンソー Heat exchanger
JPH1137579A (en) * 1997-07-11 1999-02-12 Zexel Corp Refrigerator
DE69831534T2 (en) * 1997-07-18 2006-06-29 Denso Corp., Kariya Pressure control valve for refrigeration system
JPH1163686A (en) * 1997-08-12 1999-03-05 Zexel Corp Refrigeration cycle
JP3365273B2 (en) * 1997-09-25 2003-01-08 株式会社デンソー Refrigeration cycle
US6206652B1 (en) 1998-08-25 2001-03-27 Copeland Corporation Compressor capacity modulation
US6105386A (en) * 1997-11-06 2000-08-22 Denso Corporation Supercritical refrigerating apparatus
JPH11193967A (en) * 1997-12-26 1999-07-21 Zexel:Kk Refrigerating cycle
JPH11211250A (en) 1998-01-21 1999-08-06 Denso Corp Supercritical freezing cycle
DE19806654A1 (en) * 1998-02-18 1999-08-19 Obrist Engineering Gmbh Air conditioning system for a motor vehicle powered by an internal combustion engine
DE19813220C2 (en) * 1998-03-26 2002-12-12 Univ Dresden Tech Piston expansion machine and method for incorporating this machine into a transcritical compression refrigeration process
DE19813673B4 (en) * 1998-03-27 2004-01-29 Daimlerchrysler Ag Method and device for heating and cooling a useful space of a motor vehicle
JP3861451B2 (en) 1998-04-20 2006-12-20 株式会社デンソー Supercritical refrigeration cycle
DE19829335C2 (en) * 1998-07-01 2000-06-08 Kki Klima-, Kaelte- Und Industrieanlagen Schmitt Kg Refrigeration system
DE19832480A1 (en) * 1998-07-20 2000-01-27 Behr Gmbh & Co Vehicle air conditioning system with carbon dioxide working fluid is designed for limited variation in efficiency over a given range of high pressure deviation, avoiding need for controls on high pressure side
DE19832479A1 (en) * 1998-07-20 2000-01-27 Behr Gmbh & Co Vehicle air conditioning system employing carbon dioxide working fluid includes specially designed expansion valve having orifice with length and diameter orifice limiting maximum operational pressure
EP1120612A4 (en) * 1998-10-08 2002-09-25 Zexel Valeo Climate Contr Corp Refrigerating cycle
US6327868B1 (en) 1998-10-19 2001-12-11 Zexel Valeo Climate Control Corporation Refrigerating cycle
DE19850914A1 (en) * 1998-11-05 2000-05-18 Messer Griesheim Gmbh Air conditioning system for motor vehicle has flap for interrupting air flow into interior of vehicle in ventilation system downstream of heat exchanger and controlled by CO2 sensor
JP3227651B2 (en) * 1998-11-18 2001-11-12 株式会社デンソー Water heater
DE19918617C2 (en) * 1999-04-23 2002-01-17 Valeo Klimatechnik Gmbh Gas cooler for a supercritical CO¶2¶ high pressure refrigerant circuit of an automotive air conditioning system
JP2000320910A (en) * 1999-05-11 2000-11-24 Bosch Automotive Systems Corp Control method for freezing cycle and freezing cycle using this method
JP2000346472A (en) 1999-06-08 2000-12-15 Mitsubishi Heavy Ind Ltd Supercritical steam compression cycle
JP4043144B2 (en) 1999-06-08 2008-02-06 三菱重工業株式会社 Scroll compressor
JP2000352389A (en) 1999-06-08 2000-12-19 Mitsubishi Heavy Ind Ltd Scroll compressor
JP2001055988A (en) 1999-06-08 2001-02-27 Mitsubishi Heavy Ind Ltd Scroll compressor
WO2001006183A1 (en) * 1999-07-16 2001-01-25 Zexel Valeo Climate Control Corporation Refrigerating cycle
DE19935731A1 (en) * 1999-07-29 2001-02-15 Daimler Chrysler Ag Operating method for automobile refrigeration unit has cooling medium mass flow regulated by compressor and cooling medium pressure determined by expansion valve for regulation within safety limits
JP3389539B2 (en) * 1999-08-31 2003-03-24 三洋電機株式会社 Internal intermediate pressure type two-stage compression type rotary compressor
JP2001108315A (en) * 1999-10-06 2001-04-20 Zexel Valeo Climate Control Corp Refrigerating cycle
JP2001174076A (en) * 1999-10-08 2001-06-29 Zexel Valeo Climate Control Corp Refrigeration cycle
JP2002048421A (en) 2000-08-01 2002-02-15 Matsushita Electric Ind Co Ltd Refrigerating cycle system
JP2002130849A (en) 2000-10-30 2002-05-09 Calsonic Kansei Corp Cooling cycle and its control method
US6457325B1 (en) * 2000-10-31 2002-10-01 Modine Manufacturing Company Refrigeration system with phase separation
US6385980B1 (en) * 2000-11-15 2002-05-14 Carrier Corporation High pressure regulation in economized vapor compression cycles
JP3510587B2 (en) * 2000-12-06 2004-03-29 三菱重工業株式会社 Cooling cycle for air conditioner and lubricating oil for cooling cycle
US6523365B2 (en) * 2000-12-29 2003-02-25 Visteon Global Technologies, Inc. Accumulator with internal heat exchanger
DE10137999A1 (en) * 2001-08-02 2003-02-13 Bayerische Motoren Werke Ag Refrigerator for motor vehicle air conditioning has high and low pressure sections with heat exchanger between them
DE10140630A1 (en) * 2001-08-18 2003-02-27 Bayerische Motoren Werke Ag Cooling plant for motor vehicles has coolant expansion elements and heat accumulator with two operating modes
DE10246004B4 (en) * 2001-10-03 2017-05-18 Denso Corporation Supercritical refrigeration cycle system and this using water heater
JP3956674B2 (en) 2001-11-13 2007-08-08 ダイキン工業株式会社 Refrigerant circuit
US6568199B1 (en) * 2002-01-22 2003-05-27 Carrier Corporation Method for optimizing coefficient of performance in a transcritical vapor compression system
KR20040091615A (en) 2002-03-28 2004-10-28 마츠시타 덴끼 산교 가부시키가이샤 Refrigerating cycle device
JP2003294338A (en) * 2002-03-29 2003-10-15 Japan Climate Systems Corp Heat exchanger
JP4522641B2 (en) * 2002-05-13 2010-08-11 株式会社デンソー Vapor compression refrigerator
DE20208337U1 (en) * 2002-05-28 2003-10-16 Thermo King Deutschland Gmbh Air conditioning system for large vehicles has an inner cooling circuit and a modular flat finned tube exterior condenser with two or more modules in parallel
DE10223712C1 (en) * 2002-05-28 2003-10-30 Thermo King Deutschland Gmbh Climate-control device for automobile with modular heat exchanger in heat exchanger fluid circuit adaptable for different automobile types
TWI301188B (en) 2002-08-30 2008-09-21 Sanyo Electric Co Refrigeant cycling device and compressor using the same
DE10306394A1 (en) * 2003-02-15 2004-08-26 Volkswagen Ag Refrigerant circuit with a regulated swash plate compressor
JP4286064B2 (en) * 2003-05-30 2009-06-24 三洋電機株式会社 Cooling system
JP4179927B2 (en) 2003-06-04 2008-11-12 三洋電機株式会社 Method for setting refrigerant filling amount of cooling device
DE10332505B3 (en) * 2003-07-17 2005-01-13 Daimlerchrysler Ag Air conditioning system for interior of motor vehicle driven by internal combustion engine has coolant circuit connection lines forming inner heat exchanger; evaporator is arranged inside vehicle
DE10338388B3 (en) * 2003-08-21 2005-04-21 Daimlerchrysler Ag Method for controlling an air conditioning system
US6923011B2 (en) 2003-09-02 2005-08-02 Tecumseh Products Company Multi-stage vapor compression system with intermediate pressure vessel
US6959557B2 (en) 2003-09-02 2005-11-01 Tecumseh Products Company Apparatus for the storage and controlled delivery of fluids
US6813895B2 (en) * 2003-09-05 2004-11-09 Carrier Corporation Supercritical pressure regulation of vapor compression system by regulation of adaptive control
JP2005098635A (en) * 2003-09-26 2005-04-14 Zexel Valeo Climate Control Corp Refrigeration cycle
US7010927B2 (en) * 2003-11-07 2006-03-14 Carrier Corporation Refrigerant system with controlled refrigerant charge amount
US7096679B2 (en) 2003-12-23 2006-08-29 Tecumseh Products Company Transcritical vapor compression system and method of operating including refrigerant storage tank and non-variable expansion device
KR20050072299A (en) * 2004-01-06 2005-07-11 삼성전자주식회사 Cooling and heating air conditioning system
US7131294B2 (en) * 2004-01-13 2006-11-07 Tecumseh Products Company Method and apparatus for control of carbon dioxide gas cooler pressure by use of a capillary tube
JP2005214444A (en) * 2004-01-27 2005-08-11 Sanyo Electric Co Ltd Refrigerator
JP2005226927A (en) * 2004-02-13 2005-08-25 Sanyo Electric Co Ltd Refrigerant cycle device
JP2005226918A (en) * 2004-02-12 2005-08-25 Sanyo Electric Co Ltd Solar battery driven refrigerant cycle device, water heater, hot storage, cooling storage, beverage feeder, and air conditioner
JP2005226913A (en) * 2004-02-12 2005-08-25 Sanyo Electric Co Ltd Transient critical refrigerant cycle device
DE102004008210A1 (en) * 2004-02-19 2005-09-01 Valeo Klimasysteme Gmbh A method for operating a motor vehicle air conditioning system as a heat pump to provide interior heating with a cold engine
DE102004014812B3 (en) * 2004-03-24 2005-08-11 Adam Opel Ag Air conditioning plant for vehicle has heat exchanger fixed to powertrain unit and connected to the compressor via a line fixed to powertrain unit
DE102004015297A1 (en) * 2004-03-29 2005-11-03 Andreas Bangheri Apparatus and method for cyclic vapor compression
JP2009052880A (en) * 2004-03-29 2009-03-12 Mitsubishi Electric Corp Heat pump water heater
JP4613526B2 (en) * 2004-06-23 2011-01-19 株式会社デンソー Supercritical heat pump cycle equipment
NL1026728C2 (en) * 2004-07-26 2006-01-31 Antonie Bonte Improvement of cooling systems.
JP4670329B2 (en) 2004-11-29 2011-04-13 三菱電機株式会社 Refrigeration air conditioner, operation control method of refrigeration air conditioner, refrigerant amount control method of refrigeration air conditioner
DE102005022513A1 (en) * 2005-05-11 2006-11-16 Behr Gmbh & Co. Kg Refrigerant pipes for air conditioners
JP2007085685A (en) * 2005-09-26 2007-04-05 Sanyo Electric Co Ltd Co2 cycle driving device using solar power generation
JP4591355B2 (en) * 2006-01-13 2010-12-01 株式会社日立プラントテクノロジー Dehumidification air conditioning system
JP4848211B2 (en) * 2006-06-08 2011-12-28 株式会社日立プラントテクノロジー Dehumidification air conditioning system
CN101713573B (en) * 2006-01-13 2013-07-03 株式会社日立工业设备技术 Dehumidifying air conditioning system
JP2007187407A (en) * 2006-01-16 2007-07-26 Mitsubishi Electric Corp Refrigeration cycle device and operation method for refrigeration cycle device
DE102006005035B3 (en) 2006-02-03 2007-09-27 Airbus Deutschland Gmbh cooling system
JP2007263433A (en) * 2006-03-28 2007-10-11 Sanyo Electric Co Ltd Refrigerant cycle device and heat exchanger for the same
US8196421B2 (en) 2006-06-01 2012-06-12 Carrier Corporation System and method for controlled expansion valve adjustment
DE102007043162B4 (en) * 2006-09-14 2021-02-25 Konvekta Ag Air conditioning with automatic refrigerant shift
JP5040256B2 (en) * 2006-10-19 2012-10-03 パナソニック株式会社 Refrigeration cycle apparatus and control method thereof
WO2008066530A2 (en) * 2006-11-30 2008-06-05 Carrier Corporation Refrigerant charge storage
DE102007027524A1 (en) * 2007-06-15 2008-12-18 Bayerische Motoren Werke Aktiengesellschaft Hybrid vehicle has internal combustion engine, gear and electrical energy storage, and electrical machine is arranged between combustion engine and transmission, and drive moment is generated in drive mode from electrically stored energy
NO327832B1 (en) * 2007-06-29 2009-10-05 Sinvent As Steam circuit compression dress system with closed circuit as well as method for operating the system.
US8157538B2 (en) 2007-07-23 2012-04-17 Emerson Climate Technologies, Inc. Capacity modulation system for compressor and method
DE202007011617U1 (en) 2007-08-20 2009-01-08 Thermo King Deutschland Gmbh Arrangement for air conditioning a vehicle
DE102007039195B4 (en) * 2007-08-20 2015-03-26 Ingersoll-Rand Klimasysteme Deutschland Gmbh Arrangement for air conditioning a vehicle
JP2009139037A (en) * 2007-12-07 2009-06-25 Mitsubishi Heavy Ind Ltd Refrigerant circuit
US20110041523A1 (en) * 2008-05-14 2011-02-24 Carrier Corporation Charge management in refrigerant vapor compression systems
DK2318782T3 (en) * 2008-07-07 2019-04-23 Carrier Corp COOLING CIRCUIT
NO331155B1 (en) 2008-12-02 2011-10-24 Varmepumpen As Heat pump / air conditioner with sequential operation
CA2749562C (en) 2009-01-27 2014-06-10 Emerson Climate Technologies, Inc. Unloader system and method for a compressor
JP2012522960A (en) * 2009-04-01 2012-09-27 サー ジオサーマル,インコーポレイテッド Geothermal energy system
JP2010261670A (en) * 2009-05-08 2010-11-18 Mitsubishi Electric Corp Refrigerating device
JP5496645B2 (en) * 2009-12-25 2014-05-21 三洋電機株式会社 Refrigeration equipment
JP5484890B2 (en) * 2009-12-25 2014-05-07 三洋電機株式会社 Refrigeration equipment
DK2339266T3 (en) 2009-12-25 2018-05-28 Sanyo Electric Co Cooling device
JP2011133206A (en) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd Refrigerating apparatus
JP2011133208A (en) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd Refrigerating apparatus
DK2339265T3 (en) 2009-12-25 2018-05-28 Sanyo Electric Co Cooling device
JP5484889B2 (en) * 2009-12-25 2014-05-07 三洋電機株式会社 Refrigeration equipment
DK2627876T3 (en) 2010-10-14 2015-06-15 Energreen Heat Recovery As A method and system for utilizing a power source of relatively low temperature
DE102011052776B4 (en) * 2011-04-27 2016-12-29 Dürr Thermea Gmbh Supercritical heat pump
JP6087611B2 (en) * 2012-12-14 2017-03-01 シャープ株式会社 Refrigeration cycle and air conditioner equipped with the same
JP6174314B2 (en) * 2012-12-14 2017-08-02 シャープ株式会社 Refrigeration system equipment
FR3005154B1 (en) * 2013-04-26 2015-05-15 Commissariat Energie Atomique ELECTROMAGNETICALLY INDUCED HEATING FURNACE, USE OF THE OVEN FOR FUSION OF A MIXTURE OF METAL (UX) AND OXIDE (S) REPRESENTATIVE OF A CORIUM
JPWO2015022958A1 (en) 2013-08-14 2017-03-02 セントラル硝子株式会社 Heat transfer method and high temperature heat pump device
JP6388260B2 (en) * 2014-05-14 2018-09-12 パナソニックIpマネジメント株式会社 Refrigeration equipment
JP6814974B2 (en) 2015-09-11 2021-01-20 パナソニックIpマネジメント株式会社 Refrigeration equipment
JP6555584B2 (en) 2015-09-11 2019-08-07 パナソニックIpマネジメント株式会社 Refrigeration equipment
FR3044748B1 (en) * 2015-12-03 2019-07-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives COLD HOLLOW OVEN HEATED BY TWO ELECTROMAGNETIC INDUCERS, USE OF THE OVEN FOR THE FUSION OF A MIXTURE OF METAL (UX) AND OXIDE (S) REPRESENTATIVE OF A CORIUM
JP6653463B2 (en) * 2016-02-08 2020-02-26 パナソニックIpマネジメント株式会社 Refrigeration equipment
CN108603696B (en) * 2016-02-08 2020-06-12 松下知识产权经营株式会社 Refrigerating device
JP6537703B2 (en) * 2016-03-17 2019-07-03 三菱電機株式会社 Heat pump water heater
WO2018163345A1 (en) * 2017-03-09 2018-09-13 三菱電機株式会社 Heat pump hot water supply device
DE102017118425A1 (en) 2017-08-13 2019-02-14 Konvekta Aktiengesellschaft Circulatory system for a vehicle and method
DE102017118424A1 (en) 2017-08-13 2019-02-14 Konvekta Aktiengesellschaft Circulatory system for a fuel cell vehicle
JP2019207088A (en) * 2018-05-30 2019-12-05 株式会社前川製作所 Heat pump system
CN109163917B (en) * 2018-07-19 2020-03-31 西安交通大学 Transcritical CO2Heat pump accelerated life experiment system and method
JP2022083749A (en) 2020-11-25 2022-06-06 パナソニックIpマネジメント株式会社 Refrigerating device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE278095C (en) *
US1408453A (en) * 1921-01-24 1922-03-07 Justus C Goosmann Refrigerating apparatus
US3400555A (en) * 1966-05-02 1968-09-10 American Gas Ass Refrigeration system employing heat actuated compressor
JPS49128344A (en) * 1973-04-11 1974-12-09
US3844131A (en) * 1973-05-22 1974-10-29 Dunham Bush Inc Refrigeration system with head pressure control
US3872682A (en) * 1974-03-18 1975-03-25 Northfield Freezing Systems In Closed system refrigeration or heat exchange
GB1544804A (en) * 1977-05-02 1979-04-25 Commercial Refrigeration Ltd Apparatus for and methods of transferring heat between bodies of fluid or other substance
US4224801A (en) * 1978-11-13 1980-09-30 Lewis Tyree Jr Stored cryogenic refrigeration
JPS5582270A (en) * 1978-12-15 1980-06-20 Nippon Denso Co Refrigerating plant
JPS5828906B2 (en) * 1980-09-05 1983-06-18 株式会社デンソー Refrigeration equipment
JPS58120056A (en) * 1982-01-09 1983-07-16 三菱電機株式会社 Refrigerator
KR860002704A (en) * 1984-09-06 1986-04-28 야마시다 도시히꼬 Heat pump
JPH0718602A (en) * 1993-06-29 1995-01-20 Sekisui Chem Co Ltd Tie plug

Also Published As

Publication number Publication date
PL285966A1 (en) 1991-03-25
DE68908181T3 (en) 1998-06-18
DE68908181T4 (en) 1995-06-14
JPH0718602B2 (en) 1995-03-06
NO903903L (en) 1990-09-07
EP0424474A1 (en) 1991-05-02
WO1990007683A1 (en) 1990-07-12
EP0424474B1 (en) 1993-08-04
NO171810C (en) 1993-05-05
EP0424474B2 (en) 1997-11-19
NO890076D0 (en) 1989-01-09
DK214690D0 (en) 1990-09-07
KR910700437A (en) 1991-03-15
NO171810B (en) 1993-01-25
DE68908181D1 (en) 1993-09-09
NO903903D0 (en) 1990-09-07
JPH03503206A (en) 1991-07-18
UA27758C2 (en) 2000-10-16
DE68908181T2 (en) 1994-04-14
DK214690A (en) 1990-11-06
RU2039914C1 (en) 1995-07-20
KR0126550B1 (en) 1998-04-03

Similar Documents

Publication Publication Date Title
DK167985B1 (en) PROCEDURE FOR REGULATING A COMPRESSION COOLING SYSTEM AND HEATING / COOLING DEVICE FOR EXERCISING THE PROCEDURE
US5245836A (en) Method and device for high side pressure regulation in transcritical vapor compression cycle
KR101796397B1 (en) Gas vaporization device having cold heat recovery function, and cold heat recovery device
US20020033024A1 (en) Utilization of harvest and/or melt water from an ice machine for a refrigerant subcool/precool system and method therefor
US10788203B2 (en) ORC for transforming waste heat from a heat source into mechanical energy and compressor installation making use of such an ORC
US20220205691A1 (en) Thermal energy storage and heat rejection system
AU2019207851B2 (en) A thermodynamic system containing a fluid, and method for reducing pressure therein
CN104567052A (en) Refrigeration-cycle equipment
WO2017051532A1 (en) Cooling system and cooling method
JP3835431B2 (en) Vapor compression refrigerator
US11952921B2 (en) Plant and process for energy storage and method for controlling a heat carrier in a process for energy storage
CA2018250C (en) Trans-critical vapour compression cycle device
WO2022030103A1 (en) Hot water supply system
CZ287444B6 (en) Method of controlling output of steam compressor circuit
Kashyap et al. Review on Comparative Analysis of COP of Vapour Compression Refrigeration System
CA3205863A1 (en) Refrigeration system with heat pump compression
WO2017164201A1 (en) Cooling system, and method for controlling cooling system
JP5253489B2 (en) Refrigeration cycle equipment using non-azeotropic refrigerant mixture
JP2021032534A (en) Refrigerator and liquid temperature adjusting device
CN117346372A (en) Cascade refrigerating system
JP2006177581A (en) Refrigeration cycle device using non-azeotropic refrigerant

Legal Events

Date Code Title Description
PUP Patent expired