WO2017164201A1 - Cooling system, and method for controlling cooling system - Google Patents

Cooling system, and method for controlling cooling system Download PDF

Info

Publication number
WO2017164201A1
WO2017164201A1 PCT/JP2017/011321 JP2017011321W WO2017164201A1 WO 2017164201 A1 WO2017164201 A1 WO 2017164201A1 JP 2017011321 W JP2017011321 W JP 2017011321W WO 2017164201 A1 WO2017164201 A1 WO 2017164201A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
refrigerant
heat
amount
cooling system
Prior art date
Application number
PCT/JP2017/011321
Other languages
French (fr)
Japanese (ja)
Inventor
寿人 佐久間
吉川 実
雅人 矢野
正樹 千葉
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2018507352A priority Critical patent/JPWO2017164201A1/en
Publication of WO2017164201A1 publication Critical patent/WO2017164201A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/02Compression-sorption machines, plants, or systems

Definitions

  • the present invention relates to a cooling system used for cooling an electronic device or the like and a method for controlling the cooling system, and more particularly, to a cooling system using a phase change of a refrigerant and a method for controlling the cooling system.
  • Patent Document 1 An example of a cooling system using refrigerant phase change is described in Patent Document 1.
  • the related refrigeration apparatus described in Patent Document 1 is a cooling system that combines a vapor compression refrigerator and an adsorption refrigerator.
  • the related refrigeration apparatus has an adsorption refrigerator having a first adsorber and a second adsorber, a first vapor compression refrigerator, and a second vapor compression refrigerator.
  • the first and second vapor compression refrigerators include a first and second compressor, first and second condensers (heat radiators), first and second decompressors, an evaporator, and first and second accumulators. Is provided. Note that the evaporators of the first and second vapor compression refrigerators are integrated.
  • the adsorption refrigerator includes a first and second adsorber, a first and second adsorbent heat exchanger, a first and second water heat exchanger, an outdoor heat exchanger, and the like.
  • the adsorbent in the adsorber in the regenerated state is heated by the first condenser provided in the first vapor compression refrigerator, and the second vapor compression is performed by the cooling action of the adsorber in the adsorbed state.
  • the second condenser of the type refrigerator is cooled.
  • the first adsorber and the second adsorber are switched between an adsorption state and a regeneration state in which the adsorbed vapor refrigerant is desorbed and regenerated at regular intervals.
  • the pressure in the condenser of the second vapor compression refrigeration machine can be reduced, so that the power (compression work) of the compressor of the second vapor compression refrigeration machine can be reduced. it can. Therefore, according to the related refrigeration apparatus, a sufficient refrigeration capacity can be obtained with a small amount of power in the refrigeration apparatus in which the first and second vapor compression refrigerators and the adsorption refrigerator are combined.
  • JP-A-11-190566 (paragraphs [0005] to [0019], FIG. 1)
  • the related refrigeration apparatus described in Patent Document 1 uses a second vapor compression refrigeration by an adsorption refrigerator that desorbs the adsorbed refrigerant using the exhaust heat of the first vapor compression refrigerator. It is set as the structure which cools the condenser with which a machine is equipped. That is, a primary cooling device such as a compression refrigeration cycle takes heat from the object to be cooled to generate warm heat, and a secondary cooling device such as an adsorption refrigeration cycle converts this warm heat to cold.
  • a related cooling device including such a primary cooling device and a secondary cooling device can efficiently cool one cooling target by combining the cold heat generated by the primary cooling device and the secondary cooling device, respectively. It is.
  • the cooling device is operated at the rated power with the highest efficiency in order to obtain the required amount of cooling heat with the minimum power.
  • the amount of cooling necessary for cooling the cooling target is equal to or less than the rated cooling capacity of the primary cooling device, that is, equal to or less than the amount of cooling generated by the primary cooling device during rated operation, surplus cooling is generated.
  • the primary cooling device is operating at a rated cooling capacity of 20 kW.
  • the amount of cold generated by the secondary cooling device generally varies depending on the amount of cold generated by the primary cooling device.
  • the secondary cooling device generates 50% of the cold generated by the primary cooling device. That is, the secondary cooling device is operated at a rated cooling capacity of 10 kW.
  • the amount of cooling (necessary cooling) necessary for cooling the object to be cooled is equal to or less than the rated cooling capacity of the primary cooling device, for example, 15 kW. In this case, if the primary cooling device and the secondary cooling device are operated at the rated cooling capacity of 20 kW and 10 kW, respectively, excessive cooling (excess cooling) is generated.
  • the primary cooling device and the secondary cooling are performed so that the sum of the cooling heat generated by the primary cooling device and the secondary cooling device matches the cooling heat necessary for cooling the object to be cooled.
  • the device is operated, no excessive cooling is generated.
  • the cooling efficiency is significantly reduced.
  • An object of the present invention is a cooling system that solves the above-described problem that it is difficult to efficiently cool a cooling system that combines a plurality of refrigeration cycles according to the amount of heat to be cooled, and It is to provide a control method of a cooling system.
  • the cooling system of the present invention is connected to a first cooling means having a first refrigerant transporting means through which a first refrigerant received from a cooling target circulates, and to the first refrigerant transporting means.
  • the second refrigerant transporting means through which the branching refrigerant that is a part circulates, and the second refrigerant that receives heat from the first refrigerant circulating through the first refrigerant transporting means via the second refrigerant and cools the branching refrigerant. It has a cooling means and a heat storage means for storing heat transported by the second refrigerant.
  • the cooling system control method of the present invention is connected to a first cooling means having a first refrigerant transporting means through which a first refrigerant received from a cooling target circulates, and to the first refrigerant transporting means. Heat is received from the first refrigerant circulating through the first refrigerant transporting means through the second refrigerant transporting means through which the branching refrigerant that is a part of the refrigerant circulates, and cools the branching refrigerant Controlling the flow rate of the second refrigerant passing through the heat storage tank with respect to the cooling system having the second cooling means and the heat storage tank storing the second refrigerant that transports the cold generated by the second cooling means. To do.
  • cooling can be efficiently performed according to the heat generation amount of the cooling target even in the case of a configuration in which a plurality of refrigeration cycles are combined.
  • FIG. 1 is a schematic diagram showing a configuration of a cooling system 100 according to the first embodiment of the present invention. Broken line arrows in the figure indicate heat transfer.
  • the cooling system 100 includes a first cooling means 110, a second cooling means 120, a second refrigerant transport means 121, and a heat storage means 130.
  • 1st cooling means 110 is provided with the 1st refrigerant transportation means 111 through which the 1st refrigerant which received heat (H1) from cooling object 10 circulates.
  • the second refrigerant transport means 121 is connected to the first refrigerant transport means 111, and a branched refrigerant that is a part of the first refrigerant circulates.
  • the second cooling means 120 receives heat (H2) from the first refrigerant circulating through the first refrigerant transport means 111 via the second refrigerant, and cools (H3) the branched refrigerant.
  • the heat storage means 130 stores heat transported by the second refrigerant.
  • the cooling system 100 includes the heat storage means 130. Therefore, even if excessive heat is generated according to the cooling capacity of the first cooling unit 110 and the second cooling unit 120 and the amount of heat received from the cooling target 10, the heat storage unit 130 stores this heat. be able to. As a result, after the heat storage means 130 performs the necessary heat storage, the operation of the first cooling means 110 and the second cooling means 120 is stopped, and cooling is performed by the heat stored in the heat storage means 130, for example, cold heat. It becomes possible to do.
  • the heat storage means 130 may include a heat storage tank that stores the second refrigerant, and the heat storage tank may be positioned in a flow path through which the second refrigerant circulates.
  • the second refrigerant can be configured to transport the cold generated by the second cooling means 120.
  • the second refrigerant may be configured to transport the heat received from the first refrigerant circulating in the first refrigerant transport means 111.
  • the first cooling means 110 can be configured to use a vapor compression refrigeration cycle.
  • the second cooling means 120 can be configured to use either an adsorption refrigeration cycle or an absorption refrigeration cycle.
  • a low boiling point material can be used as the first refrigerant.
  • an organic refrigerant such as hydrofluorocarbon or hydrofluoroether can be used.
  • water can be used as the second refrigerant.
  • the control method of the cooling system according to the present embodiment is a control method for a cooling system having a first cooling means, a second refrigerant transporting means, a second cooling means, and a heat storage tank.
  • the first cooling means includes first refrigerant transporting means for circulating the first refrigerant received from the object to be cooled.
  • the second refrigerant transporting means is connected to the first refrigerant transporting means, and a branched refrigerant that is a part of the first refrigerant circulates.
  • the second cooling means receives heat from the first refrigerant circulating through the first refrigerant transport means via the second refrigerant, and cools the branched refrigerant.
  • a heat storage tank stores the 2nd refrigerant
  • coolant which goes through said heat storage tank with respect to the cooling system comprised in this way is controlled.
  • the excess cooling heat produced according to the cooling capacity of the first cooling means and the second cooling means and the amount of heat received from the cooling target can be stored.
  • the operations of the first cooling means and the second cooling means are stopped, and cooling can be performed by the cold heat of the second refrigerant stored in the heat storage tank.
  • the first cooling means may be controlled. And it can be set as the structure which controls the flow volume of the 2nd refrigerant
  • the reference cooling capacity described above is typically a rated cooling capacity.
  • the control method as described with reference to FIG. 4B that is, the first cooling means and the second cooling means generate the first cooling means as compared with the case where control is performed so as to match the amount of heat received.
  • the cooling means operates in a state closer to the reference cooling capacity (rated cooling capacity). Therefore, it becomes possible to cool efficiently.
  • the cooling system 100 and the cooling system control method of the present embodiment even when the configuration is a combination of a plurality of refrigeration cycles such as the first cooling means and the second cooling means.
  • the cooling can be efficiently performed according to the heat generation amount of the cooling target.
  • FIG. 2 schematically shows the configuration of a cooling system 1000 according to the second embodiment of the present invention.
  • solid and broken arrows indicate the refrigerant flow
  • white arrows indicate the heat flow.
  • the cooling system 1000 includes a first cooling device (first cooling means) 1100, a second cooling device (second cooling means) 1200, a second refrigerant transport unit (second refrigerant transport means). ) 1210, and a heat storage device (heat storage means) 1300.
  • the cooling system 1000 has a configuration in which a plurality of refrigeration cycles including the first cooling device 1100 and the second cooling device 1200 are combined. That is, the cooling system 1000 is an exhaust heat recovery type in which the second cooling device 1200 further cools the cooling target 10 using the heat recovered by the first cooling device 1100 cooling the cooling target 10 as an energy source. Cooling system.
  • the cooling target 10 is an electronic device such as a server.
  • the first cooling device 1100 includes an evaporator (evaporating means) 1110, a compressor (compressing means) 1120, a condenser (condensing means) 1130, an expansion valve (expanding means) 1140, and a first refrigerant transport section (first (Refrigerant transport means) 1150, and constitutes a vapor compression refrigeration cycle.
  • evaporator evaporating means
  • compressor compressor
  • condenser condensing means
  • expansion valve expansion valve
  • first refrigerant transport section first (Refrigerant transport means) 1150
  • the evaporator 1110 is configured by a radiator or the like, and generates a refrigerant vapor that is vaporized by receiving heat from the first refrigerant.
  • the compressor 1120 adiabatically compresses the refrigerant vapor to generate high-pressure refrigerant vapor.
  • the condenser 1130 condenses the high-pressure refrigerant vapor to generate a high-pressure refrigerant liquid.
  • the expansion valve 1140 expands the high-pressure refrigerant liquid to generate a low-pressure refrigerant liquid.
  • the first refrigerant transport unit 1150 constitutes a flow path of the first refrigerant that flows back from the evaporator 1110 to the evaporator 1110 via the compressor 1120, the condenser 1130, and the expansion valve 1140.
  • a low boiling point material such as an organic refrigerant such as hydrofluorocarbon or hydrofluoroether can be used.
  • a solid line arrow in FIG. 2 indicates the flow of the first refrigerant.
  • the second cooling device 1200 constitutes either an adsorption refrigeration cycle or an absorption refrigeration cycle.
  • the adsorption refrigeration machine 1201 circulates water or the like as a second refrigerant with a pump 1202 and cools hot water with a cooling tower 1203 or the like.
  • a broken-line arrow in FIG. 2 indicates the flow of water as the second refrigerant of the adsorption refrigeration machine 1201.
  • the second refrigerant transport unit 1210 constitutes a flow path through which the branched refrigerant that is a part of the first refrigerant circulates between the evaporator 1110 and the compressor 1120 and between the evaporator 1110 and the expansion valve 1140. .
  • the condenser 1130 exchanges heat between the high-pressure refrigerant vapor flowing through the first refrigerant transport portion 1150 and the second refrigerant on the heat receiving side of the second cooling device 1200.
  • the heat exchanger (heat exchanging means) 1220 for exchanging heat between the branched refrigerant circulated by the second refrigerant transport unit 1210 and the second refrigerant on the cooling side of the second cooling device 1200 may be provided. it can.
  • the heat storage device 1300 stores heat transported by the second refrigerant.
  • the heat storage device 1300 can include a heat storage tank that stores the second refrigerant, and can be configured to be located in a flow path through which the second refrigerant circulates.
  • the heat storage device 1300 can be configured to be positioned in the flow path of the second refrigerant on the cooling side of the second cooling device 1200. That is, FIG. 2 shows a case where the heat storage device 1300 is installed in the water circulation path between the adsorption refrigerator 1201 and the heat exchanger 1220. In this case, the water as the second refrigerant transports the cold generated by the second cooling device 1200.
  • cooling system 1000 Next, the operation of the cooling system 1000 according to the present embodiment will be described. Below, the case where the cooling system 1000 is used for cooling a server etc. is demonstrated as an example. Therefore, the temperatures described below are typical numerical examples in this case.
  • the refrigerant liquid (first refrigerant) that has flowed into the evaporator 1110 composed of a radiator or the like is vaporized by the exhaust heat of about 40 to 50 ° C. sent from the cooling target 10 such as a server and becomes refrigerant vapor.
  • the refrigerant vapor is adiabatically compressed by the compressor 1120, the pressure rises and the temperature of the refrigerant vapor rises to about 50 to 100 ° C.
  • heat is exchanged between the refrigerant and water (second refrigerant) by the condenser 1130.
  • the heat of the refrigerant moves to the water, hot water of about 50 to 100 ° C. is generated, and the temperature of the refrigerant decreases.
  • the refrigerant condensed and liquefied as the temperature decreases is reduced in pressure by the expansion valve 1140. Thereafter, it flows again into the evaporator 1110.
  • Heat is transferred to the adsorption refrigeration machine 1201 through hot water of about 50 to 100 ° C. received by heat exchange in the condenser 1130.
  • the adsorption refrigeration machine 1201 generates cold water of about 5 to 20 ° C. using the warm heat, and cools the branched refrigerant via the heat exchanger 1220.
  • the branched refrigerant cooled by the heat exchanger 1220 is condensed and liquefied and circulated by the second refrigerant transport unit 1210. Since the second refrigerant transport unit 1210 is connected between the evaporator 1110 and the expansion valve 1140, the condensed and liquefied branch refrigerant merges with the refrigerant liquid whose pressure has been reduced by the expansion valve 1140, and returns to the evaporator 1110. .
  • drive parts 1230 such as a pump which circulates a branch refrigerant, in the flow path of the branch refrigerant which the 2nd refrigerant transport part 1210 comprises.
  • the refrigerant liquid returned to the evaporator 1110 is vaporized by exhaust heat from the cooling target 10 such as a server.
  • the refrigerant vapor evaporated in the evaporator 1110 branches and flows into the second refrigerant transport part 1210 and the first refrigerant transport part 1150 connected between the evaporator 1110 and the compressor 1120.
  • the branched refrigerant circulated by the second refrigerant transport unit 1210 flows into the heat exchanger 1220 again.
  • the cooling system 1000 can include a flow rate control unit (flow rate control unit) that controls the flow rate of the second refrigerant that passes through the heat storage tank provided in the heat storage device 1300.
  • the flow rate control unit (not shown) can typically be configured using a flow rate control valve.
  • the cooling system 1000 can be configured to include a first cooling device 1100, a second cooling device 1200, and a control unit (control means) that controls the flow rate control unit.
  • the control unit (not shown) operates the cooling system 1000 as follows based on at least one of the flow rate and temperature of the first refrigerant, the flow rate and temperature of the second refrigerant, and the power consumption of the cooling target. It can be set as the structure which controls a flow control part so that it may do.
  • the amount of heat received from the object 10 to be cooled is larger than the amount of heat generated when the first cooling device 1100 operates at the reference cooling capacity.
  • the amount of heat received at this time is assumed to be smaller than the total amount of cold heat, which is the total amount of cold heat generated when the first cooling device 1100 and the second refrigerant transport unit 1210 operate at the reference cooling capacity.
  • the reference cooling capacity is typically the rated cooling capacity, and the following description will be made assuming that the reference cooling capacity is the rated cooling capacity.
  • the rated cooling capacity of the first cooling device 1100 is 20 kW
  • the rated cooling capacity of the second cooling device 1200 is set by the heat generated at that time.
  • the rated cooling capacity of the second cooling device 1200 is 10 kW.
  • the cooling target 10 is generating 25 kW of heat that is larger than the first cooling device 1100 rated cooling capacity (20 kW).
  • the first cooling device 1100 and the second cooling device 1200 are controlled so that the first cooling device 1100 and the second cooling device 1200 each operate at the rated cooling capacity. Then, the amount of surplus cooling heat (5 kW) that is the difference between the total cooling amount (30 kW) that is the sum of the cooling amounts generated by the first cooling device 1100 and the second cooling device 1200 and the amount of heat received from the cooling target 10 (25 kW). ).
  • the 1st cooling device 1100 and the 2nd cooling device 1200 operate
  • the generated 30 kW of cold energy 25 kW can be used for cooling the cooling object 10 (necessary cold energy), and the remaining 5 kW of cold energy can be stored.
  • the flow rate control unit is controlled so that water (second refrigerant) having a capacity for transporting the excess amount of cold heat (5 kW) is stored in the heat storage tank.
  • the amount of heat received from the object 10 to be cooled is equal to or less than the amount of heat generated when the first cooling device 1100 operates at the rated cooling capacity. Specifically, for example, as illustrated in FIG. 3B, it is assumed that the cooling target 10 generates heat of 15 kW, which is smaller than the rated cooling capacity (20 kW) of the first cooling device 1100.
  • the first cooling device 1100 and the second cooling device 1200 are controlled so that the first cooling device 1100 and the second cooling device 1200 each operate at the rated cooling capacity. Then, the cold heat (10 kW) generated by the second cooling device 1200 is stored. Specifically, the flow control unit is controlled so that water (second refrigerant) transporting cold heat (10 kW) generated by the second cooling device 1200 is stored in the heat storage tank.
  • the heat storage tank can increase the heat storage amount in proportion to the volume, it is possible to store in the heat storage tank water having a capacity for transporting all of the cold heat generated by the second cooling device 1200. .
  • water as the second refrigerant is inexpensive, the cost of the cooling system 1000 is greatly reduced as compared with the case where the first cooling device 1100 stores a low-boiling organic refrigerant used as the first refrigerant. be able to.
  • the first cooling device 1100 is controlled such that the amount of heat generated by the first cooling device 1100 is equal to the amount of heat received from the object 10 to be cooled.
  • the first cooling device 1100 is controlled so as to generate only the cold energy (15 kW) necessary for cooling.
  • the heat storage device 1300 stores the cold generated by the second cooling device 1200 at this time.
  • the flow control unit is controlled so that water (second refrigerant) transporting cold heat (7.5 kW) generated by the second cooling device 1200 is stored in the heat storage tank.
  • the cooling system 1000 By controlling the cooling system 1000 to perform such an operation, it is possible to prevent surplus in the cold generated by the first cooling device 1100. Further, when compared with the case where the first cooling device 1100 is operated so that the total amount of cold heat generated by the first cooling device 1100 and the second cooling device 1200 matches the required cold heat (see FIG. 4B). The first cooling device 1100 operates closer to the rated cooling capacity (20 kW). Therefore, the cooling system 1000 can operate with high efficiency.
  • the operations of the first cooling device 1100 and the second cooling device 1200 are stopped, and the heat stored in the heat storage device 1300 is stored. It becomes possible to perform cooling.
  • the cooling system 1000 is configured to control the flow rate of water (second refrigerant) that passes through the heat storage tank provided in the heat storage device 1300.
  • the present invention is not limited to this, and the amount of cold heat stored may be increased by lowering the water temperature stored in the heat storage tank. This is because the second cooling device 1200 constituting the adsorption refrigeration cycle can adjust the temperature of the generated cold water (second refrigerant).
  • cooling system 1000 and the cooling system control method of the present embodiment even when the configuration is a combination of a plurality of refrigeration cycles, cooling is efficiently performed according to the heat generation amount of the cooling target. can do.
  • the cooling system described in Additional remark 1 WHEREIN The cooling system described in Additional remark 1 WHEREIN: The said thermal storage means is equipped with the thermal storage tank which stores the said 2nd refrigerant
  • the cooling system according to supplementary note 3, comprising a flow rate control means for controlling a flow rate of the second refrigerant passing through the heat storage tank.
  • the cooling system includes a control unit that controls the first cooling unit, the second cooling unit, and the flow rate control unit, wherein the control unit includes the cooling unit
  • the amount of heat received from the target is larger than the amount of heat generated when the first cooling means operates at the reference cooling capacity, and the first cooling means and the second cooling means operate at the reference cooling capacity, respectively.
  • the first cooling means and the second cooling means so that each of the first cooling means and the second cooling means operates at a reference cooling capacity when the total cooling quantity is smaller than the total cooling quantity that is generated.
  • a cooling system for controlling the flow rate control means so as to store the second refrigerant having a capacity for transporting an excess amount of cold heat, which is a difference between the total amount of cold energy and the amount of received heat, in the heat storage tank. .
  • the cooling system includes a control unit that controls the first cooling unit, the second cooling unit, and the flow rate control unit, and the control unit is configured to control the cooling target.
  • the amount of heat received is equal to or less than the amount of heat generated when the first cooling means operates at a reference cooling capacity
  • the amount of heat generated by the first cooling means is equal to the amount of heat received.
  • a cooling system that controls the flow rate control means so as to store the second refrigerant, which controls the first cooling means and transports the cold generated by the second cooling means, in the heat storage tank.
  • the control means includes a flow rate and a temperature of the first refrigerant, a flow rate and a temperature of the second refrigerant, and the cooling target.
  • the first cooling means constitutes a vapor compression refrigeration cycle, and the refrigerant vapor received and vaporized by the first refrigerant is received.
  • Expansion means for generating a refrigerant liquid, wherein the first refrigerant transporting means returns from the evaporation means to the evaporation means via the compression means, the condensation means, and the expansion means.
  • 1 refrigerant flow path, and the second refrigerant transporting means forms a flow path through which the branched refrigerant circulates between the evaporation means and the expansion means from between the evaporation means and the compression means. Cooling system.
  • the cooling system according to supplementary note 9, further comprising heat exchange means for exchanging heat between the branched refrigerant and the second refrigerant on the cooling side of the second cooling means, wherein the condensing means includes the high-pressure refrigerant.
  • a cooling system for exchanging heat between the steam and the second refrigerant on the heat receiving side of the second cooling means.
  • the second cooling means is a cooling system that constitutes either an adsorption refrigeration cycle or an absorption refrigeration cycle.
  • the amount of heat received from the object to be cooled is greater than the amount of heat generated when the first cooling means operates at a reference cooling capacity, and the first If the cooling means and the second cooling means are smaller than the total amount of cold heat generated when the cooling means and the second cooling means operate at the reference cooling capacity, respectively, the first cooling means and the second cooling means are respectively The second refrigerant having a capacity for controlling the first cooling means and the second cooling means so as to operate at a reference cooling capacity and transporting an excess amount of cold heat that is a difference between the total amount of cold heat and the amount of received heat.
  • a control method of a cooling system for controlling a flow rate of the second refrigerant passing through the heat storage tank so as to be stored in the heat storage tank.
  • Cooling system 110 1st cooling means 111 1st refrigerant
  • Cooling system 1100 1st cooling device 1110 Evaporator 1120 Compressor 1130 Condenser DESCRIPTION OF SYMBOLS 1140
  • Expansion valve 1150 1st refrigerant

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

In a cooling system in which a plurality of refrigeration cycles are combined, it is difficult to effectively cool according to the amount of heat emitted by an object to be cooled, and therefore, this cooling system has: a first cooling means provided with a first refrigerant transport means for circulating a first refrigerant that has received heat from the object to be cooled; a second refrigerant transport means connected to the first refrigerant transport means, the second refrigerant transport means for circulating branch refrigerant that is a portion of the first refrigerant; a second cooling means that receives heat via a second refrigerant from the first refrigerant circulating in the first refrigerant transport means, and that cools the branch refrigerant; and a heat storage means for storing heat transported by the second refrigerant.

Description

冷却システムおよび冷却システムの制御方法COOLING SYSTEM AND COOLING SYSTEM CONTROL METHOD
 本発明は、電子機器などの冷却に用いられる冷却システムおよび冷却システムの制御方法に関し、特に、冷媒の相変化を用いた冷却システムおよび冷却システムの制御方法に関する。 The present invention relates to a cooling system used for cooling an electronic device or the like and a method for controlling the cooling system, and more particularly, to a cooling system using a phase change of a refrigerant and a method for controlling the cooling system.
 近年、電子機器の小型化、高性能化にともなって、その発熱量および発熱密度が増大している。このような電子機器等を効率的に冷却するため、冷却能力が高い冷却方式を採用する必要がある。冷却能力が高い冷却システムの一つとして、冷媒の相変化を用いた冷却システムがある。 In recent years, the heat generation amount and the heat generation density have increased with the downsizing and higher performance of electronic devices. In order to efficiently cool such electronic devices and the like, it is necessary to adopt a cooling method having a high cooling capacity. As one of cooling systems having a high cooling capacity, there is a cooling system using a phase change of a refrigerant.
 冷媒の相変化を用いた冷却システムの一例が特許文献1に記載されている。特許文献1に記載された関連する冷凍装置は、蒸気圧縮式冷凍機と吸着式冷凍機とを組み合わせた冷却システムである。 An example of a cooling system using refrigerant phase change is described in Patent Document 1. The related refrigeration apparatus described in Patent Document 1 is a cooling system that combines a vapor compression refrigerator and an adsorption refrigerator.
 関連する冷凍装置は、第1吸着器と第2吸着器を備えた吸着式冷凍機、第1蒸気圧縮式冷凍機、および第2蒸気圧縮式冷凍機を有する。 The related refrigeration apparatus has an adsorption refrigerator having a first adsorber and a second adsorber, a first vapor compression refrigerator, and a second vapor compression refrigerator.
 第1および第2蒸気圧縮式冷凍機は、第1および第2圧縮機、第1および第2凝縮器(放熱器)、第1および第2減圧器、蒸発器、および第1および第2アキュームレータを備える。なお、第1および第2蒸気圧縮式冷凍機の蒸発器は一体化されている。 The first and second vapor compression refrigerators include a first and second compressor, first and second condensers (heat radiators), first and second decompressors, an evaporator, and first and second accumulators. Is provided. Note that the evaporators of the first and second vapor compression refrigerators are integrated.
 また、吸着式冷凍機は、第1および第2吸着器、第1および第2吸着剤熱交換器、第1および第2水熱交換器、および室外熱交換器等を備える。 Further, the adsorption refrigerator includes a first and second adsorber, a first and second adsorbent heat exchanger, a first and second water heat exchanger, an outdoor heat exchanger, and the like.
 関連する冷凍装置では、第1蒸気圧縮式冷凍機が備える第1凝縮器により再生状態にある吸着器内の吸着剤を加熱し、かつ、吸着状態にある吸着器の冷却作用により第2蒸気圧縮式冷凍機の第2凝縮器を冷却する。そして、第1吸着器と第2吸着器を吸着状態と吸着された蒸気冷媒を脱離再生する再生状態とに一定時間毎に切り替える構成としている。 In the related refrigeration apparatus, the adsorbent in the adsorber in the regenerated state is heated by the first condenser provided in the first vapor compression refrigerator, and the second vapor compression is performed by the cooling action of the adsorber in the adsorbed state. The second condenser of the type refrigerator is cooled. The first adsorber and the second adsorber are switched between an adsorption state and a regeneration state in which the adsorbed vapor refrigerant is desorbed and regenerated at regular intervals.
 このような構成としたことにより、第2蒸気圧縮式冷凍機の凝縮器内の圧力を下げることができるので、第2蒸気圧縮式冷凍機の圧縮機の動力(圧縮仕事)を低減することができる。したがって、関連する冷凍装置によれば、第1および第2蒸気圧縮式冷凍機と吸着式冷凍機とを組み合わせた冷凍装置において、少ない動力で十分な冷凍能力を得ることができる、としている。 By adopting such a configuration, the pressure in the condenser of the second vapor compression refrigeration machine can be reduced, so that the power (compression work) of the compressor of the second vapor compression refrigeration machine can be reduced. it can. Therefore, according to the related refrigeration apparatus, a sufficient refrigeration capacity can be obtained with a small amount of power in the refrigeration apparatus in which the first and second vapor compression refrigerators and the adsorption refrigerator are combined.
特開平11-190566号公報(段落[0005]~[0019]、図1)JP-A-11-190566 (paragraphs [0005] to [0019], FIG. 1)
 上述したように、特許文献1に記載された関連する冷凍装置は、第1蒸気圧縮式冷凍機の排熱を用いて吸着した冷媒を脱離させる吸着式冷凍機によって、第2蒸気圧縮式冷凍機が備える凝縮器を冷却する構成としている。すなわち、圧縮式冷凍サイクルなどの1次冷却装置が冷却対象から熱を奪うことにより温熱を生成し、吸着式冷凍サイクルなどの2次冷却装置がこの温熱を冷熱に変換する。このような1次冷却装置と2次冷却装置を備えた関連する冷却装置は、1次冷却装置と2次冷却装置がそれぞれ生成した冷熱を合わせて一の冷却対象を効率よく冷却することが可能である。 As described above, the related refrigeration apparatus described in Patent Document 1 uses a second vapor compression refrigeration by an adsorption refrigerator that desorbs the adsorbed refrigerant using the exhaust heat of the first vapor compression refrigerator. It is set as the structure which cools the condenser with which a machine is equipped. That is, a primary cooling device such as a compression refrigeration cycle takes heat from the object to be cooled to generate warm heat, and a secondary cooling device such as an adsorption refrigeration cycle converts this warm heat to cold. A related cooling device including such a primary cooling device and a secondary cooling device can efficiently cool one cooling target by combining the cold heat generated by the primary cooling device and the secondary cooling device, respectively. It is.
 冷却装置は一般に、必要な冷熱量を最小の電力で得るために、最も効率が良い定格電力で運転する。しかし、冷却対象の冷却に必要な冷熱量が、1次冷却装置の定格冷却能力以下、すなわち定格運転時の1次冷却装置が生成する冷熱量以下である場合、冷熱の余剰が生じてしまう。 冷却 Generally, the cooling device is operated at the rated power with the highest efficiency in order to obtain the required amount of cooling heat with the minimum power. However, if the amount of cooling necessary for cooling the cooling target is equal to or less than the rated cooling capacity of the primary cooling device, that is, equal to or less than the amount of cooling generated by the primary cooling device during rated operation, surplus cooling is generated.
 具体的には例えば、図4Aに示すように、1次冷却装置が定格冷却能力である20kWで運転しているとする。2次冷却装置が生成する冷熱量は、一般的には1次冷却装置の生成する冷熱量などに依存して変化する。ここでは簡単のため、1次冷却装置が生成する冷熱の50%の冷熱を2次冷却装置が生成するものとする。すなわち、2次冷却装置は定格冷却能力である10kWで運転している。このとき、冷却対象を冷却するのに必要な冷熱量(必要冷熱)が、1次冷却装置の定格冷却能力以下、例えば15kWであるとする。この場合、1次冷却装置および2次冷却装置をそれぞれ定格冷却能力である20kWおよび10kWで運転すると、余剰な冷熱(余剰冷熱)が生じてしまう。 Specifically, for example, as shown in FIG. 4A, it is assumed that the primary cooling device is operating at a rated cooling capacity of 20 kW. The amount of cold generated by the secondary cooling device generally varies depending on the amount of cold generated by the primary cooling device. Here, for simplicity, it is assumed that the secondary cooling device generates 50% of the cold generated by the primary cooling device. That is, the secondary cooling device is operated at a rated cooling capacity of 10 kW. At this time, it is assumed that the amount of cooling (necessary cooling) necessary for cooling the object to be cooled is equal to or less than the rated cooling capacity of the primary cooling device, for example, 15 kW. In this case, if the primary cooling device and the secondary cooling device are operated at the rated cooling capacity of 20 kW and 10 kW, respectively, excessive cooling (excess cooling) is generated.
 一方、図4Bに示すように、1次冷却装置および2次冷却装置が生成する冷熱の総和が、冷却対象を冷却するのに必要な冷熱と一致するように、1次冷却装置および2次冷却装置を運転する場合、余剰な冷熱は発生しない。しかし、この場合は、定格運転時に比べて冷却能力が大幅に低下した状態での運転となるので、冷却効率が著しく低下してしまう。 On the other hand, as shown in FIG. 4B, the primary cooling device and the secondary cooling are performed so that the sum of the cooling heat generated by the primary cooling device and the secondary cooling device matches the cooling heat necessary for cooling the object to be cooled. When the device is operated, no excessive cooling is generated. However, in this case, since the operation is performed in a state in which the cooling capacity is greatly reduced as compared with the rated operation, the cooling efficiency is significantly reduced.
 このように、複数の冷凍サイクルを組み合わせた冷却システムにおいては、冷却対象の発熱量に応じて効率よく冷却することが困難である、という問題があった。 As described above, in the cooling system in which a plurality of refrigeration cycles are combined, there is a problem that it is difficult to efficiently cool in accordance with the heat generation amount of the cooling target.
 本発明の目的は、上述した課題である、複数の冷凍サイクルを組み合わせた冷却システムにおいては、冷却対象の発熱量に応じて効率よく冷却することが困難である、という課題を解決する冷却システムおよび冷却システムの制御方法を提供することにある。 An object of the present invention is a cooling system that solves the above-described problem that it is difficult to efficiently cool a cooling system that combines a plurality of refrigeration cycles according to the amount of heat to be cooled, and It is to provide a control method of a cooling system.
 本発明の冷却システムは、冷却対象から受熱した第1の冷媒が循環する第1の冷媒輸送手段を備えた第1の冷却手段と、第1の冷媒輸送手段と接続し、第1の冷媒の一部である分岐冷媒が循環する第2の冷媒輸送手段と、第2の冷媒を介して、第1の冷媒輸送手段を循環する第1の冷媒から受熱し、分岐冷媒を冷却する第2の冷却手段と、第2の冷媒が輸送する熱を蓄える蓄熱手段、とを有する。 The cooling system of the present invention is connected to a first cooling means having a first refrigerant transporting means through which a first refrigerant received from a cooling target circulates, and to the first refrigerant transporting means. The second refrigerant transporting means through which the branching refrigerant that is a part circulates, and the second refrigerant that receives heat from the first refrigerant circulating through the first refrigerant transporting means via the second refrigerant and cools the branching refrigerant. It has a cooling means and a heat storage means for storing heat transported by the second refrigerant.
 本発明の冷却システムの制御方法は、冷却対象から受熱した第1の冷媒が循環する第1の冷媒輸送手段を備えた第1の冷却手段と、第1の冷媒輸送手段と接続し、第1の冷媒の一部である分岐冷媒が循環する第2の冷媒輸送手段と、第2の冷媒を介して、第1の冷媒輸送手段を循環する第1の冷媒から受熱し、分岐冷媒を冷却する第2の冷却手段と、第2の冷却手段が生成する冷熱を輸送する第2の冷媒を蓄える蓄熱タンク、とを有する冷却システムに対して、蓄熱タンクを経由する第2の冷媒の流量を制御する。 The cooling system control method of the present invention is connected to a first cooling means having a first refrigerant transporting means through which a first refrigerant received from a cooling target circulates, and to the first refrigerant transporting means. Heat is received from the first refrigerant circulating through the first refrigerant transporting means through the second refrigerant transporting means through which the branching refrigerant that is a part of the refrigerant circulates, and cools the branching refrigerant Controlling the flow rate of the second refrigerant passing through the heat storage tank with respect to the cooling system having the second cooling means and the heat storage tank storing the second refrigerant that transports the cold generated by the second cooling means. To do.
 本発明の冷却システムおよび冷却システムの制御方法によれば、複数の冷凍サイクルを組み合わせた構成とした場合であっても、冷却対象の発熱量に応じて効率よく冷却することができる。 According to the cooling system and the cooling system control method of the present invention, cooling can be efficiently performed according to the heat generation amount of the cooling target even in the case of a configuration in which a plurality of refrigeration cycles are combined.
本発明の第1の実施形態に係る冷却システムの構成を示す概略図である。It is the schematic which shows the structure of the cooling system which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る冷却システムの構成を示す概略図である。It is the schematic which shows the structure of the cooling system which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る冷却システムの動作を説明するための図である。It is a figure for demonstrating operation | movement of the cooling system which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る冷却システムの別の動作を説明するための図である。It is a figure for demonstrating another operation | movement of the cooling system which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る冷却システムのさらに別の動作を説明するための図である。It is a figure for demonstrating another operation | movement of the cooling system which concerns on the 2nd Embodiment of this invention. 関連する冷却装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of a related cooling device. 関連する冷却装置の別の動作を説明するための図である。It is a figure for demonstrating another operation | movement of the related cooling device.
 以下に、図面を参照しながら、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 〔第1の実施形態〕
 図1は、本発明の第1の実施形態に係る冷却システム100の構成を示す概略図である。同図中の破線矢印は、熱の移動を示す。
[First Embodiment]
FIG. 1 is a schematic diagram showing a configuration of a cooling system 100 according to the first embodiment of the present invention. Broken line arrows in the figure indicate heat transfer.
 本実施形態による冷却システム100は、第1の冷却手段110、第2の冷却手段120、第2の冷媒輸送手段121、および蓄熱手段130を有する。 The cooling system 100 according to the present embodiment includes a first cooling means 110, a second cooling means 120, a second refrigerant transport means 121, and a heat storage means 130.
 第1の冷却手段110は、冷却対象10から受熱(H1)した第1の冷媒が循環する第1の冷媒輸送手段111を備える。第2の冷媒輸送手段121は第1の冷媒輸送手段111と接続しており、第1の冷媒の一部である分岐冷媒が循環する。第2の冷却手段120は、第2の冷媒を介して、第1の冷媒輸送手段111を循環する第1の冷媒から受熱(H2)し、分岐冷媒を冷却(H3)する。そして、蓄熱手段130は、第2の冷媒が輸送する熱を蓄える。 1st cooling means 110 is provided with the 1st refrigerant transportation means 111 through which the 1st refrigerant which received heat (H1) from cooling object 10 circulates. The second refrigerant transport means 121 is connected to the first refrigerant transport means 111, and a branched refrigerant that is a part of the first refrigerant circulates. The second cooling means 120 receives heat (H2) from the first refrigerant circulating through the first refrigerant transport means 111 via the second refrigerant, and cools (H3) the branched refrigerant. The heat storage means 130 stores heat transported by the second refrigerant.
 上述したように、本実施形態による冷却システム100は蓄熱手段130を備えた構成としている。そのため、第1の冷却手段110および第2の冷却手段120の冷却能力と冷却対象10からの受熱量に応じて、余剰な熱が生じる場合であっても、蓄熱手段130がこの熱を蓄熱することができる。その結果、蓄熱手段130が必要となる蓄熱を行った後には、第1の冷却手段110および第2の冷却手段120の動作を停止し、蓄熱手段130が蓄えている熱、例えば冷熱によって冷却を行うことが可能になる。 As described above, the cooling system 100 according to the present embodiment includes the heat storage means 130. Therefore, even if excessive heat is generated according to the cooling capacity of the first cooling unit 110 and the second cooling unit 120 and the amount of heat received from the cooling target 10, the heat storage unit 130 stores this heat. be able to. As a result, after the heat storage means 130 performs the necessary heat storage, the operation of the first cooling means 110 and the second cooling means 120 is stopped, and cooling is performed by the heat stored in the heat storage means 130, for example, cold heat. It becomes possible to do.
 ここで、蓄熱手段130は、第2の冷媒を蓄える蓄熱タンクを備え、この蓄熱タンクは第2の冷媒が循環する流路内に位置する構成とすることができる。また、第2の冷媒は、第2の冷却手段120が生成する冷熱を輸送する構成とすることができる。これに限らず、第2の冷媒は、第1の冷媒輸送手段111を循環する第1の冷媒から受熱した温熱を輸送する構成としてもよい。 Here, the heat storage means 130 may include a heat storage tank that stores the second refrigerant, and the heat storage tank may be positioned in a flow path through which the second refrigerant circulates. In addition, the second refrigerant can be configured to transport the cold generated by the second cooling means 120. Not limited to this, the second refrigerant may be configured to transport the heat received from the first refrigerant circulating in the first refrigerant transport means 111.
 第1の冷却手段110は蒸気圧縮冷凍サイクルを用いた構成とすることができる。また、第2の冷却手段120は、吸着冷凍サイクルおよび吸収冷凍サイクルのいずれかを用いた構成とすることができる。このとき、第1の冷媒として、低沸点の材料を使用することができる。例えば、ハイドロフルオロカーボンやハイドロフルオロエーテルなどの有機冷媒を用いることができる。また、第2の冷媒として、典型的には水を用いることができる。 The first cooling means 110 can be configured to use a vapor compression refrigeration cycle. Further, the second cooling means 120 can be configured to use either an adsorption refrigeration cycle or an absorption refrigeration cycle. At this time, a low boiling point material can be used as the first refrigerant. For example, an organic refrigerant such as hydrofluorocarbon or hydrofluoroether can be used. In addition, typically, water can be used as the second refrigerant.
 次に、本実施形態による冷却システムの制御方法について説明する。本実施形態による冷却システムの制御方法は、第1の冷却手段、第2の冷媒輸送手段、第2の冷却手段、および蓄熱タンクを有する冷却システムに対する制御方法である。 Next, the cooling system control method according to the present embodiment will be described. The control method of the cooling system according to the present embodiment is a control method for a cooling system having a first cooling means, a second refrigerant transporting means, a second cooling means, and a heat storage tank.
 ここで、第1の冷却手段は、冷却対象から受熱した第1の冷媒が循環する第1の冷媒輸送手段を備える。第2の冷媒輸送手段には、第1の冷媒輸送手段と接続し、第1の冷媒の一部である分岐冷媒が循環する。第2の冷却手段は、第2の冷媒を介して、第1の冷媒輸送手段を循環する第1の冷媒から受熱し、分岐冷媒を冷却する。そして、蓄熱タンクは、第2の冷却手段が生成する冷熱を輸送する第2の冷媒を蓄える。このように構成された冷却システムに対して、上記の蓄熱タンクを経由する第2の冷媒の流量を制御する。これにより、第1の冷却手段および第2の冷却手段の冷却能力と冷却対象からの受熱量に応じて生じる余剰な冷熱を、蓄えることができる。その結果、第1の冷却手段および第2の冷却手段の動作を停止し、蓄熱タンクが蓄えている第2の冷媒の冷熱によって冷却を行うことが可能になる。 Here, the first cooling means includes first refrigerant transporting means for circulating the first refrigerant received from the object to be cooled. The second refrigerant transporting means is connected to the first refrigerant transporting means, and a branched refrigerant that is a part of the first refrigerant circulates. The second cooling means receives heat from the first refrigerant circulating through the first refrigerant transport means via the second refrigerant, and cools the branched refrigerant. And a heat storage tank stores the 2nd refrigerant | coolant which conveys the cold heat which a 2nd cooling means produces | generates. The flow rate of the 2nd refrigerant | coolant which goes through said heat storage tank with respect to the cooling system comprised in this way is controlled. Thereby, the excess cooling heat produced according to the cooling capacity of the first cooling means and the second cooling means and the amount of heat received from the cooling target can be stored. As a result, the operations of the first cooling means and the second cooling means are stopped, and cooling can be performed by the cold heat of the second refrigerant stored in the heat storage tank.
 ここで、冷却対象からの受熱量が、第1の冷却手段が基準冷却能力で動作するとき生成する冷熱量以下である場合、第1の冷却手段が生成する冷熱量が、受熱量と等しくなるように第1の冷却手段を制御することとしてもよい。そして、第2の冷却手段によって生成される冷熱を輸送する第2の冷媒を、蓄熱タンクに蓄えるように、蓄熱タンクを経由する第2の冷媒の流量を制御する構成とすることができる。ここで、上述した基準冷却能力は、典型的には定格冷却能力である。 Here, when the amount of heat received from the object to be cooled is equal to or less than the amount of heat generated when the first cooling means operates at the reference cooling capacity, the amount of heat generated by the first cooling means is equal to the amount of heat received. In this way, the first cooling means may be controlled. And it can be set as the structure which controls the flow volume of the 2nd refrigerant | coolant which passes along a thermal storage tank so that the 2nd refrigerant | coolant which conveys the cold produced | generated by the 2nd cooling means may be stored in a thermal storage tank. Here, the reference cooling capacity described above is typically a rated cooling capacity.
 この場合、図4Bを用いて説明したような制御方法、すなわち第1の冷却手段および第2の冷却手段が生成する冷熱の総和が、受熱量と一致するように制御する場合に比べ、第1の冷却手段は基準冷却能力(定格冷却能力)により近い状態で動作する。そのため、効率よく冷却することが可能になる。 In this case, the control method as described with reference to FIG. 4B, that is, the first cooling means and the second cooling means generate the first cooling means as compared with the case where control is performed so as to match the amount of heat received. The cooling means operates in a state closer to the reference cooling capacity (rated cooling capacity). Therefore, it becomes possible to cool efficiently.
 以上説明したように、本実施形態の冷却システム100および冷却システムの制御方法によれば、第1の冷却手段と第2の冷却手段といった複数の冷凍サイクルを組み合わせた構成とした場合であっても、冷却対象の発熱量に応じて効率よく冷却することができる。 As described above, according to the cooling system 100 and the cooling system control method of the present embodiment, even when the configuration is a combination of a plurality of refrigeration cycles such as the first cooling means and the second cooling means. The cooling can be efficiently performed according to the heat generation amount of the cooling target.
 〔第2の実施形態〕
 次に、本発明の第2の実施形態について説明する。図2に、本発明の第2の実施形態に係る冷却システム1000の構成を模式的に示す。同図中、実線および破線の矢印は冷媒の流れを、白抜き矢印は熱の流れをそれぞれ示す。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. FIG. 2 schematically shows the configuration of a cooling system 1000 according to the second embodiment of the present invention. In the figure, solid and broken arrows indicate the refrigerant flow, and white arrows indicate the heat flow.
 本実施形態による冷却システム1000は、第1の冷却装置(第1の冷却手段)1100、第2の冷却装置(第2の冷却手段)1200、第2の冷媒輸送部(第2の冷媒輸送手段)1210、および蓄熱装置(蓄熱手段)1300を有する。 The cooling system 1000 according to the present embodiment includes a first cooling device (first cooling means) 1100, a second cooling device (second cooling means) 1200, a second refrigerant transport unit (second refrigerant transport means). ) 1210, and a heat storage device (heat storage means) 1300.
 ここで、本実施形態による冷却システム1000は、第1の冷却装置1100と第2の冷却装置1200を有する複数の冷凍サイクルを組み合わせた構成である。すなわち、冷却システム1000は、第1の冷却装置1100が冷却対象10を冷却することによって回収した熱をエネルギー源として、第2の冷却装置1200がさらに冷却対象10の冷却を行う排熱回収型の冷却システムである。ここで、冷却対象10は例えばサーバ等の電子機器である。 Here, the cooling system 1000 according to the present embodiment has a configuration in which a plurality of refrigeration cycles including the first cooling device 1100 and the second cooling device 1200 are combined. That is, the cooling system 1000 is an exhaust heat recovery type in which the second cooling device 1200 further cools the cooling target 10 using the heat recovered by the first cooling device 1100 cooling the cooling target 10 as an energy source. Cooling system. Here, the cooling target 10 is an electronic device such as a server.
 第1の冷却装置1100は、蒸発器(蒸発手段)1110、圧縮機(圧縮手段)1120、凝縮器(凝縮手段)1130、膨張弁(膨張手段)1140、および第1の冷媒輸送部(第1の冷媒輸送手段)1150を備え、蒸気圧縮冷凍サイクルを構成している。 The first cooling device 1100 includes an evaporator (evaporating means) 1110, a compressor (compressing means) 1120, a condenser (condensing means) 1130, an expansion valve (expanding means) 1140, and a first refrigerant transport section (first (Refrigerant transport means) 1150, and constitutes a vapor compression refrigeration cycle.
 蒸発器1110はラジエータ等により構成され、第1の冷媒が受熱して気化した冷媒蒸気を生成する。圧縮機1120は冷媒蒸気を断熱圧縮して高圧冷媒蒸気を生成する。凝縮器1130は高圧冷媒蒸気を凝縮させ高圧冷媒液を生成する。そして、膨張弁1140は高圧冷媒液を膨張させて低圧の冷媒液を生成する。 The evaporator 1110 is configured by a radiator or the like, and generates a refrigerant vapor that is vaporized by receiving heat from the first refrigerant. The compressor 1120 adiabatically compresses the refrigerant vapor to generate high-pressure refrigerant vapor. The condenser 1130 condenses the high-pressure refrigerant vapor to generate a high-pressure refrigerant liquid. The expansion valve 1140 expands the high-pressure refrigerant liquid to generate a low-pressure refrigerant liquid.
 第1の冷媒輸送部1150は、蒸発器1110から、圧縮機1120、凝縮器1130、および膨張弁1140を経由して蒸発器1110に還流する第1の冷媒の流路を構成する。第1の冷媒として、低沸点の材料、例えば、ハイドロフルオロカーボンやハイドロフルオロエーテルなどの有機冷媒を用いることができる。図2中の実線矢印は、この第1の冷媒の流れを示す。 The first refrigerant transport unit 1150 constitutes a flow path of the first refrigerant that flows back from the evaporator 1110 to the evaporator 1110 via the compressor 1120, the condenser 1130, and the expansion valve 1140. As the first refrigerant, a low boiling point material such as an organic refrigerant such as hydrofluorocarbon or hydrofluoroether can be used. A solid line arrow in FIG. 2 indicates the flow of the first refrigerant.
 第2の冷却装置1200は、吸着冷凍サイクルおよび吸収冷凍サイクルのいずれかを構成する。本実施形態では、第2の冷却装置1200として、吸着冷凍サイクルを備えた吸着式冷凍機1201を用いる場合について説明する。吸着式冷凍機1201は、第2の冷媒としての水等をポンプ1202によって循環させ、冷却塔1203等により温水を冷却する。図2中の破線矢印は、吸着式冷凍機1201の第2の冷媒としての水の流れを示す。 The second cooling device 1200 constitutes either an adsorption refrigeration cycle or an absorption refrigeration cycle. In the present embodiment, a case where an adsorption refrigerator 1201 having an adsorption refrigeration cycle is used as the second cooling device 1200 will be described. The adsorption refrigeration machine 1201 circulates water or the like as a second refrigerant with a pump 1202 and cools hot water with a cooling tower 1203 or the like. A broken-line arrow in FIG. 2 indicates the flow of water as the second refrigerant of the adsorption refrigeration machine 1201.
 第2の冷媒輸送部1210は、蒸発器1110と圧縮機1120の間から、蒸発器1110と膨張弁1140の間に、第1の冷媒の一部である分岐冷媒が循環する流路を構成する。 The second refrigerant transport unit 1210 constitutes a flow path through which the branched refrigerant that is a part of the first refrigerant circulates between the evaporator 1110 and the compressor 1120 and between the evaporator 1110 and the expansion valve 1140. .
 凝縮器1130は、第1の冷媒輸送部1150を流動する高圧冷媒蒸気と第2の冷却装置1200の受熱側の第2の冷媒を熱交換させる。また、第2の冷媒輸送部1210により循環する分岐冷媒と第2の冷却装置1200の冷却側の第2の冷媒を熱交換させる熱交換器(熱交換手段)1220を備えた構成とすることができる。 The condenser 1130 exchanges heat between the high-pressure refrigerant vapor flowing through the first refrigerant transport portion 1150 and the second refrigerant on the heat receiving side of the second cooling device 1200. Further, the heat exchanger (heat exchanging means) 1220 for exchanging heat between the branched refrigerant circulated by the second refrigerant transport unit 1210 and the second refrigerant on the cooling side of the second cooling device 1200 may be provided. it can.
 蓄熱装置1300は、第2の冷媒が輸送する熱を蓄える。蓄熱装置1300は第2の冷媒を蓄える蓄熱タンクを備え、第2の冷媒が循環する流路内に位置する構成とすることができる。また、図2に示すように、蓄熱装置1300が、第2の冷却装置1200の冷却側の第2の冷媒の流路内に位置する構成とすることができる。すなわち図2では、蓄熱装置1300が、吸着式冷凍機1201と熱交換器1220との間の水循環路に設置されている場合を示す。この場合、第2の冷媒としての水は、第2の冷却装置1200が生成する冷熱を輸送する。 The heat storage device 1300 stores heat transported by the second refrigerant. The heat storage device 1300 can include a heat storage tank that stores the second refrigerant, and can be configured to be located in a flow path through which the second refrigerant circulates. In addition, as shown in FIG. 2, the heat storage device 1300 can be configured to be positioned in the flow path of the second refrigerant on the cooling side of the second cooling device 1200. That is, FIG. 2 shows a case where the heat storage device 1300 is installed in the water circulation path between the adsorption refrigerator 1201 and the heat exchanger 1220. In this case, the water as the second refrigerant transports the cold generated by the second cooling device 1200.
 次に、本実施形態による冷却システム1000の動作について説明する。以下では、冷却システム1000をサーバ等の冷却に使用する場合を例として説明する。したがって、以下に記す温度は、この場合における典型的な数値例である。 Next, the operation of the cooling system 1000 according to the present embodiment will be described. Below, the case where the cooling system 1000 is used for cooling a server etc. is demonstrated as an example. Therefore, the temperatures described below are typical numerical examples in this case.
 まず、第1の冷却装置1100の動作について説明する。ラジエータ等からなる蒸発器1110に流入した冷媒液(第1の冷媒)は、サーバ等の冷却対象10から送出される約40~50℃の排熱によって気化し冷媒蒸気となる。冷媒蒸気は圧縮機1120により断熱圧縮されることにより圧力が上昇するとともに、冷媒蒸気の温度は約50~100℃に上昇する。温度が上昇した冷媒蒸気が有する熱を第2の冷却装置1200で使用するため、凝縮器1130によって冷媒と水(第2の冷媒)を熱交換させる。これにより、冷媒の熱が水に移動し、約50~100℃の温水が生成されるとともに、冷媒の温度は低下する。温度が低下することによって凝縮液化した冷媒は、膨張弁1140により圧力を低減される。その後に再び、蒸発器1110に流入する。 First, the operation of the first cooling device 1100 will be described. The refrigerant liquid (first refrigerant) that has flowed into the evaporator 1110 composed of a radiator or the like is vaporized by the exhaust heat of about 40 to 50 ° C. sent from the cooling target 10 such as a server and becomes refrigerant vapor. As the refrigerant vapor is adiabatically compressed by the compressor 1120, the pressure rises and the temperature of the refrigerant vapor rises to about 50 to 100 ° C. In order to use the heat of the refrigerant vapor whose temperature has risen in the second cooling device 1200, heat is exchanged between the refrigerant and water (second refrigerant) by the condenser 1130. As a result, the heat of the refrigerant moves to the water, hot water of about 50 to 100 ° C. is generated, and the temperature of the refrigerant decreases. The refrigerant condensed and liquefied as the temperature decreases is reduced in pressure by the expansion valve 1140. Thereafter, it flows again into the evaporator 1110.
 次に、第2の冷却装置1200の動作について説明する。凝縮器1130における熱交換によって受熱した約50~100℃の温水を介して、熱が吸着式冷凍機1201に移動する。吸着式冷凍機1201は、その温熱を利用して約5~20℃程度の冷水を生成し、熱交換器1220を介して分岐冷媒を冷却する。 Next, the operation of the second cooling device 1200 will be described. Heat is transferred to the adsorption refrigeration machine 1201 through hot water of about 50 to 100 ° C. received by heat exchange in the condenser 1130. The adsorption refrigeration machine 1201 generates cold water of about 5 to 20 ° C. using the warm heat, and cools the branched refrigerant via the heat exchanger 1220.
 熱交換器1220によって冷却された分岐冷媒は凝縮液化し、第2の冷媒輸送部1210により循環する。第2の冷媒輸送部1210は蒸発器1110と膨張弁1140の間に接続されているので、凝縮液化した分岐冷媒は膨張弁1140により低圧になった冷媒液と合流し、蒸発器1110に還流する。なお、図2に示すように、第2の冷媒輸送部1210が構成する分岐冷媒の流路内に、分岐冷媒を循環させるポンプ等の駆動部1230を備えた構成としてもよい。 The branched refrigerant cooled by the heat exchanger 1220 is condensed and liquefied and circulated by the second refrigerant transport unit 1210. Since the second refrigerant transport unit 1210 is connected between the evaporator 1110 and the expansion valve 1140, the condensed and liquefied branch refrigerant merges with the refrigerant liquid whose pressure has been reduced by the expansion valve 1140, and returns to the evaporator 1110. . In addition, as shown in FIG. 2, it is good also as a structure provided with drive parts 1230, such as a pump which circulates a branch refrigerant, in the flow path of the branch refrigerant which the 2nd refrigerant transport part 1210 comprises.
 蒸発器1110に還流した冷媒液は、サーバ等の冷却対象10からの排熱により気化する。蒸発器1110において気化した冷媒蒸気は、蒸発器1110と圧縮機1120の間に接続された第2の冷媒輸送部1210と第1の冷媒輸送部1150に分岐して流動する。第2の冷媒輸送部1210によって循環する分岐冷媒は、再び熱交換器1220に流入する。 The refrigerant liquid returned to the evaporator 1110 is vaporized by exhaust heat from the cooling target 10 such as a server. The refrigerant vapor evaporated in the evaporator 1110 branches and flows into the second refrigerant transport part 1210 and the first refrigerant transport part 1150 connected between the evaporator 1110 and the compressor 1120. The branched refrigerant circulated by the second refrigerant transport unit 1210 flows into the heat exchanger 1220 again.
 冷却システム1000は、蓄熱装置1300が備える蓄熱タンクを経由する第2の冷媒の流量を制御する流量制御部(流量制御手段)を有する構成とすることができる。流量制御部(図示せず)は、典型的には流量制御バルブを用いて構成することができる。 The cooling system 1000 can include a flow rate control unit (flow rate control unit) that controls the flow rate of the second refrigerant that passes through the heat storage tank provided in the heat storage device 1300. The flow rate control unit (not shown) can typically be configured using a flow rate control valve.
 また、冷却システム1000は、第1の冷却装置1100、第2の冷却装置1200、および流量制御部を制御する制御部(制御手段)を有する構成とすることができる。このとき制御部(図示せず)は、第1の冷媒の流量と温度、第2の冷媒の流量と温度、および冷却対象の消費電力の少なくとも一つに基づいて、冷却システム1000が以下の動作をするように、流量制御部を制御する構成とすることができる。 Moreover, the cooling system 1000 can be configured to include a first cooling device 1100, a second cooling device 1200, and a control unit (control means) that controls the flow rate control unit. At this time, the control unit (not shown) operates the cooling system 1000 as follows based on at least one of the flow rate and temperature of the first refrigerant, the flow rate and temperature of the second refrigerant, and the power consumption of the cooling target. It can be set as the structure which controls a flow control part so that it may do.
 以下に、冷却システム1000が備える制御部の動作、および冷却システム1000の制御方法について説明する。 Hereinafter, the operation of the control unit provided in the cooling system 1000 and the control method of the cooling system 1000 will be described.
 まず、冷却対象10からの受熱量が、第1の冷却装置1100が基準冷却能力で動作するとき生成する冷熱量よりも大きい場合について説明する。このときの受熱量は、第1の冷却装置1100と第2の冷媒輸送部1210がそれぞれ基準冷却能力で動作するとき生成する冷熱量の合計である合計冷熱量よりも小さいものとする。ここで、基準冷却能力は、典型的には定格冷却能力であり、以下では基準冷却能力は定格冷却能力であるとして説明する。 First, a case will be described in which the amount of heat received from the object 10 to be cooled is larger than the amount of heat generated when the first cooling device 1100 operates at the reference cooling capacity. The amount of heat received at this time is assumed to be smaller than the total amount of cold heat, which is the total amount of cold heat generated when the first cooling device 1100 and the second refrigerant transport unit 1210 operate at the reference cooling capacity. Here, the reference cooling capacity is typically the rated cooling capacity, and the following description will be made assuming that the reference cooling capacity is the rated cooling capacity.
 具体的には例えば、第1の冷却装置1100の定格冷却能力は20kWであり、そのときに生じる温熱によって第2の冷却装置1200の定格冷却能力が設定される。ここでは、第2の冷却装置1200の定格冷却能力は10kWであるとする。そして、冷却対象10が、第1の冷却装置1100定格冷却能力(20kW)よりも大きい25kWの発熱をしているとする。 Specifically, for example, the rated cooling capacity of the first cooling device 1100 is 20 kW, and the rated cooling capacity of the second cooling device 1200 is set by the heat generated at that time. Here, it is assumed that the rated cooling capacity of the second cooling device 1200 is 10 kW. Then, it is assumed that the cooling target 10 is generating 25 kW of heat that is larger than the first cooling device 1100 rated cooling capacity (20 kW).
 このとき、図3Aに示すように、第1の冷却装置1100および第2の冷却装置1200がそれぞれ定格冷却能力で動作するように第1の冷却装置1100と第2の冷却装置1200を制御する。そして、第1の冷却装置1100と第2の冷却装置1200が生成する冷熱量の合計である合計冷熱量(30kW)と冷却対象10からの受熱量(25kW)の差である余剰冷熱量(5kW)を蓄熱する。 At this time, as shown in FIG. 3A, the first cooling device 1100 and the second cooling device 1200 are controlled so that the first cooling device 1100 and the second cooling device 1200 each operate at the rated cooling capacity. Then, the amount of surplus cooling heat (5 kW) that is the difference between the total cooling amount (30 kW) that is the sum of the cooling amounts generated by the first cooling device 1100 and the second cooling device 1200 and the amount of heat received from the cooling target 10 (25 kW). ).
 すなわち、第1の冷却装置1100と第2の冷却装置1200はそれぞれ定格冷却能力で動作して20kWおよび10kWの冷熱を生成する。生成された合計30kWの冷熱のうち25kWは冷却対象10の冷却に使用し(必要冷熱)、残りの5kWの冷熱を蓄熱することができる。具体的には、余剰冷熱量(5kW)を輸送する容量の水(第2の冷媒)を、蓄熱タンクに蓄えるように流量制御部を制御する。 That is, the 1st cooling device 1100 and the 2nd cooling device 1200 operate | move by a rated cooling capacity, respectively, and produce | generate cold of 20 kW and 10 kW. Of the generated 30 kW of cold energy, 25 kW can be used for cooling the cooling object 10 (necessary cold energy), and the remaining 5 kW of cold energy can be stored. Specifically, the flow rate control unit is controlled so that water (second refrigerant) having a capacity for transporting the excess amount of cold heat (5 kW) is stored in the heat storage tank.
 次に、冷却対象10からの受熱量が、第1の冷却装置1100が定格冷却能力で動作するとき生成する冷熱量以下である場合について説明する。具体的には例えば、図3Bに示すように、冷却対象10が、第1の冷却装置1100の定格冷却能力(20kW)よりも小さい15kWの発熱をしているとする。 Next, a case where the amount of heat received from the object 10 to be cooled is equal to or less than the amount of heat generated when the first cooling device 1100 operates at the rated cooling capacity will be described. Specifically, for example, as illustrated in FIG. 3B, it is assumed that the cooling target 10 generates heat of 15 kW, which is smaller than the rated cooling capacity (20 kW) of the first cooling device 1100.
 このとき、第1の冷却装置1100および第2の冷却装置1200がそれぞれ定格冷却能力で動作するように第1の冷却装置1100と第2の冷却装置1200を制御する。そして、第2の冷却装置1200が生成する冷熱(10kW)を蓄熱する。具体的には、第2の冷却装置1200によって生成される冷熱(10kW)を輸送する水(第2の冷媒)を、蓄熱タンクに蓄えるように流量制御部を制御する。 At this time, the first cooling device 1100 and the second cooling device 1200 are controlled so that the first cooling device 1100 and the second cooling device 1200 each operate at the rated cooling capacity. Then, the cold heat (10 kW) generated by the second cooling device 1200 is stored. Specifically, the flow control unit is controlled so that water (second refrigerant) transporting cold heat (10 kW) generated by the second cooling device 1200 is stored in the heat storage tank.
 ここで、蓄熱タンクは容積に比例して蓄熱量を増大させることができるので、第2の冷却装置1200によって生成される冷熱の全てを輸送する容量の水を蓄熱タンクに蓄えることが可能である。また、第2の冷媒としての水は安価であるため、第1の冷却装置1100が第1の冷媒として用いる低沸点の有機冷媒を貯蔵する場合に比べ、冷却システム1000のコストを大幅に低減することができる。 Here, since the heat storage tank can increase the heat storage amount in proportion to the volume, it is possible to store in the heat storage tank water having a capacity for transporting all of the cold heat generated by the second cooling device 1200. . In addition, since water as the second refrigerant is inexpensive, the cost of the cooling system 1000 is greatly reduced as compared with the case where the first cooling device 1100 stores a low-boiling organic refrigerant used as the first refrigerant. be able to.
 次に、冷却対象10からの受熱量が、第1の冷却装置1100が定格冷却能力で動作するとき生成する冷熱量以下である場合について、別の制御方法による動作を説明する。 Next, the operation by another control method will be described in the case where the amount of heat received from the cooling target 10 is equal to or less than the amount of cooling generated when the first cooling device 1100 operates at the rated cooling capacity.
 この場合、第1の冷却装置1100が生成する冷熱量が、冷却対象10からの受熱量と等しくなるように第1の冷却装置1100を制御する。具体的には例えば、図3Cに示すように、冷却対象10の発熱量が15kWである場合、冷却に必要なだけの冷熱(15kW)を生成するように第1の冷却装置1100を制御する。そして、蓄熱装置1300は、このとき第2の冷却装置1200が生成する冷熱を蓄える。具体的には、第2の冷却装置1200によって生成される冷熱(7.5kW)を輸送する水(第2の冷媒)を、蓄熱タンクに蓄えるように流量制御部を制御する。 In this case, the first cooling device 1100 is controlled such that the amount of heat generated by the first cooling device 1100 is equal to the amount of heat received from the object 10 to be cooled. Specifically, for example, as shown in FIG. 3C, when the heat generation amount of the cooling target 10 is 15 kW, the first cooling device 1100 is controlled so as to generate only the cold energy (15 kW) necessary for cooling. Then, the heat storage device 1300 stores the cold generated by the second cooling device 1200 at this time. Specifically, the flow control unit is controlled so that water (second refrigerant) transporting cold heat (7.5 kW) generated by the second cooling device 1200 is stored in the heat storage tank.
 冷却システム1000がこのような動作をするように制御することによって、第1の冷却装置1100が生成する冷熱に余剰が生じないようにすることができる。また、第1の冷却装置1100と第2の冷却装置1200が生成する冷熱の総和が、必要な冷熱と一致するように第1の冷却装置1100を動作させた場合(図4B参照)と比較すると、第1の冷却装置1100は定格冷却能力(20kW)により近い運転を行う。そのため、冷却システム1000は高効率な動作が可能となる。 By controlling the cooling system 1000 to perform such an operation, it is possible to prevent surplus in the cold generated by the first cooling device 1100. Further, when compared with the case where the first cooling device 1100 is operated so that the total amount of cold heat generated by the first cooling device 1100 and the second cooling device 1200 matches the required cold heat (see FIG. 4B). The first cooling device 1100 operates closer to the rated cooling capacity (20 kW). Therefore, the cooling system 1000 can operate with high efficiency.
 上述した冷却システム1000の動作により、蓄熱装置1300に必要となる蓄熱を行った後には、第1の冷却装置1100および第2の冷却装置1200の動作を停止し、蓄熱装置1300が蓄えている冷熱によって冷却を行うことが可能になる。 After performing the heat storage required for the heat storage device 1300 by the operation of the cooling system 1000 described above, the operations of the first cooling device 1100 and the second cooling device 1200 are stopped, and the heat stored in the heat storage device 1300 is stored. It becomes possible to perform cooling.
 上記の説明では、冷却システム1000は、蓄熱装置1300が備える蓄熱タンクを経由する水(第2の冷媒)の流量を制御する構成とした。しかしこれに限らず、蓄熱タンク内に蓄える水温を下げることによって、冷熱の蓄熱量を増加させることとしてもよい。これは、吸着冷凍サイクルを構成する第2の冷却装置1200は、生成する冷水(第2の冷媒)の温度を調整することが可能だからである。 In the above description, the cooling system 1000 is configured to control the flow rate of water (second refrigerant) that passes through the heat storage tank provided in the heat storage device 1300. However, the present invention is not limited to this, and the amount of cold heat stored may be increased by lowering the water temperature stored in the heat storage tank. This is because the second cooling device 1200 constituting the adsorption refrigeration cycle can adjust the temperature of the generated cold water (second refrigerant).
 以上説明したように、本実施形態の冷却システム1000および冷却システムの制御方法によれば、複数の冷凍サイクルを組み合わせた構成とした場合であっても、冷却対象の発熱量に応じて効率よく冷却することができる。 As described above, according to the cooling system 1000 and the cooling system control method of the present embodiment, even when the configuration is a combination of a plurality of refrigeration cycles, cooling is efficiently performed according to the heat generation amount of the cooling target. can do.
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。 Some or all of the above embodiments can be described as in the following supplementary notes, but are not limited thereto.
 (付記1)冷却対象から受熱した第1の冷媒が循環する第1の冷媒輸送手段を備えた第1の冷却手段と、前記第1の冷媒輸送手段と接続し、前記第1の冷媒の一部である分岐冷媒が循環する第2の冷媒輸送手段と、第2の冷媒を介して、前記第1の冷媒輸送手段を循環する前記第1の冷媒から受熱し、前記分岐冷媒を冷却する第2の冷却手段と、
 前記第2の冷媒が輸送する熱を蓄える蓄熱手段、とを有する冷却システム。
(Additional remark 1) It connects with the 1st cooling means provided with the 1st refrigerant | coolant transport means through which the 1st refrigerant | coolant received from cooling object circulates, and the said 1st refrigerant | coolant transport means, One of the said 1st refrigerant | coolants A second refrigerant transporting unit that circulates the branched refrigerant that is a part, and a second refrigerant that receives heat from the first refrigerant that circulates through the first refrigerant transporting unit via the second refrigerant and cools the branched refrigerant Two cooling means;
A heat storage means for storing heat transported by the second refrigerant.
 (付記2)付記1に記載した冷却システムにおいて、前記蓄熱手段は、前記第2の冷媒を蓄える蓄熱タンクを備え、前記蓄熱タンクは、前記第2の冷媒が循環する流路内に位置する冷却システム。 (Additional remark 2) The cooling system described in Additional remark 1 WHEREIN: The said thermal storage means is equipped with the thermal storage tank which stores the said 2nd refrigerant | coolant, and the said thermal storage tank is the cooling located in the flow path through which the said 2nd refrigerant | coolant circulates. system.
 (付記3)付記2に記載した冷却システムにおいて、前記第2の冷媒は、前記第2の冷却手段が生成する冷熱を輸送する冷却システム。 (Supplementary note 3) The cooling system according to supplementary note 2, wherein the second refrigerant transports cold heat generated by the second cooling means.
 (付記4)付記3に記載した冷却システムにおいて、前記蓄熱タンクを経由する前記第2の冷媒の流量を制御する流量制御手段を有する冷却システム。 (Supplementary note 4) The cooling system according to supplementary note 3, comprising a flow rate control means for controlling a flow rate of the second refrigerant passing through the heat storage tank.
 (付記5)付記4に記載した冷却システムにおいて、前記第1の冷却手段と、前記第2の冷却手段と、前記流量制御手段とを制御する制御手段を有し、前記制御手段は、前記冷却対象からの受熱量が、前記第1の冷却手段が基準冷却能力で動作するとき生成する冷熱量よりも大きく、前記第1の冷却手段と前記第2の冷却手段がそれぞれ基準冷却能力で動作するとき生成する冷熱量の合計である合計冷熱量よりも小さい場合、前記第1の冷却手段および前記第2の冷却手段がそれぞれ基準冷却能力で動作するように前記第1の冷却手段と前記第2の冷却手段を制御し、前記合計冷熱量と前記受熱量の差である余剰冷熱量を輸送する容量の前記第2の冷媒を、前記蓄熱タンクに蓄えるように前記流量制御手段を制御する冷却システム。 (Supplementary note 5) In the cooling system according to supplementary note 4, the cooling system includes a control unit that controls the first cooling unit, the second cooling unit, and the flow rate control unit, wherein the control unit includes the cooling unit The amount of heat received from the target is larger than the amount of heat generated when the first cooling means operates at the reference cooling capacity, and the first cooling means and the second cooling means operate at the reference cooling capacity, respectively. The first cooling means and the second cooling means so that each of the first cooling means and the second cooling means operates at a reference cooling capacity when the total cooling quantity is smaller than the total cooling quantity that is generated. A cooling system for controlling the flow rate control means so as to store the second refrigerant having a capacity for transporting an excess amount of cold heat, which is a difference between the total amount of cold energy and the amount of received heat, in the heat storage tank. .
 (付記6)付記4に記載した冷却システムにおいて、前記第1の冷却手段、前記第2の冷却手段、および前記流量制御手段を制御する制御手段を有し、前記制御手段は、前記冷却対象からの受熱量が、前記第1の冷却手段が基準冷却能力で動作するとき生成する冷熱量以下である場合、前記第1の冷却手段および前記第2の冷却手段がそれぞれ基準冷却能力で動作するように前記第1の冷却手段と前記第2の冷却手段を制御し、前記第2の冷却手段によって生成される冷熱を輸送する前記第2の冷媒を、前記蓄熱タンクに蓄えるように前記流量制御手段を制御する冷却システム。 (Additional remark 6) In the cooling system described in additional remark 4, it has a control means which controls the 1st cooling means, the 2nd cooling means, and the flow rate control means, and the control means is from the cooling object. When the amount of heat received is equal to or less than the amount of heat generated when the first cooling means operates at the reference cooling capacity, the first cooling means and the second cooling means are operated at the reference cooling capacity, respectively. The flow rate control unit controls the first cooling unit and the second cooling unit to store the second refrigerant transporting the cold generated by the second cooling unit in the heat storage tank. To control the cooling system.
 (付記7)付記4に記載した冷却システムにおいて、前記第1の冷却手段、前記第2の冷却手段、および前記流量制御手段を制御する制御手段を有し、前記制御手段は、前記冷却対象からの受熱量が、前記第1の冷却手段が基準冷却能力で動作するとき生成する冷熱量以下である場合、前記第1の冷却手段が生成する冷熱量が、前記受熱量と等しくなるように前記第1の冷却手段を制御し、前記第2の冷却手段によって生成される冷熱を輸送する前記第2の冷媒を、前記蓄熱タンクに蓄えるように前記流量制御手段を制御する冷却システム。 (Supplementary note 7) In the cooling system described in supplementary note 4, the cooling system includes a control unit that controls the first cooling unit, the second cooling unit, and the flow rate control unit, and the control unit is configured to control the cooling target. When the amount of heat received is equal to or less than the amount of heat generated when the first cooling means operates at a reference cooling capacity, the amount of heat generated by the first cooling means is equal to the amount of heat received. A cooling system that controls the flow rate control means so as to store the second refrigerant, which controls the first cooling means and transports the cold generated by the second cooling means, in the heat storage tank.
 (付記8)付記5から7のいずれか一項に記載した冷却システムにおいて、前記制御手段は、前記第1の冷媒の流量と温度、前記第2の冷媒の流量と温度、および前記冷却対象の消費電力の少なくとも一つに基づいて、前記流量制御手段を制御する冷却システム。 (Supplementary note 8) In the cooling system according to any one of supplementary notes 5 to 7, the control means includes a flow rate and a temperature of the first refrigerant, a flow rate and a temperature of the second refrigerant, and the cooling target. A cooling system that controls the flow rate control means based on at least one of power consumption.
 (付記9)付記1から8のいずれか一項に記載した冷却システムにおいて、前記第1の冷却手段は、蒸気圧縮冷凍サイクルを構成し、前記第1の冷媒が受熱して気化した冷媒蒸気を生成する蒸発手段と、前記冷媒蒸気を圧縮して高圧冷媒蒸気を生成する圧縮手段と、前記高圧冷媒蒸気を凝縮させ高圧冷媒液を生成する凝縮手段と、前記高圧冷媒液を膨張させて低圧の冷媒液を生成する膨張手段、とを備え、前記第1の冷媒輸送手段は、前記蒸発手段から、前記圧縮手段、前記凝縮手段、および前記膨張手段を経由して前記蒸発手段に還流する前記第1の冷媒の流路を構成し、前記第2の冷媒輸送手段は、前記蒸発手段と前記圧縮手段の間から、前記蒸発手段と前記膨張手段の間に前記分岐冷媒が循環する流路を構成する冷却システム。 (Supplementary note 9) In the cooling system according to any one of supplementary notes 1 to 8, the first cooling means constitutes a vapor compression refrigeration cycle, and the refrigerant vapor received and vaporized by the first refrigerant is received. Evaporating means for generating, compressing means for compressing the refrigerant vapor to generate high-pressure refrigerant vapor, condensing means for condensing the high-pressure refrigerant vapor to generate high-pressure refrigerant liquid, and expanding the high-pressure refrigerant liquid to generate a low-pressure refrigerant liquid. Expansion means for generating a refrigerant liquid, wherein the first refrigerant transporting means returns from the evaporation means to the evaporation means via the compression means, the condensation means, and the expansion means. 1 refrigerant flow path, and the second refrigerant transporting means forms a flow path through which the branched refrigerant circulates between the evaporation means and the expansion means from between the evaporation means and the compression means. Cooling system.
 (付記10)付記9に記載した冷却システムにおいて、前記分岐冷媒と前記第2の冷却手段の冷却側の前記第2の冷媒を熱交換させる熱交換手段を備え、前記凝縮手段は、前記高圧冷媒蒸気と前記第2の冷却手段の受熱側の前記第2の冷媒を熱交換させる冷却システム。 (Supplementary note 10) The cooling system according to supplementary note 9, further comprising heat exchange means for exchanging heat between the branched refrigerant and the second refrigerant on the cooling side of the second cooling means, wherein the condensing means includes the high-pressure refrigerant. A cooling system for exchanging heat between the steam and the second refrigerant on the heat receiving side of the second cooling means.
 (付記11)付記1から10のいずれか一項に記載した冷却システムにおいて、前記第2の冷却手段は、吸着冷凍サイクルおよび吸収冷凍サイクルのいずれかを構成する冷却システム。 (Supplementary note 11) In the cooling system according to any one of Supplementary notes 1 to 10, the second cooling means is a cooling system that constitutes either an adsorption refrigeration cycle or an absorption refrigeration cycle.
 (付記12)冷却対象から受熱した第1の冷媒が循環する第1の冷媒輸送手段を備えた第1の冷却手段と、前記第1の冷媒輸送手段と接続し、前記第1の冷媒の一部である分岐冷媒が循環する第2の冷媒輸送手段と、第2の冷媒を介して、前記第1の冷媒輸送手段を循環する前記第1の冷媒から受熱し、前記分岐冷媒を冷却する第2の冷却手段と、前記第2の冷却手段が生成する冷熱を輸送する前記第2の冷媒を蓄える蓄熱タンク、とを有する冷却システムに対して、前記蓄熱タンクを経由する前記第2の冷媒の流量を制御する冷却システムの制御方法。 (Additional remark 12) It connects with the 1st cooling means provided with the 1st refrigerant | coolant transport means through which the 1st refrigerant | coolant received from the cooling object circulates, the said 1st refrigerant transport means, and one of the said 1st refrigerant | coolants A second refrigerant transporting unit that circulates the branched refrigerant that is a part, and a second refrigerant that receives heat from the first refrigerant that circulates through the first refrigerant transporting unit via the second refrigerant and cools the branched refrigerant A cooling system having two cooling means and a heat storage tank that stores the second refrigerant that transports the cold generated by the second cooling means. A cooling system control method for controlling the flow rate.
 (付記13)付記12に記載した冷却システムの制御方法において、前記冷却対象からの受熱量が、前記第1の冷却手段が基準冷却能力で動作するとき生成する冷熱量よりも大きく、前記第1の冷却手段と前記第2の冷却手段がそれぞれ基準冷却能力で動作するとき生成する冷熱量の合計である合計冷熱量よりも小さい場合、前記第1の冷却手段および前記第2の冷却手段がそれぞれ基準冷却能力で動作するように前記第1の冷却手段と前記第2の冷却手段を制御し、前記合計冷熱量と前記受熱量の差である余剰冷熱量を輸送する容量の前記第2の冷媒を、前記蓄熱タンクに蓄えるように、前記蓄熱タンクを経由する前記第2の冷媒の流量を制御する冷却システムの制御方法。 (Supplementary note 13) In the cooling system control method described in supplementary note 12, the amount of heat received from the object to be cooled is greater than the amount of heat generated when the first cooling means operates at a reference cooling capacity, and the first If the cooling means and the second cooling means are smaller than the total amount of cold heat generated when the cooling means and the second cooling means operate at the reference cooling capacity, respectively, the first cooling means and the second cooling means are respectively The second refrigerant having a capacity for controlling the first cooling means and the second cooling means so as to operate at a reference cooling capacity and transporting an excess amount of cold heat that is a difference between the total amount of cold heat and the amount of received heat. A control method of a cooling system for controlling a flow rate of the second refrigerant passing through the heat storage tank so as to be stored in the heat storage tank.
 (付記14)付記12に記載した冷却システムの制御方法において、前記冷却対象からの受熱量が、前記第1の冷却手段が基準冷却能力で動作するとき生成する冷熱量以下である場合、前記第1の冷却手段および前記第2の冷却手段がそれぞれ基準冷却能力で動作するように前記第1の冷却手段と前記第2の冷却手段を制御し、前記第2の冷却手段によって生成される冷熱を輸送する前記第2の冷媒を、前記蓄熱タンクに蓄えるように、前記蓄熱タンクを経由する前記第2の冷媒の流量を制御する冷却システムの制御方法。 (Supplementary note 14) In the control method of the cooling system described in supplementary note 12, when the amount of heat received from the object to be cooled is equal to or less than the amount of cold generated when the first cooling means operates at a reference cooling capacity, The first cooling means and the second cooling means are controlled so that each of the first cooling means and the second cooling means operate at a reference cooling capacity, and the cooling heat generated by the second cooling means is controlled. A cooling system control method for controlling a flow rate of the second refrigerant passing through the heat storage tank so that the second refrigerant to be transported is stored in the heat storage tank.
 (付記15)付記12に記載した冷却システムの制御方法において、前記冷却対象からの受熱量が、前記第1の冷却手段が基準冷却能力で動作するとき生成する冷熱量以下である場合、前記第1の冷却手段が生成する冷熱量が、前記受熱量と等しくなるように前記第1の冷却手段を制御し、前記第2の冷却手段によって生成される冷熱を輸送する前記第2の冷媒を、前記蓄熱タンクに蓄えるように、前記蓄熱タンクを経由する前記第2の冷媒の流量を制御する冷却システムの制御方法。 (Supplementary note 15) In the control method of the cooling system described in supplementary note 12, when the amount of heat received from the object to be cooled is equal to or less than the amount of heat generated when the first cooling means operates at a reference cooling capacity, Controlling the first cooling means such that the amount of cold generated by the first cooling means is equal to the amount of heat received, and transporting the second refrigerant transported by the second cooling means, A cooling system control method for controlling a flow rate of the second refrigerant passing through the heat storage tank so as to be stored in the heat storage tank.
 (付記16)付記13から15のいずれか一項に記載した冷却システムの制御方法において、前記第1の冷媒の流量と温度、前記第2の冷媒の流量と温度、および前記冷却対象の消費電力の少なくとも一つに基づいて、前記蓄熱タンクを経由する前記第2の冷媒の流量を制御する冷却システムの制御方法。 (Supplementary Note 16) In the cooling system control method according to any one of Supplementary Notes 13 to 15, the flow rate and temperature of the first refrigerant, the flow rate and temperature of the second refrigerant, and the power consumption of the cooling target The control method of the cooling system which controls the flow volume of the said 2nd refrigerant | coolant which passes through the said thermal storage tank based on at least one of these.
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2016年3月25日に出願された日本出願特願2016-062225を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2016-062225 filed on Mar. 25, 2016, the entire disclosure of which is incorporated herein.
 100  冷却システム
 110  第1の冷却手段
 111  第1の冷媒輸送手段
 120  第2の冷却手段
 121  第2の冷媒輸送手段
 130  蓄熱手段
 1000  冷却システム
 1100  第1の冷却装置
 1110  蒸発器
 1120  圧縮機
 1130  凝縮器
 1140  膨張弁
 1150  第1の冷媒輸送部
 1200  第2の冷却装置
 1201  吸着式冷凍機
 1202  ポンプ
 1203  冷却塔
 1210  第2の冷媒輸送部
 1220  熱交換器
 1230  駆動部
 1300  蓄熱装置
 10  冷却対象
DESCRIPTION OF SYMBOLS 100 Cooling system 110 1st cooling means 111 1st refrigerant | coolant transport means 120 2nd cooling means 121 2nd refrigerant | coolant transport means 130 Thermal storage means 1000 Cooling system 1100 1st cooling device 1110 Evaporator 1120 Compressor 1130 Condenser DESCRIPTION OF SYMBOLS 1140 Expansion valve 1150 1st refrigerant | coolant transport part 1200 2nd cooling device 1201 Adsorption-type refrigerator 1202 Pump 1203 Cooling tower 1210 2nd refrigerant | coolant transport part 1220 Heat exchanger 1230 Drive part 1300 Thermal storage apparatus 10 Cooling object

Claims (16)

  1.  冷却対象から受熱した第1の冷媒が循環する第1の冷媒輸送手段を備えた第1の冷却手段と、
     前記第1の冷媒輸送手段と接続し、前記第1の冷媒の一部である分岐冷媒が循環する第2の冷媒輸送手段と、
     第2の冷媒を介して、前記第1の冷媒輸送手段を循環する前記第1の冷媒から受熱し、前記分岐冷媒を冷却する第2の冷却手段と、
     前記第2の冷媒が輸送する熱を蓄える蓄熱手段、とを有する
     冷却システム。
    A first cooling means comprising a first refrigerant transport means through which the first refrigerant received from the object to be cooled circulates;
    A second refrigerant transporting means connected to the first refrigerant transporting means, through which a branched refrigerant that is a part of the first refrigerant circulates;
    Second cooling means for receiving heat from the first refrigerant circulating through the first refrigerant transporting means via the second refrigerant and cooling the branched refrigerant;
    And a heat storage means for storing heat transported by the second refrigerant.
  2.  請求項1に記載した冷却システムにおいて、
     前記蓄熱手段は、前記第2の冷媒を蓄える蓄熱タンクを備え、
     前記蓄熱タンクは、前記第2の冷媒が循環する流路内に位置する
     冷却システム。
    The cooling system according to claim 1,
    The heat storage means includes a heat storage tank for storing the second refrigerant,
    The heat storage tank is a cooling system located in a flow path through which the second refrigerant circulates.
  3.  請求項2に記載した冷却システムにおいて、
     前記第2の冷媒は、前記第2の冷却手段が生成する冷熱を輸送する
     冷却システム。
    The cooling system according to claim 2, wherein
    The second refrigerant transports cold heat generated by the second cooling means.
  4.  請求項3に記載した冷却システムにおいて、
     前記蓄熱タンクを経由する前記第2の冷媒の流量を制御する流量制御手段を有する
     冷却システム。
    The cooling system according to claim 3,
    A cooling system comprising flow rate control means for controlling the flow rate of the second refrigerant passing through the heat storage tank.
  5.  請求項4に記載した冷却システムにおいて、
     前記第1の冷却手段と、前記第2の冷却手段と、前記流量制御手段とを制御する制御手段を有し、
     前記制御手段は、
      前記冷却対象からの受熱量が、前記第1の冷却手段が基準冷却能力で動作するとき生成する冷熱量よりも大きく、前記第1の冷却手段と前記第2の冷却手段がそれぞれ基準冷却能力で動作するとき生成する冷熱量の合計である合計冷熱量よりも小さい場合、
      前記第1の冷却手段および前記第2の冷却手段がそれぞれ基準冷却能力で動作するように前記第1の冷却手段と前記第2の冷却手段を制御し、
      前記合計冷熱量と前記受熱量の差である余剰冷熱量を輸送する容量の前記第2の冷媒を、前記蓄熱タンクに蓄えるように前記流量制御手段を制御する
     冷却システム。
    The cooling system according to claim 4, wherein
    Control means for controlling the first cooling means, the second cooling means, and the flow rate control means;
    The control means includes
    The amount of heat received from the object to be cooled is larger than the amount of heat generated when the first cooling means operates at the reference cooling capacity, and the first cooling means and the second cooling means have the reference cooling capacity, respectively. If it is less than the total amount of cold, which is the total amount of cold generated when operating,
    Controlling the first cooling means and the second cooling means such that the first cooling means and the second cooling means each operate at a reference cooling capacity;
    A cooling system that controls the flow rate control means so that the second refrigerant having a capacity for transporting an excess amount of cold heat that is a difference between the total amount of cold heat and the amount of received heat is stored in the heat storage tank.
  6.  請求項4に記載した冷却システムにおいて、
     前記第1の冷却手段、前記第2の冷却手段、および前記流量制御手段を制御する制御手段を有し、
     前記制御手段は、
      前記冷却対象からの受熱量が、前記第1の冷却手段が基準冷却能力で動作するとき生成する冷熱量以下である場合、
      前記第1の冷却手段および前記第2の冷却手段がそれぞれ基準冷却能力で動作するように前記第1の冷却手段と前記第2の冷却手段を制御し、
      前記第2の冷却手段によって生成される冷熱を輸送する前記第2の冷媒を、前記蓄熱タンクに蓄えるように前記流量制御手段を制御する
     冷却システム。
    The cooling system according to claim 4, wherein
    Control means for controlling the first cooling means, the second cooling means, and the flow rate control means;
    The control means includes
    When the amount of heat received from the object to be cooled is equal to or less than the amount of heat generated when the first cooling means operates at a reference cooling capacity,
    Controlling the first cooling means and the second cooling means such that the first cooling means and the second cooling means each operate at a reference cooling capacity;
    A cooling system that controls the flow rate control means so that the second refrigerant that transports the cold generated by the second cooling means is stored in the heat storage tank.
  7.  請求項4に記載した冷却システムにおいて、
     前記第1の冷却手段、前記第2の冷却手段、および前記流量制御手段を制御する制御手段を有し、
     前記制御手段は、
      前記冷却対象からの受熱量が、前記第1の冷却手段が基準冷却能力で動作するとき生成する冷熱量以下である場合、
      前記第1の冷却手段が生成する冷熱量が、前記受熱量と等しくなるように前記第1の冷却手段を制御し、
      前記第2の冷却手段によって生成される冷熱を輸送する前記第2の冷媒を、前記蓄熱タンクに蓄えるように前記流量制御手段を制御する
     冷却システム。
    The cooling system according to claim 4, wherein
    Control means for controlling the first cooling means, the second cooling means, and the flow rate control means;
    The control means includes
    When the amount of heat received from the object to be cooled is equal to or less than the amount of heat generated when the first cooling means operates at a reference cooling capacity,
    Controlling the first cooling means so that the amount of heat generated by the first cooling means is equal to the amount of heat received;
    A cooling system that controls the flow rate control means so that the second refrigerant that transports the cold generated by the second cooling means is stored in the heat storage tank.
  8.  請求項5から7のいずれか一項に記載した冷却システムにおいて、
     前記制御手段は、前記第1の冷媒の流量と温度、前記第2の冷媒の流量と温度、および前記冷却対象の消費電力の少なくとも一つに基づいて、前記流量制御手段を制御する
     冷却システム。
    The cooling system according to any one of claims 5 to 7,
    The control unit controls the flow rate control unit based on at least one of a flow rate and temperature of the first refrigerant, a flow rate and temperature of the second refrigerant, and power consumption of the cooling target.
  9.  請求項1から8のいずれか一項に記載した冷却システムにおいて、
     前記第1の冷却手段は、蒸気圧縮冷凍サイクルを構成し、
      前記第1の冷媒が受熱して気化した冷媒蒸気を生成する蒸発手段と、
      前記冷媒蒸気を圧縮して高圧冷媒蒸気を生成する圧縮手段と、
      前記高圧冷媒蒸気を凝縮させ高圧冷媒液を生成する凝縮手段と、
      前記高圧冷媒液を膨張させて低圧の冷媒液を生成する膨張手段、とを備え、
     前記第1の冷媒輸送手段は、前記蒸発手段から、前記圧縮手段、前記凝縮手段、および前記膨張手段を経由して前記蒸発手段に還流する前記第1の冷媒の流路を構成し、
     前記第2の冷媒輸送手段は、前記蒸発手段と前記圧縮手段の間から、前記蒸発手段と前記膨張手段の間に前記分岐冷媒が循環する流路を構成する
     冷却システム。
    The cooling system according to any one of claims 1 to 8,
    The first cooling means constitutes a vapor compression refrigeration cycle,
    Evaporating means for generating a refrigerant vapor vaporized by receiving heat from the first refrigerant;
    Compression means for compressing the refrigerant vapor to generate high-pressure refrigerant vapor;
    Condensing means for condensing the high-pressure refrigerant vapor to produce a high-pressure refrigerant liquid;
    Expansion means for expanding the high-pressure refrigerant liquid to generate a low-pressure refrigerant liquid,
    The first refrigerant transport means constitutes a flow path of the first refrigerant that flows back from the evaporation means to the evaporation means via the compression means, the condensation means, and the expansion means,
    The cooling system, wherein the second refrigerant transport means constitutes a flow path through which the branched refrigerant circulates between the evaporation means and the expansion means between the evaporation means and the compression means.
  10.  請求項9に記載した冷却システムにおいて、
     前記分岐冷媒と前記第2の冷却手段の冷却側の前記第2の冷媒を熱交換させる熱交換手段を備え、
     前記凝縮手段は、前記高圧冷媒蒸気と前記第2の冷却手段の受熱側の前記第2の冷媒を熱交換させる
     冷却システム。
    The cooling system according to claim 9,
    Heat exchange means for exchanging heat between the branched refrigerant and the second refrigerant on the cooling side of the second cooling means;
    The condensing unit exchanges heat between the high-pressure refrigerant vapor and the second refrigerant on the heat receiving side of the second cooling unit.
  11.  請求項1から10のいずれか一項に記載した冷却システムにおいて、
     前記第2の冷却手段は、吸着冷凍サイクルおよび吸収冷凍サイクルのいずれかを構成する
     冷却システム。
    The cooling system according to any one of claims 1 to 10,
    The second cooling means constitutes one of an adsorption refrigeration cycle and an absorption refrigeration cycle.
  12.  冷却対象から受熱した第1の冷媒が循環する第1の冷媒輸送手段を備えた第1の冷却手段と、
     前記第1の冷媒輸送手段と接続し、前記第1の冷媒の一部である分岐冷媒が循環する第2の冷媒輸送手段と、
     第2の冷媒を介して、前記第1の冷媒輸送手段を循環する前記第1の冷媒から受熱し、前記分岐冷媒を冷却する第2の冷却手段と、
     前記第2の冷却手段が生成する冷熱を輸送する前記第2の冷媒を蓄える蓄熱タンク、とを有する冷却システムに対して、
     前記蓄熱タンクを経由する前記第2の冷媒の流量を制御する
     冷却システムの制御方法。
    A first cooling means comprising a first refrigerant transport means through which the first refrigerant received from the object to be cooled circulates;
    A second refrigerant transporting means connected to the first refrigerant transporting means, through which a branched refrigerant that is a part of the first refrigerant circulates;
    Second cooling means for receiving heat from the first refrigerant circulating through the first refrigerant transporting means via the second refrigerant and cooling the branched refrigerant;
    For a cooling system having a heat storage tank that stores the second refrigerant that transports the cold generated by the second cooling means,
    A cooling system control method for controlling a flow rate of the second refrigerant passing through the heat storage tank.
  13.  請求項12に記載した冷却システムの制御方法において、
     前記冷却対象からの受熱量が、前記第1の冷却手段が基準冷却能力で動作するとき生成する冷熱量よりも大きく、前記第1の冷却手段と前記第2の冷却手段がそれぞれ基準冷却能力で動作するとき生成する冷熱量の合計である合計冷熱量よりも小さい場合、
     前記第1の冷却手段および前記第2の冷却手段がそれぞれ基準冷却能力で動作するように前記第1の冷却手段と前記第2の冷却手段を制御し、
     前記合計冷熱量と前記受熱量の差である余剰冷熱量を輸送する容量の前記第2の冷媒を、前記蓄熱タンクに蓄えるように、前記蓄熱タンクを経由する前記第2の冷媒の流量を制御する
     冷却システムの制御方法。
    In the cooling system control method according to claim 12,
    The amount of heat received from the object to be cooled is larger than the amount of heat generated when the first cooling means operates at the reference cooling capacity, and the first cooling means and the second cooling means have the reference cooling capacity, respectively. If it is less than the total amount of cold, which is the total amount of cold generated when operating,
    Controlling the first cooling means and the second cooling means such that the first cooling means and the second cooling means each operate at a reference cooling capacity;
    A flow rate of the second refrigerant passing through the heat storage tank is controlled so that the second refrigerant having a capacity for transporting an excess amount of cold heat that is a difference between the total cold heat amount and the received heat amount is stored in the heat storage tank. Yes Cooling system control method.
  14.  請求項12に記載した冷却システムの制御方法において、
     前記冷却対象からの受熱量が、前記第1の冷却手段が基準冷却能力で動作するとき生成する冷熱量以下である場合、
     前記第1の冷却手段および前記第2の冷却手段がそれぞれ基準冷却能力で動作するように前記第1の冷却手段と前記第2の冷却手段を制御し、
     前記第2の冷却手段によって生成される冷熱を輸送する前記第2の冷媒を、前記蓄熱タンクに蓄えるように、前記蓄熱タンクを経由する前記第2の冷媒の流量を制御する
     冷却システムの制御方法。
    In the cooling system control method according to claim 12,
    When the amount of heat received from the object to be cooled is equal to or less than the amount of heat generated when the first cooling means operates at a reference cooling capacity,
    Controlling the first cooling means and the second cooling means such that the first cooling means and the second cooling means each operate at a reference cooling capacity;
    Control method of a cooling system for controlling a flow rate of the second refrigerant passing through the heat storage tank so that the second refrigerant transporting the cold generated by the second cooling means is stored in the heat storage tank .
  15.  請求項12に記載した冷却システムの制御方法において、
     前記冷却対象からの受熱量が、前記第1の冷却手段が基準冷却能力で動作するとき生成する冷熱量以下である場合、
     前記第1の冷却手段が生成する冷熱量が、前記受熱量と等しくなるように前記第1の冷却手段を制御し、
     前記第2の冷却手段によって生成される冷熱を輸送する前記第2の冷媒を、前記蓄熱タンクに蓄えるように、前記蓄熱タンクを経由する前記第2の冷媒の流量を制御する
     冷却システムの制御方法。
    In the cooling system control method according to claim 12,
    When the amount of heat received from the object to be cooled is equal to or less than the amount of heat generated when the first cooling means operates at a reference cooling capacity,
    Controlling the first cooling means so that the amount of heat generated by the first cooling means is equal to the amount of heat received;
    Control method of a cooling system for controlling a flow rate of the second refrigerant passing through the heat storage tank so that the second refrigerant transporting the cold generated by the second cooling means is stored in the heat storage tank .
  16.  請求項13から15のいずれか一項に記載した冷却システムの制御方法において、
     前記第1の冷媒の流量と温度、前記第2の冷媒の流量と温度、および前記冷却対象の消費電力の少なくとも一つに基づいて、前記蓄熱タンクを経由する前記第2の冷媒の流量を制御する
     冷却システムの制御方法。
    In the cooling system control method according to any one of claims 13 to 15,
    The flow rate of the second refrigerant passing through the heat storage tank is controlled based on at least one of the flow rate and temperature of the first refrigerant, the flow rate and temperature of the second refrigerant, and the power consumption of the cooling target. Yes Cooling system control method.
PCT/JP2017/011321 2016-03-25 2017-03-22 Cooling system, and method for controlling cooling system WO2017164201A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018507352A JPWO2017164201A1 (en) 2016-03-25 2017-03-22 COOLING SYSTEM AND COOLING SYSTEM CONTROL METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016062225 2016-03-25
JP2016-062225 2016-03-25

Publications (1)

Publication Number Publication Date
WO2017164201A1 true WO2017164201A1 (en) 2017-09-28

Family

ID=59899537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011321 WO2017164201A1 (en) 2016-03-25 2017-03-22 Cooling system, and method for controlling cooling system

Country Status (2)

Country Link
JP (1) JPWO2017164201A1 (en)
WO (1) WO2017164201A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03144263A (en) * 1989-10-28 1991-06-19 Hitachi Ltd Heat accumulation type compression refrigerating cycle
JPH0769093B2 (en) * 1990-04-10 1995-07-26 東京瓦斯株式会社 Cogeneration system for generating cold water and subway cooling system using the same
JPH08145437A (en) * 1994-11-17 1996-06-07 Hitachi Ltd Storage type cooler/heater, and controlling method therefor
JP2007170792A (en) * 2005-12-26 2007-07-05 Takenaka Komuten Co Ltd Air-conditioning device
JP2013181666A (en) * 2012-02-29 2013-09-12 Fujitsu General Ltd Air conditioning system
WO2017051532A1 (en) * 2015-09-25 2017-03-30 日本電気株式会社 Cooling system and cooling method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03144263A (en) * 1989-10-28 1991-06-19 Hitachi Ltd Heat accumulation type compression refrigerating cycle
JPH0769093B2 (en) * 1990-04-10 1995-07-26 東京瓦斯株式会社 Cogeneration system for generating cold water and subway cooling system using the same
JPH08145437A (en) * 1994-11-17 1996-06-07 Hitachi Ltd Storage type cooler/heater, and controlling method therefor
JP2007170792A (en) * 2005-12-26 2007-07-05 Takenaka Komuten Co Ltd Air-conditioning device
JP2013181666A (en) * 2012-02-29 2013-09-12 Fujitsu General Ltd Air conditioning system
WO2017051532A1 (en) * 2015-09-25 2017-03-30 日本電気株式会社 Cooling system and cooling method

Also Published As

Publication number Publication date
JPWO2017164201A1 (en) 2019-02-07

Similar Documents

Publication Publication Date Title
CA2755034C (en) Rankine cycle integrated with absorption chiller
CN103003531A (en) Thermoelectric energy storage system and method for storing thermoelectric energy
US20220341635A1 (en) Transducing method and system
JP5323023B2 (en) Refrigeration equipment
JP2010271000A (en) Heat storage type refrigerating system
JP5523180B2 (en) Data center auxiliary cooling system
JP2008298407A (en) Multiple heat pump-type steam-hot water generation device
JP2014231921A (en) Refrigeration device, and defrosting method of load cooler
US20190383232A1 (en) Gas engine driven heat pump system with generator
JP5246891B2 (en) Heat pump system
JP2015048987A (en) Air conditioner
WO2017051532A1 (en) Cooling system and cooling method
JP2007263482A (en) Composite heat pump system
JP5261111B2 (en) Absorption refrigerator
US20140165616A1 (en) Air conditioning system with ice storage
WO2017169925A1 (en) Cooling system and cooling method
WO2017164201A1 (en) Cooling system, and method for controlling cooling system
KR102185416B1 (en) Cooling system
KR102135056B1 (en) Receiver for refrigerant storage using membrane and cooling system
WO2017051533A1 (en) Cooling system and cooling method
Varghese et al. Heat Recovery System in Domestic Refrigerator
KR102627702B1 (en) Thermal management system for heating element using heat source supply system
JP6349245B2 (en) Thermal power conversion system
JP6643753B2 (en) Heat transport system and heat transport method
JPH01208668A (en) Heat storage type cold and hot heat generating device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018507352

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17770243

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17770243

Country of ref document: EP

Kind code of ref document: A1