WO2017051532A1 - Cooling system and cooling method - Google Patents

Cooling system and cooling method Download PDF

Info

Publication number
WO2017051532A1
WO2017051532A1 PCT/JP2016/004297 JP2016004297W WO2017051532A1 WO 2017051532 A1 WO2017051532 A1 WO 2017051532A1 JP 2016004297 W JP2016004297 W JP 2016004297W WO 2017051532 A1 WO2017051532 A1 WO 2017051532A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
cooling
flow rate
cooling system
branched
Prior art date
Application number
PCT/JP2016/004297
Other languages
French (fr)
Japanese (ja)
Inventor
寿人 佐久間
雅人 矢野
吉川 実
正樹 千葉
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US15/760,345 priority Critical patent/US20180259232A1/en
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2017541429A priority patent/JPWO2017051532A1/en
Publication of WO2017051532A1 publication Critical patent/WO2017051532A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/02Compression-sorption machines, plants, or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/16Sorption machines, plants or systems, operating continuously, e.g. absorption type using desorption cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/006Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the sorption type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the present invention relates to a cooling system and a cooling method used for cooling electronic devices and the like, and more particularly to a cooling system and a cooling method using a phase change of a refrigerant.
  • Patent Document 1 An example of a cooling system using refrigerant phase change is described in Patent Document 1.
  • the related refrigeration apparatus described in Patent Document 1 is a cooling system that combines a vapor compression refrigerator and an adsorption refrigerator.
  • the related refrigeration apparatus has an adsorption refrigerator having a first adsorber and a second adsorber, a first vapor compression refrigerator, and a second vapor compression refrigerator.
  • the first and second vapor compression refrigerators include a first and second compressor, first and second condensers (heat radiators), first and second decompressors, an evaporator, and first and second accumulators. Is provided. Note that the evaporators of the first and second vapor compression refrigerators are integrated.
  • the adsorption refrigerator includes a first and second adsorber, a first and second adsorbent heat exchanger, a first and second water heat exchanger, an outdoor heat exchanger, and the like.
  • the adsorbent in the adsorber in the regenerated state is heated by the first condenser provided in the first vapor compression refrigerator, and the second vapor compression is performed by the cooling action of the adsorber in the adsorbed state.
  • the second condenser of the type refrigerator is cooled.
  • the first adsorber and the second adsorber are switched between an adsorption state and a regeneration state in which the adsorbed vapor refrigerant is desorbed and regenerated at regular intervals.
  • the pressure in the condenser of the second vapor compression refrigeration machine can be reduced, so that the power (compression work) of the compressor of the second vapor compression refrigeration machine can be reduced. it can. Therefore, according to the related refrigeration apparatus, a sufficient refrigeration capacity can be obtained with a small amount of power in the refrigeration apparatus in which the first and second vapor compression refrigerators and the adsorption refrigerator are combined.
  • JP-A-11-190566 paragraphs [0005] to [0019], FIG. 1) JP 2014-009624 A Japanese Patent Laid-Open No. 5-272833
  • the related refrigeration apparatus described in Patent Document 1 uses a second vapor compression refrigeration by an adsorption refrigerator that desorbs the adsorbed refrigerant using the exhaust heat of the first vapor compression refrigerator. It is set as the structure which cools the condenser with which a machine is equipped. Therefore, the cooling capacity of the second vapor compression refrigerator depends on the cooling capacity of the adsorption refrigerator and the first vapor compression refrigerator. As a result, the cooling capacity of the refrigeration apparatus is not always constant, and the cooling capacity varies depending on the ratio of the amount of refrigerant circulating through each of the first vapor compression refrigerator and the second vapor compression refrigerator.
  • An object of the present invention is to provide a cooling system and a cooling method that solve the above-mentioned problem that the cooling capacity of a cooling system varies in a cooling system that combines a plurality of refrigeration cycles.
  • the cooling system of the present invention includes a first cooling means having a first refrigerant transporting means for circulating a refrigerant received from a cooling target, and a branched refrigerant that is connected to the first refrigerant transporting means and is a part of the refrigerant.
  • a second refrigerant transporting means that circulates, a second cooling means that receives heat from the refrigerant circulating through the first refrigerant transporting means and cools the branch refrigerant, and a flow rate control means that controls the flow rate of the branch refrigerant.
  • the cooling method of the present invention circulates the refrigerant received from the object to be cooled, branches a part of the refrigerant, circulates the branched branch refrigerant, receives heat from the refrigerant, cools the branch refrigerant, Control is performed so that the cooling capacity for the object to be cooled is substantially constant.
  • FIG. 1 is a schematic diagram showing a configuration of a cooling system 100 according to the first embodiment of the present invention. Broken line arrows in the figure indicate heat transfer.
  • the cooling system 100 includes a first cooling unit 110, a second cooling unit 120, a second refrigerant transporting unit 121, and a flow rate control unit 130.
  • 1st cooling means 110 is provided with the 1st refrigerant transportation means 111 through which the refrigerant which received heat (H1) from cooling object 10 circulates.
  • the second refrigerant transport means 121 is connected to the first refrigerant transport means 111, and a branched refrigerant that is a part of the refrigerant circulates.
  • the second cooling means 120 receives heat (H2) from the refrigerant circulating in the first refrigerant transport means 111 and cools (H3) the branched refrigerant. Then, the flow rate control means 130 controls the flow rate of the branched refrigerant.
  • the temperature of the branched refrigerant after being cooled by the second cooling means 120 depends not only on the cooling capacity of the second cooling means 120 but also on the flow rate of the branched refrigerant. Therefore, by controlling the flow rate of the branch refrigerant, the temperature of the branch refrigerant that flows back to the first refrigerant transport means 111 through the second refrigerant transport means 121 can be controlled. Thereby, even if the cooling capacity of the second cooling means 120 varies, it is possible to maintain the cooling capacity of the cooling system 100.
  • the cooling system 100 of the present embodiment even when the cooling system 100 has a configuration in which a plurality of refrigeration cycles including the first cooling unit 110 and the second cooling unit 120 are combined, Variations in cooling capacity can be suppressed.
  • the first cooling means 110 can be configured to use a vapor compression refrigeration cycle.
  • the second cooling means 120 can be configured to use either an adsorption refrigeration cycle or an absorption refrigeration cycle.
  • the flow rate control means 130 can be configured to control the flow rate of the branched refrigerant so that the temperature difference of the branched refrigerant before and after being cooled by the second cooling means 120 becomes substantially constant. Specifically, when the temperature difference of the branch refrigerant is larger than a predetermined value, the flow rate control means 130 increases the flow rate of the branch refrigerant. Conversely, when the temperature difference is smaller than a predetermined value, the flow rate control means 130 can be configured to control to decrease the flow rate of the branched refrigerant.
  • coolant so that the temperature difference of a branch refrigerant
  • coolant may become a predetermined range, for example, the range of 0 degreeC or more and 5 degrees C or less.
  • the flow rate of the branch refrigerant may be increased, and when the temperature difference is within the predetermined range, the flow rate of the branch refrigerant may be decreased.
  • the flow rate control means 130 can be a flow rate control valve located in the flow path constituted by the first refrigerant transport means 111.
  • the flow rate control means 130 may be a flow rate control valve located in a flow path constituted by the second refrigerant transport means 121.
  • the refrigerant that has received heat from the cooling target is circulated, a part of this refrigerant is branched, and the branched branched refrigerant is circulated. And while receiving heat from this refrigerant
  • the flow rate of the branching refrigerant is controlled so that the cooling capacity for the cooling target is substantially constant.
  • the control of the flow rate of the branching refrigerant described above can be configured to control the flow rate of the branching refrigerant so that the temperature difference between the branching refrigerant before and after the step of cooling the branching refrigerant becomes substantially constant. At this time, when the temperature difference is larger than a predetermined value, the flow rate of the branched refrigerant may be increased, and when the temperature difference is smaller than the predetermined value, the flow rate of the branched refrigerant may be decreased.
  • the step of receiving heat from the refrigerant and cooling the branched refrigerant may be a step of cooling the branched refrigerant by receiving heat from the refrigerant, desorbing the adsorbent, and evaporating the adsorbed adsorbent.
  • the cooling method according to the present embodiment has a configuration in which the refrigeration cycle in which the refrigerant received from the cooling target circulates and the refrigeration cycle that receives the heat from the refrigerant and cools the branched refrigerant are combined. And as above-mentioned, according to the cooling method of this embodiment, even if it is a case where it is the case where it is the case where it is the structure which combined such a some refrigeration cycle, the fluctuation
  • FIG. 2 schematically shows the configuration of a cooling system 1000 according to the second embodiment of the present invention.
  • solid and broken arrows indicate the refrigerant flow
  • white arrows indicate the heat flow.
  • the cooling system 1000 includes a first cooling device (first cooling means) 1100, a second cooling device (second cooling means) 1200, a second refrigerant transport unit (second refrigerant transport means). ) 1210 and a flow rate control valve (flow rate control means) 1300.
  • the cooling system 1000 has a configuration in which a plurality of refrigeration cycles including the first cooling device 1100 and the second cooling device 1200 are combined. That is, the cooling system 1000 is an exhaust heat recovery type in which the second cooling device 1200 further cools the cooling target 10 using the heat recovered by the first cooling device 1100 cooling the cooling target 10 as an energy source. Cooling system.
  • the cooling target 10 is an electronic device such as a server.
  • the first cooling device 1100 includes an evaporator (evaporating means) 1110, a compressor (compressing means) 1120, a condenser (condensing means) 1130, an expansion valve (expanding means) 1140, and a first refrigerant transport section (first (Refrigerant transport means) 1150, and constitutes a vapor compression refrigeration cycle.
  • evaporator evaporating means
  • compressor compressor
  • condenser condensing means
  • expansion valve expansion valve
  • first refrigerant transport section first (Refrigerant transport means) 1150
  • the evaporator 1110 is composed of a radiator or the like, and generates refrigerant vapor that is vaporized by receiving heat from the refrigerant.
  • the compressor 1120 adiabatically compresses the refrigerant vapor to generate high-pressure refrigerant vapor.
  • the condenser 1130 condenses the high-pressure refrigerant vapor to generate a high-pressure refrigerant liquid.
  • the expansion valve 1140 expands the high-pressure refrigerant liquid to generate a low-pressure refrigerant liquid.
  • the first refrigerant transport unit 1150 constitutes a refrigerant flow path that returns from the evaporator 1110 to the evaporator 1110 via the compressor 1120, the condenser 1130, and the expansion valve 1140.
  • a solid line arrow in FIG. 2 indicates the flow of the refrigerant.
  • the second cooling device 1200 constitutes either an adsorption refrigeration cycle or an absorption refrigeration cycle.
  • an adsorption refrigerator 1201 having an adsorption refrigeration cycle is used as the second cooling device 1200.
  • the adsorption refrigerator 1201 circulates water or the like as a refrigerant with a pump 1202 and cools hot water with a cooling tower 1203 or the like.
  • a broken-line arrow in FIG. 2 indicates a flow of water as a refrigerant of the adsorption refrigerator 1201.
  • the second refrigerant transport unit 1210 constitutes a flow path in which a branched refrigerant that is a part of the refrigerant circulates between the evaporator 1110 and the compressor 1120 and between the evaporator 1110 and the expansion valve 1140.
  • the condenser 1130 exchanges heat between the high-pressure refrigerant vapor flowing through the first refrigerant transport unit 1150 and the refrigerant on the heat receiving side of the second cooling device 1200.
  • a heat exchanger (heat exchanging means) 1220 for exchanging heat between the branched refrigerant circulated by the second refrigerant transport section 1210 and the refrigerant on the cooling side of the second cooling device 1200 can be provided.
  • the flow control valve 1300 controls the flow rate of the branched refrigerant.
  • FIG. 2 shows a case where the flow control valve 1300 is located in a flow path constituted by the first refrigerant transport portion 1150. Not only this but as shown in FIG. 3, it is good also as a structure where the flow control valve 1301 is located in the flow path comprised by the 2nd refrigerant
  • the refrigerant liquid flowing into the evaporator 1110 made of a radiator or the like is vaporized by the exhaust heat of about 40 to 50 ° C. sent from the cooling target 10 such as a server and becomes refrigerant vapor.
  • the cooling target 10 such as a server
  • the refrigerant vapor is adiabatically compressed by the compressor 1120, the pressure rises and the temperature of the refrigerant vapor rises to about 50 to 100 ° C.
  • heat is exchanged between the refrigerant and water by the condenser 1130.
  • the heat of the refrigerant moves to the water, hot water of about 50 to 100 ° C. is generated, and the temperature of the refrigerant decreases.
  • the refrigerant condensed and liquefied as the temperature decreases is reduced in pressure by the expansion valve 1140. Thereafter, it flows again into the evaporator 1110.
  • Heat is transferred to the adsorption refrigeration machine 1201 through hot water of about 50 to 100 ° C. received by heat exchange in the condenser 1130.
  • the adsorption refrigeration machine 1201 generates cold water of about 5 to 20 ° C. using the warm heat, and cools the branched refrigerant via the heat exchanger 1220.
  • the branched refrigerant cooled by the heat exchanger 1220 is condensed and liquefied and circulated by the second refrigerant transport unit 1210. Since the second refrigerant transport unit 1210 is connected between the evaporator 1110 and the expansion valve 1140, the condensed and liquefied branch refrigerant merges with the refrigerant liquid whose pressure has been reduced by the expansion valve 1140, and returns to the evaporator 1110. .
  • drive parts (drive means) 1230 such as a pump which circulates a branch refrigerant, in the flow path of the branch refrigerant which the 2nd refrigerant transport part 1210 comprises.
  • the refrigerant liquid returned to the evaporator 1110 is vaporized by exhaust heat from the cooling target 10 such as a server.
  • the refrigerant vapor evaporated in the evaporator 1110 branches and flows into the second refrigerant transport part 1210 and the first refrigerant transport part 1150 connected between the evaporator 1110 and the compressor 1120.
  • the branched refrigerant circulated by the second refrigerant transport unit 1210 flows into the heat exchanger 1220 again.
  • the flow control valve 1300 controls the flow rate of the branched refrigerant. That is, the flow control valve 1300 adjusts the ratio at which the refrigerant vapor vaporized in the evaporator 1110 branches to the first refrigerant transport part 1150 and the second refrigerant transport part 1210. As a result, the amount of refrigerant cooled by the condenser 1130 via the compressor 1120 included in the first cooling device 1100 and the branch cooled by the second cooling device 1200 via the second refrigerant transport unit 1210. The amount of refrigerant can be adjusted.
  • thermometer 1221 that measures the temperature of the branched refrigerant on the inlet side of the heat exchanger 1220 and the second thermometer 1222 that measures the temperature of the branched refrigerant on the outlet side may be provided.
  • the flow control valve 1300 is controlled using the pre-cooling refrigerant temperature T1 that is the measurement result of the first thermometer 1221 and the post-cooling refrigerant temperature T2 that is the measurement result of the second thermometer 1222. be able to.
  • the flow rate control valve 1300 or the flow rate control valve 1301 is adjusted so that the temperature difference T1-T2 becomes constant at 5 degrees, for example.
  • the opening degree of the flow control valve 1300 provided in the first refrigerant transport portion 1150 shown in FIG. make it smaller.
  • the opening degree of the flow control valve 1301 provided in the second refrigerant transport unit 1210 shown in FIG. 3 is increased.
  • the opening degree of the flow control valve 1300 provided in the first refrigerant transport portion 1150 shown in FIG. 2 is increased.
  • the opening degree of the flow control valve 1301 provided in the second refrigerant transport unit 1210 shown in FIG. 3 is reduced.
  • the flow control valve 1300 By controlling the flow control valve 1300 in this way, the temperature of the branched refrigerant that flows back to the first refrigerant transport part 1150 through the second refrigerant transport part 1210 can be controlled. Thereby, even if the cooling capacity of the second cooling device 1200 varies, the cooling capacity of the cooling system 1000 can be maintained.
  • the cooling system 1000 of the present embodiment fluctuations in the cooling capacity of the cooling system 1000 can be suppressed even when the cooling system 1000 is configured by combining a plurality of refrigeration cycles. That is, even if it is a case where it is the case where it is the case where it is the case where it is the case where it is the structure which combined the some refrigeration cycle which consists of the 1st cooling device 1100 (vapor compression refrigeration cycle) and the 2nd cooling device 1200 (adsorption refrigeration cycle), the cooling capacity of the cooling system 1000 Fluctuations can be suppressed.
  • the heat exchanger 1220 may be positioned above the evaporator 1110.
  • the branched refrigerant can flow through the second refrigerant transport portion 1210 and return to the evaporator 1110 by the action of gravity. This eliminates the need for a drive unit (drive means) such as the pump described above.
  • Cooling system 110 1st cooling means 111 1st refrigerant
  • Flow control means 1000 Cooling system 1100 1st cooling device 1110 Evaporator 1120 Compressor 1130 Condensation Vessel 1140 expansion valve 1150 first refrigerant transport unit 1200 second cooling device 1201 adsorption refrigerator 1202 pump 1203 cooling tower 1210 second refrigerant transport unit 1220 heat exchanger 1221 first thermometer 1222 second thermometer 1230 Drive unit 1300, 1301 Flow control valve 10 Cooling target

Abstract

A cooling system that combines a plurality of refrigeration cycles has a fluctuating cooling capacity. Therefore, this cooling system has: a first cooling means comprising a first refrigerant transportation means that circulates a refrigerant that has received heat from an object to be cooled; a second refrigerant transportation means connected to the first refrigerant transportation means and circulating a diverted refrigerant being some of the refrigerant; a second cooling means that receives heat from the refrigerant that circulates through the first refrigerant transportation means and cools the diverted refrigerant; and a flowrate control means that controls the flowrate of the diverted refrigerant.

Description

冷却システムおよび冷却方法Cooling system and cooling method
 本発明は、電子機器などの冷却に用いられる冷却システムおよび冷却方法に関し、特に、冷媒の相変化を用いた冷却システムおよび冷却方法に関する。 The present invention relates to a cooling system and a cooling method used for cooling electronic devices and the like, and more particularly to a cooling system and a cooling method using a phase change of a refrigerant.
 近年、電子機器の小型化、高性能化にともなって、その発熱量および発熱密度が増大している。このような電子機器等を効率的に冷却するため、冷却能力が高い冷却方式を採用する必要がある。冷却能力が高い冷却システムの一つとして、冷媒の相変化を用いた冷却システムがある。 In recent years, the heat generation amount and the heat generation density have increased with the downsizing and higher performance of electronic devices. In order to efficiently cool such electronic devices and the like, it is necessary to adopt a cooling method having a high cooling capacity. As one of cooling systems having a high cooling capacity, there is a cooling system using a phase change of a refrigerant.
 冷媒の相変化を用いた冷却システムの一例が特許文献1に記載されている。特許文献1に記載された関連する冷凍装置は、蒸気圧縮式冷凍機と吸着式冷凍機とを組み合わせた冷却システムである。 An example of a cooling system using refrigerant phase change is described in Patent Document 1. The related refrigeration apparatus described in Patent Document 1 is a cooling system that combines a vapor compression refrigerator and an adsorption refrigerator.
 関連する冷凍装置は、第1吸着器と第2吸着器を備えた吸着式冷凍機、第1蒸気圧縮式冷凍機、および第2蒸気圧縮式冷凍機を有する。 The related refrigeration apparatus has an adsorption refrigerator having a first adsorber and a second adsorber, a first vapor compression refrigerator, and a second vapor compression refrigerator.
 第1および第2蒸気圧縮式冷凍機は、第1および第2圧縮機、第1および第2凝縮器(放熱器)、第1および第2減圧器、蒸発器、および第1および第2アキュームレータを備える。なお、第1および第2蒸気圧縮式冷凍機の蒸発器は一体化されている。 The first and second vapor compression refrigerators include a first and second compressor, first and second condensers (heat radiators), first and second decompressors, an evaporator, and first and second accumulators. Is provided. Note that the evaporators of the first and second vapor compression refrigerators are integrated.
 また、吸着式冷凍機は、第1および第2吸着器、第1および第2吸着剤熱交換器、第1および第2水熱交換器、および室外熱交換器等を備える。 Further, the adsorption refrigerator includes a first and second adsorber, a first and second adsorbent heat exchanger, a first and second water heat exchanger, an outdoor heat exchanger, and the like.
 関連する冷凍装置では、第1蒸気圧縮式冷凍機が備える第1凝縮器により再生状態にある吸着器内の吸着剤を加熱し、かつ、吸着状態にある吸着器の冷却作用により第2蒸気圧縮式冷凍機の第2凝縮器を冷却する。そして、第1吸着器と第2吸着器を吸着状態と吸着された蒸気冷媒を脱離再生する再生状態とに一定時間毎に切り替える構成としている。 In the related refrigeration apparatus, the adsorbent in the adsorber in the regenerated state is heated by the first condenser provided in the first vapor compression refrigerator, and the second vapor compression is performed by the cooling action of the adsorber in the adsorbed state. The second condenser of the type refrigerator is cooled. The first adsorber and the second adsorber are switched between an adsorption state and a regeneration state in which the adsorbed vapor refrigerant is desorbed and regenerated at regular intervals.
 このような構成としたことにより、第2蒸気圧縮式冷凍機の凝縮器内の圧力を下げることができるので、第2蒸気圧縮式冷凍機の圧縮機の動力(圧縮仕事)を低減することができる。したがって、関連する冷凍装置によれば、第1および第2蒸気圧縮式冷凍機と吸着式冷凍機とを組み合わせた冷凍装置において、少ない動力で十分な冷凍能力を得ることができる、としている。 By adopting such a configuration, the pressure in the condenser of the second vapor compression refrigeration machine can be reduced, so that the power (compression work) of the compressor of the second vapor compression refrigeration machine can be reduced. it can. Therefore, according to the related refrigeration apparatus, a sufficient refrigeration capacity can be obtained with a small amount of power in the refrigeration apparatus in which the first and second vapor compression refrigerators and the adsorption refrigerator are combined.
 また、関連技術としては、特許文献2、3に記載された技術がある。 Further, as related technologies, there are technologies described in Patent Documents 2 and 3.
特開平11-190566号公報(段落[0005]~[0019]、図1)JP-A-11-190566 (paragraphs [0005] to [0019], FIG. 1) 特開2014-009624号公報JP 2014-009624 A 特開平5-272833号公報Japanese Patent Laid-Open No. 5-272833
 上述したように、特許文献1に記載された関連する冷凍装置は、第1蒸気圧縮式冷凍機の排熱を用いて吸着した冷媒を脱離させる吸着式冷凍機によって、第2蒸気圧縮式冷凍機が備える凝縮器を冷却する構成としている。そのため、第2蒸気圧縮式冷凍機の冷却能力は、吸着式冷凍機および第1蒸気圧縮式冷凍機の冷却能力に依存する。その結果、冷凍装置の冷却能力は常に一定であるとは限らず、第1蒸気圧縮式冷凍機および第2蒸気圧縮式冷凍機をそれぞれ循環する冷媒量の割合によって冷却能力が変動する。 As described above, the related refrigeration apparatus described in Patent Document 1 uses a second vapor compression refrigeration by an adsorption refrigerator that desorbs the adsorbed refrigerant using the exhaust heat of the first vapor compression refrigerator. It is set as the structure which cools the condenser with which a machine is equipped. Therefore, the cooling capacity of the second vapor compression refrigerator depends on the cooling capacity of the adsorption refrigerator and the first vapor compression refrigerator. As a result, the cooling capacity of the refrigeration apparatus is not always constant, and the cooling capacity varies depending on the ratio of the amount of refrigerant circulating through each of the first vapor compression refrigerator and the second vapor compression refrigerator.
 このように、複数の冷凍サイクルを組み合わせた冷却システムにおいては、冷却システムの冷却能力が変動する、という問題があった。 As described above, in the cooling system in which a plurality of refrigeration cycles are combined, there is a problem that the cooling capacity of the cooling system varies.
 本発明の目的は、上述した課題である、複数の冷凍サイクルを組み合わせた冷却システムにおいては、冷却システムの冷却能力が変動する、という課題を解決する冷却システムおよび冷却方法を提供することにある。 An object of the present invention is to provide a cooling system and a cooling method that solve the above-mentioned problem that the cooling capacity of a cooling system varies in a cooling system that combines a plurality of refrigeration cycles.
 本発明の冷却システムは、冷却対象から受熱した冷媒が循環する第1の冷媒輸送手段を備えた第1の冷却手段と、第1の冷媒輸送手段と接続し、冷媒の一部である分岐冷媒が循環する第2の冷媒輸送手段と、第1の冷媒輸送手段を循環する冷媒から受熱し、分岐冷媒を冷却する第2の冷却手段と、分岐冷媒の流量を制御する流量制御手段、とを有する。 The cooling system of the present invention includes a first cooling means having a first refrigerant transporting means for circulating a refrigerant received from a cooling target, and a branched refrigerant that is connected to the first refrigerant transporting means and is a part of the refrigerant. A second refrigerant transporting means that circulates, a second cooling means that receives heat from the refrigerant circulating through the first refrigerant transporting means and cools the branch refrigerant, and a flow rate control means that controls the flow rate of the branch refrigerant. Have.
 本発明の冷却方法は、冷却対象から受熱した冷媒を循環させ、冷媒の一部を分岐し、分岐した分岐冷媒を循環させ、冷媒から受熱するとともに分岐冷媒を冷却し、分岐冷媒の流量を、冷却対象に対する冷却能力が略一定となるように制御する。 The cooling method of the present invention circulates the refrigerant received from the object to be cooled, branches a part of the refrigerant, circulates the branched branch refrigerant, receives heat from the refrigerant, cools the branch refrigerant, Control is performed so that the cooling capacity for the object to be cooled is substantially constant.
 本発明の冷却システムおよび冷却方法によれば、複数の冷凍サイクルを組み合わせた構成とした場合であっても、冷却システムの冷却能力の変動を抑制することができる。 According to the cooling system and the cooling method of the present invention, fluctuations in the cooling capacity of the cooling system can be suppressed even when the configuration is a combination of a plurality of refrigeration cycles.
本発明の第1の実施形態に係る冷却システムの構成を示す概略図である。It is the schematic which shows the structure of the cooling system which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る冷却システムの構成を示す概略図である。It is the schematic which shows the structure of the cooling system which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る冷却システムの別の構成を示す概略図である。It is the schematic which shows another structure of the cooling system which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る冷却システムのさらに別の構成を示す概略図である。It is the schematic which shows another structure of the cooling system which concerns on the 2nd Embodiment of this invention.
 以下に、図面を参照しながら、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 〔第1の実施形態〕
 図1は、本発明の第1の実施形態に係る冷却システム100の構成を示す概略図である。同図中の破線矢印は、熱の移動を示す。
[First Embodiment]
FIG. 1 is a schematic diagram showing a configuration of a cooling system 100 according to the first embodiment of the present invention. Broken line arrows in the figure indicate heat transfer.
 本実施形態による冷却システム100は、第1の冷却手段110、第2の冷却手段120、第2の冷媒輸送手段121、および流量制御手段130を有する。 The cooling system 100 according to the present embodiment includes a first cooling unit 110, a second cooling unit 120, a second refrigerant transporting unit 121, and a flow rate control unit 130.
 第1の冷却手段110は、冷却対象10から受熱(H1)した冷媒が循環する第1の冷媒輸送手段111を備える。第2の冷媒輸送手段121は第1の冷媒輸送手段111と接続しており、冷媒の一部である分岐冷媒が循環する。第2の冷却手段120は、第1の冷媒輸送手段111を循環する冷媒から受熱(H2)し、分岐冷媒を冷却(H3)する。そして、流量制御手段130は、分岐冷媒の流量を制御する。 1st cooling means 110 is provided with the 1st refrigerant transportation means 111 through which the refrigerant which received heat (H1) from cooling object 10 circulates. The second refrigerant transport means 121 is connected to the first refrigerant transport means 111, and a branched refrigerant that is a part of the refrigerant circulates. The second cooling means 120 receives heat (H2) from the refrigerant circulating in the first refrigerant transport means 111 and cools (H3) the branched refrigerant. Then, the flow rate control means 130 controls the flow rate of the branched refrigerant.
 ここで、第2の冷却手段120によって冷却された後の分岐冷媒の温度は、第2の冷却手段120の冷却能力だけでなく分岐冷媒の流量にも依存する。したがって、分岐冷媒の流量を制御することにより、第2の冷媒輸送手段121を通って第1の冷媒輸送手段111に還流する分岐冷媒の温度を制御することができる。これにより、第2の冷却手段120の冷却能力が変動した場合であっても、冷却システム100の冷却能力を維持することが可能になる。 Here, the temperature of the branched refrigerant after being cooled by the second cooling means 120 depends not only on the cooling capacity of the second cooling means 120 but also on the flow rate of the branched refrigerant. Therefore, by controlling the flow rate of the branch refrigerant, the temperature of the branch refrigerant that flows back to the first refrigerant transport means 111 through the second refrigerant transport means 121 can be controlled. Thereby, even if the cooling capacity of the second cooling means 120 varies, it is possible to maintain the cooling capacity of the cooling system 100.
 このように、本実施形態の冷却システム100によれば、第1の冷却手段110と第2の冷却手段120からなる複数の冷凍サイクルを組み合わせた構成とした場合であっても、冷却システム100の冷却能力の変動を抑制することができる。 As described above, according to the cooling system 100 of the present embodiment, even when the cooling system 100 has a configuration in which a plurality of refrigeration cycles including the first cooling unit 110 and the second cooling unit 120 are combined, Variations in cooling capacity can be suppressed.
 ここで、第1の冷却手段110は蒸気圧縮冷凍サイクルを用いた構成とすることができる。また、第2の冷却手段120は、吸着冷凍サイクルおよび吸収冷凍サイクルのいずれかを用いた構成とすることができる。 Here, the first cooling means 110 can be configured to use a vapor compression refrigeration cycle. Further, the second cooling means 120 can be configured to use either an adsorption refrigeration cycle or an absorption refrigeration cycle.
 流量制御手段130は、第2の冷却手段120によって冷却される前後における分岐冷媒の温度差が、略一定となるように分岐冷媒の流量を制御する構成とすることができる。具体的には、分岐冷媒の温度差が所定値よりも大きい場合、流量制御手段130は分岐冷媒の流量を増大させる。逆に、この温度差が所定値よりも小さい場合、流量制御手段130は分岐冷媒の流量を減少させるように制御する構成とすることができる。また、分岐冷媒の温度差が所定の範囲、例えば0℃以上5℃以下の範囲となるように分岐冷媒の流量を制御する構成としてもよい。具体的には、分岐冷媒の温度差が所定の範囲を超えている場合、分岐冷媒の流量を増大させ、所定の範囲内にある場合、分岐冷媒の流量を減少させるように制御することとしてもよい。 The flow rate control means 130 can be configured to control the flow rate of the branched refrigerant so that the temperature difference of the branched refrigerant before and after being cooled by the second cooling means 120 becomes substantially constant. Specifically, when the temperature difference of the branch refrigerant is larger than a predetermined value, the flow rate control means 130 increases the flow rate of the branch refrigerant. Conversely, when the temperature difference is smaller than a predetermined value, the flow rate control means 130 can be configured to control to decrease the flow rate of the branched refrigerant. Moreover, it is good also as a structure which controls the flow volume of a branch refrigerant | coolant so that the temperature difference of a branch refrigerant | coolant may become a predetermined range, for example, the range of 0 degreeC or more and 5 degrees C or less. Specifically, when the temperature difference of the branch refrigerant exceeds a predetermined range, the flow rate of the branch refrigerant may be increased, and when the temperature difference is within the predetermined range, the flow rate of the branch refrigerant may be decreased. Good.
 また、流量制御手段130は、第1の冷媒輸送手段111によって構成される流路内に位置する流量制御バルブとすることができる。これに限らず、流量制御手段130は、第2の冷媒輸送手段121によって構成される流路内に位置する流量制御バルブであってもよい。 Further, the flow rate control means 130 can be a flow rate control valve located in the flow path constituted by the first refrigerant transport means 111. Not limited to this, the flow rate control means 130 may be a flow rate control valve located in a flow path constituted by the second refrigerant transport means 121.
 次に、本実施形態による冷却方法について説明する。 Next, the cooling method according to this embodiment will be described.
 本実施形態による冷却方法ではまず、冷却対象から受熱した冷媒を循環させ、この冷媒の一部を分岐し、分岐した分岐冷媒を循環させる。そして、この冷媒から受熱するとともに分岐冷媒を冷却する。ここで、分岐冷媒の流量を、冷却対象に対する冷却能力が略一定となるように制御する。 In the cooling method according to the present embodiment, first, the refrigerant that has received heat from the cooling target is circulated, a part of this refrigerant is branched, and the branched branched refrigerant is circulated. And while receiving heat from this refrigerant | coolant, a branch refrigerant | coolant is cooled. Here, the flow rate of the branching refrigerant is controlled so that the cooling capacity for the cooling target is substantially constant.
 上述した分岐冷媒の流量の制御は、分岐冷媒を冷却する工程の前段と後段における分岐冷媒の温度差が、略一定となるように分岐冷媒の流量を制御する構成とすることができる。このとき、温度差が所定値よりも大きい場合には分岐冷媒の流量を増大させ、温度差が所定値よりも小さい場合には分岐冷媒の流量を減少させるように制御する構成としてもよい。 The control of the flow rate of the branching refrigerant described above can be configured to control the flow rate of the branching refrigerant so that the temperature difference between the branching refrigerant before and after the step of cooling the branching refrigerant becomes substantially constant. At this time, when the temperature difference is larger than a predetermined value, the flow rate of the branched refrigerant may be increased, and when the temperature difference is smaller than the predetermined value, the flow rate of the branched refrigerant may be decreased.
 また、上述した冷媒から受熱するとともに分岐冷媒を冷却する工程は、冷媒から受熱して吸着材を脱着させ、脱着した吸着材を蒸発させることにより分岐冷媒を冷却する工程とすることができる。 The step of receiving heat from the refrigerant and cooling the branched refrigerant may be a step of cooling the branched refrigerant by receiving heat from the refrigerant, desorbing the adsorbent, and evaporating the adsorbed adsorbent.
 このように、本実施形態による冷却方法は、冷却対象から受熱した冷媒が循環する冷凍サイクルと、冷媒から受熱するとともに分岐冷媒を冷却する冷凍サイクルを組み合わせた構成である。そして上述したように、本実施形態の冷却方法によれば、このような複数の冷凍サイクルを組み合わせた構成とした場合であっても、冷却能力の変動を抑制することができる。 As described above, the cooling method according to the present embodiment has a configuration in which the refrigeration cycle in which the refrigerant received from the cooling target circulates and the refrigeration cycle that receives the heat from the refrigerant and cools the branched refrigerant are combined. And as above-mentioned, according to the cooling method of this embodiment, even if it is a case where it is the case where it is the case where it is the structure which combined such a some refrigeration cycle, the fluctuation | variation of cooling capacity can be suppressed.
 〔第2の実施形態〕
 次に、本発明の第2の実施形態について説明する。図2に、本発明の第2の実施形態に係る冷却システム1000の構成を模式的に示す。同図中、実線および破線の矢印は冷媒の流れを、白抜き矢印は熱の流れをそれぞれ示す。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. FIG. 2 schematically shows the configuration of a cooling system 1000 according to the second embodiment of the present invention. In the figure, solid and broken arrows indicate the refrigerant flow, and white arrows indicate the heat flow.
 本実施形態による冷却システム1000は、第1の冷却装置(第1の冷却手段)1100、第2の冷却装置(第2の冷却手段)1200、第2の冷媒輸送部(第2の冷媒輸送手段)1210、および流量制御バルブ(流量制御手段)1300を有する。 The cooling system 1000 according to the present embodiment includes a first cooling device (first cooling means) 1100, a second cooling device (second cooling means) 1200, a second refrigerant transport unit (second refrigerant transport means). ) 1210 and a flow rate control valve (flow rate control means) 1300.
 ここで、本実施形態による冷却システム1000は、第1の冷却装置1100と第2の冷却装置1200を有する複数の冷凍サイクルを組み合わせた構成である。すなわち、冷却システム1000は、第1の冷却装置1100が冷却対象10を冷却することによって回収した熱をエネルギー源として、第2の冷却装置1200がさらに冷却対象10の冷却を行う排熱回収型の冷却システムである。ここで、冷却対象10は例えばサーバ等の電子機器である。 Here, the cooling system 1000 according to the present embodiment has a configuration in which a plurality of refrigeration cycles including the first cooling device 1100 and the second cooling device 1200 are combined. That is, the cooling system 1000 is an exhaust heat recovery type in which the second cooling device 1200 further cools the cooling target 10 using the heat recovered by the first cooling device 1100 cooling the cooling target 10 as an energy source. Cooling system. Here, the cooling target 10 is an electronic device such as a server.
 第1の冷却装置1100は、蒸発器(蒸発手段)1110、圧縮機(圧縮手段)1120、凝縮器(凝縮手段)1130、膨張弁(膨張手段)1140、および第1の冷媒輸送部(第1の冷媒輸送手段)1150を備え、蒸気圧縮冷凍サイクルを構成している。 The first cooling device 1100 includes an evaporator (evaporating means) 1110, a compressor (compressing means) 1120, a condenser (condensing means) 1130, an expansion valve (expanding means) 1140, and a first refrigerant transport section (first (Refrigerant transport means) 1150, and constitutes a vapor compression refrigeration cycle.
 蒸発器1110はラジエータ等により構成され、冷媒が受熱して気化した冷媒蒸気を生成する。圧縮機1120は冷媒蒸気を断熱圧縮して高圧冷媒蒸気を生成する。凝縮器1130は高圧冷媒蒸気を凝縮させ高圧冷媒液を生成する。そして、膨張弁1140は高圧冷媒液を膨張させて低圧の冷媒液を生成する。 The evaporator 1110 is composed of a radiator or the like, and generates refrigerant vapor that is vaporized by receiving heat from the refrigerant. The compressor 1120 adiabatically compresses the refrigerant vapor to generate high-pressure refrigerant vapor. The condenser 1130 condenses the high-pressure refrigerant vapor to generate a high-pressure refrigerant liquid. The expansion valve 1140 expands the high-pressure refrigerant liquid to generate a low-pressure refrigerant liquid.
 第1の冷媒輸送部1150は、蒸発器1110から、圧縮機1120、凝縮器1130、および膨張弁1140を経由して蒸発器1110に還流する冷媒の流路を構成する。図2中の実線矢印は、この冷媒の流れを示す。 The first refrigerant transport unit 1150 constitutes a refrigerant flow path that returns from the evaporator 1110 to the evaporator 1110 via the compressor 1120, the condenser 1130, and the expansion valve 1140. A solid line arrow in FIG. 2 indicates the flow of the refrigerant.
 第2の冷却装置1200は、吸着冷凍サイクルおよび吸収冷凍サイクルのいずれかを構成する。本実施形態では、第2の冷却装置1200として、吸着冷凍サイクルを備えた吸着式冷凍機1201を用いる場合について説明する。吸着式冷凍機1201は、冷媒としての水等をポンプ1202によって循環させ、冷却塔1203等により温水を冷却する。図2中の破線矢印は、吸着式冷凍機1201の冷媒としての水の流れを示す。 The second cooling device 1200 constitutes either an adsorption refrigeration cycle or an absorption refrigeration cycle. In the present embodiment, a case where an adsorption refrigerator 1201 having an adsorption refrigeration cycle is used as the second cooling device 1200 will be described. The adsorption refrigerator 1201 circulates water or the like as a refrigerant with a pump 1202 and cools hot water with a cooling tower 1203 or the like. A broken-line arrow in FIG. 2 indicates a flow of water as a refrigerant of the adsorption refrigerator 1201.
 第2の冷媒輸送部1210は、蒸発器1110と圧縮機1120の間から、蒸発器1110と膨張弁1140の間に、冷媒の一部である分岐冷媒が循環する流路を構成する。 The second refrigerant transport unit 1210 constitutes a flow path in which a branched refrigerant that is a part of the refrigerant circulates between the evaporator 1110 and the compressor 1120 and between the evaporator 1110 and the expansion valve 1140.
 凝縮器1130は、第1の冷媒輸送部1150を流動する高圧冷媒蒸気と第2の冷却装置1200の受熱側の冷媒を熱交換させる。また、第2の冷媒輸送部1210により循環する分岐冷媒と第2の冷却装置1200の冷却側の冷媒を熱交換させる熱交換器(熱交換手段)1220を備えた構成とすることができる。 The condenser 1130 exchanges heat between the high-pressure refrigerant vapor flowing through the first refrigerant transport unit 1150 and the refrigerant on the heat receiving side of the second cooling device 1200. Further, a heat exchanger (heat exchanging means) 1220 for exchanging heat between the branched refrigerant circulated by the second refrigerant transport section 1210 and the refrigerant on the cooling side of the second cooling device 1200 can be provided.
 流量制御バルブ1300は、分岐冷媒の流量を制御する。図2では、流量制御バルブ1300が第1の冷媒輸送部1150によって構成される流路内に位置する場合について示す。これに限らず、図3に示すように、流量制御バルブ1301が第2の冷媒輸送部1210によって構成される流路内に位置する構成としてもよい。 The flow control valve 1300 controls the flow rate of the branched refrigerant. FIG. 2 shows a case where the flow control valve 1300 is located in a flow path constituted by the first refrigerant transport portion 1150. Not only this but as shown in FIG. 3, it is good also as a structure where the flow control valve 1301 is located in the flow path comprised by the 2nd refrigerant | coolant transport part 1210. FIG.
 次に、本実施形態による冷却システム1000の動作について説明する。 Next, the operation of the cooling system 1000 according to the present embodiment will be described.
 まず、第1の冷却装置1100の動作について説明する。ラジエータ等からなる蒸発器1110に流入した冷媒液は、サーバ等の冷却対象10から送出される約40~50℃の排熱によって気化し冷媒蒸気となる。冷媒蒸気は圧縮機1120により断熱圧縮されることにより圧力が上昇するとともに、冷媒蒸気の温度は約50~100℃に上昇する。温度が上昇した冷媒蒸気が有する熱を第2の冷却装置1200で使用するため、凝縮器1130によって冷媒と水を熱交換させる。これにより、冷媒の熱が水に移動し、約50~100℃の温水が生成されるとともに、冷媒の温度は低下する。温度が低下することによって凝縮液化した冷媒は、膨張弁1140により圧力を低減される。その後に再び、蒸発器1110に流入する。 First, the operation of the first cooling device 1100 will be described. The refrigerant liquid flowing into the evaporator 1110 made of a radiator or the like is vaporized by the exhaust heat of about 40 to 50 ° C. sent from the cooling target 10 such as a server and becomes refrigerant vapor. As the refrigerant vapor is adiabatically compressed by the compressor 1120, the pressure rises and the temperature of the refrigerant vapor rises to about 50 to 100 ° C. In order to use the heat of the refrigerant vapor whose temperature has risen in the second cooling device 1200, heat is exchanged between the refrigerant and water by the condenser 1130. As a result, the heat of the refrigerant moves to the water, hot water of about 50 to 100 ° C. is generated, and the temperature of the refrigerant decreases. The refrigerant condensed and liquefied as the temperature decreases is reduced in pressure by the expansion valve 1140. Thereafter, it flows again into the evaporator 1110.
 次に、第2の冷却装置1200の動作について説明する。凝縮器1130における熱交換によって受熱した約50~100℃の温水を介して、熱が吸着式冷凍機1201に移動する。吸着式冷凍機1201は、その温熱を利用して約5~20℃程度の冷水を生成し、熱交換器1220を介して分岐冷媒を冷却する。 Next, the operation of the second cooling device 1200 will be described. Heat is transferred to the adsorption refrigeration machine 1201 through hot water of about 50 to 100 ° C. received by heat exchange in the condenser 1130. The adsorption refrigeration machine 1201 generates cold water of about 5 to 20 ° C. using the warm heat, and cools the branched refrigerant via the heat exchanger 1220.
 熱交換器1220によって冷却された分岐冷媒は凝縮液化し、第2の冷媒輸送部1210により循環する。第2の冷媒輸送部1210は蒸発器1110と膨張弁1140の間に接続されているので、凝縮液化した分岐冷媒は膨張弁1140により低圧になった冷媒液と合流し、蒸発器1110に還流する。なお、図2に示すように、第2の冷媒輸送部1210が構成する分岐冷媒の流路内に、分岐冷媒を循環させるポンプ等の駆動部(駆動手段)1230を備えた構成としてもよい。 The branched refrigerant cooled by the heat exchanger 1220 is condensed and liquefied and circulated by the second refrigerant transport unit 1210. Since the second refrigerant transport unit 1210 is connected between the evaporator 1110 and the expansion valve 1140, the condensed and liquefied branch refrigerant merges with the refrigerant liquid whose pressure has been reduced by the expansion valve 1140, and returns to the evaporator 1110. . In addition, as shown in FIG. 2, it is good also as a structure provided with drive parts (drive means) 1230, such as a pump which circulates a branch refrigerant, in the flow path of the branch refrigerant which the 2nd refrigerant transport part 1210 comprises.
 蒸発器1110に還流した冷媒液は、サーバ等の冷却対象10からの排熱により気化する。蒸発器1110において気化した冷媒蒸気は、蒸発器1110と圧縮機1120の間に接続された第2の冷媒輸送部1210と第1の冷媒輸送部1150に分岐して流動する。第2の冷媒輸送部1210によって循環する分岐冷媒は、再び熱交換器1220に流入する。 The refrigerant liquid returned to the evaporator 1110 is vaporized by exhaust heat from the cooling target 10 such as a server. The refrigerant vapor evaporated in the evaporator 1110 branches and flows into the second refrigerant transport part 1210 and the first refrigerant transport part 1150 connected between the evaporator 1110 and the compressor 1120. The branched refrigerant circulated by the second refrigerant transport unit 1210 flows into the heat exchanger 1220 again.
 次に、流量制御バルブ1300の動作について説明する。 Next, the operation of the flow control valve 1300 will be described.
 流量制御バルブ1300は分岐冷媒の流量を制御する。すなわち、流量制御バルブ1300は、蒸発器1110において気化した冷媒蒸気が第1の冷媒輸送部1150と第2の冷媒輸送部1210に分岐する割合を調整する。これにより、第1の冷却装置1100が備える圧縮機1120を介して凝縮器1130で冷却される冷媒の量と、第2の冷媒輸送部1210を介して第2の冷却装置1200によって冷却される分岐冷媒の量を調整することができる。 The flow control valve 1300 controls the flow rate of the branched refrigerant. That is, the flow control valve 1300 adjusts the ratio at which the refrigerant vapor vaporized in the evaporator 1110 branches to the first refrigerant transport part 1150 and the second refrigerant transport part 1210. As a result, the amount of refrigerant cooled by the condenser 1130 via the compressor 1120 included in the first cooling device 1100 and the branch cooled by the second cooling device 1200 via the second refrigerant transport unit 1210. The amount of refrigerant can be adjusted.
 また、熱交換器1220の入口側で分岐冷媒の温度を測定する第1の温度計1221と、出口側で分岐冷媒の温度を測定する第2の温度計1222を備えた構成としてもよい。そして、第1の温度計1221の測定結果である冷却前冷媒温度T1と、第2の温度計1222の測定結果である冷却後冷媒温度T2を用いて、流量制御バルブ1300を制御する構成とすることができる。 Further, the first thermometer 1221 that measures the temperature of the branched refrigerant on the inlet side of the heat exchanger 1220 and the second thermometer 1222 that measures the temperature of the branched refrigerant on the outlet side may be provided. The flow control valve 1300 is controlled using the pre-cooling refrigerant temperature T1 that is the measurement result of the first thermometer 1221 and the post-cooling refrigerant temperature T2 that is the measurement result of the second thermometer 1222. be able to.
 流量制御バルブ1300を制御する具体的な例を、以下に説明する。 A specific example of controlling the flow control valve 1300 will be described below.
 熱交換器1220に流入する分岐冷媒の量が不足すると、熱交換器1220に流入した分岐冷媒の蒸気は凝縮液化した後にさらに過冷却されるため、冷却前冷媒温度T1と冷却後冷媒温度T2の温度差T1-T2は増大する。この場合、温度差T1-T2が例えば5度で一定となるように、流量制御バルブ1300または流量制御バルブ1301を調整する。 If the amount of the branch refrigerant flowing into the heat exchanger 1220 is insufficient, the vapor of the branch refrigerant flowing into the heat exchanger 1220 is further subcooled after being condensed and liquefied, and therefore, the refrigerant temperature T1 before cooling and the refrigerant temperature T2 after cooling. The temperature difference T1-T2 increases. In this case, the flow rate control valve 1300 or the flow rate control valve 1301 is adjusted so that the temperature difference T1-T2 becomes constant at 5 degrees, for example.
 具体的には、温度差T1-T2が5℃以上になった場合(T1-T2≧5℃)、図2に示した第1の冷媒輸送部1150に設けた流量制御バルブ1300の開度を小さくする。または、図3に示した第2の冷媒輸送部1210に設けた流量制御バルブ1301の開度を大きくする。一方、温度差T1-T2が5℃よりも小さくなった場合(T1-T2<5℃)、図2に示した第1の冷媒輸送部1150に設けた流量制御バルブ1300の開度を大きくする。または、図3に示した第2の冷媒輸送部1210に設けた流量制御バルブ1301の開度を小さくする。 Specifically, when the temperature difference T1−T2 becomes 5 ° C. or more (T1−T2 ≧ 5 ° C.), the opening degree of the flow control valve 1300 provided in the first refrigerant transport portion 1150 shown in FIG. Make it smaller. Alternatively, the opening degree of the flow control valve 1301 provided in the second refrigerant transport unit 1210 shown in FIG. 3 is increased. On the other hand, when the temperature difference T1−T2 is smaller than 5 ° C. (T1−T2 <5 ° C.), the opening degree of the flow control valve 1300 provided in the first refrigerant transport portion 1150 shown in FIG. 2 is increased. . Alternatively, the opening degree of the flow control valve 1301 provided in the second refrigerant transport unit 1210 shown in FIG. 3 is reduced.
 このように流量制御バルブ1300を制御することにより、第2の冷媒輸送部1210を通って第1の冷媒輸送部1150に還流する分岐冷媒の温度を制御することができる。これにより、第2の冷却装置1200の冷却能力が変動した場合であっても、冷却システム1000の冷却能力を維持することが可能になる。 By controlling the flow control valve 1300 in this way, the temperature of the branched refrigerant that flows back to the first refrigerant transport part 1150 through the second refrigerant transport part 1210 can be controlled. Thereby, even if the cooling capacity of the second cooling device 1200 varies, the cooling capacity of the cooling system 1000 can be maintained.
 以上説明したように、本実施形態の冷却システム1000によれば、複数の冷凍サイクルを組み合わせた構成とした場合であっても、冷却システム1000の冷却能力の変動を抑制することができる。すなわち、第1の冷却装置1100(蒸気圧縮冷凍サイクル)と第2の冷却装置1200(吸着冷凍サイクル)からなる複数の冷凍サイクルを組み合わせた構成とした場合であっても、冷却システム1000の冷却能力の変動を抑制することができる。 As described above, according to the cooling system 1000 of the present embodiment, fluctuations in the cooling capacity of the cooling system 1000 can be suppressed even when the cooling system 1000 is configured by combining a plurality of refrigeration cycles. That is, even if it is a case where it is the case where it is the case where it is the case where it is the structure which combined the some refrigeration cycle which consists of the 1st cooling device 1100 (vapor compression refrigeration cycle) and the 2nd cooling device 1200 (adsorption refrigeration cycle), the cooling capacity of the cooling system 1000 Fluctuations can be suppressed.
 また図4に示すように、熱交換器1220が蒸発器1110よりも上方に位置している構成とすることができる。このような構成とすることにより、分岐冷媒は重力の作用により第2の冷媒輸送部1210を流動し蒸発器1110に還流することが可能になる。そのため、上述したポンプ等の駆動部(駆動手段)は不要となる。 Further, as shown in FIG. 4, the heat exchanger 1220 may be positioned above the evaporator 1110. By adopting such a configuration, the branched refrigerant can flow through the second refrigerant transport portion 1210 and return to the evaporator 1110 by the action of gravity. This eliminates the need for a drive unit (drive means) such as the pump described above.
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。 The present invention has been described above using the above-described embodiment as an exemplary example. However, the present invention is not limited to the above-described embodiment. That is, the present invention can apply various modes that can be understood by those skilled in the art within the scope of the present invention.
 この出願は、2015年9月25日に出願された日本出願特願2015-188225を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2015-188225 filed on September 25, 2015, the entire disclosure of which is incorporated herein.
 100  冷却システム
 110  第1の冷却手段
 111  第1の冷媒輸送手段
 120  第2の冷却手段
 121  第2の冷媒輸送手段
 130  流量制御手段
 1000  冷却システム
 1100  第1の冷却装置
 1110  蒸発器
 1120  圧縮機
 1130  凝縮器
 1140  膨張弁
 1150  第1の冷媒輸送部
 1200  第2の冷却装置
 1201  吸着式冷凍機
 1202  ポンプ
 1203  冷却塔
 1210  第2の冷媒輸送部
 1220  熱交換器
 1221  第1の温度計
 1222  第2の温度計
 1230  駆動部
 1300、1301  流量制御バルブ
 10  冷却対象
DESCRIPTION OF SYMBOLS 100 Cooling system 110 1st cooling means 111 1st refrigerant | coolant transport means 120 2nd cooling means 121 2nd refrigerant transport means 130 Flow control means 1000 Cooling system 1100 1st cooling device 1110 Evaporator 1120 Compressor 1130 Condensation Vessel 1140 expansion valve 1150 first refrigerant transport unit 1200 second cooling device 1201 adsorption refrigerator 1202 pump 1203 cooling tower 1210 second refrigerant transport unit 1220 heat exchanger 1221 first thermometer 1222 second thermometer 1230 Drive unit 1300, 1301 Flow control valve 10 Cooling target

Claims (14)

  1.  冷却対象から受熱した冷媒が循環する第1の冷媒輸送手段を備えた第1の冷却手段と、
     前記第1の冷媒輸送手段と接続し、前記冷媒の一部である分岐冷媒が循環する第2の冷媒輸送手段と、
     前記第1の冷媒輸送手段を循環する前記冷媒から受熱し、前記分岐冷媒を冷却する第2の冷却手段と、
     前記分岐冷媒の流量を制御する流量制御手段と、を有する
     冷却システム。
    A first cooling means comprising a first refrigerant transport means for circulating the refrigerant received from the object to be cooled;
    A second refrigerant transporting means connected to the first refrigerant transporting means, in which a branched refrigerant that is part of the refrigerant circulates;
    Second cooling means for receiving heat from the refrigerant circulating in the first refrigerant transport means and cooling the branched refrigerant;
    And a flow rate control means for controlling the flow rate of the branched refrigerant.
  2.  請求項1に記載した冷却システムにおいて、
     前記流量制御手段は、前記第1の冷媒輸送手段によって構成される流路内に位置する流量制御バルブである
     冷却システム。
    The cooling system according to claim 1,
    The flow rate control means is a flow rate control valve located in a flow path constituted by the first refrigerant transport means. Cooling system.
  3.  請求項1または2に記載した冷却システムにおいて、
     前記流量制御手段は、前記第2の冷媒輸送手段によって構成される流路内に位置する流量制御バルブである
     冷却システム。
    The cooling system according to claim 1 or 2,
    The flow rate control means is a flow rate control valve located in a flow path constituted by the second refrigerant transport means. Cooling system.
  4.  請求項1から3のいずれか一項に記載した冷却システムにおいて、
     前記流量制御手段は、前記第2の冷却手段によって冷却される前後における前記分岐冷媒の温度差が、所定の範囲内となるように前記分岐冷媒の流量を制御する
     冷却システム。
    The cooling system according to any one of claims 1 to 3,
    The cooling system that controls the flow rate of the branch refrigerant so that a temperature difference of the branch refrigerant before and after being cooled by the second cooling unit is within a predetermined range.
  5.  請求項4に記載した冷却システムにおいて、
     前記流量制御手段は、
      前記温度差が前記所定の範囲を超えている場合、前記分岐冷媒の流量を増大させ、
      前記温度差が前記所定の範囲内にある場合、前記分岐冷媒の流量を減少させる
     冷却システム。
    The cooling system according to claim 4, wherein
    The flow rate control means is
    If the temperature difference exceeds the predetermined range, increase the flow rate of the branch refrigerant,
    A cooling system that reduces the flow rate of the branched refrigerant when the temperature difference is within the predetermined range.
  6.  請求項1から5のいずれか一項に記載した冷却システムにおいて、
     前記第1の冷却手段は、蒸気圧縮冷凍サイクルを構成し、
      前記冷媒が受熱して気化した冷媒蒸気を生成する蒸発手段と、
      前記冷媒蒸気を圧縮して高圧冷媒蒸気を生成する圧縮手段と、
      前記高圧冷媒蒸気を凝縮させ高圧冷媒液を生成する凝縮手段と、
      前記高圧冷媒液を膨張させて低圧の冷媒液を生成する膨張手段、とを備え、
     前記第1の冷媒輸送手段は、前記蒸発手段から、前記圧縮手段、前記凝縮手段、および前記膨張手段を経由して前記蒸発手段に還流する前記冷媒の流路を構成し、
     前記第2の冷媒輸送手段は、前記蒸発手段と前記圧縮手段の間から、前記蒸発手段と前記膨張手段の間に前記分岐冷媒が循環する流路を構成する
     冷却システム。
    The cooling system according to any one of claims 1 to 5,
    The first cooling means constitutes a vapor compression refrigeration cycle,
    Evaporating means for generating a refrigerant vapor vaporized by receiving heat from the refrigerant;
    Compression means for compressing the refrigerant vapor to generate high-pressure refrigerant vapor;
    Condensing means for condensing the high-pressure refrigerant vapor to produce a high-pressure refrigerant liquid;
    Expansion means for expanding the high-pressure refrigerant liquid to generate a low-pressure refrigerant liquid,
    The first refrigerant transport means constitutes a flow path for the refrigerant that flows back from the evaporation means to the evaporation means via the compression means, the condensation means, and the expansion means,
    The cooling system, wherein the second refrigerant transport means constitutes a flow path through which the branched refrigerant circulates between the evaporation means and the expansion means between the evaporation means and the compression means.
  7.  請求項6に記載した冷却システムにおいて、
     前記分岐冷媒と前記第2の冷却手段の冷却側の冷媒を熱交換させる熱交換手段を備え、
     前記凝縮手段は、前記高圧冷媒蒸気と前記第2の冷却手段の受熱側の冷媒を熱交換させる
     冷却システム。
    The cooling system according to claim 6, wherein
    Heat exchange means for exchanging heat between the branched refrigerant and the refrigerant on the cooling side of the second cooling means;
    The condensing unit is a cooling system for exchanging heat between the high-pressure refrigerant vapor and a refrigerant on a heat receiving side of the second cooling unit.
  8.  請求項7に記載した冷却システムにおいて、
     前記熱交換手段は、前記蒸発手段よりも上方に位置している
     冷却システム。
    The cooling system according to claim 7, wherein
    The heat exchange means is located above the evaporation means.
  9.  請求項1から8のいずれか一項に記載した冷却システムにおいて、
     前記第2の冷却手段は、吸着冷凍サイクルおよび吸収冷凍サイクルのいずれかを構成する
     冷却システム。
    The cooling system according to any one of claims 1 to 8,
    The second cooling means constitutes one of an adsorption refrigeration cycle and an absorption refrigeration cycle.
  10.  請求項1から9のいずれか一項に記載した冷却システムにおいて、
     前記第2の冷媒輸送手段が構成する前記分岐冷媒の流路内に、前記分岐冷媒を循環させる駆動手段を備える
     冷却システム。
    The cooling system according to any one of claims 1 to 9,
    A cooling system comprising driving means for circulating the branched refrigerant in the flow path of the branched refrigerant constituted by the second refrigerant transporting means.
  11.  冷却対象から受熱した冷媒を循環させ、
     前記冷媒の一部を分岐し、分岐した分岐冷媒を循環させ、
     前記冷媒から受熱するとともに前記分岐冷媒を冷却し、
     前記分岐冷媒の流量を、前記冷却対象に対する冷却能力が略一定となるように制御する
     冷却方法。
    Circulate the refrigerant that has received heat from the cooling target,
    Branching a part of the refrigerant, circulating the branched refrigerant,
    Receiving heat from the refrigerant and cooling the branched refrigerant;
    A cooling method for controlling the flow rate of the branched refrigerant so that a cooling capacity for the cooling target is substantially constant.
  12.  請求項11に記載した冷却方法において、
     前記分岐冷媒を冷却する工程の前段と後段における前記分岐冷媒の温度差が、略一定となるように前記分岐冷媒の流量を制御する
     冷却方法。
    The cooling method according to claim 11,
    A cooling method in which the flow rate of the branch refrigerant is controlled so that a temperature difference between the branch refrigerant in the former stage and the latter stage of the step of cooling the branch refrigerant becomes substantially constant.
  13.  請求項12に記載した冷却方法において、
     前記温度差が所定値よりも大きい場合、前記分岐冷媒の流量を増大させ、
     前記温度差が所定値よりも小さい場合、前記分岐冷媒の流量を減少させる
     冷却方法。
    The cooling method according to claim 12, wherein
    If the temperature difference is greater than a predetermined value, increase the flow rate of the branch refrigerant,
    A cooling method that reduces the flow rate of the branched refrigerant when the temperature difference is smaller than a predetermined value.
  14.  請求項11から13のいずれか一項に記載した冷却方法において、
     前記冷媒から受熱して吸着材を脱着させ、脱着した前記吸着材を蒸発させることにより前記分岐冷媒を冷却する
     冷却方法。
    The cooling method according to any one of claims 11 to 13,
    A cooling method in which the branched refrigerant is cooled by receiving heat from the refrigerant, desorbing the adsorbent, and evaporating the desorbed adsorbent.
PCT/JP2016/004297 2015-09-25 2016-09-21 Cooling system and cooling method WO2017051532A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/760,345 US20180259232A1 (en) 2015-09-25 2015-09-21 Cooling system and cooling method
JP2017541429A JPWO2017051532A1 (en) 2015-09-25 2016-09-21 Cooling system and cooling method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-188225 2015-09-25
JP2015188225 2015-09-25

Publications (1)

Publication Number Publication Date
WO2017051532A1 true WO2017051532A1 (en) 2017-03-30

Family

ID=58385900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004297 WO2017051532A1 (en) 2015-09-25 2016-09-21 Cooling system and cooling method

Country Status (3)

Country Link
US (1) US20180259232A1 (en)
JP (1) JPWO2017051532A1 (en)
WO (1) WO2017051532A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164201A1 (en) * 2016-03-25 2017-09-28 日本電気株式会社 Cooling system, and method for controlling cooling system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201801534D0 (en) * 2018-01-30 2018-03-14 Exergyn Ltd A heat pump utilising the shape memory effect

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000241042A (en) * 1998-06-08 2000-09-08 Tokyo Gas Co Ltd Combined air conditioner
JP2010243086A (en) * 2009-04-07 2010-10-28 Daikin Ind Ltd Refrigerating device
WO2015125219A1 (en) * 2014-02-18 2015-08-27 三菱電機株式会社 Air conditioning device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000241042A (en) * 1998-06-08 2000-09-08 Tokyo Gas Co Ltd Combined air conditioner
JP2010243086A (en) * 2009-04-07 2010-10-28 Daikin Ind Ltd Refrigerating device
WO2015125219A1 (en) * 2014-02-18 2015-08-27 三菱電機株式会社 Air conditioning device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017164201A1 (en) * 2016-03-25 2017-09-28 日本電気株式会社 Cooling system, and method for controlling cooling system

Also Published As

Publication number Publication date
JPWO2017051532A1 (en) 2018-07-05
US20180259232A1 (en) 2018-09-13

Similar Documents

Publication Publication Date Title
US10451316B2 (en) Systems and methods implementing robust air conditioning systems configured to utilize thermal energy storage to maintain a low temperature for a target space
CN103003531A (en) Thermoelectric energy storage system and method for storing thermoelectric energy
JP5323023B2 (en) Refrigeration equipment
JP2011133123A (en) Refrigerating cycle device
WO2014185525A1 (en) Energy conversion system
JP5246891B2 (en) Heat pump system
JP5730028B2 (en) Heat source system
JP2011080736A (en) Heat exchange device
WO2017051532A1 (en) Cooling system and cooling method
JP2015048987A (en) Air conditioner
JP2014085048A (en) Turbo refrigerator
JP5974541B2 (en) Air conditioning system
JP2006017350A (en) Refrigeration device
JP5261111B2 (en) Absorption refrigerator
JP2011117685A (en) Freezer-refrigerator
WO2017169925A1 (en) Cooling system and cooling method
US10837682B2 (en) Devices with hybrid vapour compression-adsorption cycle and method for implementation thereof
KR100973328B1 (en) Unitary cascade heat pump system using geothermal heat source near the sea
KR102185416B1 (en) Cooling system
JP2006003023A (en) Refrigerating unit
JP2003144855A (en) Membrane separation device and absorption refrigerator utilizing membrane separation
WO2017164201A1 (en) Cooling system, and method for controlling cooling system
WO2017051533A1 (en) Cooling system and cooling method
JP2012141097A (en) Heat source system and control method therefor
JP2007333342A (en) Multi-effect absorption refrigerating machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16848323

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017541429

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15760345

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16848323

Country of ref document: EP

Kind code of ref document: A1