JP2011080736A - Heat exchange device - Google Patents
Heat exchange device Download PDFInfo
- Publication number
- JP2011080736A JP2011080736A JP2009235696A JP2009235696A JP2011080736A JP 2011080736 A JP2011080736 A JP 2011080736A JP 2009235696 A JP2009235696 A JP 2009235696A JP 2009235696 A JP2009235696 A JP 2009235696A JP 2011080736 A JP2011080736 A JP 2011080736A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- heat exchange
- storage tank
- heat
- refrigerant storage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 213
- 239000007788 liquid Substances 0.000 claims abstract description 60
- 238000001704 evaporation Methods 0.000 claims abstract description 45
- 230000008020 evaporation Effects 0.000 claims description 26
- 238000005057 refrigeration Methods 0.000 claims description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 238000012546 transfer Methods 0.000 claims description 8
- 238000011084 recovery Methods 0.000 claims description 3
- 230000001050 lubricating effect Effects 0.000 claims 1
- 238000009423 ventilation Methods 0.000 claims 1
- 230000008014 freezing Effects 0.000 abstract description 7
- 238000007710 freezing Methods 0.000 abstract description 7
- 238000001816 cooling Methods 0.000 description 31
- 238000000034 method Methods 0.000 description 14
- 239000012530 fluid Substances 0.000 description 13
- 239000012267 brine Substances 0.000 description 11
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 11
- 238000013461 design Methods 0.000 description 6
- 239000010687 lubricating oil Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000009834 vaporization Methods 0.000 description 3
- 230000008016 vaporization Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0275—Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
本発明は、熱交換装置に関する。 The present invention relates to a heat exchange device.
0℃〜室温間の温度に被冷却物を冷却する冷却システムについてはこれまで数多く提案されているが、その中の一典型例を図4に示す。
図4に示される冷凍サイクルは、コンプレッサ(圧縮機)1とコンデンサ(凝縮器)2を中心として構成される冷凍機を使用し、冷媒ガスの蒸発潜熱を利用する冷媒直接冷却方式(直膨方式)と言われるものである。
Many cooling systems for cooling an object to be cooled to a temperature between 0 ° C. and room temperature have been proposed, and a typical example is shown in FIG.
The refrigeration cycle shown in FIG. 4 uses a refrigerator mainly composed of a compressor (compressor) 1 and a condenser (condenser) 2, and uses a refrigerant direct cooling system (direct expansion system) that uses the latent heat of vaporization of the refrigerant gas. ).
この従来技術に係る直膨方式の熱交換装置100’は、熱交チューブ200及びフィン7からなる蒸発器が不図示の送風ファン及び熱交換室を有するエアークーラー12の熱交換室内に設けられ、それによって被冷却体たる空気A1の冷却を行うことを目的とした装置である。
In the direct expansion type
熱交換装置100’は、ガス状冷媒r1を圧縮するための圧縮機1と、圧縮された上記冷媒を液化するための凝縮器2と、液化した冷媒r2を断熱膨張させる膨張弁3と、膨張弁3を経た冷媒と被冷却物である空気A1とを熱交チューブ200の管壁を介して接触させ、熱交換により冷気A2を出力させるエアークーラー12と、上記圧縮機1、凝縮器2、膨張弁3及びエアークーラー12を順次接続して冷媒を循環させる冷媒配管6と、からなる冷凍サイクルを備えたものである。冷媒の圧力については、圧縮機1での圧縮を経た後の液状の冷媒r2は、圧縮機1で圧縮される前のガス状冷媒r1よりも高圧となっている。また、冷媒自体についてはその他公知の冷凍サイクルを備えた装置同様、フロン等適当なものが用いられている。
The
なお、この直膨方式の熱交換装置100’では熱交チューブからなる気体冷却部(図4の熱交チューブ200が設けられたエアークーラー12)で冷媒蒸発が起きるため一般的にここを蒸発器という。
In this direct expansion type
このように、直膨方式の熱交換装置100’では気体冷却部は一連の冷凍サイクル中に形成される。尚上記熱交チューブ200は、内部の冷媒液の蒸発が完了すると熱交換作業が終了するので、それ以降の下流側範囲が不要領域となると言う性質を有している。
Thus, in the direct expansion
上記直膨方式は、熱交プロセスが簡単で、熱交換効率も適用規模によっては良好な反面、構造上、冷媒制御が難しいと言う性質を有している。 The direct expansion method has a property that the heat exchange process is simple and the heat exchange efficiency is good depending on the application scale, but the refrigerant control is difficult due to the structure.
さらに、直膨方式では、液状冷媒が圧縮機1に戻ってくることがある状況(液バック)を回避するために、熱交チューブ200の長さを余裕を見て設計する必要があった。液バックが起こり冷媒が液状のまま圧縮機1に入ると、液圧縮を起こして異常圧力を生じ、圧縮機1が損傷する。
Furthermore, in the direct expansion method, the length of the
次に、気体冷却部が一連の冷凍サイクル中に形成されている直膨方式では、エアークーラー内の熱交チューブ表面温度について、低温から高温に至る温度勾配が必ず出来る特性の影響で、熱交面の氷結が生じてしまうという問題があったほか、設計規模が大容量なものとなる程、被冷却物を均質に冷却することが困難になると言う問題があった。 Next, in the direct expansion method in which the gas cooling section is formed in a series of refrigeration cycles, the heat exchange tube surface temperature in the air cooler is affected by the characteristic that a temperature gradient from low temperature to high temperature can always be achieved. In addition to the problem of freezing of the surface, there is a problem that it becomes difficult to uniformly cool the object to be cooled as the design scale becomes larger.
その他、直膨方式を大容量設備へ適用することを想定した場合、冷媒と被冷却体との熱交換を行う領域を増やすと同時に液バックを避ける必要上、被冷却体と直接熱交換を行う熱交チューブも必然的に長く設計せざるを得ず、熱交チューブ及びそれを収容する気体冷却部の大型化、さらに大型コンプレッサが求められること等によるエアークーラー全体としての効率低下が避けられなかった。 In addition, when it is assumed that the direct expansion method is applied to large-capacity equipment, it is necessary to increase the area for heat exchange between the refrigerant and the object to be cooled, and at the same time to avoid liquid back, and directly exchange heat with the object to be cooled. The heat exchanger tube is inevitably designed to be long, and the efficiency of the air cooler as a whole is inevitably reduced due to the increase in size of the heat exchanger tube and the gas cooling section that accommodates it, and the need for a large compressor. It was.
こうした性質から、直膨方式は、小風量クーラーへの適用には向いている一方、大風量熱交換器を設計しようとすると冷媒設計の困難性、サイズや効率その他の点で抱える問題が多く、大容量設備への適用に十分なものが得られていないのが実情であった。 Because of these properties, the direct expansion method is suitable for application to a small air volume cooler, but when trying to design a large air volume heat exchanger, there are many problems in terms of refrigerant design difficulty, size and efficiency, In fact, there was not enough to be applied to large capacity equipment.
ところで、原理上大容量設備に適用出来る熱交換方式については、上記の直膨方式のほか、直膨方式による冷却方式で予め水又はブライン液を冷やして冷水(ブライン液)を作り、この冷水(ブライン液)で被冷却物である空気を冷やすブライン冷却方式も含まれている。 By the way, as a heat exchange method that can be applied to large-capacity facilities in principle, in addition to the above-described direct expansion method, water or brine liquid is cooled in advance by a cooling method based on the direct expansion method to produce cold water (brine liquid). A brine cooling method is also included in which the air to be cooled is cooled with a brine solution).
しかしながら、ブライン冷却方式はブラインの顕熱利用による冷却のため、多量の水又はブライン液が必要となり、装置全体の大型化の問題が解消されない(一方、上記冷媒直接冷却方式(直膨方式)では冷媒の蒸発潜熱を利用するため、ブラインの1/100程度の流量で同一熱量を交換できる)。
また、ブライン冷却方式では直膨方式の構成に加えて冷水(ブライン液)で被冷却物である空気を冷やす構成要素がさらに必要となり、装置全体が複雑化するという新たな問題も生じる。
このように、ブライン冷却方式もやはり大容量設備への適用に十分値するものとは言えなかった。
However, since the brine cooling method is cooling by utilizing sensible heat of the brine, a large amount of water or brine solution is required, and the problem of increasing the size of the entire apparatus is not solved (in contrast, the above-described refrigerant direct cooling method (direct expansion method) Since the latent heat of vaporization of the refrigerant is used, the same amount of heat can be exchanged at a flow rate of about 1/100 of brine).
Further, in the brine cooling method, in addition to the structure of the direct expansion method, a component for cooling the air that is the object to be cooled with cold water (brine liquid) is further required, which causes a new problem that the entire apparatus becomes complicated.
As described above, the brine cooling system is still not enough to be applied to a large capacity facility.
上記の通り、様々な観点から総合的にみても、大容量設備への適用に十分有用な冷却システムはこれまで世の中に提供されていなかった。 As described above, a cooling system that is sufficiently useful for application to a large-capacity facility has not been provided in the world so far from various viewpoints.
したがって本発明は、構造がシンプルで、被冷却物を均質に冷却可能な熱交換装置を提供することを課題とする。 Therefore, an object of the present invention is to provide a heat exchange device having a simple structure and capable of cooling an object to be cooled uniformly.
また本発明は、被冷却物との熱交面の氷結が容易に防止できる熱交換装置を提供することを課題とする。 Moreover, this invention makes it a subject to provide the heat exchange apparatus which can prevent the freezing of the heat exchange surface with a to-be-cooled object easily.
また本発明は、小型軽量、高効率な大容量エアークーラーを比較的容易に実現することが可能な熱交換装置を提供することを課題とする。 It is another object of the present invention to provide a heat exchange device that can realize a small-sized, lightweight, and highly efficient large-capacity air cooler relatively easily.
その他本発明は、負荷変動に対しても液バックの起きない冷媒量制御性の良い熱交換装置を提供することを課題とする。 In addition, an object of the present invention is to provide a heat exchange device with good refrigerant amount controllability that does not cause liquid back even with respect to load fluctuations.
上記課題を解決すべく種々検討を重ねた結果、本願発明者は、被冷却物である空気との熱交換を、一端が負荷(被冷却物)側に接しており、他端が冷媒貯溜タンクに設けられているヒートパイプで行なう様にすると共に、冷媒貯溜タンク内の上方にガス状冷媒取出部を設け、ここから取り出したガス状の冷媒を圧縮機へと送る様構成し、さらに、冷媒の過熱度又は冷媒貯溜タンクに貯溜されている液状の冷媒の液面レベル制御その他の手法によって、上記熱交換によって得られる冷気の温度制御を含めたシステム全体の運転をなし得ることを見い出し、これを端緒に本発明の熱交換装置を完成するに至った。 As a result of various studies to solve the above problems, the inventor of the present application has one end in contact with the load (cooled object) side and the other end of the refrigerant storage tank for heat exchange with air that is the cooled object. In addition to the heat pipe provided in the refrigerant storage tank, a gaseous refrigerant take-out section is provided above the refrigerant storage tank so that the gaseous refrigerant taken out from the refrigerant is sent to the compressor. It is found that the overall system operation including the temperature control of the cold air obtained by the above heat exchange can be performed by the superheat degree of the liquid or the liquid level control of the liquid refrigerant stored in the refrigerant storage tank. As a result, the heat exchange device of the present invention has been completed.
上記課題を解決可能な本発明の熱交換装置は、(1)ガス状冷媒を圧縮するための圧縮機と、圧縮された前記冷媒を液化するための凝縮器と、液化した前記冷媒を断熱膨張させる膨張弁と、前記膨張弁を経た前記冷媒を貯溜する冷媒貯溜タンクと、凝縮部が前記冷媒貯溜タンク内に挿入され、蒸発部が前記冷媒貯溜タンク外に露出した単数又は複数のヒートパイプと、前記圧縮機、前記凝縮器、前記膨張弁及び前記冷媒貯溜タンクを順次接続して前記冷媒を循環させる冷媒配管と、からなる冷凍サイクルを少なくとも備えた熱交換装置であって、
前記ヒートパイプの前記蒸発部において、被冷却体との熱交換を行う様構成されており、さらに、前記冷媒貯溜タンクは、液状の前記冷媒と、前記熱交換を通じ液状の前記冷媒が蒸発して得られたガス状の前記冷媒とを内部に貯溜しており、入力側からは前記膨張弁を経た前記冷媒を流入させ得る一方、出力側からは前記冷媒貯溜タンク内の上方に設けられたガス状冷媒取出部からガス状の前記冷媒を取り出し得る様構成されている、ことを特徴とするものである。
The heat exchange device of the present invention capable of solving the above problems is (1) a compressor for compressing a gaseous refrigerant, a condenser for liquefying the compressed refrigerant, and adiabatic expansion of the liquefied refrigerant. An expansion valve, a refrigerant storage tank that stores the refrigerant that has passed through the expansion valve, and one or more heat pipes in which a condensing unit is inserted into the refrigerant storage tank and an evaporation unit is exposed outside the refrigerant storage tank; A heat exchange device comprising at least a refrigeration cycle comprising the compressor, the condenser, the expansion valve, and a refrigerant pipe for circulating the refrigerant by sequentially connecting the refrigerant storage tank,
The evaporating part of the heat pipe is configured to exchange heat with the object to be cooled. Further, the refrigerant storage tank has the liquid refrigerant and the liquid refrigerant evaporates through the heat exchange. The obtained gaseous refrigerant is stored inside, and the refrigerant having passed through the expansion valve can flow from the input side, while the gas provided above the refrigerant storage tank from the output side It is comprised so that the gaseous refrigerant | coolant can be taken out from a gaseous refrigerant | coolant taking-out part, It is characterized by the above-mentioned.
又本発明の熱交換装置は、(2)前記ヒートパイプの前記凝縮部或いは前記蒸発部の一方又は双方を水平に配置したことを特徴とするものである。 Moreover, the heat exchange device of the present invention is characterized in that (2) one or both of the condensing part and the evaporating part of the heat pipe are horizontally arranged.
又本発明の熱交換装置は、(3)前記ヒートパイプの前記蒸発部を前記凝縮部よりも上方に配置したことを特徴とするものである。 In the heat exchange device of the present invention, (3) the evaporating part of the heat pipe is arranged above the condensing part.
又本発明の熱交換装置は、(4)前記冷媒貯溜タンクに、前記冷媒と共に前記冷媒貯溜タンク内に流入した前記圧縮機潤滑用オイルの回収機構をさらに備え設けたことを特徴とするものである。 The heat exchange device according to the present invention is characterized in that (4) the refrigerant storage tank is further provided with a recovery mechanism for the compressor lubricating oil that has flowed into the refrigerant storage tank together with the refrigerant. is there.
又本発明の熱交換装置は、(5)前記ヒートパイプの伝熱量を、前記冷媒の過熱度又は前記冷媒貯溜タンク内における液状の前記冷媒の液面レベルに応じて制御する様にしたことを特徴とするものである。 In the heat exchange device of the present invention, (5) the amount of heat transfer of the heat pipe is controlled in accordance with the degree of superheat of the refrigerant or the liquid level of the liquid in the refrigerant storage tank. It is a feature.
又本発明の熱交換装置は、(6)前記ヒートパイプの前記蒸発部が送風ファン及び熱交換室を有するエアークーラーの前記熱交換室内に設けられ、それによって被冷却体たる空気の冷却を行わしめることを特徴とするものである。なお、(7)前記エアークーラーの前記熱交換室の底部に水抜き用の排水口をさらに備え設けてもかまわない。 In the heat exchange apparatus of the present invention, (6) the evaporation portion of the heat pipe is provided in the heat exchange chamber of an air cooler having a blower fan and a heat exchange chamber, thereby cooling the air that is the object to be cooled. It is characterized by tightening. (7) A drainage outlet for draining may be further provided at the bottom of the heat exchange chamber of the air cooler.
[用語の説明]
本明細書において「液バック」とは、冷凍(サイクルを備えた)装置において蒸発器等から液状冷媒が圧縮機に戻ってくることがある状況のことを指し示すものとする。液バックが起こり冷媒が液状のまま圧縮機に入ると、液圧縮を起こして異常圧力を生じ、圧縮機が損傷する。
[Explanation of terms]
In the present specification, “liquid back” indicates a situation where liquid refrigerant may return to the compressor from an evaporator or the like in a refrigeration (equipped with a cycle) device. If a liquid back occurs and the refrigerant enters the compressor while it is in a liquid state, liquid compression occurs and an abnormal pressure is generated, which damages the compressor.
本発明によれば、冷媒の蒸発潜熱による熱交換とヒートパイプ内部の潜熱利用熱交換により大量の熱量交換を小型設備で実施できる。それゆえ本発明によれば、構造がシンプルで、被冷却物を均質に冷却可能な熱交換装置を提供することができる。 According to the present invention, a large amount of heat can be exchanged by a small facility by heat exchange by latent heat of vaporization of refrigerant and heat exchange using latent heat inside the heat pipe. Therefore, according to the present invention, it is possible to provide a heat exchange device having a simple structure and capable of cooling an object to be cooled uniformly.
また従来、大容量のエアークーラーを設計する場合には、冷媒と被冷却体との熱交換を行う領域を増やすと同時に液バックを避ける必要上、被冷却体と直接熱交換を行う熱交チューブも必然的に長く設計せざるを得ず、熱交チューブ及びそれを収容する気体冷却部の大型化、さらに大型コンプレッサが求められること等によるエアークーラー全体としての効率低下が避けられなかった。しかしながら、本発明によれば気体冷却部を一連の冷凍サイクルとは別個に設けることが出来るので、例えばヒートパイプの本数の多寡によりヒートパイプ全体としての伝熱量を増減する等の設計で大容量化を容易に図ることが出来、小型軽量、高効率な大容量エアークーラーを比較的容易に実現することが可能となる。 Conventionally, when designing a large-capacity air cooler, it is necessary to increase the area for heat exchange between the refrigerant and the object to be cooled, and at the same time avoid the liquid back, and the heat exchanger tube that directly exchanges heat with the object to be cooled. Inevitably, however, the length of the heat exchanger tube and the gas cooling section that accommodates it must be increased, and the efficiency of the entire air cooler is inevitably reduced due to the demand for a large compressor. However, according to the present invention, since the gas cooling unit can be provided separately from the series of refrigeration cycles, the capacity can be increased by designing to increase or decrease the heat transfer amount as a whole heat pipe due to the large number of heat pipes, for example. Therefore, a large-capacity air cooler with a small size, light weight and high efficiency can be realized relatively easily.
その他本発明によれば、被冷却物との熱交面の氷結が容易に防止できる熱交換装置を提供することができる。 In addition, according to the present invention, it is possible to provide a heat exchange device that can easily prevent freezing of a heat exchange surface with an object to be cooled.
その他本発明によれば、負荷変動に対しても液バックの起きない冷媒量制御性の良い熱交換装置を提供することができる。 In addition, according to the present invention, it is possible to provide a heat exchange device with good refrigerant amount controllability that does not cause liquid back even with respect to load fluctuations.
なお、ヒートパイプを応用した熱交換装置としては先に掲げる各文献が看取されるが、これらは次の各点で、本発明の目的、構成及び作用効果と相違する。
まず、特許文献1(特開2000−320909号公報)では、断熱膨張後、蒸発器内の熱交チューブで熱交換を行う典型的な冷凍サイクルを備えたシステムが開示されているものの、冷媒液溜タンク内にヒートパイプを嵌合接続する構成(図4)が開示されている。ただ、特許文献1ではヒートパイプの両端は高圧或いは低圧ライン中に埋設されているに過ぎない。本発明ではヒートパイプの一端(負荷側)は空気、他端は冷媒貯溜タンクにさらされており、構成が相違する。また、特許文献1の目的は、低圧側冷媒の低温を利用して、凝縮器からの高温冷媒を低温化することで蒸発器の冷却性能を上げることであり、本発明の目的と相違する。
In addition, although each literature hung up previously is observed as a heat exchange apparatus which applied the heat pipe, these differ from the objective of this invention, a structure, and an effect in each of the following points.
First, Patent Document 1 (Japanese Patent Laid-Open No. 2000-320909) discloses a system including a typical refrigeration cycle that performs heat exchange with a heat exchanger tube in an evaporator after adiabatic expansion. The structure (FIG. 4) which fits and connects a heat pipe in the reservoir tank is disclosed. However, in Patent Document 1, both ends of the heat pipe are merely embedded in a high-pressure or low-pressure line. In the present invention, one end (load side) of the heat pipe is exposed to air and the other end is exposed to the refrigerant storage tank, and the configuration is different. The purpose of Patent Document 1 is to improve the cooling performance of the evaporator by lowering the temperature of the high-temperature refrigerant from the condenser by using the low temperature of the low-pressure side refrigerant, which is different from the object of the present invention.
次に、特許文献2(特開平5−179836号公報)では、ヒートパイプ、ボイラを利用した屋上融雪装置が開示されており、ヒートパイプの片端(負荷側)は外気(雪)、他端(熱(冷)媒側)は蒸気ヘッダ管4に設置(構成)され、内部で熱媒供給用循環管路5と伝熱的に結合されている点で本願の構成と一部共通する。
しかしながら、特許文献2の装置は冷凍サイクルでなく、コンプレッサを使用せず、熱(冷)媒送流ポンプ7及びボイラ9を使用する点で本願と相違する。また対象も本願とは相違する。
さらに、特許文献2の熱(冷)媒貯溜槽6は、熱(冷)媒リキッドを摘出して、ボイラ9へ送出する構造となっており、本願の冷媒貯溜タンクとは目的が相違する。本願は冷凍サイクルで、コンプレッサを使用するものであるため、液バックが起きてはいけない構造とする必要がある。すなわち、必ず冷媒貯溜タンクのガス状冷媒取出部から冷媒ガスを摘出して、コンプレッサへ送出する構造となっている。
Next, Patent Document 2 (Japanese Patent Application Laid-Open No. 5-17936) discloses a roof snow melting device using a heat pipe and a boiler. One end (load side) of the heat pipe is outside air (snow) and the other end ( The heat (cold medium side) is installed (configured) in the steam header pipe 4 and is partially in common with the configuration of the present application in that it is thermally coupled to the heat medium
However, the apparatus of
Furthermore, the heat (cold)
以下、本発明の一実施形態を、添付図面に基づき詳細に説明する。
図1は、本発明の一実施形態につき説明する図である。はじめに前提として、本実施形態に係る熱交換装置100は、ヒートパイプ5の蒸発部51が不図示の送風ファン及び熱交換室を有するエアークーラー12の熱交換室(気体冷却部にあたる)内に設けられ、それによって被冷却体たる空気A1の冷却を行うことを目的とした装置である。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a diagram for explaining one embodiment of the present invention. As a premise, in the
本実施形態に係る熱交換装置100は、ガス状冷媒r1を圧縮するための圧縮機1と、圧縮された上記冷媒を液化するための凝縮器2と、液化した冷媒r2を断熱膨張させる膨張弁3と、膨張弁3を経た冷媒を貯溜する冷媒貯溜タンク4と、凝縮部52が冷媒貯溜タンク4内に挿入され、蒸発部51が冷媒貯溜タンク4外に露出した複数のヒートパイプ5と、上記圧縮機1、凝縮器2、膨張弁3及び冷媒貯溜タンク4を順次接続して冷媒を循環させる冷媒配管6と、からなる冷凍サイクルを少なくとも備えた熱交換装置であって、ヒートパイプ5の蒸発部51において、被冷却体たる空気A1との熱交換を行う様構成されている。
冷媒については従来知られた冷凍サイクルを備えた装置同様、適当なものを用い得るが、本実施形態ではR22(HCFC)、R407C等の冷媒を採用している。
A
As the refrigerant, an appropriate one can be used as in the case of a conventionally known apparatus having a refrigeration cycle. However, in this embodiment, a refrigerant such as R22 (HCFC) or R407C is adopted.
冷媒貯溜タンク4は、液状の冷媒と、上記熱交換を通じこの液状の冷媒が蒸発して得られたガス状の冷媒とを内部に貯溜しており、入力側41からは膨張弁3を経た冷媒を流入させ得る一方、出力側からは冷媒貯溜タンク4内の上方に設けられたガス状冷媒取出部42からガス状の冷媒を取り出し得る様構成されている。
The refrigerant storage tank 4 stores therein a liquid refrigerant and a gaseous refrigerant obtained by evaporating the liquid refrigerant through the heat exchange. The refrigerant from the
ところで、一般的冷凍サイクルでは熱交チューブからなる気体冷却部(図4に示す、熱交チューブ200が設けられたエアークーラー12)で冷媒蒸発が起きるためここを蒸発器というが、本発明では冷媒蒸発が冷媒貯溜タンク4にて生じるので、従来の冷凍サイクルに当て嵌めて考えるとすれば冷媒貯溜タンク4が蒸発器の機能を果たすものとも考えられる。
By the way, in a general refrigeration cycle, the refrigerant evaporates in the gas cooling part (the
しかしながら、従来技術では気体冷却部は一連の冷凍サイクル中に形成されているところ、これと異なり本発明では気体冷却部は一連の冷凍サイクルとは別個に設けられ、冷凍サイクルの一部とヒートパイプ5を介して接続され、冷凍サイクルと間接的に熱交換を行う点で構成が顕著に相違する。又本発明では、従来技術のように被冷却体の冷却が冷凍サイクル中で直接的に行われず、ヒートパイプ5を介して間接的に実現される点で被冷却体の基本冷却原理も相違する。
However, in the prior art, the gas cooling part is formed in a series of refrigeration cycles. Unlike this, in the present invention, the gas cooling part is provided separately from the series of refrigeration cycles. 5 and the configuration is remarkably different in that heat exchange is indirectly performed with the refrigeration cycle. Further, in the present invention, the basic cooling principle of the cooled object is different in that the cooled object is not directly cooled in the refrigeration cycle as in the prior art, and is indirectly realized through the
従来、大容量のエアークーラーを設計する場合には、冷媒と被冷却体との熱交換を行う領域を増やすと同時に液バックを避ける必要上、被冷却体と直接熱交換を行う熱交チューブも必然的に長く設計せざるを得ず、熱交チューブ及びそれを収容する気体冷却部の大型化、さらに大型コンプレッサが求められること等によるエアークーラー全体としての効率低下が避けられられなかった。しかしながら、本発明によれば気体冷却部を一連の冷凍サイクルとは別個に設けることが出来るので、例えばヒートパイプ5の本数の多寡によりヒートパイプ5全体としての伝熱量を増減する等の設計で大容量化を容易に図ることが出来、小型軽量、高効率な大容量エアークーラーを比較的容易に実現することが可能となる。
Conventionally, when designing a large-capacity air cooler, it is necessary to increase the area for heat exchange between the refrigerant and the object to be cooled, and at the same time avoid the liquid back, and heat exchange tubes that directly exchange heat with the object to be cooled are also available. Inevitably, a long design was unavoidable, and the efficiency of the entire air cooler was inevitably reduced due to an increase in the size of the heat exchanger tube and the gas cooling unit that accommodated it, and the need for a large compressor. However, according to the present invention, the gas cooling section can be provided separately from the series of refrigeration cycles, so that the heat transfer amount of the
また、気体冷却部が一連の冷凍サイクル中に形成されている従来技術では、エアークーラー内の熱交チューブ表面温度について、低温から高温に至る温度勾配が必ず出来る特性の影響で、熱交面の氷結が生じてしまうという問題があった。しかしながら、本発明によれば従来技術のように被冷却体の冷却が冷凍サイクル中で直接的に行われず、ヒートパイプ5を介して間接的に実現されることから、被冷却物を均質に冷却可能な熱交換装置を提供することができると共に、上記の温度勾配の影響も無く、熱交面すなわち蒸発部51の氷結を容易に防止できる熱交換装置を提供することが可能となる。
In the conventional technology in which the gas cooling part is formed in a series of refrigeration cycles, the heat exchange tube surface temperature in the air cooler is affected by the characteristic that a temperature gradient from low temperature to high temperature can be obtained. There was a problem of freezing. However, according to the present invention, the object to be cooled is not directly performed in the refrigeration cycle as in the prior art, but is indirectly realized through the
ヒートパイプ5は、本実施形態では蒸発部51が凝縮部52よりも上方に配置されている。後記の通り、本実施形態のヒートパイプ5では、凝縮した作動流体fがコンテナ54内に設けられたウィック55を通じ毛細管現象で蒸発部51に還流するところ、この構造によれば凝縮した作動流体fの薄膜が常にコンテナ54内に成形され、連続して熱交換が行われる機能が発揮される。又本実施形態では、蒸発部51と凝縮部52付近に適当な枚数のフィン7が設けられている。
ヒートパイプ5自体の構成及び作動原理は次の通りである。
In the present embodiment, the
The configuration and operating principle of the
図2は、ヒートパイプの一例を示す図である。ヒートパイプ5は、両端が閉じた円筒状の管壁を有する密閉容器(コンテナ)54の内壁に、毛細管構造(ウィック)55を備えたものである。コンテナ54内には作動流体fが真空封入されている。またコンテナ54は、その一端と他端がそれぞれ入熱(蒸発)部51と放熱(凝縮)部52となっている以外は、断熱構造(断熱部53)となっている。なお、簡単のため、図2ではコンテナ54の蒸発部51と凝縮部52付近に設けられるフィン7の記載は省略している。
FIG. 2 is a diagram illustrating an example of a heat pipe. The
ヒートパイプ5の作動原理自体は従来知られたものと同様である。すなわち、ヒートパイプ5の一端側(蒸発部51)に入熱すると、i)蒸発部51で作動流体fの蒸発(蒸発潜熱の吸収)が起こり、ii)蒸気が他端側(凝縮部52)へ移動し、iii)凝縮部52で蒸気が凝縮(蒸発潜熱の放出)し、そして、iv)凝縮した作動流体fがウィック55を通じ毛細管現象で蒸発部51に還流する、という一連の相変化が連続的に生じる。ヒートパイプ5では、以上のサイクルを繰り返すことによって熱が素早く移動し、極めて高い効率での熱伝導が可能となっている。
作動流体fも従来知られたものと同様であり、本実施形態では例えばアンモニアやブタンを用いている。但し、これらには限定されず、例えば0〜5℃の範囲で蒸発するものも使用し得る。
The operating principle of the
The working fluid f is the same as that conventionally known. In this embodiment, for example, ammonia or butane is used. However, it is not limited to these, For example, what evaporates in the range of 0-5 degreeC can also be used.
したがって、エアークーラー12における熱交換は、次の要領にて行われる。
まずはじめに、ヒートパイプ5の蒸発部51で、コンテナ54の管壁を介して空気A1より入熱を受けた作動流体fは、潜熱を吸収し蒸気となって凝縮部52へと移動する。潜熱を奪われた空気A1は、冷気A2となってエアークーラー12の外部へ出力される。以上の要領で本発明では、ヒートパイプ5の作動流体fを介して、空気A1と冷媒貯溜タンク4内の冷媒との熱交換が行われる。
Therefore, heat exchange in the
First, the working fluid f that has received heat from the air A <b> 1 through the tube wall of the
次に、蒸発部51で空気A1との熱交換を終えたヒートパイプ5中の作動流体fは蒸気となって凝縮部52へと移動し、そこで潜熱を放出する。ここで、潜熱はコンテナ54の管壁より冷媒貯溜タンク4内の冷媒中へと放出される。潜熱が放出され凝縮した作動流体fは、毛細管作用によりウィック55を通じて蒸発部51へと還り、再び新たな空気A1との熱交換によって蒸気となり凝縮部52へ移動、潜熱放出を繰り返す。
Next, the working fluid f in the
本発明ではこのようにして、エアークーラー12と冷媒貯溜タンク4との間でヒートパイプ5による潜熱吸収、放出の繰り返しが行われる。繰り返しが進むごとに、エアークーラー12へ入力される空気A1と、エアークーラー12から出力される冷気A2との温度差が拡大する一方、潜熱放出の繰り返された冷媒貯溜タンク4内の冷媒温度の上昇、蒸発が進み、冷媒貯溜タンク4内におけるガス状冷媒の量が増大する。
In the present invention, latent heat absorption and release by the
潜熱放出の繰り返された冷媒貯溜タンク4内の冷媒は、温度の上昇、蒸発が進み、冷媒貯溜タンク4内におけるガス状冷媒の量が増大する。本発明では、このガス状冷媒をガス状冷媒取出部42より取り出し、冷媒配管6を通じて再び圧縮機1に還している。
The refrigerant in the refrigerant storage tank 4 where latent heat release has been repeated increases in temperature and evaporates, and the amount of gaseous refrigerant in the refrigerant storage tank 4 increases. In the present invention, the gaseous refrigerant is taken out from the gaseous refrigerant take-out
確認のため、本実施形態に係る熱交換装置における冷媒の流れを纏めると次の通りである。まず冷媒配管6を通じて再びコンプレッサ1に還されたガス状冷媒r1は圧縮機1で圧縮され、圧縮された上記冷媒は凝縮器2で液化され、そして液化した冷媒r2は膨張弁3を経て断熱膨張させた後、入力部41から冷媒貯溜タンク4内へと入力され、一旦貯溜される。ここで、エアークーラー12の熱交換室内に設けられた蒸発部51で空気A1との熱交換を終えたヒートパイプ5中の作動流体fは蒸気となって冷媒貯溜タンク4内に設けられた凝縮部52へと移動し、そこで潜熱を放出するところ、潜熱放出の繰り返された冷媒貯溜タンク4内の冷媒は、温度の上昇、蒸発が進み、冷媒貯溜タンク4内におけるガス状冷媒の量が増大する。本実施形態では、このガス状冷媒をガス状冷媒取出部42より取り出し、冷媒配管6を通じて再び圧縮機1に還すよう構成されている。冷媒の圧力については、圧縮機1での圧縮を経た後の液状の冷媒r2は、圧縮機1で圧縮される前のガス状冷媒r1よりも高圧となっている。
このように、本実施形態に係る熱交換装置も、冷媒の循環が確保され、冷凍サイクルを構成する様になっている。
For confirmation, the refrigerant flow in the heat exchange device according to the present embodiment is summarized as follows. First, the gaseous refrigerant r1 returned to the compressor 1 through the
Thus, the heat exchange apparatus according to the present embodiment also ensures the circulation of the refrigerant and constitutes a refrigeration cycle.
[動作]
以下では、上記概略構成を備えた本実施形態に係る熱交換装置の制御及び運転要領の一例を説明する。
本実施形態では、エアークーラー12から出力される冷気A2の温度制御は、上記ヒートパイプ5の伝熱量制御を通じて実現されている。
そして本実施形態では、ヒートパイプ5の伝熱量を、冷媒の過熱度又は冷媒貯溜タンク4内における液状の冷媒の液面レベルに応じて制御する様に構成されている。
より具体的には、本実施形態では以下の各センサを用いて、ヒートパイプ5の伝熱量制御を行っている。
[Operation]
Below, an example of the control of the heat exchange apparatus which concerns on this embodiment provided with the said schematic structure, and the operating point is demonstrated.
In the present embodiment, the temperature control of the cold air A <b> 2 output from the
In this embodiment, the heat transfer amount of the
More specifically, in the present embodiment, the heat transfer amount control of the
本実施形態では、冷媒貯溜タンク4内に液面レベルセンサ8が設けられている。
液面レベルセンサ8は、それぞれ電磁弁10に接続されている。液面レベルセンサ8は冷媒貯溜タンク4に貯溜された蒸発前の冷媒の液面レベルを監視しており、液面レベルがあらかじめ設定されたレベルよりも高くなると電磁弁10の駆動量(電磁弁10からの液状冷媒r2の吐出量)を減少させ、膨張弁3を経て冷媒貯溜タンク4内へと流れ込む冷媒の量を減少させる構成となっている一方、液面レベルがあらかじめ設定されたレベルよりも低くなると電磁弁10の駆動量を増大させ、膨張弁3を経て冷媒貯溜タンク4内へと流れ込む冷媒の量を増大させる構成となっている。
In the present embodiment, a
The
また本実施形態では、ガス状冷媒取出部42とコンプレッサ1とを繋ぐ冷媒配管6の一部に温度センサ11が設けられている。この温度センサ11は膨張弁3に接続されており、温度センサ11を通過するガス状冷媒r1の温度があらかじめ設定された温度よりも高くなると膨張弁3のダイアフラムの開度を増大させ、膨張弁3を経て冷媒貯溜タンク4内へと流れ込む冷媒の量を増大させる構成となっている一方、温度センサ11を通過するガス状冷媒r1の温度があらかじめ設定された温度よりも低くなると膨張弁3のダイアフラムの開度を減少させ、膨張弁3を経て冷媒貯溜タンク4内へと流れ込む冷媒の量を減少させる構成となっている。本実施形態の膨張弁3は、このようにして過熱度を一定に保とうとする、いわゆる温度式膨張弁の構成を採っている。
In the present embodiment, the
なお本実施形態においては、冷媒貯溜タンク4内に内圧センサ9も設けられている。これは、熱交換装置100の安全性をより高める作用も奏するものである。
内圧センサ9は冷媒貯溜タンク4の内圧を監視しており、内圧があらかじめ設定されたレベルよりも高くなると電磁弁10の駆動量を減少させ、膨張弁3を経て冷媒貯溜タンク4内へと流れ込む冷媒の量を減少させる構成となっている一方、内圧があらかじめ設定されたレベルよりも低くなると電磁弁10の駆動量を増大させ、膨張弁3を経て冷媒貯溜タンク4内へと流れ込む冷媒の量を増大させる構成となっている。
In the present embodiment, an
The
以上のように本実施形態では、液面レベルセンサ8及び温度センサ11、そして内圧センサ9を用いることによって、冷媒貯溜タンク4内に貯溜された冷媒の液面レベル及び冷媒温度、そしてタンク内の内圧が所望の範囲に収まる様制御されている。なお、例えば液面センサ8又は温度センサ11に関し、上記設定値については最終的に制御しようとする冷気A2の設定温度の上下等に応じ可変となっていても構わない。さらには、冷媒貯溜タンク4の状態が常時適正を維持するべく、不図示のマイクロコンピュータその他の演算手段を用い、液面レベルセンサ8及び温度センサ11、そして内圧センサ9の出力を利用して本実施形態に係る熱交換装置100を協調制御する様に設計しても構わない。
As described above, in the present embodiment, by using the
次に、以上の基本原理からなる本発明の熱交換装置につき、実施例を挙げて説明する。
なお、上で説明した構成と重複する箇所については、以下説明を省略する。
Next, an example is given and explained about the heat exchange device of the present invention which consists of the above basic principle.
In addition, about the location which overlaps with the structure demonstrated above, description is abbreviate | omitted below.
図3は、本実施例に係る熱交換装置101の構成を示す図である。図1と異なる箇所は、冷媒貯溜タンク4及びエアークーラー12の一部構成、並びにこれらの内部に挿入又は設けられるヒートパイプ5の凝縮部52及び蒸発部51の態様である。
FIG. 3 is a diagram illustrating a configuration of the
本実施例では、エアークーラー12の底部には排出口13が設けられ、内部に溜まる凝縮水dの排出が行われる様構成されている。
In the present embodiment, a
同様に、本実施例では冷媒貯溜タンク4の底側は油回収装置に連通しており、冷媒中の潤滑油oの排出が行われる様構成されている。 Similarly, in this embodiment, the bottom side of the refrigerant storage tank 4 communicates with the oil recovery device so that the lubricating oil o in the refrigerant is discharged.
また本実施例では、ヒートパイプ5の凝縮部52及び蒸発部51は、冷媒貯溜タンク4及びエアークーラー12中に水平に挿入され、配置されている。
このように配置することで、エアークーラー12における熱交換の結果、蒸発部51の周りに設けられたフィン7表面に生ずる凝縮水dの落下が容易となる。なお、熱交面すなわち蒸発部51の氷結も容易に防止できることは上述した通りである。
また、冷媒貯溜タンク4側においても、潜熱放出が繰り返される結果、冷媒貯溜タンク4内の冷媒温度が上昇、蒸発が進むことによって凝縮部52付近で顕在化する冷媒中の潤滑油oの落下が容易となる。
In this embodiment, the condensing
By arranging in this way, the condensed water d that occurs on the surfaces of the
In addition, as the result of repeated latent heat release on the refrigerant storage tank 4 side, the temperature of the refrigerant in the refrigerant storage tank 4 rises, and the evaporation of the lubricating oil o in the refrigerant that becomes apparent in the vicinity of the condensing
本実施例に係る熱交換装置101の制御及び運転要領については、上記の一実施形態について説明したものと概ね同様である。
The control and operation procedure of the
本実施例の構成によれば、エアークーラー12内部に溜まる凝縮水dの排出及び冷媒貯溜タンク4内に貯溜された冷媒中の潤滑油oの排出をすることができ、より実施可能性の高い熱交換装置を提供することが可能となる。
According to the configuration of the present embodiment, it is possible to discharge the condensed water d accumulated in the
[変形例]
以上、本発明の内容を一実施形態及び実施例を通じて詳細に説明したが、本発明は以上の態様に限定されず、種々の態様で変形実施することが可能である。
[Modification]
As mentioned above, although the content of the present invention was explained in detail through one embodiment and an example, the present invention is not limited to the above mode and can be modified in various modes.
例えば、上記実施例では、ヒートパイプ5の凝縮部52及び蒸発部51を共に水平に配置する構成としたが、凝縮部52或いは蒸発部51の少なくともいずれかを水平に配置した構成としてもかまわない。そのような態様であっても、より実施可能性の高い熱交換装置を提供することが可能である。
For example, in the above embodiment, the condensing
また本実施形態では、ヒートパイプ5の伝熱量を、冷媒の過熱度又は冷媒貯溜タンク4内における液状の冷媒の液面レベルに応じて制御する様にしたが、本発明に係る熱交換装置の制御及び運転要領についてはこれに限定されず、種々の制御及び運転要領を適用することが可能である。いずれにしても本発明は、負荷変動に対しても液バックの起きない冷媒量制御性の良い熱交換装置を提供することを一目的とするものである。
したがって、冷媒貯溜タンク4内における液状の冷媒の液面レベルを直接又は間接的に監視する手段を講じて、ガス状冷媒取出部42から冷媒配管6及び圧縮機1に液状冷媒が流入する液バック状況を防止する態様が採られていれば同態様は本発明の主旨に包含される。
In this embodiment, the heat transfer amount of the
Therefore, a means for directly or indirectly monitoring the liquid level of the liquid refrigerant in the refrigerant storage tank 4 is provided, and the liquid back into which the liquid refrigerant flows into the
また本実施形態では、液面レベルセンサ8及び温度センサ11のほか、さらに内圧センサ9を備える構成としたが、これに限定されず、内圧センサ9は省略されてもかまわない。
In the present embodiment, the
その他本実施形態では、ヒートパイプ5の数を複数本からなるものとしたが、要求仕様、設計条件その他に応じヒートパイプ5の数は単数としても複数としてもかまわない。
Others In the present embodiment, the number of
また本実施形態では、ヒートパイプ5は蒸発部51が凝縮部52よりも上方に配置される様構成したが、これに限定されず、凝縮部52が蒸発部51よりも上方に配置される様構成してもかまわない。この場合、凝縮した作動流体fはウィック55を通じた毛細管力によらずとも重力で蒸発部51に向かって自然落下する。
In the present embodiment, the
以上の通り本発明は、構造がシンプルで、被冷却物を均質に冷却可能な熱交換装置を提供する新規かつ有用なるものであることが明らかである。 As described above, it is apparent that the present invention is novel and useful for providing a heat exchange device having a simple structure and capable of uniformly cooling an object to be cooled.
A1 空気
A2 冷気
d 凝縮水
f 作動流体
o 潤滑油
r2 液状冷媒
r1 ガス状冷媒
1 圧縮機
2 凝縮器
3 膨張弁
4 冷媒貯溜タンク
5 ヒートパイプ
6 冷媒配管
7 フィン
8 液面レベルセンサ
9 内圧センサ
10 電磁弁
11 温度センサ
12 エアークーラー
13 排水口
41 入力部
42 ガス状冷媒取出部
51 蒸発部
52 凝縮部
53 断熱部
54 コンテナ
55 ウィック
100、100’、101 熱交換装置
200 熱交チューブ
A1 Air A2 Cold d Condensed water f Working fluid o Lubricating oil r2 Liquid refrigerant r1 Gaseous refrigerant 1
Claims (7)
圧縮された前記冷媒を液化するための凝縮器と、
液化した前記冷媒を断熱膨張させる膨張弁と、
前記膨張弁を経た前記冷媒を貯溜する冷媒貯溜タンクと、
凝縮部が前記冷媒貯溜タンク内に挿入され、蒸発部が前記冷媒貯溜タンク外に露出した単数又は複数のヒートパイプと、
前記圧縮機、前記凝縮器、前記膨張弁及び前記冷媒貯溜タンクを順次接続して前記冷媒を循環させる冷媒配管と、
からなる冷凍サイクルを少なくとも備えた熱交換装置であって、
前記ヒートパイプの前記蒸発部において、被冷却体との熱交換を行う様構成されており、さらに、
前記冷媒貯溜タンクは、液状の前記冷媒と、前記熱交換を通じ液状の前記冷媒が蒸発して得られたガス状の前記冷媒とを内部に貯溜しており、入力側からは前記膨張弁を経た前記冷媒を流入させ得る一方、出力側からは前記冷媒貯溜タンク内の上方に設けられたガス状冷媒取出部からガス状の前記冷媒を取り出し得る様構成されている、
ことを特徴とする熱交換装置。 A compressor for compressing the gaseous refrigerant;
A condenser for liquefying the compressed refrigerant;
An expansion valve for adiabatically expanding the liquefied refrigerant;
A refrigerant storage tank for storing the refrigerant having passed through the expansion valve;
One or a plurality of heat pipes in which a condensing part is inserted into the refrigerant storage tank, and an evaporation part is exposed outside the refrigerant storage tank,
A refrigerant pipe for circulating the refrigerant by sequentially connecting the compressor, the condenser, the expansion valve, and the refrigerant storage tank;
A heat exchange device comprising at least a refrigeration cycle comprising:
In the evaporating part of the heat pipe, it is configured to perform heat exchange with the object to be cooled,
The refrigerant storage tank stores the liquid refrigerant and the gaseous refrigerant obtained by evaporating the liquid refrigerant through the heat exchange, and passes through the expansion valve from the input side. While being able to flow in the refrigerant, from the output side is configured to be able to take out the gaseous refrigerant from a gaseous refrigerant take-out portion provided above the refrigerant storage tank,
A heat exchange device characterized by that.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2009235696A JP2011080736A (en) | 2009-10-09 | 2009-10-09 | Heat exchange device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2009235696A JP2011080736A (en) | 2009-10-09 | 2009-10-09 | Heat exchange device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2011080736A true JP2011080736A (en) | 2011-04-21 |
Family
ID=44074951
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2009235696A Pending JP2011080736A (en) | 2009-10-09 | 2009-10-09 | Heat exchange device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2011080736A (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103210427A (en) * | 2011-05-17 | 2013-07-17 | 富士电机株式会社 | Cooling device for vending machine |
| CN105188324A (en) * | 2015-11-04 | 2015-12-23 | 天津商业大学 | Liquid cooling heat radiator |
| CN105246301A (en) * | 2015-11-04 | 2016-01-13 | 天津商业大学 | An enhanced heat dissipation liquid cooling radiator |
| CN108253682A (en) * | 2018-01-12 | 2018-07-06 | 杨海宽 | Refrigerating box, refrigerating system and Cold Chain Logistics method |
| CN108592270A (en) * | 2018-05-22 | 2018-09-28 | 郑州云海信息技术有限公司 | A kind of air-conditioning |
| KR20200050018A (en) * | 2018-10-30 | 2020-05-11 | 한국생산기술연구원 | Heat exchanger of adsorption tower for adsorption refrigerator using heat transfer media |
| WO2023195667A1 (en) * | 2022-04-06 | 2023-10-12 | 한국기계연구원 | Heat pipe-integrated reactor |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS62181870U (en) * | 1986-05-12 | 1987-11-18 | ||
| JPS63197981U (en) * | 1987-06-12 | 1988-12-20 | ||
| JPH03168565A (en) * | 1989-11-28 | 1991-07-22 | Nippondenso Co Ltd | Refrigeration cycle |
| JPH06307786A (en) * | 1993-04-23 | 1994-11-01 | Daikin Ind Ltd | Heat exchanger for air conditioner |
| JPH10206049A (en) * | 1997-01-16 | 1998-08-07 | Toyota Motor Corp | Vehicle air conditioner |
| JP2000018854A (en) * | 1998-06-30 | 2000-01-18 | Showa Alum Corp | heat pipe |
| JP2002240545A (en) * | 2001-02-20 | 2002-08-28 | Toyota Industries Corp | Air conditioner for vehicle, and method for operating the same |
| JP2007062683A (en) * | 2005-09-02 | 2007-03-15 | Sanden Corp | Air-conditioner for vehicle |
-
2009
- 2009-10-09 JP JP2009235696A patent/JP2011080736A/en active Pending
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS62181870U (en) * | 1986-05-12 | 1987-11-18 | ||
| JPS63197981U (en) * | 1987-06-12 | 1988-12-20 | ||
| JPH03168565A (en) * | 1989-11-28 | 1991-07-22 | Nippondenso Co Ltd | Refrigeration cycle |
| JPH06307786A (en) * | 1993-04-23 | 1994-11-01 | Daikin Ind Ltd | Heat exchanger for air conditioner |
| JPH10206049A (en) * | 1997-01-16 | 1998-08-07 | Toyota Motor Corp | Vehicle air conditioner |
| JP2000018854A (en) * | 1998-06-30 | 2000-01-18 | Showa Alum Corp | heat pipe |
| JP2002240545A (en) * | 2001-02-20 | 2002-08-28 | Toyota Industries Corp | Air conditioner for vehicle, and method for operating the same |
| JP2007062683A (en) * | 2005-09-02 | 2007-03-15 | Sanden Corp | Air-conditioner for vehicle |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103210427A (en) * | 2011-05-17 | 2013-07-17 | 富士电机株式会社 | Cooling device for vending machine |
| CN105188324A (en) * | 2015-11-04 | 2015-12-23 | 天津商业大学 | Liquid cooling heat radiator |
| CN105246301A (en) * | 2015-11-04 | 2016-01-13 | 天津商业大学 | An enhanced heat dissipation liquid cooling radiator |
| CN105188324B (en) * | 2015-11-04 | 2017-08-04 | 天津商业大学 | A liquid cooling radiator |
| CN108253682A (en) * | 2018-01-12 | 2018-07-06 | 杨海宽 | Refrigerating box, refrigerating system and Cold Chain Logistics method |
| CN108592270A (en) * | 2018-05-22 | 2018-09-28 | 郑州云海信息技术有限公司 | A kind of air-conditioning |
| KR20200050018A (en) * | 2018-10-30 | 2020-05-11 | 한국생산기술연구원 | Heat exchanger of adsorption tower for adsorption refrigerator using heat transfer media |
| KR102155062B1 (en) * | 2018-10-30 | 2020-09-11 | 한국생산기술연구원 | Heat exchanger of adsorption tower for adsorption refrigerator using heat transfer media |
| WO2023195667A1 (en) * | 2022-04-06 | 2023-10-12 | 한국기계연구원 | Heat pipe-integrated reactor |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN105283719B (en) | Defrosting systems and cooling units for freezers | |
| US12359851B2 (en) | Thermal energy storage and heat rejection system | |
| CN118031483A (en) | Reverse cycle defrost phase change material based enhancement in vapor compression refrigeration systems | |
| JP2011080736A (en) | Heat exchange device | |
| JP2003322457A (en) | Dewfall preventing device of refrigerator | |
| JP2008057807A (en) | Refrigeration cycle and air conditioner and refrigerator using the same | |
| CN101311647B (en) | Composite type full-liquid type heat converter for refrigerant circulation system | |
| JP2008134031A (en) | Refrigeration equipment using non-azeotropic refrigerant mixture | |
| KR20150076775A (en) | Dual refrigerating system | |
| KR100644407B1 (en) | Air conditioning refrigeration cycle using carbon dioxide high pressure refrigerant | |
| JP5971548B2 (en) | Refrigeration equipment | |
| JP5270523B2 (en) | Freezer refrigerator | |
| CN217274955U (en) | System and device for energy recovery | |
| KR20100027353A (en) | Refrigerating and freezing apparatus | |
| KR100886107B1 (en) | Heat exchanger for refrigerant heat exchange in refrigeration unit | |
| JP2005214444A (en) | Refrigerator | |
| EP3141857B1 (en) | Radiator and supercritical pressure refrigeration cycle using the same | |
| KR20130024251A (en) | Hot water heating device using cooling apparatus | |
| JP5571429B2 (en) | Gas-liquid heat exchange type refrigeration equipment | |
| US20190178540A1 (en) | Liquid chiller system with external expansion valve | |
| EP2889557A1 (en) | Air conditioner | |
| KR102417161B1 (en) | Vapor compression cycle apparatus and water treatment system having the same | |
| JP2008032298A (en) | Internal heat exchanger | |
| AU2019292493B2 (en) | Apparatus and method for transferring heat | |
| KR20110087095A (en) | Chiller |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121009 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130422 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130819 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130911 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140122 |