JP2008032298A - Internal heat exchanger - Google Patents

Internal heat exchanger Download PDF

Info

Publication number
JP2008032298A
JP2008032298A JP2006205178A JP2006205178A JP2008032298A JP 2008032298 A JP2008032298 A JP 2008032298A JP 2006205178 A JP2006205178 A JP 2006205178A JP 2006205178 A JP2006205178 A JP 2006205178A JP 2008032298 A JP2008032298 A JP 2008032298A
Authority
JP
Japan
Prior art keywords
side passage
pressure side
low
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006205178A
Other languages
Japanese (ja)
Inventor
Kenji Yagisawa
研二 八木沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2006205178A priority Critical patent/JP2008032298A/en
Publication of JP2008032298A publication Critical patent/JP2008032298A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an internal heat exchanger not performing heat exchange when temperatures of refrigerants are reversed between the high-pressure side and the low-pressure side of the internal heat exchanger. <P>SOLUTION: In this internal heat exchanger 7 disposed in a refrigerating cycle 1 cooling air by circulating the refrigerant, and exchanging heat between the refrigerant flowing in a high pressure-side passage 8 at the upstream with respect to an expansion valve 4 and the refrigerant flowing in a low pressure-side passage 9 at the downstream with respect to an evaporator 5, a heat transferring element 10 for transferring heat from the high pressure-side passage 8 to the low pressure-side passage 9 by utilizing latent heat is disposed between the high pressure-side passage 8 and the low pressure-side passage 9. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、冷媒の循環により取入れ空気の冷却を行う冷凍サイクルに設けられる内部熱交換器に関する。   The present invention relates to an internal heat exchanger provided in a refrigeration cycle that cools intake air by circulating a refrigerant.

従来、コンプレッサで加圧させた冷媒を、コンデンサにて外気との熱交換を行い冷却し、膨張弁を通過させることで減圧し、エバポレータにて蒸発させてコンプレッサに戻す冷凍サイクルにおいて、膨張弁より上流の高圧側通路とエバポレータより下流の低圧側通路との両方に接合される内部熱交換器を設けて、上記の高圧側通路を流動する比較的高温の冷媒と上記の低圧側通路を通る比較的低温の冷媒との間で熱交換を行う構造が知られている(例えば特許文献1)。   Conventionally, in a refrigeration cycle, the refrigerant pressurized by the compressor is cooled by exchanging heat with the outside air using a condenser, depressurized by passing through an expansion valve, evaporated by an evaporator, and returned to the compressor. Comparison between the relatively high-temperature refrigerant flowing in the high-pressure side passage and the low-pressure side passage by providing an internal heat exchanger that is joined to both the high-pressure side passage upstream and the low-pressure side passage downstream of the evaporator. A structure for exchanging heat with a refrigerant having a low temperature is known (for example, Patent Document 1).

この従来技術にあっては、内部熱交換器で膨張弁より上流の高圧側通路を流動する冷媒を冷却することにより、膨張弁を介してエバポレータへ流入する冷媒の温度が低下するのでエバポレータの冷却能力を向上させることができる。
特開2000−320909号公報
In this prior art, the temperature of the refrigerant flowing into the evaporator through the expansion valve is lowered by cooling the refrigerant flowing in the high-pressure side passage upstream of the expansion valve by the internal heat exchanger. Ability can be improved.
JP 2000-320909 A

しかし、上述した従来技術にあっては、外気温度が低下すると、コンデンサにて外気との熱交換により冷却される冷媒の温度が下がり、内部熱交換器の高圧側に流入する冷媒の温度が低くなるため、内部熱交換器の高圧側の冷媒の温度が低圧側の冷媒の温度よりも低くなる現象が生じることがある。   However, in the above-described prior art, when the outside air temperature decreases, the temperature of the refrigerant cooled by heat exchange with the outside air in the condenser decreases, and the temperature of the refrigerant flowing into the high pressure side of the internal heat exchanger decreases. Therefore, a phenomenon may occur in which the temperature of the refrigerant on the high-pressure side of the internal heat exchanger is lower than the temperature of the refrigerant on the low-pressure side.

ここで、エバポレータからコンプレッサに液体状冷媒が供給されると、コンプレッサが破壊されるおそれがあるので、エバポレータからコンプレッサに供給される冷媒は完全に気化されている必要があるが、上記従来の構造では、内部熱交換器の高圧側と低圧側とで温度の逆転現象が生じた場合には、低圧側の冷媒が、それよりも温度の低い高圧側の冷媒によって冷却されてしまうため、コンプレッサに液体状冷媒が供給されてしまうおそれがあった。   Here, when the liquid refrigerant is supplied from the evaporator to the compressor, the compressor may be destroyed. Therefore, the refrigerant supplied from the evaporator to the compressor needs to be completely vaporized. Then, when a temperature reversal phenomenon occurs between the high-pressure side and the low-pressure side of the internal heat exchanger, the low-pressure side refrigerant is cooled by the high-pressure side refrigerant having a lower temperature. There was a possibility that the liquid refrigerant would be supplied.

そこで、本発明は、内部熱交換器の高圧側と低圧側とで、冷媒の温度が逆転した場合には、熱交換を行うことがない内部熱交換器を得ることを目的とする。   Therefore, an object of the present invention is to obtain an internal heat exchanger that does not exchange heat when the refrigerant temperature is reversed between the high pressure side and the low pressure side of the internal heat exchanger.

本発明にあっては、冷媒の循環により空気の冷却を行う冷凍サイクルに設けられ、膨張弁より上流の高圧側通路を流動する冷媒とエバポレータより下流の低圧側通路を流動する冷媒との熱交換を行う内部熱交換器において、前記高圧側通路と前記低圧側通路との間に、潜熱を利用して前記高圧側通路から前記低圧側通路へ熱伝達を行う熱伝達素子を介在させたことを最も主要な特徴とする。   In the present invention, heat exchange is performed between the refrigerant flowing in the high pressure side passage upstream of the expansion valve and the refrigerant flowing in the low pressure side passage downstream of the evaporator, which is provided in the refrigeration cycle that cools the air by circulating the refrigerant. In the internal heat exchanger for performing the above, a heat transfer element for transferring heat from the high pressure side passage to the low pressure side passage using latent heat is interposed between the high pressure side passage and the low pressure side passage. The most important feature.

本発明によれば、膨張弁より上流の高圧側通路とエバポレータより下流の低圧側通路との間に介在させた熱伝達素子により、上記の高圧側通路から低圧側通路へ熱伝達を行うので、膨張弁を介してエバポレータへ流入する冷媒の温度が低下してエバポレータの冷却能力が向上する。一方、外気温度が低下し、上記の高圧側通路を流動する冷媒の温度が低圧側通路を流動する冷媒の温度よりも低くなった場合、上記の熱伝達素子による上記の高圧側通路と低圧側通路との熱伝達を行わないので熱交換を阻止できる。これにより、エバポレータより下流の低圧側通路を流動する冷媒が過度に冷却されてコンプレッサに液体状冷媒が供給されることがないので、コンプレッサの破壊を防止できる。   According to the present invention, heat is transferred from the high pressure side passage to the low pressure side passage by the heat transfer element interposed between the high pressure side passage upstream of the expansion valve and the low pressure side passage downstream of the evaporator. The temperature of the refrigerant flowing into the evaporator via the expansion valve is lowered, and the cooling capacity of the evaporator is improved. On the other hand, when the outside air temperature decreases and the temperature of the refrigerant flowing in the high-pressure side passage becomes lower than the temperature of the refrigerant flowing in the low-pressure side passage, the high-pressure side passage and the low-pressure side by the heat transfer element Since heat transfer with the passage is not performed, heat exchange can be prevented. As a result, the refrigerant flowing in the low pressure side passage downstream from the evaporator is not excessively cooled and the liquid refrigerant is not supplied to the compressor, so that the compressor can be prevented from being destroyed.

以下、本発明の実施形態について図面を参照しながら詳細に説明する。ここでは、車両用空調装置等に適用される冷凍サイクルを例示する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Here, a refrigeration cycle applied to a vehicle air conditioner or the like is illustrated.

(第1実施形態)図1は、本実施形態にかかる内部熱交換器を示す斜視図、図2は、図1のA−A線に沿う断面図、図3は、図1のB−B線に沿う断面図、図4は、本実施形態の内部熱交換器を備える冷凍サイクルのブロック図である。   (First Embodiment) FIG. 1 is a perspective view showing an internal heat exchanger according to this embodiment, FIG. 2 is a sectional view taken along the line AA in FIG. 1, and FIG. 4 is a block diagram of a refrigeration cycle including the internal heat exchanger of the present embodiment.

冷凍サイクル、例えば、図4に示す炭酸ガスエアコン1は、炭酸ガスからなる冷媒を加圧吐出するコンプレッサ2と、外気との熱交換によりコンプレッサ2から送られる冷媒を冷却するコンデンサ(ガスクーラ)3と、このコンデンサ3から送られる冷媒を減圧する膨張弁4と、この膨張弁4から送られる冷媒を蒸発させることにより取込み空気を冷却するエバポレータ5と、このエバポレータ5から送られる冷媒を受け入れるとともに、冷媒の気液分離を行い気体状の冷媒をコンプレッサ2へ送り出すアキュームレータ6とを備えている。   A refrigeration cycle, for example, a carbon dioxide air conditioner 1 shown in FIG. 4 includes a compressor 2 that pressurizes and discharges a refrigerant made of carbon dioxide, and a condenser (gas cooler) 3 that cools the refrigerant sent from the compressor 2 by heat exchange with outside air. The expansion valve 4 that depressurizes the refrigerant sent from the condenser 3, the evaporator 5 that cools the intake air by evaporating the refrigerant sent from the expansion valve 4, the refrigerant sent from the evaporator 5, and the refrigerant And an accumulator 6 for delivering a gaseous refrigerant to the compressor 2.

そして、本実施形態の内部熱交換器7は、図1〜図4に示すように、膨張弁4の上流側に設けられる高圧側通路8と、アキュームレータ6の下流側に設けられる低圧側通路9と、これらの高圧側通路8および低圧側通路9の間に介在して、潜熱を利用して高圧側通路8から低圧側通路9へ熱伝達を行う熱伝達素子10とから構成されている。この熱伝達素子10は、熱伝導性を有し、筺体からなり内部に密閉空間が形成される密閉ケース11と、この密閉ケース11に封入される作動流体、例えば水12とからなっており、密閉ケース11の密閉空間から空気などの非凝縮性のガスが排出されたほぼ真空状態で、密閉空間の容積より少ない体積の水12が封入されている。   As shown in FIGS. 1 to 4, the internal heat exchanger 7 of the present embodiment includes a high pressure side passage 8 provided on the upstream side of the expansion valve 4 and a low pressure side passage 9 provided on the downstream side of the accumulator 6. And a heat transfer element 10 interposed between the high-pressure side passage 8 and the low-pressure side passage 9 to transfer heat from the high-pressure side passage 8 to the low-pressure side passage 9 using latent heat. The heat transfer element 10 has a heat conductivity, and includes a sealed case 11 formed of a casing and having a sealed space formed therein, and a working fluid sealed in the sealed case 11, for example, water 12. In a substantially vacuum state where non-condensable gas such as air is discharged from the sealed space of the sealed case 11, a volume of water 12 smaller than the volume of the sealed space is enclosed.

高圧側通路8は、所定間隔をおいて並列され、水平方向に延びる一対のヘッダタンク13,14と、この一対のヘッダタンク13,14に両端が連通され、密閉ケース11の下面に接合される高圧伝熱管15とから構成されており、一方のヘッダタンク13の一端には、コンデンサ3に接続される高圧入口16が設けられ、他方のヘッダタンク14の一端には、膨張弁4に接続される高圧出口17が設けられている。   The high-pressure side passage 8 is arranged in parallel at a predetermined interval and is connected to the pair of header tanks 13, 14 extending in the horizontal direction and the pair of header tanks 13, 14 at both ends and joined to the lower surface of the sealed case 11. The one end of one header tank 13 is provided with a high pressure inlet 16 connected to the condenser 3, and the other end of the header tank 14 is connected to the expansion valve 4. A high pressure outlet 17 is provided.

同様に、低圧側通路9は、上記のヘッダタンク13,14の上方に配置され、所定間隔をおいて並列されて水平方向に延びる一対のヘッダタンク18,19と、この一対のヘッダタンク18,19に両端が連通され、密閉ケース11の上面に接合される低圧伝熱管20とから構成されており、一方のヘッダタンク18の一端には、アキュームレータ6に接続される低圧入口21が設けられ、他方のヘッダタンク19の一端には、コンプレッサ2に接続される低圧出口22が設けられている。   Similarly, the low-pressure side passage 9 is disposed above the header tanks 13 and 14, and a pair of header tanks 18 and 19 that are arranged in parallel at a predetermined interval and extend in the horizontal direction, and the pair of header tanks 18 and 18 19 is composed of a low-pressure heat transfer tube 20 that is communicated at both ends and joined to the upper surface of the sealed case 11. One end of one header tank 18 is provided with a low-pressure inlet 21 connected to the accumulator 6. A low pressure outlet 22 connected to the compressor 2 is provided at one end of the other header tank 19.

本実施形態にあっては、高圧側通路8を流動する冷媒の温度が低圧側通路9を流動する冷媒の温度よりも高い場合、高圧側通路8の熱が密閉ケース11を介して水12に伝達されると、水12が真空状態で封入されているため沸騰して水蒸気が上方の内壁面に達する。   In this embodiment, when the temperature of the refrigerant flowing in the high-pressure side passage 8 is higher than the temperature of the refrigerant flowing in the low-pressure side passage 9, the heat of the high-pressure side passage 8 is transferred to the water 12 through the sealed case 11. When transmitted, since water 12 is sealed in a vacuum state, it boils and water vapor reaches the upper inner wall surface.

次いで、密閉ケース11の上面に低圧伝熱管20が接合されているので、低圧伝熱管20を介して低圧伝熱管20内の冷媒により吸熱されるとともに、密閉ケース11内の水12は放熱により凝縮して液状となり、下方の内壁面に落下する。   Next, since the low pressure heat transfer tube 20 is joined to the upper surface of the sealed case 11, heat is absorbed by the refrigerant in the low pressure heat transfer tube 20 via the low pressure heat transfer tube 20, and the water 12 in the sealed case 11 is condensed by heat dissipation. It becomes liquid and falls to the inner wall surface below.

このようにして熱伝達素子10内の水12の潜熱により高圧側通路8から低圧側通路9へ熱伝達が行われるので、高圧側通路8の冷媒の温度が下がり、低圧伝熱管20内の冷媒の温度が上がる。   In this way, heat is transferred from the high-pressure side passage 8 to the low-pressure side passage 9 by the latent heat of the water 12 in the heat transfer element 10, so that the temperature of the refrigerant in the high-pressure side passage 8 is lowered, and the refrigerant in the low-pressure heat transfer tube 20. Temperature rises.

一方、外気温度が低下し、高圧側通路8を流動する冷媒の温度が低下し、低圧側通路9を流動する冷媒の温度よりも低くなった場合、密閉ケース11の上方の内壁面で水12の冷却凝縮が行われないので、熱伝達素子10により高圧側通路8から低圧側通路9へ熱伝達されない。また、低圧側通路9を流動する冷媒の温度が比較的高くても、低圧側通路9は密閉ケース11内の下方に溜まる水12から離隔しており、低圧側通路9の熱により水12を加熱することがないので、低圧側通路9から高圧側通路8への熱伝達も行われない。   On the other hand, when the outside air temperature decreases, the temperature of the refrigerant flowing in the high-pressure side passage 8 decreases, and becomes lower than the temperature of the refrigerant flowing in the low-pressure side passage 9, the water 12 Therefore, no heat is transferred from the high pressure side passage 8 to the low pressure side passage 9 by the heat transfer element 10. Even if the temperature of the refrigerant flowing in the low-pressure side passage 9 is relatively high, the low-pressure side passage 9 is separated from the water 12 accumulated in the lower part of the sealed case 11, and the water 12 is removed by the heat of the low-pressure side passage 9. Since heating is not performed, heat transfer from the low pressure side passage 9 to the high pressure side passage 8 is not performed.

以上の本実施形態によれば、高圧側通路8を流動する冷媒の温度が比較的高い場合、熱伝達素子10により高圧側通路8から低圧側通路9へ熱伝達を行うので、高圧側通路8を介してエバポレータ5へ流入する冷媒の温度が低下してエバポレータ5の冷却能力が向上する。また、高圧側通路8を流動する冷媒の温度が低圧側通路9を流動する冷媒の温度よりも低くなった場合、熱伝達素子10による高圧側通路8と低圧側通路9との熱伝達を行わないので、エバポレータ5より下流の低圧側通路9を流動する冷媒が過度に冷却されることを防止できる。   According to the present embodiment described above, when the temperature of the refrigerant flowing in the high-pressure side passage 8 is relatively high, heat transfer is performed from the high-pressure side passage 8 to the low-pressure side passage 9 by the heat transfer element 10. As a result, the temperature of the refrigerant flowing into the evaporator 5 is reduced, and the cooling capacity of the evaporator 5 is improved. Further, when the temperature of the refrigerant flowing in the high pressure side passage 8 becomes lower than the temperature of the refrigerant flowing in the low pressure side passage 9, the heat transfer between the high pressure side passage 8 and the low pressure side passage 9 is performed by the heat transfer element 10. Therefore, it is possible to prevent the refrigerant flowing in the low-pressure side passage 9 downstream from the evaporator 5 from being excessively cooled.

なお、本実施形態では、密閉ケース11が筺体から構成された場合を例示したが、本発明はこれに限定されず、密閉ケースを、内部に密閉空間が形成される引抜き管などの扁平管により構成することもできる。また、本実施形態では、密閉ケース11に水12を封入した場合を例示したが、その他の作動流体として、アルコールおよび代替フロン類に属する新代替物質HFC(Hydro・Fluoro・Carbon)のいずれかを用いることもでき、上記の新代替物質HFCにはR134RおよびR152Rが含まれている。   In the present embodiment, the case where the sealed case 11 is formed of a casing is illustrated, but the present invention is not limited to this, and the sealed case is formed by a flat tube such as a drawing tube in which a sealed space is formed. It can also be configured. Further, in the present embodiment, the case where water 12 is sealed in the sealed case 11 is exemplified. However, as another working fluid, any one of alcohol and a new alternative substance HFC (Hydro / Fluoro / Carbon) belonging to alternative chlorofluorocarbons is used. It can also be used and the new alternative HFC includes R134R and R152R.

(第2実施形態)図5は、本実施形態にかかる内部熱交換器を示す斜視図、図6は、図5のC−C線に沿う断面図、図7は、図5の内部熱交換器が傾いた状態を示す断面図である。なお、図5〜図7において前述した図1〜図4に示すものと同様のものには同一符号を付してある。   (Second Embodiment) FIG. 5 is a perspective view showing an internal heat exchanger according to this embodiment, FIG. 6 is a cross-sectional view taken along the line CC of FIG. 5, and FIG. 7 is an internal heat exchange of FIG. It is sectional drawing which shows the state in which the container inclined. 5 to 7, the same reference numerals are assigned to the same components as those shown in FIGS.

図5〜図7に示す本実施形態の内部熱交換器30は、前述した図1〜図4に示すものと比べて、熱伝達素子31の構造が異なっており、その他の構成は基本的に同様である。すなわち、熱伝達素子31では、密閉ケース32内に車両幅方向へ延びる複数の仕切り壁33を設けることにより、密閉ケース32内を複数の密閉室34に区画して、各密閉室34の密閉空間から空気などの非凝縮性のガスが排出されたほぼ真空状態で、密閉空間の容積より少ない体積の水35が封入されている。   The internal heat exchanger 30 of the present embodiment shown in FIGS. 5 to 7 is different in the structure of the heat transfer element 31 from that shown in FIGS. It is the same. That is, in the heat transfer element 31, by providing a plurality of partition walls 33 extending in the vehicle width direction in the sealed case 32, the inside of the sealed case 32 is partitioned into a plurality of sealed chambers 34, and the sealed space of each sealed chamber 34. Water 35 having a volume smaller than the volume of the sealed space is sealed in a substantially vacuum state in which non-condensable gas such as air is discharged from.

本実施形態にあっては、高圧側通路8を流動する冷媒の温度が低圧側通路9を流動する冷媒の温度よりも高い場合、高圧側通路8の熱が密閉ケース32を介して各密閉室34内の水35に伝達されると、水35が沸騰して水蒸気が上方の内壁面に達し、水蒸気が液体状へ状態変化する際に放熱し、その熱が低圧伝熱管20の内部の冷媒に吸収され、高圧側通路8から低圧側通路9へ熱伝達が行われる。このとき、各密閉室34内の水35は放熱により凝縮して液状となり、下方の内壁面に落下する。   In the present embodiment, when the temperature of the refrigerant flowing through the high-pressure side passage 8 is higher than the temperature of the refrigerant flowing through the low-pressure side passage 9, the heat of the high-pressure side passage 8 passes through the sealed case 32 to each sealed chamber. When the water 35 is transferred to the water 35, the water 35 boils, the water vapor reaches the upper inner wall surface, dissipates heat when the water vapor changes its state to a liquid state, and the heat is a refrigerant in the low-pressure heat transfer tube 20. The heat is transferred from the high-pressure side passage 8 to the low-pressure side passage 9. At this time, the water 35 in each sealed chamber 34 is condensed by heat radiation and becomes liquid, and falls to the inner wall surface below.

一方、外気温度が低下し、高圧側通路8を流動する冷媒の温度が低下し、低圧側通路9を流動する冷媒の温度よりも低くなった場合、各密閉室34内の上方の内壁面で水35の冷却凝縮が行われないので、熱伝達素子31により高圧側通路8から低圧側通路9へ熱伝達されない。また、低圧側通路9を流動する冷媒の温度が比較的高くても、低圧側通路9は各密閉室34の下方に溜まる水35から離隔しており、低圧側通路9の熱で水35を加熱することがないので、低圧側通路9から高圧側通路8への熱伝達も行われない。   On the other hand, when the outside air temperature decreases, the temperature of the refrigerant flowing in the high-pressure side passage 8 decreases, and becomes lower than the temperature of the refrigerant flowing in the low-pressure side passage 9, the upper inner wall surface in each sealed chamber 34 Since the water 35 is not cooled and condensed, heat is not transferred from the high pressure side passage 8 to the low pressure side passage 9 by the heat transfer element 31. Even if the temperature of the refrigerant flowing in the low-pressure side passage 9 is relatively high, the low-pressure side passage 9 is separated from the water 35 accumulated below each sealed chamber 34, and the water 35 is removed by the heat of the low-pressure side passage 9. Since heating is not performed, heat transfer from the low pressure side passage 9 to the high pressure side passage 8 is not performed.

以上の本実施形態によっても、高圧側通路8を流動する冷媒の温度が比較的高い場合、熱伝達素子31により高圧側通路8から低圧側通路9へ熱伝達を行うので、高圧側通路8を介してエバポレータ5へ流入する冷媒の温度が低下してエバポレータ5の冷却能力が向上する。また、高圧側通路8を流動する冷媒の温度が低圧側通路9を流動する冷媒の温度よりも低くなった場合、熱伝達素子31による高圧側通路8と低圧側通路9との熱伝達を行わないので、エバポレータ5より下流の低圧側通路9を流動する冷媒が過度に冷却されることを防止できる。さらに、本実施形態にあっては、車両が前後方向に傾いた場合、図7に示すように各密閉室34内の下方の内壁面が水35で覆われる状態を保ち、かつ水35が各密閉室34内の上方の内壁面に接していないので、水35の潜熱を利用して高圧側通路8から低圧側通路9への熱伝達を行う効果を維持できる。   Also in the present embodiment described above, when the temperature of the refrigerant flowing in the high-pressure side passage 8 is relatively high, heat transfer is performed from the high-pressure side passage 8 to the low-pressure side passage 9 by the heat transfer element 31, so As a result, the temperature of the refrigerant flowing into the evaporator 5 decreases and the cooling capacity of the evaporator 5 is improved. Further, when the temperature of the refrigerant flowing in the high pressure side passage 8 becomes lower than the temperature of the refrigerant flowing in the low pressure side passage 9, the heat transfer between the high pressure side passage 8 and the low pressure side passage 9 is performed by the heat transfer element 31. Therefore, it is possible to prevent the refrigerant flowing in the low-pressure side passage 9 downstream from the evaporator 5 from being excessively cooled. Further, in the present embodiment, when the vehicle is tilted in the front-rear direction, the lower inner wall surface in each sealed chamber 34 is covered with water 35 as shown in FIG. Since it does not contact the upper inner wall surface in the sealed chamber 34, the effect of transferring heat from the high-pressure side passage 8 to the low-pressure side passage 9 using the latent heat of the water 35 can be maintained.

なお、本実施形態では、密閉ケース32内に車両幅方向へ延びる複数の仕切り壁33を設けることにより複数の密閉室34に区画した場合を例示したが、車両前後方向へ延びる複数の仕切り壁も設けることもできる。この場合、車両が幅方向に傾いても各密閉室内の下方の内壁面が水で覆われ、かつ水が各密閉室内の上方の内壁面に接していないので、水の潜熱を利用して高圧側通路8から低圧側通路9へ熱伝達を行う効果を維持できる。また、本実施形態では、密閉ケース11に水35を封入した場合を例示したが、その他の作動流体として、アルコールおよび代替フロン類に属する新代替物質HFC(Hydro・Fluoro・Carbon)のいずれかを用いることもでき、上記の新代替物質HFCにはR134RおよびR152Rが含まれている。   In this embodiment, the case where the plurality of partition walls 33 extending in the vehicle width direction are provided in the sealed case 32 to divide into the plurality of sealed chambers 34 is illustrated, but the plurality of partition walls extending in the vehicle front-rear direction are also illustrated. It can also be provided. In this case, even if the vehicle is inclined in the width direction, the lower inner wall surface in each sealed chamber is covered with water, and the water does not contact the upper inner wall surface in each sealed chamber. The effect of transferring heat from the side passage 8 to the low-pressure side passage 9 can be maintained. In the present embodiment, the case where water 35 is sealed in the sealed case 11 is exemplified. However, as the other working fluid, any one of alcohol and a new alternative substance HFC (Hydro / Fluoro / Carbon) belonging to alternative chlorofluorocarbons is used. It can also be used and the new alternative HFC includes R134R and R152R.

本発明の第1実施形態に係る内部熱交換器を示す斜視図。The perspective view which shows the internal heat exchanger which concerns on 1st Embodiment of this invention. 図1のA−A線に沿う断面図。Sectional drawing in alignment with the AA of FIG. 図1のB−B線に沿う断面図。Sectional drawing which follows the BB line of FIG. 本発明の第1実施形態に係る内部熱交換器を備える冷凍サイクルのブロック図。The block diagram of a refrigerating cycle provided with the internal heat exchanger which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る内部熱交換器を示す斜視図。The perspective view which shows the internal heat exchanger which concerns on 2nd Embodiment of this invention. 図5のC−C線に沿う断面図。Sectional drawing which follows the CC line | wire of FIG. 図5の内部熱交換器が傾いた状態を示す断面図。Sectional drawing which shows the state in which the internal heat exchanger of FIG. 5 inclined.

符号の説明Explanation of symbols

1 炭酸ガスエアコン(冷凍サイクル)
4 膨張弁
5 エバポレータ
7 内部熱交換器
8 高圧側通路
9 低圧側通路
10 熱伝達素子
11 密閉ケース
12 水(作動流体)
1 Carbon dioxide air conditioner (refrigeration cycle)
4 Expansion Valve 5 Evaporator 7 Internal Heat Exchanger 8 High Pressure Side Passage 9 Low Pressure Side Passage 10 Heat Transfer Element 11 Sealed Case 12 Water (Working Fluid)

Claims (3)

冷媒の循環により空気の冷却を行う冷凍サイクル(1)に設けられ、膨張弁(4)より上流の高圧側通路(8)を流動する冷媒とエバポレータ(5)より下流の低圧側通路(9)を流動する冷媒との熱交換を行う内部熱交換器(7)において、
前記高圧側通路(8)と前記低圧側通路(9)との間に、潜熱を利用して前記高圧側通路(8)から前記低圧側通路(9)へ熱伝達を行う熱伝達素子(10)を介在させたことを特徴とする内部熱交換器。
Refrigerating cycle (1) that cools the air by circulating the refrigerant, the refrigerant flowing in the high pressure side passage (8) upstream from the expansion valve (4) and the low pressure side passage (9) downstream from the evaporator (5) In the internal heat exchanger (7) that performs heat exchange with the refrigerant flowing through
A heat transfer element (10) for transferring heat from the high pressure side passage (8) to the low pressure side passage (9) using latent heat between the high pressure side passage (8) and the low pressure side passage (9). ), An internal heat exchanger.
前記熱伝達素子(10)が、熱伝導性を有する密閉ケース(11)と、この密閉ケース(11)に封入される作動流体(12)とを備えたことを特徴とする請求項1に記載の内部熱交換器。   The said heat transfer element (10) is provided with the airtight case (11) which has heat conductivity, and the working fluid (12) enclosed with this airtight case (11). Internal heat exchanger. 前記作動流体(12)が、水、アルコール、および代替フロン類に属する新代替物質HFCのいずれかからなることを特徴とする請求項2に記載の内部熱交換器。   The internal heat exchanger according to claim 2, wherein the working fluid (12) is made of any one of water, alcohol, and a new alternative material HFC belonging to alternative chlorofluorocarbons.
JP2006205178A 2006-07-27 2006-07-27 Internal heat exchanger Withdrawn JP2008032298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006205178A JP2008032298A (en) 2006-07-27 2006-07-27 Internal heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006205178A JP2008032298A (en) 2006-07-27 2006-07-27 Internal heat exchanger

Publications (1)

Publication Number Publication Date
JP2008032298A true JP2008032298A (en) 2008-02-14

Family

ID=39121918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006205178A Withdrawn JP2008032298A (en) 2006-07-27 2006-07-27 Internal heat exchanger

Country Status (1)

Country Link
JP (1) JP2008032298A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102057898B1 (en) * 2017-04-03 2019-12-20 주식회사 하이낸드 Thermal diode heat exchanger and heat exchanging system including thereof
CN113547956A (en) * 2020-09-30 2021-10-26 株式会社电装 Vehicle thermal management system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102057898B1 (en) * 2017-04-03 2019-12-20 주식회사 하이낸드 Thermal diode heat exchanger and heat exchanging system including thereof
CN113547956A (en) * 2020-09-30 2021-10-26 株式会社电装 Vehicle thermal management system
WO2022070796A1 (en) * 2020-09-30 2022-04-07 株式会社デンソー Vehicle heat management system

Similar Documents

Publication Publication Date Title
JP6851492B2 (en) Condenser with tube support structure
JP6022156B2 (en) Vehicle capacitors
JP4897298B2 (en) Gas-liquid separator module
US6962059B2 (en) Refrigerating cycle device
JP2007212091A (en) Shell-and-tube type condenser
JP2008281326A (en) Refrigerating unit and heat exchanger used for the refrigerating unit
KR101797176B1 (en) Dual pipe structure for internal heat exchanger
JP2020506359A (en) Condenser
JP2007278666A (en) Binary refrigerating device
JP2008134031A (en) Refrigerating device using zeotropic refrigerant mixture
JP2011214826A (en) Evaporator unit
KR101173157B1 (en) Air-Conditioning System for Vehicle having Water-Cooled Condenser and Water-Cooled Heat Exchanger for Supercooling
JP2011080736A (en) Heat exchange device
JP2014102030A (en) Heat-pump hot water supply device
JP2004077039A (en) Evaporation type condenser
JP2002013841A (en) Evaporator and freezer
JP2001133075A (en) Heat exchanger in refrigerating circuit
JP2008032298A (en) Internal heat exchanger
JP2007178081A (en) Refrigerator
WO2002016836A1 (en) Stirling cooling device, cooling chamber, and refrigerator
KR20090045473A (en) A condenser
JP2007278541A (en) Cooling system
JP6763381B2 (en) Cooling device, refrigerant treatment device, and refrigerant treatment method
JP2010133608A (en) Ground heat exchanger and air conditioning system
JP2008298307A (en) Refrigerating cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090713

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Effective date: 20100805

Free format text: JAPANESE INTERMEDIATE CODE: A761