WO2022070796A1 - Vehicle heat management system - Google Patents

Vehicle heat management system Download PDF

Info

Publication number
WO2022070796A1
WO2022070796A1 PCT/JP2021/032765 JP2021032765W WO2022070796A1 WO 2022070796 A1 WO2022070796 A1 WO 2022070796A1 JP 2021032765 W JP2021032765 W JP 2021032765W WO 2022070796 A1 WO2022070796 A1 WO 2022070796A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
refrigerant
heat
expansion device
vehicle
Prior art date
Application number
PCT/JP2021/032765
Other languages
French (fr)
Japanese (ja)
Inventor
麗娜 劉
錦 兪
博文 張
誠司 伊藤
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2022070796A1 publication Critical patent/WO2022070796A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3289Additional cooling source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • This disclosure relates to the vehicle heat management technology field, specifically to the vehicle heat management system.
  • a vehicle heat management system that directly heats and / or cools a battery using a refrigerant
  • two types of means are usually used for heating the battery in the vehicle heat management system.
  • One is to heat the battery directly using PTC, and the other is to heat the battery using high temperature gas compressed by a compressor.
  • the PTC with feedback adjustment can adjust the thermal output delivered by the PTC based on the temperature of the bottom of the battery.
  • the feedback regulator reduces the PTC thermal output if the temperature at the bottom of the battery is above a certain value.
  • the thermal output is constant.
  • the feedback regulator turns off the PTC when the temperature of the bottom of the battery is higher than a certain specified value, and turns on the PTC again when the temperature of the bottom of the battery is lower than a certain value for heating. Therefore, PTC will start and stop frequently. Also, in the case of heating by PTC, the price will be considerably high.
  • the temperature difference of the refrigerant at the inlet and outlet of the heating plate of the battery reaches 30 to 40 degrees, and the temperature difference on the surface of the battery exceeds the permissible value (generally 5 ° C). If the temperature difference between the batteries is too large, the life and efficiency of the power battery may be significantly affected.
  • an object of this disclosure is to provide a vehicle heat management system capable of realizing a plurality of heat management modes including soaking cooling and soaking heating of a battery.
  • a vehicle heat management system having a refrigerant circulation circuit includes a compressor, a first heat exchanger in which a fan is installed, and an upstream side of the compressor and a first heat exchange. It includes a first bypass and a second bypass connected in parallel to the downstream side of the vessel, the first bypass includes a first inflator and a second heat exchanger connected in sequence, and the second bypass connects in sequence.
  • a third heat exchanger for heat exchange between the second expansion device and the battery, and a third expansion device are included, and a fourth heat exchanger is further installed on the refrigerant circulation circuit.
  • the heat exchanger causes heat exchange between the refrigerant flowing out from the first heat exchanger and the refrigerant flowing toward the compressor, or a part of the refrigerant flowing out from the first heat exchanger and flowing toward the compressor.
  • the refrigerant flowing into the third heat exchanger is saturated, thereby making the third heat exchanger saturated. Adjust the temperature of the refrigerant flowing into.
  • the first bypass and the second bypass are connected in parallel between the first confluence point located on the downstream side of the first heat exchanger and the second confluence point located on the upstream side of the compressor.
  • the fourth heat exchanger is located between the first heat exchanger and the first confluence, and between the second confluence and the compressor, and is the first confluence from the first heat exchanger. It can be used to exchange heat between the refrigerant flowing toward the point and the refrigerant flowing from the second confluence toward the compressor.
  • first bypass and the second bypass are connected in parallel between the first confluence point located on the downstream side of the first heat exchanger and the second confluence point located on the upstream side of the compressor.
  • the fourth heat exchanger is located between the first confluence point and the second expansion device and between the third expansion device and the second confluence point, and is located between the first confluence point and the second expansion device. It can be used to exchange heat between the refrigerant flowing into the device and the refrigerant from the third expansion device toward the second confluence.
  • the first expansion device is configured independently by an electronic expansion valve or a mechanical expansion valve having a shut-off function, or a mechanical temperature expansion valve and a mechanical temperature expansion valve on the first bypass. It can be configured with a solenoid valve mounted on the upstream side.
  • the second expansion device is configured independently by an electronic expansion valve or a mechanical expansion valve having a shut-off function, or a mechanical temperature expansion valve and a mechanical temperature expansion valve on the second bypass. It can be configured with a solenoid valve mounted on the upstream side.
  • a gas-liquid separator can be installed on the inlet side of the compressor. As a result, the gas and liquid of the refrigerant can be separated by the gas-liquid separator, and the compressor can be prevented from being damaged.
  • FIG. 1A and 1B are structural schematic views of a vehicle heat management system based on the first embodiment of the disclosure
  • FIG. 1A is a structural schematic diagram of a vehicle heat management system
  • FIG. 1B is a first expansion in a vehicle heat management system.
  • a specific installation example of the device and the second expansion device (c) is a structural schematic diagram when a gas-liquid separator is installed in the vehicle heat management system.
  • FIG. 2 is a diagram showing an independent cooling circulation of a battery by the vehicle heat management system of the first embodiment shown in FIG. 1, and
  • FIG. 2A is a schematic structural diagram of the vehicle heat management system during a battery independent cooling circulation.
  • b) is a pressure enthalpy diagram of the battery independent cooling circulation.
  • FIG. 3 is a diagram showing battery heating circulation by the vehicle heat management system of the first embodiment shown in FIG. 1, where (a) is a schematic structural diagram of the vehicle heat management system during battery heating circulation, (b). Is a pressure enthalpy diagram of battery heating circulation.
  • FIG. 4 is a diagram showing an air-conditioning independent cooling circulation by the vehicle heat management system of the first embodiment shown in FIG. 1, and FIG. 4A is a structural schematic diagram of the vehicle heat management system during an air-conditioning independent cooling circulation, (b). ) Is a pressure enthalpy diagram of the air conditioning single cooling circulation.
  • FIG. 5 is a diagram showing air conditioning and battery cooling circulation by the vehicle heat management system of the first embodiment shown in FIG. 1, and FIG.
  • FIG. 5A is an outline of the structure of the vehicle heat management system during air conditioning and battery cooling circulation.
  • the figure (b) is a pressure enthalpy diagram of circulation in which air conditioning and a battery operate at the same time.
  • 6A and 6B are structural schematic views of a vehicle heat management system based on the second embodiment of the disclosure, FIG. 6A is a structural schematic diagram of the vehicle heat management system, and FIG. 6B is a first expansion in the vehicle heat management system. This is a specific installation example of the device and the second expansion device.
  • FIG. 7 is a diagram showing an air-conditioning independent cooling circulation by the vehicle heat management system of the second embodiment shown in FIG. 6, and FIG. 7A is a structural schematic diagram of the vehicle heat management system during an air-conditioning independent cooling circulation, (b).
  • FIG. 8 is a diagram showing that air conditioning and cooling circulation of the battery are simultaneously performed by the vehicle heat management system of the second embodiment shown in FIG. 6, and FIG. 8A is a diagram showing the air conditioning of the vehicle heat management system and the battery.
  • the structural schematic diagram at the time of simultaneous cooling circulation, (b) is the pressure enthalpy diagram at the time of simultaneous cooling circulation of an air conditioner and a battery.
  • FIG. 9 is a schematic structural diagram of a vehicle heat management system based on the third embodiment of the disclosure.
  • the vehicle heat management system that can realize soaking cooling and soaking heating of the battery is open to the public.
  • the vehicle heat management system can be applied to vehicles such as PHEV (Plug-in Hybrid Electric Vehicle, plug-in hybrid electric vehicle) and pure EV (Electric Vehicle, electric vehicle).
  • PHEV Plug-in Hybrid Electric Vehicle, plug-in hybrid electric vehicle
  • pure EV Electric Vehicle, electric vehicle
  • FIG. 1 is a structural schematic diagram of a vehicle heat management system based on the first embodiment of this disclosure.
  • the vehicle heat management system of the first embodiment has a refrigerant circulation circuit 300.
  • the refrigerant circulation circuit 300 includes a compressor 20 and a first heat exchanger 21.
  • the refrigerant circulation circuit 300 includes a first bypass 301 and a second bypass 302 connected in parallel between the upstream of the compressor 20 and the downstream of the first heat exchanger 21.
  • the first heat exchanger 21 is installed downstream of the compressor 20.
  • the first heat exchanger 21 is a condenser for heat exchange between high temperature and high pressure refrigerant gas discharged from the compressor 20 and air.
  • a fan 32 is installed on the capacitor 21.
  • the condenser 21 exchanges heat between the refrigerant and the air blown out by the fan to dissipate heat.
  • the condenser 21 is used only as a fluid passage because the condenser 21 does not function when the fan 32 is stopped.
  • the first bypass 301 is mainly used for cooling the inside of the vehicle, and the first expansion device 34 and the second heat exchanger 25 are connected in this order, and the downstream of the condenser 21 and the compressor 20 are connected in this order. It is connected to the upstream of. Therefore, the compressor 20, the condenser 21, the first expansion device 34, and the second heat exchanger 25 form a cooling circuit that cools the inside of the vehicle along the flow direction of the refrigerant in this order.
  • the first expansion device 34 is provided by an electronic expansion valve (EXV; Electrical Expansion Valve) or a mechanical expansion valve (Shut-off TXV; Shut-off Thermal Expansion Valve) having a shut-off function. Can be done.
  • EXV Electronic expansion valve
  • TXV Shut-off Thermal Expansion Valve
  • the first expansion device 34 also has a switching function and a diaphragm function at the same time. As shown in FIG. 1B, the first expansion device 34 can also be configured by connecting the switching valve 23 and the first expansion valve 24 in series.
  • the first expansion device 34 may be independently configured by an electronic expansion valve or a mechanical expansion valve having a shut-off function.
  • the first expansion device 34 may consist of a mechanical temperature expansion valve and a solenoid valve mounted upstream of the mechanical temperature expansion valve on the first bypass.
  • the switching valve 23 may be a solenoid valve that can be opened and closed, and is mainly used for controlling the opening and closing of the first bypass 301.
  • the first expansion valve 24 may be a mechanical temperature expansion valve (TXV; Thermal Expansion Valve).
  • TXV Thermal Expansion Valve
  • the opening degree of the expansion valve 24 of the first expansion valve 24 is voluntarily controlled based on the degree of superheat of the refrigerant, and is mainly used to throttle and reduce the pressure of the inflowing refrigerant gas.
  • the second heat exchanger 25 is an evaporator that exchanges heat between air and the refrigerant, and the refrigerant flowing out from the first expansion valve 24 after the temperature drop is lowered absorbs the heat of the air in the evaporator 25 and has a low temperature and low pressure. It becomes a gas and cools the inside of the car.
  • the second bypass 302 is configured by connecting the second expansion device 35, the third heat exchanger 27 installed below the battery 29, and the third expansion valve 28 as the third expansion device in this order. ..
  • the second bypass 302 is connected between the downstream of the capacitor 21 and the upstream of the compressor 20 in this order.
  • the compressor 20, the capacitor 21, the second expansion device 35, the third heat exchanger 27, and the third thermal expansion valve 28 heat or cool the battery 29 along the flow direction of the refrigerant in this order. It constitutes a management circuit.
  • the second expansion device 35 may be an electronic expansion valve as shown in FIG. 1 (b) or a second expansion valve 26 as a mechanical expansion valve having a shut-off function.
  • the second expansion device 35 also has a switching function and a diaphragm function.
  • the second expansion device 35 may also be configured by connecting a solenoid valve and a temperature expansion valve such as the first expansion device 34 described above in series.
  • the third heat exchanger 27 is a battery heat exchanger and is installed below the power battery 29.
  • the battery heat exchanger 27 realizes cooling and heating of the battery 29 by exchanging the amount of heat of the bottom surface of the battery 29 with the refrigerant circulating inside.
  • the refrigerant absorbs the amount of heat of the battery 29 and realizes the function of cooling the battery 29.
  • the refrigerant dissipates heat to the battery 29, and the battery 29 absorbs the heat of the refrigerant to realize the function of heating the battery 29.
  • the second expansion valve 26 is installed upstream of the battery heat exchanger 27.
  • the second expansion valve 26 is mainly used to throttle the inflowing refrigerant gas to reduce the pressure to obtain a medium-temperature, medium-pressure liquid refrigerant.
  • the second expansion valve 26 may be an integrated expansion valve such as an electronic expansion valve that can realize a switching function and a throttle function, for example.
  • the third expansion valve 28 is mainly used to squeeze the refrigerant discharged from the battery heat exchanger 27 twice to obtain a low-temperature low-pressure liquid. By controlling the opening degree of the second expansion valve 26 and the third expansion valve 28, the refrigerant flowing into the third heat exchanger 27 is always saturated (that is, a gas-liquid mixed state) and flows into the battery heat exchanger 27. The temperature of the refrigerant can be adjusted.
  • the first confluence point 30 is formed on the downstream side of the condenser 21 on the refrigerant circulation circuit 300 at the refrigerant inlet ends of the first bypass 301 and the second bypass 302.
  • a second confluence 31 is formed at the refrigerant outlet ends of the first bypass 301 and the second bypass 302 on the upstream side of the compressor 20 on the refrigerant circulation circuit 300.
  • the first bypass 301 and the second bypass 302 are collectively installed in parallel in the refrigerant circulation circuit 300.
  • the heat exchanger 22 is further installed on the refrigerant circulation circuit 300.
  • the heat exchanger 22 is mainly used to exchange heat between the refrigerant flowing out of the condenser 21 and the refrigerant flowing toward the compressor 20.
  • the heat exchanger 22 is used to exchange heat between a part of the refrigerant flowing out of the condenser 21 and a part of the refrigerant flowing toward the compressor 20.
  • the heat exchanger 22 is also referred to as a fourth heat exchanger.
  • the heat exchanger 22 is also an internal heat exchanger in the refrigerant circulation circuit 300.
  • the heat exchanger 22 has a portion between the capacitor 21 and the first confluence 30 and a portion between the compressor 20 and the second confluence 31. It is installed in between. At this time, the heat exchanger 22 causes all the refrigerants flowing out from the condenser 21 and all the refrigerants flowing toward the compressor 20 to exchange heat. More specifically, the heat exchanger 22 causes heat exchange between the first refrigerant and the second refrigerant.
  • the first refrigerant is a high temperature and high pressure refrigerant.
  • the first refrigerant is a refrigerant that flows from the condenser 21 into the first bypass 301 and / or the second bypass 302.
  • the first refrigerant is a refrigerant that flows into the first confluence 30.
  • the second refrigerant is a low temperature low pressure refrigerant.
  • the second refrigerant is a refrigerant that flows from the first bypass 301 and / or the second bypass 302 toward the compressor 20. That is, the second refrigerant is a refrigerant that has flowed out from the second confluence 31 and has not reached the compressor 20.
  • the specific situation will be described later, but this causes the relatively high temperature and high pressure refrigerant flowing out through the capacitor 21 to dissipate heat.
  • the temperature of the high temperature and high pressure refrigerant drops. As a result, the high pressure refrigerant may acquire supercooling.
  • the low-temperature low-pressure liquid refrigerant flowing out from the second confluence 31 absorbs heat and becomes a low-temperature low-pressure gas. As a result, the low pressure refrigerant may acquire a degree of superheat.
  • the heat exchanger 22 can contribute to enhancing the performance of the entire system.
  • gas-liquid separation is further separated between the heat exchanger 22 and the compressor 20, specifically, between the outlet of the heat exchanger 22 and the inlet of the compressor 20.
  • a vessel 36 can also be installed.
  • the role of the gas-liquid separator 36 is to separate gas and liquid.
  • the liquid refrigerant is stored in the tank of the gas-liquid separator 36, and the refrigerant gas enters the compressor 20. As a result, it is possible to prevent the compressor 20 from being damaged due to a liquid impact when the compressor 20 sucks in the liquid refrigerant.
  • the vehicle heat management system can realize four different circulation modes.
  • the vehicle heat management system provides a first mode, a second mode, a third mode, and a fourth mode.
  • the first mode is a circulation state for cooling the battery alone.
  • the second mode is a circulating state in which the battery is heated.
  • the third mode is a circulation state that independently provides a cooling function for air conditioning applications.
  • the third mode is also referred to as an in-vehicle temperature drop state.
  • the fourth mode is a circulating state that provides cooling functions for both air conditioning and the battery.
  • the fourth mode is also called a simultaneous progress state of air conditioning cooling and battery cooling.
  • the vehicle heat management system includes a control system 500.
  • the control system 500 controls a plurality of variable elements of the refrigerant circulation circuit 300 so as to selectively provide the plurality of circulation modes. Multiple variable elements include electric expansion valves, solenoid valves, fan motors, and the like.
  • the control system 500 includes a plurality of input devices for inputting an operating state of the refrigerant circulation circuit 300, a temperature environment, and the like.
  • the control system 500 includes at least one processor 510.
  • the processor 510 may be a semiconductor circuit that executes a program recorded in internal memory or external memory.
  • the processor 510 may be a semiconductor circuit including a digital circuit corresponding to a program. Digital circuits may be referred to by names such as gate arrays or FPGAs.
  • FIG. 2 is a diagram showing a first mode by the vehicle heat management system of the first embodiment.
  • A is a structural schematic diagram in the first mode of the vehicle heat management system.
  • B is a pressure enthalpy diagram in the first mode.
  • the pipeline shown by the dotted line in the figure indicates that the pipeline is blocked.
  • the pressure enthalpy diagram is a curve diagram of pressure and enthalpy value. Pressure enthalpy diagrams are commonly used in the analysis of refrigerants. The pressure enthalpy diagram shows the change in the operation mode when the refrigerant flows in the flow path.
  • the ordinate of the pressure enthalpy diagram is the logarithmic value of absolute pressure (that is, the absolute value of pressure), and the abscissa is the specific enthalpy value.
  • the pressure enthalpy diagram is mainly used to visualize and show the state of the refrigerant at different positions in the system and the state change of the refrigerant. In the control of each mode described later, the state of the refrigerant differs depending on the difference in the opening degree of each valve. The difference in the state of the refrigerant is shown as a position on the pressure enthalpy diagram.
  • the pressure enthalpy diagram in each mode embodies the state the system wants to reach, the target state of control. In the following, if they are the same, they will not be mentioned repeatedly.
  • the control system 500 turns on the fan 32 to start the capacitor 21, closes the switching valve 23, and opens the second expansion valve 26. ing. At this time, no refrigerant is flowing through the first bypass 301.
  • the high-temperature and high-pressure refrigerant gas compressed by the compressor 20 passes through the condenser 21 and dissipates heat to the outside to become a high-temperature and high-pressure liquid refrigerant. All the heat-dissipated refrigerant passes through the heat exchanger 22 and exchanges heat with the low-temperature low-pressure refrigerant discharged from the second bypass 302 in the heat exchanger 22.
  • the opening degree of the second expansion valve 26 is controlled based on the degree of superheat of the refrigerant on the outlet side of the battery heat exchanger 27. For example, if the target superheat is set to 5 ° C, the opening of the second expansion valve 26 will increase when the system superheat exceeds 5 ° C, and the second expansion valve will increase when the system superheat falls below 5 ° C. The opening degree of 26 is reduced. Further, the control system 500 adjusts the rotation speed of the compressor 20 based on the heat exchange amount of the battery heat exchanger 27.
  • the control system 500 can detect the temperature of the battery 29 and set the target heat exchange amount Q0 required for the battery heat exchanger 27 based on the detected temperature of the battery 29, and the battery. The higher the temperature, the larger the required target heat exchange amount Q0 is set. Subsequently, the control system 500 calculates the actual heat exchange amount Q of the battery heat exchanger 27, compares it with the target heat exchange amount Q0, and controls the rotation speed of the compressor 20 according to the comparison result. The control system 500 increases the rotation speed of the compressor 20 when Q ⁇ Q0, and decreases the rotation speed of the compressor 20 when Q> Q0.
  • the second expansion valve 26 decompresses and expands the refrigerant.
  • the second expansion valve 26 supplies a medium-temperature, medium-pressure, gas-liquid mixed saturated refrigerant slightly lower than the temperature of the battery 29.
  • the refrigerant after being throttled by the second expansion valve 26 enters the battery heat exchanger 27 to absorb heat, and the refrigerant after heat absorption passes through the third expansion valve 28.
  • the third expansion valve 28 In the first mode, the third expansion valve 28 is fully opened, so that the throttle is not performed.
  • the refrigerant that has passed through the third expansion valve 28 enters the heat exchanger 22 and absorbs heat for the second time.
  • the low-temperature low-pressure refrigerant gas that has undergone two endothermic processes enters the compressor 20 and completes the first mode.
  • the saturation temperature of the refrigerant under the intermediate pressure is higher than the saturation temperature of the refrigerant under the low pressure, the temperature difference between the refrigerant under the intermediate pressure and the battery 29 is relatively small.
  • the amount of heat of the battery 29 absorbed by the refrigerant under the intermediate pressure is relatively small.
  • the refrigerant that exchanges the amount of heat in the heat exchanger 22.
  • the high-pressure and high-temperature liquid refrigerant discharged from the capacitor 21 flows into the left side of the heat exchanger 22.
  • the low-temperature low-pressure liquid refrigerant discharged after the battery heat exchanger 27 absorbs heat flows into the right side of the heat exchanger 22.
  • the heat exchanger 22 realizes supercooling of the refrigerant by radiating heat from the high-temperature and high-pressure liquid refrigerant, and realizes overheating of the refrigerant by absorbing heat from the low-temperature and low-pressure refrigerant.
  • the endothermic capacity and heat exchange capacity of the refrigerant can be increased, and the performance of the system can be improved.
  • FIG. 3 is a diagram showing a battery heating circulation by the vehicle heat management system of the first embodiment.
  • A is a structural schematic diagram in the second mode of the vehicle heat management system.
  • B is a pressure enthalpy diagram in the second mode.
  • the refrigerant is compressed by the compressor 20 to become a high-temperature and high-pressure gas.
  • the condenser 21 at this time is merely a passage for the fluid, and the high-temperature and high-pressure refrigerant gas does not exchange the amount of heat in the condenser 21.
  • the control system 500 closes the switching valve 23 and opens the second expansion valve 26, but at this time, no refrigerant is flowing on the first bypass 301.
  • All of the high-temperature and high-pressure refrigerant flowing out of the condenser 21 passes through the heat exchanger 22 and exchanges heat with the refrigerant discharged from the battery heat exchanger 27 in the heat exchanger 22 to dissipate heat for the first time. Go and release some of the heat.
  • the specific amount of heat radiation can be adjusted by the second expansion valve 26 of the second bypass 302.
  • the opening degree of the second expansion valve 26 is controlled based on the degree of superheat of the refrigerant before entering the second expansion valve 26, and the target degree of superheat can be set to 5 ° C.
  • the opening degree of the third expansion valve 28 is controlled based on the degree of superheat at the inlet of the compressor 20, and the target degree of superheat can be set to 10 ° C.
  • the control system 500 controls the rotation speed of the compressor 20 based on the amount of heat required for the battery heat exchanger 27.
  • the control system 500 can detect the temperature of the battery 29 and set the target heat exchange amount Q0 required for the battery heat exchanger 27 based on the detected temperature of the battery 29.
  • the control system 500 sets the required target heat exchange amount Q0 larger as the detected temperature is higher.
  • the actual heat exchange amount Q of the battery heat exchanger 27 is calculated and compared with the target heat exchange amount Q0. If Q ⁇ Q0, the rotation speed of the compressor 20 is increased, and if Q> Q0, the rotation speed is increased. Reduces the rotation speed of the compressor 20. In this way, the squeezed refrigerant is changed to a liquid in a gas-liquid mixed state having a temperature higher than that of the battery 29.
  • the medium pressure is an intermediate pressure between the high-pressure refrigerant discharged from the compressor 20 and the low-pressure refrigerant discharged after being throttled twice by the third expansion valve 28 described later.
  • the medium-temperature, medium-pressure liquid refrigerant dissipates heat for the second time in the battery heat exchanger 27, and the amount of heat in this portion is absorbed by the battery 29 to realize a temperature rise of the battery.
  • the second expansion valve 26 is adjusted so that the refrigerant is always in a saturated state of gas-liquid mixing. Since the saturated refrigerant has the same temperature, it is possible to realize battery heating with a uniform temperature.
  • the refrigerant that has been radiated twice passes through the third expansion valve 28 on the outlet side of the battery 29 and is used for the second throttle.
  • the opening degree of the third expansion valve 28 can be controlled based on the degree of superheat of the refrigerant discharged from the heat exchanger 22 toward the compressor 20.
  • the third expansion valve 28 changes the refrigerant into a low-temperature low-pressure liquid, and the low-temperature low-pressure liquid passes through the heat exchanger 22.
  • the refrigerant absorbs the amount of heat to become a low-temperature low-pressure gas, and finally returns to the compressor to complete the circulation in the second mode.
  • FIG. 4 is a diagram showing a third mode by the vehicle heat management system of the first embodiment.
  • A is a structural schematic diagram in the third mode of the vehicle heat management system.
  • B is a pressure enthalpy diagram in the third mode.
  • the control system 500 turns on the fan 32 to start the capacitor 21, closes the second expansion valve 26, and closes the switching valve 23. It is open.
  • the high-temperature and high-pressure refrigerant compressed by the compressor 20 passes through the capacitor 21 and dissipates heat to the outside. All of the heat-dissipated refrigerant passes through the heat exchanger 22 to dissipate heat for the second time.
  • the refrigerant after the first heat dissipation by the condenser 21 exchanges heat with the low-temperature low-pressure refrigerant flowing out from the first bypass 301 in the heat exchanger 22, thereby supercooling the refrigerant. It will be realized.
  • the second expansion valve 26 Since the second expansion valve 26 is closed and the switching valve 23 is open, all the refrigerant after the two heat dissipation enters the first bypass 301 through the first confluence point 30. That is, no refrigerant flows through the second bypass 302.
  • the refrigerant that has passed through the switching valve 23 enters the first expansion valve 24 and is subjected to throttle expansion. After the throttle, the refrigerant becomes a liquid refrigerant in a gas-liquid mixed state lower than the temperature inside the vehicle, enters the evaporator 25, and absorbs heat to cool the inside of the vehicle.
  • the refrigerant after endothermic enters the heat exchanger 22 through the second confluence 31 and absorbs heat for the second time.
  • the refrigerant gas that has undergone two endothermic processes enters the compressor, and the circulation of the third mode is completed.
  • the refrigerant that exchanges the amount of heat in the heat exchanger 22.
  • the high-pressure and high-temperature liquid refrigerant discharged from the capacitor 21 flows into the left side of the heat exchanger 22.
  • the low-temperature low-pressure liquid refrigerant discharged from the evaporator 25 flows into the right side of the heat exchanger 22.
  • the high temperature and high pressure liquid refrigerant dissipates heat to realize supercooling of the refrigerant, and the low pressure and low temperature refrigerant absorbs heat to realize overheating of the refrigerant.
  • the endothermic capacity and heat exchange capacity of the refrigerant can be increased, and the performance of the system can be improved.
  • FIG. 5 is a diagram showing the circulation of the fourth mode by the vehicle heat management system of the first embodiment.
  • A is a structural schematic diagram in the fourth mode of the vehicle heat management system.
  • B is a pressure enthalpy diagram in the fourth mode.
  • the control system 500 turns on the fan 32 to activate the capacitor 21 and opens the switching valve 23 and the second expansion valve 26. ..
  • the high-temperature and high-pressure refrigerant discharged after being compressed by the compressor 20 passes through the capacitor 21 and dissipates heat for the first time. All of the refrigerant discharged from the condenser 21 passes through the heat exchanger 22.
  • the refrigerant discharged from the evaporator 25 and the battery heat exchanger 27 each absorb heat in the heat exchanger 22 for the second time.
  • the switching valve 23 and the second expansion valve 26 are both open, the high-temperature and high-pressure liquid refrigerant discharged from the heat exchanger 22 is divided into two at the first confluence point 30.
  • One of the divided refrigerants enters the first bypass 301 and passes through the evaporator 25 to cool the vehicle interior.
  • the other of the diverted refrigerant passes from the second expansion valve 26 to the battery 29 side to cool the battery.
  • the refrigerant that has entered the first bypass 301 enters the first expansion valve 24 via the switching valve 23, is throttled and depressurized, and becomes a low-temperature low-pressure gas-liquid mixed refrigerant.
  • the refrigerant that has passed through the second bypass 302 first throttles through the second expansion valve 26, and controls the opening degree of the second expansion valve 26 based on the amount of heat that the refrigerant transfers to the battery heat exchanger 27. do.
  • the target heat exchange amount Q0 required for the battery heat exchanger 27 can be set based on the temperature of the battery 29, and the higher the temperature, the larger the required target heat exchange amount Q0.
  • the actual heat exchange amount Q of the battery heat exchanger 27 is calculated, and the relationship between the actual heat exchange amount Q and the opening area of the second expansion valve 26 is established.
  • Q> Q0 the valve opening area decreases, and when Q ⁇ Q0, the valve opening area increases.
  • the refrigerant is maintained in a gas-liquid mixed saturated state of medium temperature and medium pressure (at this time, the value of the intermediate pressure is set with respect to the high pressure in the condenser 21 and the low pressure in the evaporator 25), and under the intermediate pressure.
  • the refrigerant in the above absorbs the amount of heat of the battery 29.
  • the saturation temperature of the refrigerant under intermediate pressure is higher than the saturation temperature of the refrigerant under low pressure. Therefore, the temperature difference between the refrigerant under the intermediate pressure and the battery 29 is relatively reduced. As a result, the amount of heat of the battery 29 absorbed by the refrigerant under the intermediate pressure is relatively small.
  • the control system 500 adjusts the pressure value of the refrigerant by controlling the opening degree of the second expansion valve 26.
  • the control system 500 controls the opening degree of the third expansion valve 28 based on the degree of superheat of the refrigerant on the outlet side of the battery heat exchanger 27 to ensure that the refrigerant is always saturated in the endothermic process. Thereby, the control system 500 guarantees that the temperature difference of the battery 29 is within the required range, and realizes uniform temperature cooling of the battery 29.
  • the refrigerants discharged from the first bypass 301 and the second bypass 302 merge at the second confluence point 31.
  • the combined refrigerant enters the heat exchanger 22 and absorbs heat again to become a low-temperature low-pressure refrigerant gas, and the refrigerant after endothermic finally returns to the compressor 20, thereby completing the circulation of the fourth mode.
  • the vehicle heat management system of the 2nd embodiment has a structure similar to that of the vehicle heat management system of the 1st embodiment. Therefore, the structure of the vehicle heat management system of the second embodiment will be mainly described as being different from the vehicle heat management system of the first embodiment, the same structure will be represented by the same reference numerals, and the description thereof will be omitted.
  • FIG. 6 is a schematic structural diagram of a vehicle heat management system based on the second embodiment of this disclosure.
  • A is a structural schematic diagram of a vehicle heat management system.
  • B is a specific installation example of the first expansion device and the second expansion device in the vehicle heat management system.
  • the vehicle heat management system of the second embodiment has a refrigerant circulation circuit 400.
  • the refrigerant circulation circuit 400 includes a compressor 20 and a condenser 21 provided with a fan 32.
  • the refrigerant circulation circuit 400 includes a first bypass 401 and a second bypass 402 that are connected in parallel between the upstream of the compressor 20 and the downstream of the condenser 21.
  • the first bypass 401 is formed by connecting the first expansion device 34 and the second heat exchanger 25 in this order, and the first expansion device 34 has a switching valve 23 as shown in FIG. 6B.
  • the first expansion valve 24 can also be connected in series.
  • the second bypass 402 is configured by connecting a second expansion valve 35, a third heat exchanger 27 installed below the battery 29, and a third expansion valve 28 as a third expansion device in this order. ..
  • the second expansion device 35 may be an electronic expansion valve as shown in FIG. 6B or a second expansion valve 26 as a mechanical expansion valve having a shut-off function.
  • the first confluence point 40 is formed on the downstream side of the condenser 21 on the refrigerant circulation circuit 400 at the refrigerant inlet ends of the first bypass 401 and the second bypass 402.
  • a second confluence 41 is formed at the refrigerant outlet ends of the first bypass 401 and the second bypass 402 on the upstream side of the compressor 20 on the refrigerant circulation circuit 400.
  • the first bypass 401 and the second bypass 402 are collectively connected in parallel in the refrigerant circulation circuit 400.
  • the heat exchanger 22 is further installed in the refrigerant circulation circuit 400.
  • the heat exchanger 22 is installed between the first confluence point 40 and the second expansion valve 26, and is installed between the second confluence point 41 and the third expansion valve 28.
  • the heat exchanger 22 provides heat exchange between the first refrigerant and the second refrigerant.
  • the first refrigerant is a part of the high temperature and high pressure refrigerant.
  • the second refrigerant is a part of the low temperature low pressure refrigerant.
  • the heat exchanger 22 is also called an internal heat exchanger.
  • the first refrigerant is a part of all the high-temperature and high-pressure refrigerants flowing out from the capacitor 21.
  • the second refrigerant is a low-temperature low-pressure refrigerant flowing out of the second bypass 402. That is, it is a part of all the refrigerant flowing toward the compressor 20.
  • the heat exchanger 22 causes the refrigerant flowing into the second expansion valve 26 to dissipate heat, lower the temperature, and supercool.
  • the heat exchanger 22 absorbs the amount of heat in the refrigerant flowing out from the third expansion valve 28 to make it a low-temperature low-pressure gas. As a result, the heat exchanger 22 can contribute to improving the performance of the entire system.
  • Such an installation method is useful for integrated integration of the heat exchanger 22 and the flow path on the battery 29 side, such as designing the heat exchanger 22 and the battery heat exchanger 27 as an integrated heat exchanger.
  • a gas-liquid separator 36 can be further installed between the second confluence point 41 and the inlet of the compressor 20.
  • the role of the gas-liquid separator 36 is to prevent damage to the compressor 20 by separating the gas and the liquid, as described above.
  • the above four types of different circulation states can be provided in the same manner.
  • the first mode, the second mode, the third mode, and the fourth mode can be realized.
  • the above four types of operation modes will be described in detail with reference to FIGS. 2 to 5.
  • the first mode and the second mode are the same as those in the first embodiment, so they will not be described repeatedly here, and only the third mode and the fourth mode will be briefly described.
  • the description of the preceding embodiment can be referred to.
  • FIG. 7 is a diagram showing a state in a third mode by the vehicle heat management system of the second embodiment.
  • A is a structural schematic diagram in the third mode of the vehicle heat management system.
  • B is a pressure enthalpy diagram in the third mode.
  • the control system 500 turns on the fan 32, activates the capacitor 21, closes the second expansion valve 26, and closes the switching valve 23. It is open.
  • the high-temperature and high-pressure refrigerant compressed by the compressor 20 passes through the capacitor 21 and dissipates heat to the outside. Since the second expansion valve 26 is closed and the switching valve 23 is open, the refrigerant after heat dissipation enters the first bypass 401.
  • the refrigerant enters the expansion valve 24 via the switching valve 23 to throttle the refrigerant, and the throttle is reduced in pressure to become a refrigerant in a gas-liquid mixed state lower than the vehicle interior temperature.
  • the refrigerant enters the evaporator 25 and absorbs heat, and the refrigerant after the heat absorption enters the compressor 20 to complete the circulation in the third mode.
  • FIG. 8 is a diagram showing a fourth mode by the vehicle heat management system of the second embodiment.
  • A is a structural schematic diagram in the fourth mode of the vehicle heat management system.
  • B It is a pressure enthalpy diagram in the 4th mode.
  • the control system 500 turns on the fan 32 to activate the capacitor 21 and opens the switching valve 23 and the second expansion valve 26. ..
  • the high-temperature and high-pressure refrigerant compressed and discharged by the compressor 20 dissipates heat through the capacitor 21.
  • the high-temperature and high-pressure liquid refrigerant discharged from the heat exchanger 21 is divided into two at the first confluence point 40. One of the divided refrigerants enters the first bypass 401, passes through the evaporator 25, and cools the inside of the vehicle.
  • the other of the diverted refrigerant passes from the second expansion valve 26 to the battery 29 side to cool the battery 29.
  • the refrigerant passing through the second bypass 402 first dissipates heat in the heat exchanger 22.
  • the refrigerant acquires supercooling.
  • the low-temperature low-pressure refrigerant decompressed by the third expansion valve 28 contributes to lowering the temperature of the high-temperature high-pressure refrigerant from the capacitor 21.
  • the refrigerant flows into the second expansion valve 26.
  • the refrigerant is supplied to the second expansion valve 26 for the first throttle.
  • the second expansion valve 26 supplies a medium-temperature, medium-pressure, gas-liquid mixed saturated refrigerant. This medium pressure is an intermediate pressure value between the high pressure in the capacitor 21 and the low pressure in the evaporator 25.
  • the refrigerant under the intermediate pressure absorbs the amount of heat of the battery 29.
  • the pressure value of the refrigerant can be adjusted by controlling the opening degree of the second expansion valve 26 at the battery inlet.
  • the refrigerant discharged from the heat exchanger 27 subsequently enters the third expansion valve 28 and is used for the second throttle.
  • the refrigerant after throttle in the third expansion valve 28 enters the heat exchanger 22 and absorbs heat for the second time.
  • the refrigerant after endothermic merges with the refrigerant of the first bypass 401 at the second merging point 41, and the merging refrigerant returns to the compressor 20.
  • the saturation temperature of the refrigerant under the intermediate pressure is higher than the saturation temperature of the refrigerant under the low pressure, the temperature difference between the refrigerant under the intermediate pressure and the battery 29 is relatively reduced. Therefore, the amount of heat of the battery 29 absorbed by the refrigerant under the intermediate pressure is relatively small. Therefore, since the pre-evaporation of the refrigerant can be suppressed and the refrigerant can always absorb heat under the gas-liquid saturation state, the surface temperature of the battery 29 is relatively uniform and the temperature difference is small.
  • the second expansion valve 26 and the third expansion valve 28 may be controlled by a mechanical temperature-sensitive control system.
  • the second expansion valve 26 and the third expansion valve 28 may be controlled by the control system 500. Thereby, the temperature difference of the battery 29 is guaranteed to be within the required range, and the uniform temperature cooling of the battery 29 is realized.
  • FIG. 9 is a schematic structural diagram of a vehicle heat management system based on the third embodiment of the disclosure.
  • the first expansion device 34 is provided by the first expansion valve 33.
  • the first expansion device 34 can be provided by an integrated electronic expansion valve (EXV) having a shut-off switching function.
  • the first expansion device 34 can be provided by a mechanical expansion valve (Shut-off TXV) having a shut-off function. Therefore, the switching function and the throttle function can be compatible with each other only by using the first expansion valve 33.
  • the opening degree of the electronic expansion valve can be determined by the magnitude of the degree of supercooling on the rear surface of the capacitor 21.
  • the control system 500 can set a target supercooling degree SCO and can control the opening degree of the first expansion valve 33 according to the comparison result with the observed supercooling degree.
  • the control system 500 reduces the opening degree of the electronic expansion valve when the degree of supercooling of the rear surface of the condenser 21 exceeds SCO, and increases the opening degree of the electronic expansion valve when the degree of supercooling of the rear surface of the condenser 21 is lower than SCO. ..

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

A vehicle heat management system of the present invention has a coolant circulation circuit. The coolant circulation circuit has a compressor, and a first heat exchanger provided with a fan. The coolant circulation circuit includes a first bypass and a second bypass that are connected in parallel between the upstream side of the compressor and the downstream side of the first heat exchanger. The first bypass includes a first expander and a second heat exchanger connected in that order. The second bypass includes a second expander, a third heat exchanger for performing heat exchange with a battery, and a third expander, connected in that order. The coolant circulation circuit is further provided with a fourth heat exchanger as an internal heat exchanger thereupon. A control system keeps coolant flowing into the third heat exchanger in a saturated state by controlling the opening degrees of the second expander and the third expander. Consequently, the temperature of the coolant flowing into the third heat exchanger is regulated.

Description

車両熱管理システムVehicle heat management system 関連出願の相互参照Cross-reference of related applications
 この出願は、2020年9月30日に中華人民共和国に出願された特許出願第202011065011.Xを基礎としており、基礎の出願の内容を、全体的に、参照により援用している。 This application is a patent application filed in the People's Republic of China on September 30, 2020. It is based on X, and the content of the basic application is incorporated by reference as a whole.
 この開示は車両熱管理技術分野に関し、具体的には車両熱管理システムに関する。 This disclosure relates to the vehicle heat management technology field, specifically to the vehicle heat management system.
 電気自動車の動力バッテリの安全な稼動と寿命を保証するためには、動力バッテリに対する冷却と加熱を行って、動力バッテリが適切な温度範囲内で稼動することを確保しなければならない。そのため、バッテリの温度がある温度値より高い場合はバッテリの冷却を行う必要があり、ある温度より低い場合はバッテリの加熱を行う必要がある。 In order to guarantee the safe operation and life of the power battery of an electric vehicle, it is necessary to cool and heat the power battery to ensure that the power battery operates within an appropriate temperature range. Therefore, when the temperature of the battery is higher than a certain temperature value, it is necessary to cool the battery, and when the temperature is lower than a certain temperature, it is necessary to heat the battery.
 冷媒を用いてバッテリを直接加熱、および/または、冷却する車両熱管理システムでは、車両熱管理システムにおいて、バッテリの加熱には通常、2種類の手段が用いられる。一つはPTCを用いてバッテリを直接加熱するもので、もう一つは圧縮機で圧縮した高温ガスを用いてバッテリを加熱するものである。 In a vehicle heat management system that directly heats and / or cools a battery using a refrigerant, two types of means are usually used for heating the battery in the vehicle heat management system. One is to heat the battery directly using PTC, and the other is to heat the battery using high temperature gas compressed by a compressor.
 PTCを用いてバッテリを加熱する場合、現在、市場には主に2種類のPTCがあり、一つはフィードバック調節付きのPTC、もう一つはフィードバック調節のないPTCである。フィードバック調節付きのPTCは、バッテリ底面の温度に基づいてPTCが送り出す熱的出力を調節することができる。フィードバック調節器は、バッテリ底面の温度がある規定値より高い場合はPTC熱的出力を下げる。フィードバック調節機能のないPTCでは、熱的出力は一定値である。フィードバック調節器は、バッテリ底面の温度がある規定値より高い場合はPTCをオフにし、バッテリ底面の温度がある値より低くなった場合は、PTCを再びオンにして加熱を行う。よって、PTCが頻繁に起動、停止を行うことになる。また、PTCによる加熱の場合、価格がかなり高くなる。 When heating a battery using PTC, there are currently two main types of PTC on the market, one with feedback adjustment and the other without feedback adjustment. The PTC with feedback adjustment can adjust the thermal output delivered by the PTC based on the temperature of the bottom of the battery. The feedback regulator reduces the PTC thermal output if the temperature at the bottom of the battery is above a certain value. For PTCs without feedback control, the thermal output is constant. The feedback regulator turns off the PTC when the temperature of the bottom of the battery is higher than a certain specified value, and turns on the PTC again when the temperature of the bottom of the battery is lower than a certain value for heating. Therefore, PTC will start and stop frequently. Also, in the case of heating by PTC, the price will be considerably high.
 その一方で、圧縮機で圧縮した高温ガスを用いてバッテリを直接加熱する場合は、バッテリが冷媒の熱量を吸収すると温度が上がり、冷媒が放熱すると温度が下がる。この時、バッテリの加熱板出入口の冷媒の温度差は30~40度に達し、バッテリ表面の温度差がその許容値(一般的には5℃)を超えてしまう。バッテリの温度差が大きすぎると、動力バッテリの寿命や効率に著しく影響するおそれがある。 On the other hand, when the battery is directly heated using the high temperature gas compressed by the compressor, the temperature rises when the battery absorbs the heat of the refrigerant, and the temperature drops when the refrigerant dissipates heat. At this time, the temperature difference of the refrigerant at the inlet and outlet of the heating plate of the battery reaches 30 to 40 degrees, and the temperature difference on the surface of the battery exceeds the permissible value (generally 5 ° C). If the temperature difference between the batteries is too large, the life and efficiency of the power battery may be significantly affected.
 上記の問題に鑑み、この開示の目的は、バッテリの均温冷却及び均温加熱を含む複数の熱管理モードを実現することのできる車両熱管理システムを提供することにある。 In view of the above problems, an object of this disclosure is to provide a vehicle heat management system capable of realizing a plurality of heat management modes including soaking cooling and soaking heating of a battery.
 この開示では、冷媒循環回路を有する車両熱管理システムを提供しており、冷媒循環回路は、圧縮機と、ファンが設置された第1熱交換器と、圧縮機の上流側と第1熱交換器の下流側との間に並列接続された第1バイパス及び第2バイパスとを含み、第1バイパスは順に接続された第1膨張装置及び第2熱交換器を含み、第2バイパスは順に接続された第2膨張装置と、バッテリとの熱交換を行うための第3熱交換器と、第3膨張装置を含み、冷媒循環回路上にはさらに第4熱交換器が設置されており、第4熱交換器は第1熱交換器から流出する冷媒と圧縮機に向かって流れる冷媒に熱交換を行わせ、或いは、第1熱交換器から流出する冷媒の一部と圧縮機に向かって流れる冷媒の一部に熱交換を行わせ、第2膨張装置及び第3膨張装置の開度を制御することによって、第3熱交換器に流入する冷媒を飽和状態にし、それにより第3熱交換器に流入する冷媒の温度を調節する。 In this disclosure, a vehicle heat management system having a refrigerant circulation circuit is provided, and the refrigerant circulation circuit includes a compressor, a first heat exchanger in which a fan is installed, and an upstream side of the compressor and a first heat exchange. It includes a first bypass and a second bypass connected in parallel to the downstream side of the vessel, the first bypass includes a first inflator and a second heat exchanger connected in sequence, and the second bypass connects in sequence. A third heat exchanger for heat exchange between the second expansion device and the battery, and a third expansion device are included, and a fourth heat exchanger is further installed on the refrigerant circulation circuit. 4 The heat exchanger causes heat exchange between the refrigerant flowing out from the first heat exchanger and the refrigerant flowing toward the compressor, or a part of the refrigerant flowing out from the first heat exchanger and flowing toward the compressor. By having a part of the refrigerant exchange heat and controlling the opening degree of the second expansion device and the third expansion device, the refrigerant flowing into the third heat exchanger is saturated, thereby making the third heat exchanger saturated. Adjust the temperature of the refrigerant flowing into.
 また、この開示では、第1バイパスと第2バイパスが、第1熱交換器の下流側に位置する第1合流点と圧縮機の上流側に位置する第2合流点の間に並列接続されており、第4熱交換器は、第1熱交換器と第1合流点の間であって、かつ第2合流点と圧縮機の間に位置しており、第1熱交換器から第1合流点に向かって流れる冷媒と、第2合流点から圧縮機に向かって流れる冷媒に熱交換をさせるために用いることができる。 Further, in this disclosure, the first bypass and the second bypass are connected in parallel between the first confluence point located on the downstream side of the first heat exchanger and the second confluence point located on the upstream side of the compressor. The fourth heat exchanger is located between the first heat exchanger and the first confluence, and between the second confluence and the compressor, and is the first confluence from the first heat exchanger. It can be used to exchange heat between the refrigerant flowing toward the point and the refrigerant flowing from the second confluence toward the compressor.
 また、この開示では、第1バイパスと第2バイパスが、第1熱交換器の下流側に位置する第1合流点と圧縮機の上流側に位置する第2合流点の間に並列接続されており、第4熱交換器は、第1合流点と第2膨張装置の間であって、かつ第3膨張装置と第2合流点の間に位置しており、第1合流点から第2膨張装置に流入する冷媒と、第3膨張装置から第2合流点に向かう冷媒を熱交換させるために用いることができる。 Further, in this disclosure, the first bypass and the second bypass are connected in parallel between the first confluence point located on the downstream side of the first heat exchanger and the second confluence point located on the upstream side of the compressor. The fourth heat exchanger is located between the first confluence point and the second expansion device and between the third expansion device and the second confluence point, and is located between the first confluence point and the second expansion device. It can be used to exchange heat between the refrigerant flowing into the device and the refrigerant from the third expansion device toward the second confluence.
 また、この開示では、第1膨張装置は、電子膨張弁またはシャットオフ機能を有する機械式膨張弁によって単独構成し、或いは、機械式の温度膨張弁と第1バイパス上で機械式温度膨張弁の上流側に取り付けられた電磁弁とによって構成することができる。 Further, in this disclosure, the first expansion device is configured independently by an electronic expansion valve or a mechanical expansion valve having a shut-off function, or a mechanical temperature expansion valve and a mechanical temperature expansion valve on the first bypass. It can be configured with a solenoid valve mounted on the upstream side.
 また、この開示では、第2膨張装置は、電子膨張弁またはシャットオフ機能を有する機械式膨張弁によって単独構成し、或いは、機械式の温度膨張弁と第2バイパス上で機械式温度膨張弁の上流側に取り付けられた電磁弁とによって構成することができる。 Further, in this disclosure, the second expansion device is configured independently by an electronic expansion valve or a mechanical expansion valve having a shut-off function, or a mechanical temperature expansion valve and a mechanical temperature expansion valve on the second bypass. It can be configured with a solenoid valve mounted on the upstream side.
 また、この開示では、圧縮機の入口側に気液分離器を設置することもできる。これにより、気液分離器によって冷媒の気体と液体を分離し、圧縮機の損壊を防止することができる。 Also, in this disclosure, a gas-liquid separator can be installed on the inlet side of the compressor. As a result, the gas and liquid of the refrigerant can be separated by the gas-liquid separator, and the compressor can be prevented from being damaged.
 この開示により、簡単でコストの低い回路構造によってバッテリの均温加熱及び均温冷却を実現できる。この結果、バッテリの効率のよい稼動と使用寿命を保証し、バッテリの加熱または冷却の過程で表面温度差が大きすぎることによる寿命への影響を防止することができる。車内の単独冷却、バッテリの単独冷却、バッテリの加熱、及び車内とバッテリの同時冷却という4種類の異なる熱管理モードを遂行することができる。 With this disclosure, it is possible to realize uniform heating and uniform cooling of the battery with a simple and low-cost circuit structure. As a result, efficient operation and service life of the battery can be guaranteed, and the influence on the service life due to the excessive surface temperature difference in the process of heating or cooling the battery can be prevented. It is possible to perform four different thermal management modes: single cooling inside the car, single cooling of the battery, heating of the battery, and simultaneous cooling of the inside of the car and the battery.
図1は、この開示の第1実施形態に基づく車両熱管理システムの構造概略図であり、(a)は車両熱管理システムの構造概略図、(b)は車両熱管理システム内の第1膨張装置と第2膨張装置の具体的な設置例、(c)は車両熱管理システム内に気液分離器が設置された場合の構造概略図である。1A and 1B are structural schematic views of a vehicle heat management system based on the first embodiment of the disclosure, FIG. 1A is a structural schematic diagram of a vehicle heat management system, and FIG. 1B is a first expansion in a vehicle heat management system. A specific installation example of the device and the second expansion device, (c) is a structural schematic diagram when a gas-liquid separator is installed in the vehicle heat management system. 図2は、図1に示す第1実施形態の車両熱管理システムによるバッテリの単独冷却循環を示す図であり、(a)は該車両熱管理システムのバッテリ単独冷却循環時の構造概略図、(b)はバッテリ単独冷却循環の圧力エンタルピー図である。FIG. 2 is a diagram showing an independent cooling circulation of a battery by the vehicle heat management system of the first embodiment shown in FIG. 1, and FIG. 2A is a schematic structural diagram of the vehicle heat management system during a battery independent cooling circulation. b) is a pressure enthalpy diagram of the battery independent cooling circulation. 図3は、図1に示す第1実施形態の車両熱管理システムによるバッテリの加熱循環を示す図であり、(a)は該車両熱管理システムのバッテリ加熱循環時の構造概略図、(b)はバッテリ加熱循環の圧力エンタルピー図である。FIG. 3 is a diagram showing battery heating circulation by the vehicle heat management system of the first embodiment shown in FIG. 1, where (a) is a schematic structural diagram of the vehicle heat management system during battery heating circulation, (b). Is a pressure enthalpy diagram of battery heating circulation. 図4は、図1に示す第1実施形態の車両熱管理システムによる空調単独冷却循環を示す図であり、(a)は該車両熱管理システムの空調単独冷却循環時の構造概略図、(b)は空調単独冷却循環の圧力エンタルピー図である。FIG. 4 is a diagram showing an air-conditioning independent cooling circulation by the vehicle heat management system of the first embodiment shown in FIG. 1, and FIG. 4A is a structural schematic diagram of the vehicle heat management system during an air-conditioning independent cooling circulation, (b). ) Is a pressure enthalpy diagram of the air conditioning single cooling circulation. 図5は、図1に示す第1実施形態の車両熱管理システムによる空調とバッテリの冷却循環を示す図であり、(a)は該車両熱管理システムの空調とバッテリの冷却循環時の構造概略図、(b)は空調とバッテリが同時に動く循環の圧力エンタルピー図である。FIG. 5 is a diagram showing air conditioning and battery cooling circulation by the vehicle heat management system of the first embodiment shown in FIG. 1, and FIG. 5A is an outline of the structure of the vehicle heat management system during air conditioning and battery cooling circulation. The figure (b) is a pressure enthalpy diagram of circulation in which air conditioning and a battery operate at the same time. 図6は、この開示の第2実施形態に基づく車両熱管理システムの構造概略図であり、(a)は車両熱管理システムの構造概略図、(b)は車両熱管理システム内の第1膨張装置と第2膨張装置の具体的な設置例である。6A and 6B are structural schematic views of a vehicle heat management system based on the second embodiment of the disclosure, FIG. 6A is a structural schematic diagram of the vehicle heat management system, and FIG. 6B is a first expansion in the vehicle heat management system. This is a specific installation example of the device and the second expansion device. 図7は、図6に示す第2実施形態の車両熱管理システムによる空調単独冷却循環を示す図であり、(a)は該車両熱管理システムの空調単独冷却循環時の構造概略図、(b)は空調単独冷却循環時の圧力エンタルピー図である。FIG. 7 is a diagram showing an air-conditioning independent cooling circulation by the vehicle heat management system of the second embodiment shown in FIG. 6, and FIG. 7A is a structural schematic diagram of the vehicle heat management system during an air-conditioning independent cooling circulation, (b). ) Is a pressure enthalpy diagram during cooling and circulation of air conditioning alone. 図8は、図6に示す第2実施形態の車両熱管理システムにより空調とバッテリの冷却循環を同時に行っていることを示す図であり、(a)は該車両熱管理システムの空調とバッテリの同時冷却循環時の構造概略図、(b)は空調とバッテリの同時冷却循環時の圧力エンタルピー図である。FIG. 8 is a diagram showing that air conditioning and cooling circulation of the battery are simultaneously performed by the vehicle heat management system of the second embodiment shown in FIG. 6, and FIG. 8A is a diagram showing the air conditioning of the vehicle heat management system and the battery. The structural schematic diagram at the time of simultaneous cooling circulation, (b) is the pressure enthalpy diagram at the time of simultaneous cooling circulation of an air conditioner and a battery. 図9は、この開示の第3実施形態に基づく車両熱管理システムの構造概略図である。FIG. 9 is a schematic structural diagram of a vehicle heat management system based on the third embodiment of the disclosure.
 以下では、図面と実施形態を結び付けて、この開示についてさらに説明する。図面及び実施形態はこの開示を説明するものにすぎず、この開示を限定するものではないことを理解しておかなければならない。 In the following, this disclosure will be further described by linking the drawings with the embodiments. It should be understood that the drawings and embodiments merely explain this disclosure and do not limit this disclosure.
 ここでは、バッテリの均温冷却及び均温加熱を実現可能な車両熱管理システムを公開している。車両熱管理システムは、PHEV(Plug-in Hybrid Electric Vehicle、プラグインハイブリッド電気自動車)、純EV(Electric Vehicle、電気自動車)などの車両に応用することができる。以下では、図面と結び付けて、この開示の具体的実施形態についてさらに具体的に説明する。 Here, the vehicle heat management system that can realize soaking cooling and soaking heating of the battery is open to the public. The vehicle heat management system can be applied to vehicles such as PHEV (Plug-in Hybrid Electric Vehicle, plug-in hybrid electric vehicle) and pure EV (Electric Vehicle, electric vehicle). Hereinafter, specific embodiments of this disclosure will be described in more detail in connection with the drawings.
 第1実施形態
 図1は、この開示の第1実施形態に基づく車両熱管理システムの構造概略図である。図1の(a)に示すように、第1実施形態の車両熱管理システムは冷媒循環回路300を有している。冷媒循環回路300は、圧縮機20と、第1熱交換器21とを含む。冷媒循環回路300は、圧縮機20の上流と第1熱交換器21の下流の間に並列接続されている第1バイパス301及び第2バイパス302を含む。第1熱交換器21は、圧縮機20の下流に設置されている。第1熱交換器21は、圧縮機20から排出された高温高圧の冷媒ガスと空気を熱交換させるためのコンデンサである。コンデンサ21上にはファン32が設置されている。コンデンサ21は、ファン32を起動させると、冷媒とファンが吹き出す空気が熱交換を行って放熱する。コンデンサ21は、ファン32を止めるとコンデンサ21が機能を発揮しないので、流体通路としてのみ使用される。
1st Embodiment FIG. 1 is a structural schematic diagram of a vehicle heat management system based on the first embodiment of this disclosure. As shown in FIG. 1 (a), the vehicle heat management system of the first embodiment has a refrigerant circulation circuit 300. The refrigerant circulation circuit 300 includes a compressor 20 and a first heat exchanger 21. The refrigerant circulation circuit 300 includes a first bypass 301 and a second bypass 302 connected in parallel between the upstream of the compressor 20 and the downstream of the first heat exchanger 21. The first heat exchanger 21 is installed downstream of the compressor 20. The first heat exchanger 21 is a condenser for heat exchange between high temperature and high pressure refrigerant gas discharged from the compressor 20 and air. A fan 32 is installed on the capacitor 21. When the fan 32 is started, the condenser 21 exchanges heat between the refrigerant and the air blown out by the fan to dissipate heat. The condenser 21 is used only as a fluid passage because the condenser 21 does not function when the fan 32 is stopped.
 第1バイパス301は、主に車内の冷房を行うために用いられ、第1膨張装置34と第2熱交換器25がこの順に接続されて成り、かつこの順序でコンデンサ21の下流と圧縮機20の上流との間に接続されている。そのため、圧縮機20、コンデンサ21、第1膨張装置34及び第2熱交換器25は、この順で冷媒の流動方向に沿って車両内部に対して冷房を行う冷房回路を構成している。本実施形態では、第1膨張装置34は電子膨張弁(EXV;Electronic Expansion Valve)、または、シャットオフ機能を有する機械式膨張弁(Shut-off TXV;Shut-off Thermal Expansion Valve)によって提供することができる。第1膨張装置34は、同時に切換機能と絞り機能も備えている。第1膨張装置34は、図1の(b)に示すように、切換弁23と第1膨張弁24を直列接続して構成することもできる。第1膨張装置34は、電子膨張弁、または、シャットオフ機能を有する機械式膨張弁によって単独で構成される場合がある。代替的に、第1膨張装置34は、機械式温度膨張弁と第1バイパス上で機械式温度膨張弁の上流側に取り付けられた電磁弁とによって構成される場合がある。 The first bypass 301 is mainly used for cooling the inside of the vehicle, and the first expansion device 34 and the second heat exchanger 25 are connected in this order, and the downstream of the condenser 21 and the compressor 20 are connected in this order. It is connected to the upstream of. Therefore, the compressor 20, the condenser 21, the first expansion device 34, and the second heat exchanger 25 form a cooling circuit that cools the inside of the vehicle along the flow direction of the refrigerant in this order. In the present embodiment, the first expansion device 34 is provided by an electronic expansion valve (EXV; Electrical Expansion Valve) or a mechanical expansion valve (Shut-off TXV; Shut-off Thermal Expansion Valve) having a shut-off function. Can be done. The first expansion device 34 also has a switching function and a diaphragm function at the same time. As shown in FIG. 1B, the first expansion device 34 can also be configured by connecting the switching valve 23 and the first expansion valve 24 in series. The first expansion device 34 may be independently configured by an electronic expansion valve or a mechanical expansion valve having a shut-off function. Alternatively, the first expansion device 34 may consist of a mechanical temperature expansion valve and a solenoid valve mounted upstream of the mechanical temperature expansion valve on the first bypass.
 切換弁23は開閉可能な電磁弁であってよく、主に第1バイパス301の開閉を制御するために用いられる。第1膨張弁24は、機械式の温度膨張弁(TXV;Thermal Expansion Valve)であってよい。第1膨張弁24は、その膨張弁の開度は冷媒の過熱度に基づいて自主的に制御され、主に流入する冷媒ガスに対して絞り減圧を行うために用いられる。第2熱交換器25は空気と冷媒に熱交換を行わせる蒸発器であり、第1膨張弁24から流出する降温降圧後の冷媒が蒸発器25内で空気の熱量を吸収して低温低圧の気体となり、車内の冷却を行う。 The switching valve 23 may be a solenoid valve that can be opened and closed, and is mainly used for controlling the opening and closing of the first bypass 301. The first expansion valve 24 may be a mechanical temperature expansion valve (TXV; Thermal Expansion Valve). The opening degree of the expansion valve 24 of the first expansion valve 24 is voluntarily controlled based on the degree of superheat of the refrigerant, and is mainly used to throttle and reduce the pressure of the inflowing refrigerant gas. The second heat exchanger 25 is an evaporator that exchanges heat between air and the refrigerant, and the refrigerant flowing out from the first expansion valve 24 after the temperature drop is lowered absorbs the heat of the air in the evaporator 25 and has a low temperature and low pressure. It becomes a gas and cools the inside of the car.
 第2バイパス302は、第2膨張装置35と、バッテリ29の下方に設置された第3熱交換器27と、第3膨張装置としての第3膨張弁28がこの順に接続されて構成されている。第2バイパス302は、この順序でコンデンサ21の下流と圧縮機20の上流との間に接続されている。圧縮機20、コンデンサ21、第2膨張装置35、第3熱交換器27及び第3熱膨張弁28は、この順で冷媒の流動方向に沿ってバッテリ29に対して加熱または冷却を行うバッテリ熱管理回路を構成している。本実施形態では、第2膨張装置35は図1の(b)に示すような電子膨張弁またはシャットオフ機能を有する機械式膨張弁としての第2膨張弁26であってよい。それと同時に、第2膨張装置35は切換機能と絞り機能も備えている。第2膨張装置35は、上記の第1膨張装置34のような電磁弁と温度膨張弁を直列して構成することもできる。 The second bypass 302 is configured by connecting the second expansion device 35, the third heat exchanger 27 installed below the battery 29, and the third expansion valve 28 as the third expansion device in this order. .. The second bypass 302 is connected between the downstream of the capacitor 21 and the upstream of the compressor 20 in this order. The compressor 20, the capacitor 21, the second expansion device 35, the third heat exchanger 27, and the third thermal expansion valve 28 heat or cool the battery 29 along the flow direction of the refrigerant in this order. It constitutes a management circuit. In the present embodiment, the second expansion device 35 may be an electronic expansion valve as shown in FIG. 1 (b) or a second expansion valve 26 as a mechanical expansion valve having a shut-off function. At the same time, the second expansion device 35 also has a switching function and a diaphragm function. The second expansion device 35 may also be configured by connecting a solenoid valve and a temperature expansion valve such as the first expansion device 34 described above in series.
 第3熱交換器27はバッテリ熱交換器であり、動力バッテリ29の下方に設置されている。バッテリ熱交換器27は、内部を流通する冷媒とバッテリ29底面の熱量を交換することによりバッテリ29に対する冷却及び加熱を実現する。冷媒の温度がバッテリ29の温度より低い場合は、冷媒がバッテリ29の熱量を吸収し、バッテリ29を冷却する機能を実現する。冷媒の温度がバッテリ29の温度より高い場合は、冷媒がバッテリ29に放熱し、バッテリ29が冷媒の熱量を吸収して、バッテリ29を加熱する機能を実現する。 The third heat exchanger 27 is a battery heat exchanger and is installed below the power battery 29. The battery heat exchanger 27 realizes cooling and heating of the battery 29 by exchanging the amount of heat of the bottom surface of the battery 29 with the refrigerant circulating inside. When the temperature of the refrigerant is lower than the temperature of the battery 29, the refrigerant absorbs the amount of heat of the battery 29 and realizes the function of cooling the battery 29. When the temperature of the refrigerant is higher than the temperature of the battery 29, the refrigerant dissipates heat to the battery 29, and the battery 29 absorbs the heat of the refrigerant to realize the function of heating the battery 29.
 第2膨張弁26は、バッテリ熱交換器27の上流に設置されている。第2膨張弁26は、主に流入する冷媒ガスに対する絞りを行って減圧し、中温中圧の液状冷媒にするために用いられている。第2膨張弁26は、例えば、切換機能及び絞り機能を実現できる電子膨張弁などの一体型膨張弁であってよい。第3膨張弁28は、主にバッテリ熱交換器27から排出された冷媒に対して絞りを2回行って低温低圧の液体にするために用いられる。第2膨張弁26及び第3膨張弁28の開度を制御することにより、第3熱交換器27に流入する冷媒を常に飽和状態(即ち気液混合状態)にし、バッテリ熱交換器27に流入する冷媒の温度を調節することができる。 The second expansion valve 26 is installed upstream of the battery heat exchanger 27. The second expansion valve 26 is mainly used to throttle the inflowing refrigerant gas to reduce the pressure to obtain a medium-temperature, medium-pressure liquid refrigerant. The second expansion valve 26 may be an integrated expansion valve such as an electronic expansion valve that can realize a switching function and a throttle function, for example. The third expansion valve 28 is mainly used to squeeze the refrigerant discharged from the battery heat exchanger 27 twice to obtain a low-temperature low-pressure liquid. By controlling the opening degree of the second expansion valve 26 and the third expansion valve 28, the refrigerant flowing into the third heat exchanger 27 is always saturated (that is, a gas-liquid mixed state) and flows into the battery heat exchanger 27. The temperature of the refrigerant can be adjusted.
 このように、第1バイパス301及び第2バイパス302の冷媒入口端の、冷媒循環回路300上のコンデンサ21に対して下流側寄りに第1合流点30が形成されている。第1バイパス301及び第2バイパス302の冷媒出口端の、冷媒循環回路300上の圧縮機20に対して上流側寄りに第2合流点31が形成されている。これにより第1バイパス301及び第2バイパス302が冷媒循環回路300内にまとめて並列に設置される。 As described above, the first confluence point 30 is formed on the downstream side of the condenser 21 on the refrigerant circulation circuit 300 at the refrigerant inlet ends of the first bypass 301 and the second bypass 302. A second confluence 31 is formed at the refrigerant outlet ends of the first bypass 301 and the second bypass 302 on the upstream side of the compressor 20 on the refrigerant circulation circuit 300. As a result, the first bypass 301 and the second bypass 302 are collectively installed in parallel in the refrigerant circulation circuit 300.
 また、この開示では、冷媒循環回路300上に熱交換器22がさらに設置されている。熱交換器22は、主にコンデンサ21から流出する冷媒と圧縮機20に向かって流れる冷媒との間で熱交換を行わせるために用いられる。或いは、熱交換器22は、コンデンサ21から流出する冷媒の一部と圧縮機20に向かって流れる冷媒の一部との間で熱交換を行わせるために用いられる。熱交換器22は、第4熱交換器とも呼ばれる。熱交換器22は、冷媒循環回路300における内部熱交換器でもある。 Further, in this disclosure, the heat exchanger 22 is further installed on the refrigerant circulation circuit 300. The heat exchanger 22 is mainly used to exchange heat between the refrigerant flowing out of the condenser 21 and the refrigerant flowing toward the compressor 20. Alternatively, the heat exchanger 22 is used to exchange heat between a part of the refrigerant flowing out of the condenser 21 and a part of the refrigerant flowing toward the compressor 20. The heat exchanger 22 is also referred to as a fourth heat exchanger. The heat exchanger 22 is also an internal heat exchanger in the refrigerant circulation circuit 300.
 第1実施形態では、図1に示すように、熱交換器22は、コンデンサ21と第1合流点30との間の部位と、圧縮機20と第2合流点31との間の部位との間に設置されている。この時、熱交換器22は、コンデンサ21から流出するすべての冷媒と圧縮機20に向かって流れるすべての冷媒に熱交換を行わせる。より具体的には、熱交換器22は、第1冷媒と第2冷媒との間で熱交換を行わせるのである。第1冷媒は、高温高圧冷媒である。第1冷媒は、コンデンサ21から第1バイパス301および/または第2バイパス302に流入する冷媒である。すなわち、第1冷媒は、第1合流点30に流入する冷媒である。第2冷媒は、低温低圧冷媒である。第2冷媒は、第1バイパス301および/または第2バイパス302から圧縮機20に向かって流れる冷媒である。すなわち、第2冷媒は、第2合流点31から流出し圧縮機20に到達する前の冷媒である。具体的な状況は後述するが、これによりコンデンサ21を経て流出する比較的高温高圧の冷媒を放熱させる。高温高圧の冷媒の温度は降下する。この結果、高圧の冷媒は、過冷却を獲得する場合がある。第2合流点31から流出する低温低圧の液状冷媒は、熱量を吸収して低温低圧の気体になる。この結果、低圧の冷媒は過熱度を獲得する場合がある。熱交換器22は、システム全体の性能を高めるために貢献することができる。 In the first embodiment, as shown in FIG. 1, the heat exchanger 22 has a portion between the capacitor 21 and the first confluence 30 and a portion between the compressor 20 and the second confluence 31. It is installed in between. At this time, the heat exchanger 22 causes all the refrigerants flowing out from the condenser 21 and all the refrigerants flowing toward the compressor 20 to exchange heat. More specifically, the heat exchanger 22 causes heat exchange between the first refrigerant and the second refrigerant. The first refrigerant is a high temperature and high pressure refrigerant. The first refrigerant is a refrigerant that flows from the condenser 21 into the first bypass 301 and / or the second bypass 302. That is, the first refrigerant is a refrigerant that flows into the first confluence 30. The second refrigerant is a low temperature low pressure refrigerant. The second refrigerant is a refrigerant that flows from the first bypass 301 and / or the second bypass 302 toward the compressor 20. That is, the second refrigerant is a refrigerant that has flowed out from the second confluence 31 and has not reached the compressor 20. The specific situation will be described later, but this causes the relatively high temperature and high pressure refrigerant flowing out through the capacitor 21 to dissipate heat. The temperature of the high temperature and high pressure refrigerant drops. As a result, the high pressure refrigerant may acquire supercooling. The low-temperature low-pressure liquid refrigerant flowing out from the second confluence 31 absorbs heat and becomes a low-temperature low-pressure gas. As a result, the low pressure refrigerant may acquire a degree of superheat. The heat exchanger 22 can contribute to enhancing the performance of the entire system.
 また、図1の(c)に示すように、熱交換器22と圧縮機20の間、具体的に言うと熱交換器22の出口と圧縮機20の入口の間には、さらに気液分離器36を設置することもできる。気液分離器36の役割は気体と液体を分離することである。液体冷媒は気液分離器36のタンク内に貯蔵され、冷媒ガスは圧縮機20に進入する。この結果、圧縮機20が液体冷媒を吸い込んだ時に液体衝撃が生じて圧縮機20を損壊させることを防止することができる。 Further, as shown in FIG. 1 (c), gas-liquid separation is further separated between the heat exchanger 22 and the compressor 20, specifically, between the outlet of the heat exchanger 22 and the inlet of the compressor 20. A vessel 36 can also be installed. The role of the gas-liquid separator 36 is to separate gas and liquid. The liquid refrigerant is stored in the tank of the gas-liquid separator 36, and the refrigerant gas enters the compressor 20. As a result, it is possible to prevent the compressor 20 from being damaged due to a liquid impact when the compressor 20 sucks in the liquid refrigerant.
 車両熱管理システムは異なる4つの循環モードを実現することができる。車両熱管理システムは、第1モード、第2モード、第3モード、および、第4モードを提供する。第1モードは、バッテリ単独を冷却するための循環状態である。第2モードは、バッテリを加熱する循環状態である。第3モードは、空調用途に単独で冷却機能を提供する循環状態である。第3モードは、車内降温状態とも呼ばれる。第4モードは、空調及びバッテリの両方に冷却機能を提供する循環状態である。第4モードは、空調冷却とバッテリ冷却の同時進行状態とも呼ばれる。以下では、図1の(b)に示す車両熱管理システムを例に、図2~図5を参照して上記の4種類の動作モードを詳しく説明する。 The vehicle heat management system can realize four different circulation modes. The vehicle heat management system provides a first mode, a second mode, a third mode, and a fourth mode. The first mode is a circulation state for cooling the battery alone. The second mode is a circulating state in which the battery is heated. The third mode is a circulation state that independently provides a cooling function for air conditioning applications. The third mode is also referred to as an in-vehicle temperature drop state. The fourth mode is a circulating state that provides cooling functions for both air conditioning and the battery. The fourth mode is also called a simultaneous progress state of air conditioning cooling and battery cooling. Hereinafter, the above four types of operation modes will be described in detail with reference to FIGS. 2 to 5 by taking the vehicle heat management system shown in FIG. 1 (b) as an example.
 車両熱管理システムは、制御システム500を備える。制御システム500は、複数の循環モードを選択的に提供するように冷媒循環回路300の複数の可変要素を制御する。複数の可変要素は、電気式膨張弁、電磁弁、ファンモータなどを含む。制御システム500は、冷媒循環回路300の動作状態、温度環境などを入力するための複数の入力装置を含む。制御システム500は、少なくともひとつのプロセッサ510を備える。プロセッサ510は、内蔵メモリまたは外付けメモリに記録されたプログラムを実行する半導体回路である場合がある。プロセッサ510は、プログラムに相当するデジタル回路を含む半導体回路である場合がある。デジタル回路は、ゲートアレイ、または、FPGAなどの名称で呼ばれる場合がある。 The vehicle heat management system includes a control system 500. The control system 500 controls a plurality of variable elements of the refrigerant circulation circuit 300 so as to selectively provide the plurality of circulation modes. Multiple variable elements include electric expansion valves, solenoid valves, fan motors, and the like. The control system 500 includes a plurality of input devices for inputting an operating state of the refrigerant circulation circuit 300, a temperature environment, and the like. The control system 500 includes at least one processor 510. The processor 510 may be a semiconductor circuit that executes a program recorded in internal memory or external memory. The processor 510 may be a semiconductor circuit including a digital circuit corresponding to a program. Digital circuits may be referred to by names such as gate arrays or FPGAs.
 バッテリ単独冷却循環状態
 図2は、第1実施形態の車両熱管理システムによる第1モードを示す図である。(a)は車両熱管理システムの第1モードにおける構造概略図である。(b)は第1モードにおける圧力エンタルピー図である。図中に点線で示されている管路は、管路が遮断されていることを表している。ここで説明しておかなければならないが、本実施形態では、圧力エンタルピー図とは、圧力とエンタルピー値の曲線図である。圧力エンタルピー図は、冷媒の分析に常用されている。圧力エンタルピー図は、冷媒が流路内を流動する時の動作モードの変化を示している。圧力エンタルピー図の縦座標は絶対圧力の対数値(即ち、圧力の絶対値)、横座標は比エンタルピー値である。圧力エンタルピー図は、主に冷媒のシステム内における異なる位置での状態及び冷媒の状態変化を可視化して示すために用いられる。後述する各モードの制御では、冷媒の状態は各弁の開度の違いによって異なる。冷媒の状態の違いは、圧力エンタルピー図上の位置として示されている。各モードの圧力エンタルピー図はシステムが到達したい状態、つまり制御の目標状態を体現している。以下では、同じである場合は繰り返し述べないものとする。
Battery independent cooling circulation state FIG. 2 is a diagram showing a first mode by the vehicle heat management system of the first embodiment. (A) is a structural schematic diagram in the first mode of the vehicle heat management system. (B) is a pressure enthalpy diagram in the first mode. The pipeline shown by the dotted line in the figure indicates that the pipeline is blocked. As should be described here, in the present embodiment, the pressure enthalpy diagram is a curve diagram of pressure and enthalpy value. Pressure enthalpy diagrams are commonly used in the analysis of refrigerants. The pressure enthalpy diagram shows the change in the operation mode when the refrigerant flows in the flow path. The ordinate of the pressure enthalpy diagram is the logarithmic value of absolute pressure (that is, the absolute value of pressure), and the abscissa is the specific enthalpy value. The pressure enthalpy diagram is mainly used to visualize and show the state of the refrigerant at different positions in the system and the state change of the refrigerant. In the control of each mode described later, the state of the refrigerant differs depending on the difference in the opening degree of each valve. The difference in the state of the refrigerant is shown as a position on the pressure enthalpy diagram. The pressure enthalpy diagram in each mode embodies the state the system wants to reach, the target state of control. In the following, if they are the same, they will not be mentioned repeatedly.
 図2の(a)、(b)に示すように、第1モードでは、制御システム500は、ファン32をオンにしてコンデンサ21を起動させ、切換弁23を閉め、第2膨張弁26を開いている。この時、第1バイパス301には冷媒は流れていない。圧縮機20で圧縮された高温高圧の冷媒ガスは、コンデンサ21を通過し、外部に放熱して高温高圧の液体冷媒になる。放熱後の冷媒はすべて熱交換器22を通過し、熱交換器22内で第2バイパス302から排出された低温低圧の冷媒と熱交換する。熱交換器22で熱交換した冷媒は、全部が第2バイパス302に流入し、これにより冷媒に等圧放熱、降温、過冷却を行わせる。バッテリ熱交換器27出口側の冷媒の過熱度に基づいて、第2膨張弁26の開度を制御する。例えば、目標過熱度を5℃に設定すると、システムの過熱度が5℃を上回った時には第2膨張弁26の開度が増大し、システムの過熱度が5℃を下回った時には第2膨張弁26の開度が減少する。また、制御システム500は、バッテリ熱交換器27の熱交換量に基づいて圧縮機20の回転速度を調節している。具体的に言うと、制御システム500は、バッテリ29の温度を検出し、かつ検出したバッテリ29の温度に基づいてバッテリ熱交換器27に必要な目標熱交換量Q0を設定することができ、バッテリの温度が高いほど、必要な目標熱交換量Q0が大きくなるように設定する。続いて、制御システム500は、バッテリ熱交換器27の実際の熱交換量Qを計算し、目標熱交換量Q0との比較を行い、比較結果に応じて圧縮機20の回転速度を制御する。制御システム500は、Q<Q0の場合は圧縮機20の回転速度を増大させ、Q>Q0の場合は圧縮機20の回転速度を減少させる。第2膨張弁26は、冷媒を減圧膨張させる。第2膨張弁26は、バッテリ29の温度よりやや低い中温中圧の気液混合飽和状態の冷媒を供給する。第2膨張弁26によって絞り後の冷媒は、バッテリ熱交換器27に進入して吸熱を行い、吸熱後の冷媒が第3膨張弁28を通過する。第1モードでは、第3膨張弁28が全開になるので、絞りは行わない。第3膨張弁28を経た冷媒は熱交換器22に進入して2回目の吸熱を行う。2回の吸熱を経た低温低圧の冷媒ガスは、圧縮機20に進入し、第1モードを完成させる。 As shown in FIGS. 2A and 2B, in the first mode, the control system 500 turns on the fan 32 to start the capacitor 21, closes the switching valve 23, and opens the second expansion valve 26. ing. At this time, no refrigerant is flowing through the first bypass 301. The high-temperature and high-pressure refrigerant gas compressed by the compressor 20 passes through the condenser 21 and dissipates heat to the outside to become a high-temperature and high-pressure liquid refrigerant. All the heat-dissipated refrigerant passes through the heat exchanger 22 and exchanges heat with the low-temperature low-pressure refrigerant discharged from the second bypass 302 in the heat exchanger 22. All of the refrigerant heat exchanged by the heat exchanger 22 flows into the second bypass 302, whereby the refrigerant is made to perform isobaric heat dissipation, temperature lowering, and supercooling. The opening degree of the second expansion valve 26 is controlled based on the degree of superheat of the refrigerant on the outlet side of the battery heat exchanger 27. For example, if the target superheat is set to 5 ° C, the opening of the second expansion valve 26 will increase when the system superheat exceeds 5 ° C, and the second expansion valve will increase when the system superheat falls below 5 ° C. The opening degree of 26 is reduced. Further, the control system 500 adjusts the rotation speed of the compressor 20 based on the heat exchange amount of the battery heat exchanger 27. Specifically, the control system 500 can detect the temperature of the battery 29 and set the target heat exchange amount Q0 required for the battery heat exchanger 27 based on the detected temperature of the battery 29, and the battery. The higher the temperature, the larger the required target heat exchange amount Q0 is set. Subsequently, the control system 500 calculates the actual heat exchange amount Q of the battery heat exchanger 27, compares it with the target heat exchange amount Q0, and controls the rotation speed of the compressor 20 according to the comparison result. The control system 500 increases the rotation speed of the compressor 20 when Q <Q0, and decreases the rotation speed of the compressor 20 when Q> Q0. The second expansion valve 26 decompresses and expands the refrigerant. The second expansion valve 26 supplies a medium-temperature, medium-pressure, gas-liquid mixed saturated refrigerant slightly lower than the temperature of the battery 29. The refrigerant after being throttled by the second expansion valve 26 enters the battery heat exchanger 27 to absorb heat, and the refrigerant after heat absorption passes through the third expansion valve 28. In the first mode, the third expansion valve 28 is fully opened, so that the throttle is not performed. The refrigerant that has passed through the third expansion valve 28 enters the heat exchanger 22 and absorbs heat for the second time. The low-temperature low-pressure refrigerant gas that has undergone two endothermic processes enters the compressor 20 and completes the first mode.
 中間圧力下にある冷媒の飽和温度は低圧下にある冷媒の飽和温度より高いので、中間圧力下にある冷媒とバッテリ29との間の温度差は相対的に小さい。中間圧力下にある冷媒が吸収するバッテリ29の熱量は相対的に少ない。こうすることで、冷媒の事前蒸発を抑制し、冷媒が常に気液飽和状態下で吸熱を行うことができるので、バッテリ29の表面温度が比較的均一で、温度差が小さい。 Since the saturation temperature of the refrigerant under the intermediate pressure is higher than the saturation temperature of the refrigerant under the low pressure, the temperature difference between the refrigerant under the intermediate pressure and the battery 29 is relatively small. The amount of heat of the battery 29 absorbed by the refrigerant under the intermediate pressure is relatively small. By doing so, the pre-evaporation of the refrigerant can be suppressed, and the refrigerant can always absorb heat under the gas-liquid saturation state, so that the surface temperature of the battery 29 is relatively uniform and the temperature difference is small.
 第1モードの循環状態では、熱交換器22内で熱量の交換を行うのはいずれも冷媒である。図2の(a)、(b)に示すように、コンデンサ21から排出された高圧高温の液体冷媒が熱交換器22の左側に流入する。バッテリ熱交換器27が吸熱した後に排出する低温低圧の液体冷媒が熱交換器22の右側に流入する。この結果、熱交換器22は、高温高圧の液体冷媒が放熱することで、冷媒の過冷却を実現し、低温低圧の冷媒が吸熱することで、冷媒の過熱を実現する。これにより、冷媒の吸熱能力及び熱交換能力を増加させ、システムの性能をアップさせることができる。 In the circulation state of the first mode, it is the refrigerant that exchanges the amount of heat in the heat exchanger 22. As shown in FIGS. 2A and 2B, the high-pressure and high-temperature liquid refrigerant discharged from the capacitor 21 flows into the left side of the heat exchanger 22. The low-temperature low-pressure liquid refrigerant discharged after the battery heat exchanger 27 absorbs heat flows into the right side of the heat exchanger 22. As a result, the heat exchanger 22 realizes supercooling of the refrigerant by radiating heat from the high-temperature and high-pressure liquid refrigerant, and realizes overheating of the refrigerant by absorbing heat from the low-temperature and low-pressure refrigerant. As a result, the endothermic capacity and heat exchange capacity of the refrigerant can be increased, and the performance of the system can be improved.
 バッテリ加熱循環状態
 図3は、第1実施形態の車両熱管理システムによるバッテリの加熱循環を示す図である。(a)は車両熱管理システムの第2モードにおける構造概略図である。(b)は第2モードにおける圧力エンタルピー図である。
Battery heating circulation state FIG. 3 is a diagram showing a battery heating circulation by the vehicle heat management system of the first embodiment. (A) is a structural schematic diagram in the second mode of the vehicle heat management system. (B) is a pressure enthalpy diagram in the second mode.
 図3に示すように、第2モードでは、冷媒は圧縮機20で圧縮されて高温高圧の気体になる。動作モードでは、コンデンサ21のファン32は止まっているので、この時のコンデンサ21は流体の通路にすぎず、高温高圧の冷媒ガスはコンデンサ21内で熱量の交換を行わない。このモードでは、制御システム500は、切換弁23を閉め、第2膨張弁26を開いているが、この時、第1バイパス301上には冷媒は流れていない。コンデンサ21から流出した高温高圧の冷媒は、全部が熱交換器22を通過し、熱交換器22内でバッテリ熱交換器27から排出された冷媒と熱交換を行うことで、1回目の放熱を行って熱量の一部を放出する。具体的な放熱量は、第2バイパス302の第2膨張弁26によって調節することができる。 As shown in FIG. 3, in the second mode, the refrigerant is compressed by the compressor 20 to become a high-temperature and high-pressure gas. In the operation mode, since the fan 32 of the condenser 21 is stopped, the condenser 21 at this time is merely a passage for the fluid, and the high-temperature and high-pressure refrigerant gas does not exchange the amount of heat in the condenser 21. In this mode, the control system 500 closes the switching valve 23 and opens the second expansion valve 26, but at this time, no refrigerant is flowing on the first bypass 301. All of the high-temperature and high-pressure refrigerant flowing out of the condenser 21 passes through the heat exchanger 22 and exchanges heat with the refrigerant discharged from the battery heat exchanger 27 in the heat exchanger 22 to dissipate heat for the first time. Go and release some of the heat. The specific amount of heat radiation can be adjusted by the second expansion valve 26 of the second bypass 302.
 熱交換器22内に熱量の一部を放出した後の冷媒は、全部が第2バイパス302に流入し、第2膨張弁26内で1回目の絞りが行われる。ここでは、第2膨張弁26に進入する前の冷媒の過熱度に基づいて第2膨張弁26の開度を制御しており、目標過熱度は5℃に設定することができる。また、圧縮機20入口の過熱度に基づいて第3膨張弁28の開度を制御しており、目標過熱度は10℃に設定することができる。それと同時に、制御システム500は、バッテリ熱交換器27に必要な熱量に基づいて圧縮機20の回転速度を制御している。具体的に言うと、制御システム500は、バッテリ29の温度を検出し、かつ検出したバッテリ29の温度に基づいてバッテリ熱交換器27に必要な目標熱交換量Q0を設定することができる。制御システム500は、検出した温度が高いほど、必要な目標熱交換量Q0を大きく設定する。続いて、バッテリ熱交換器27の実際の熱交換量Qを計算し、目標熱交換量Q0との比較を行い、Q<Q0の場合は圧縮機20の回転速度を増やし、Q>Q0の場合は圧縮機20の回転速度を減らす。このようにして、絞り後の冷媒を、温度がバッテリ29より高い中温中圧の気液混合状態の液体に変える。中圧は、圧縮機20から排出される高圧冷媒と、後述する第3膨張弁28で2回の絞りを経て排出される低圧冷媒とに対して、中間の圧力である。中温中圧の液体冷媒がバッテリ熱交換器27内で2回目の放熱を行い、この部分の熱量がバッテリ29によって吸収されて、バッテリの昇温を実現する。図3の(b)に示すように、冷媒の放熱過程では、第2膨張弁26を冷媒が常に気液混合の飽和状態にあるよう調節している。飽和状態の冷媒は温度が同じなので、温度が均一なバッテリ加熱を実現することができる。最後に、2回の放熱を経た冷媒は、バッテリ29出口側の第3膨張弁28を通過して2回目の絞りに供される。この時、熱交換器22から圧縮機20に向かって排出される冷媒の過熱度に基づいて第3膨張弁28の開度を制御することができる。第3膨張弁28によって冷媒を低温低圧の液体に変え、低温低圧の液体が熱交換器22を通過する。この結果、熱交換器22において、冷媒は、熱量を吸収して低温低圧の気体となり、最後に圧縮機に戻って第2モードの循環が完成する。 All of the refrigerant after releasing a part of the amount of heat into the heat exchanger 22 flows into the second bypass 302, and the first throttle is performed in the second expansion valve 26. Here, the opening degree of the second expansion valve 26 is controlled based on the degree of superheat of the refrigerant before entering the second expansion valve 26, and the target degree of superheat can be set to 5 ° C. Further, the opening degree of the third expansion valve 28 is controlled based on the degree of superheat at the inlet of the compressor 20, and the target degree of superheat can be set to 10 ° C. At the same time, the control system 500 controls the rotation speed of the compressor 20 based on the amount of heat required for the battery heat exchanger 27. Specifically, the control system 500 can detect the temperature of the battery 29 and set the target heat exchange amount Q0 required for the battery heat exchanger 27 based on the detected temperature of the battery 29. The control system 500 sets the required target heat exchange amount Q0 larger as the detected temperature is higher. Subsequently, the actual heat exchange amount Q of the battery heat exchanger 27 is calculated and compared with the target heat exchange amount Q0. If Q <Q0, the rotation speed of the compressor 20 is increased, and if Q> Q0, the rotation speed is increased. Reduces the rotation speed of the compressor 20. In this way, the squeezed refrigerant is changed to a liquid in a gas-liquid mixed state having a temperature higher than that of the battery 29. The medium pressure is an intermediate pressure between the high-pressure refrigerant discharged from the compressor 20 and the low-pressure refrigerant discharged after being throttled twice by the third expansion valve 28 described later. The medium-temperature, medium-pressure liquid refrigerant dissipates heat for the second time in the battery heat exchanger 27, and the amount of heat in this portion is absorbed by the battery 29 to realize a temperature rise of the battery. As shown in FIG. 3B, in the heat dissipation process of the refrigerant, the second expansion valve 26 is adjusted so that the refrigerant is always in a saturated state of gas-liquid mixing. Since the saturated refrigerant has the same temperature, it is possible to realize battery heating with a uniform temperature. Finally, the refrigerant that has been radiated twice passes through the third expansion valve 28 on the outlet side of the battery 29 and is used for the second throttle. At this time, the opening degree of the third expansion valve 28 can be controlled based on the degree of superheat of the refrigerant discharged from the heat exchanger 22 toward the compressor 20. The third expansion valve 28 changes the refrigerant into a low-temperature low-pressure liquid, and the low-temperature low-pressure liquid passes through the heat exchanger 22. As a result, in the heat exchanger 22, the refrigerant absorbs the amount of heat to become a low-temperature low-pressure gas, and finally returns to the compressor to complete the circulation in the second mode.
 空調単独冷却循環状態
 図4は、第1実施形態の車両熱管理システムによる第3モードを示す図である。(a)は車両熱管理システムの第3モードにおける構造概略図である。(b)は第3モードにおける圧力エンタルピー図である。
Air-conditioning independent cooling circulation state FIG. 4 is a diagram showing a third mode by the vehicle heat management system of the first embodiment. (A) is a structural schematic diagram in the third mode of the vehicle heat management system. (B) is a pressure enthalpy diagram in the third mode.
 図4の(a)、(b)に示すように、第3モードでは、制御システム500は、ファン32をオンにしてコンデンサ21を起動させ、第2膨張弁26を閉めるとともに、切換弁23を開状態にしている。圧縮機20で圧縮された高温高圧の冷媒はコンデンサ21を通過し、外部に対して放熱を行う。放熱後の冷媒は、全部が熱交換器22を通って2回目の放熱を行う。具体的に言うと、コンデンサ21で1回目の放熱を行った後の冷媒が、熱交換器22において第1バイパス301から流出する低温低圧の冷媒と熱交換を行うことで、冷媒の過冷却を実現するのである。第2膨張弁26が閉まり、切換弁23が開いているので、2回の放熱後の冷媒は第1合流点30を通ってすべて第1バイパス301に進入する。即ち、第2バイパス302には冷媒は流れない。切換弁23を通過した冷媒は第1膨張弁24に進入して絞り膨張に供される。冷媒は、絞り後に、車内温度より低い気液混合状態の液体冷媒になって蒸発器25に進入し、吸熱を行うことで車内の冷却を行う。吸熱後の冷媒は、第2合流点31を通って熱交換器22に進入して2回目の吸熱を行う。2回の吸熱を経た冷媒ガスは、圧縮機に進入して、第3モードの循環が完成する。 As shown in FIGS. 4A and 4B, in the third mode, the control system 500 turns on the fan 32 to start the capacitor 21, closes the second expansion valve 26, and closes the switching valve 23. It is open. The high-temperature and high-pressure refrigerant compressed by the compressor 20 passes through the capacitor 21 and dissipates heat to the outside. All of the heat-dissipated refrigerant passes through the heat exchanger 22 to dissipate heat for the second time. Specifically, the refrigerant after the first heat dissipation by the condenser 21 exchanges heat with the low-temperature low-pressure refrigerant flowing out from the first bypass 301 in the heat exchanger 22, thereby supercooling the refrigerant. It will be realized. Since the second expansion valve 26 is closed and the switching valve 23 is open, all the refrigerant after the two heat dissipation enters the first bypass 301 through the first confluence point 30. That is, no refrigerant flows through the second bypass 302. The refrigerant that has passed through the switching valve 23 enters the first expansion valve 24 and is subjected to throttle expansion. After the throttle, the refrigerant becomes a liquid refrigerant in a gas-liquid mixed state lower than the temperature inside the vehicle, enters the evaporator 25, and absorbs heat to cool the inside of the vehicle. The refrigerant after endothermic enters the heat exchanger 22 through the second confluence 31 and absorbs heat for the second time. The refrigerant gas that has undergone two endothermic processes enters the compressor, and the circulation of the third mode is completed.
 本循環では、熱交換器22内で熱量の交換を行うのはいずれも冷媒である。図4の(a)、(b)に示すように、コンデンサ21から排出された高圧高温の液体冷媒が熱交換器22の左側に流入する。蒸発器25から排出された低温低圧の液体冷媒が熱交換器22の右側に流入する。熱交換器22において、高温高圧の液体冷媒が放熱することで、冷媒の過冷却を実現し、低圧低温の冷媒が吸熱することで、冷媒の過熱を実現する。これにより、冷媒の吸熱能力及び熱交換能力を増加させ、システムの性能をアップさせることができる。 In this circulation, it is the refrigerant that exchanges the amount of heat in the heat exchanger 22. As shown in FIGS. 4A and 4B, the high-pressure and high-temperature liquid refrigerant discharged from the capacitor 21 flows into the left side of the heat exchanger 22. The low-temperature low-pressure liquid refrigerant discharged from the evaporator 25 flows into the right side of the heat exchanger 22. In the heat exchanger 22, the high temperature and high pressure liquid refrigerant dissipates heat to realize supercooling of the refrigerant, and the low pressure and low temperature refrigerant absorbs heat to realize overheating of the refrigerant. As a result, the endothermic capacity and heat exchange capacity of the refrigerant can be increased, and the performance of the system can be improved.
 空調及びバッテリの両方冷却循環状態
 図5は、第1実施形態の車両熱管理システムによる第4モードの循環を示す図である。(a)は車両熱管理システムの第4モードにおける構造概略図である。(b)は第4モードにおける圧力エンタルピー図である。
Both air-conditioning and battery cooling circulation state FIG. 5 is a diagram showing the circulation of the fourth mode by the vehicle heat management system of the first embodiment. (A) is a structural schematic diagram in the fourth mode of the vehicle heat management system. (B) is a pressure enthalpy diagram in the fourth mode.
 図5の(a)、(b)に示すように、第4モードでは、制御システム500は、ファン32をオンにしてコンデンサ21を起動させ、切換弁23及び第2膨張弁26を開いている。圧縮機20で圧縮された後に排出される高温高圧の冷媒は、コンデンサ21を通過して1回目の放熱を行う。コンデンサ21から排出された冷媒は、その全部が熱交換器22を通過する。蒸発器25及びバッテリ熱交換器27からそれぞれ排出された冷媒は、熱交換器22において2回目の吸熱を行う。この時、切換弁23と第2膨張弁26はいずれも開いているので、熱交換器22から排出された高温高圧の液体冷媒が第1合流点30で2つに分かれる。分流された冷媒の一方は、第1バイパス301に進入して蒸発器25を通って車室の冷却を行う。分流された冷媒の他方は第2膨張弁26からバッテリ29側を通り、バッテリの冷却を行う。 As shown in FIGS. 5A and 5B, in the fourth mode, the control system 500 turns on the fan 32 to activate the capacitor 21 and opens the switching valve 23 and the second expansion valve 26. .. The high-temperature and high-pressure refrigerant discharged after being compressed by the compressor 20 passes through the capacitor 21 and dissipates heat for the first time. All of the refrigerant discharged from the condenser 21 passes through the heat exchanger 22. The refrigerant discharged from the evaporator 25 and the battery heat exchanger 27 each absorb heat in the heat exchanger 22 for the second time. At this time, since the switching valve 23 and the second expansion valve 26 are both open, the high-temperature and high-pressure liquid refrigerant discharged from the heat exchanger 22 is divided into two at the first confluence point 30. One of the divided refrigerants enters the first bypass 301 and passes through the evaporator 25 to cool the vehicle interior. The other of the diverted refrigerant passes from the second expansion valve 26 to the battery 29 side to cool the battery.
 第1バイパス301に進入した冷媒は、切換弁23を経て第1膨張弁24に進入し、絞り減圧を行って低温低圧の気液混合冷媒となる。降圧降温後の冷媒は蒸発器25に進入し、蒸発器25内で空気の熱量を吸収して低温低圧の気体となり、第2合流点31に向かって流れる。 The refrigerant that has entered the first bypass 301 enters the first expansion valve 24 via the switching valve 23, is throttled and depressurized, and becomes a low-temperature low-pressure gas-liquid mixed refrigerant. The refrigerant after the step-down temperature enters the evaporator 25, absorbs the amount of heat of air in the evaporator 25, becomes a low-temperature low-pressure gas, and flows toward the second confluence 31.
 第2バイパス302を通った冷媒は、まず第2膨張弁26を通って1回目の絞りを行い、冷媒がバッテリ熱交換器27に伝達する熱量に基づいて第2膨張弁26の開度を制御する。具体的に言うと、バッテリ29の温度に基づいてバッテリ熱交換器27に必要な目標熱交換量Q0を設定することができ、温度が高いほど、必要な目標熱交換量Q0が大きくなる。その後、バッテリ熱交換器27の実際の熱交換量Qを計算し、かつ実際の熱交換量Qと第2膨張弁26の開口面積との関係を構築する。Q>Q0の時には弁の開口面積は減少し、Q<Q0の時には弁の開口面積が大きくなる。これにより、冷媒を中温中圧の気液混合飽和状態に維持し(コンデンサ21内の高圧及び蒸発器25内の低圧に対して、この時、中間の圧力の値となる)、該中間圧力下にある冷媒が、バッテリ29の熱量を吸収する。中間圧力下にある冷媒の飽和温度は低圧下にある冷媒の飽和温度より高い。よって、中間圧力下にある冷媒とバッテリ29との間の温度差が相対的に減少する。この結果、中間圧力下にある冷媒が吸収するバッテリ29の熱量は相対的に少ない。そのため、冷媒の事前蒸発を抑制し、冷媒が常に気液飽和状態下で吸熱を行うことができるので、バッテリ29の表面温度が比較的均一で、温度差が小さい。制御システム500は、第2膨張弁26の開度を制御することによって冷媒の圧力値を調節する。制御システム500は、バッテリ熱交換器27の出口側の冷媒の過熱度に基づいて第3膨張弁28の開度を制御することにより、冷媒が吸熱過程で常に飽和状態にあることを確保する。それによって制御システム500は、バッテリ29の温度差が要求の範囲内であることを保証して、バッテリ29の均温冷却を実現する。 The refrigerant that has passed through the second bypass 302 first throttles through the second expansion valve 26, and controls the opening degree of the second expansion valve 26 based on the amount of heat that the refrigerant transfers to the battery heat exchanger 27. do. Specifically, the target heat exchange amount Q0 required for the battery heat exchanger 27 can be set based on the temperature of the battery 29, and the higher the temperature, the larger the required target heat exchange amount Q0. After that, the actual heat exchange amount Q of the battery heat exchanger 27 is calculated, and the relationship between the actual heat exchange amount Q and the opening area of the second expansion valve 26 is established. When Q> Q0, the valve opening area decreases, and when Q <Q0, the valve opening area increases. As a result, the refrigerant is maintained in a gas-liquid mixed saturated state of medium temperature and medium pressure (at this time, the value of the intermediate pressure is set with respect to the high pressure in the condenser 21 and the low pressure in the evaporator 25), and under the intermediate pressure. The refrigerant in the above absorbs the amount of heat of the battery 29. The saturation temperature of the refrigerant under intermediate pressure is higher than the saturation temperature of the refrigerant under low pressure. Therefore, the temperature difference between the refrigerant under the intermediate pressure and the battery 29 is relatively reduced. As a result, the amount of heat of the battery 29 absorbed by the refrigerant under the intermediate pressure is relatively small. Therefore, since the pre-evaporation of the refrigerant can be suppressed and the refrigerant can always absorb heat under the gas-liquid saturation state, the surface temperature of the battery 29 is relatively uniform and the temperature difference is small. The control system 500 adjusts the pressure value of the refrigerant by controlling the opening degree of the second expansion valve 26. The control system 500 controls the opening degree of the third expansion valve 28 based on the degree of superheat of the refrigerant on the outlet side of the battery heat exchanger 27 to ensure that the refrigerant is always saturated in the endothermic process. Thereby, the control system 500 guarantees that the temperature difference of the battery 29 is within the required range, and realizes uniform temperature cooling of the battery 29.
 その後、第1バイパス301及び第2バイパス302からそれぞれ排出された冷媒が第2合流点31で合流する。合流した冷媒が熱交換器22に進入して再び吸熱を行って低温低圧の冷媒ガスになり、吸熱後の冷媒が最終的に圧縮機20に戻り、それにより第4モードの循環が完成する。 After that, the refrigerants discharged from the first bypass 301 and the second bypass 302 merge at the second confluence point 31. The combined refrigerant enters the heat exchanger 22 and absorbs heat again to become a low-temperature low-pressure refrigerant gas, and the refrigerant after endothermic finally returns to the compressor 20, thereby completing the circulation of the fourth mode.
 第2実施形態
 第2実施形態の車両熱管理システムは、第1実施形態の車両熱管理システムと構造が似ている。よって、第2実施形態の車両熱管理システムの構造については、主に第1実施形態の車両熱管理システムと異なる点について説明し、同じ構造は同じ符号で表し、説明は省略する。
2nd Embodiment The vehicle heat management system of the 2nd embodiment has a structure similar to that of the vehicle heat management system of the 1st embodiment. Therefore, the structure of the vehicle heat management system of the second embodiment will be mainly described as being different from the vehicle heat management system of the first embodiment, the same structure will be represented by the same reference numerals, and the description thereof will be omitted.
 図6は、この開示の第2実施形態に基づく車両熱管理システムの構造概略図である。(a)は車両熱管理システムの構造概略図である。(b)は車両熱管理システム内の第1膨張装置と第2膨張装置の具体的な設置例である。図6の(a)に示すように、第2実施形態の車両熱管理システムは冷媒循環回路400を有している。冷媒循環回路400は、圧縮機20と、ファン32が設けられたコンデンサ21とを有する。冷媒循環回路400は、圧縮機20の上流とコンデンサ21の下流の間に並列接続されている第1バイパス401及び第2バイパス402を含む。第1バイパス401は、第1膨張装置34と第2熱交換器25がこの順に接続されて成り、そのうち、第1膨張装置34は、図6の(b)に示すように、切換弁23と第1膨張弁24を直列接続して構成することもできる。第2バイパス402は、第2膨張弁35と、バッテリ29の下方に設置された第3熱交換器27と、第3膨張装置としての第3膨張弁28がこの順に接続されて構成されている。そのうち、第2膨張装置35は図6の(b)に示すような電子膨張弁またはシャットオフ機能を有する機械式膨張弁としての第2膨張弁26であってよい。 FIG. 6 is a schematic structural diagram of a vehicle heat management system based on the second embodiment of this disclosure. (A) is a structural schematic diagram of a vehicle heat management system. (B) is a specific installation example of the first expansion device and the second expansion device in the vehicle heat management system. As shown in FIG. 6A, the vehicle heat management system of the second embodiment has a refrigerant circulation circuit 400. The refrigerant circulation circuit 400 includes a compressor 20 and a condenser 21 provided with a fan 32. The refrigerant circulation circuit 400 includes a first bypass 401 and a second bypass 402 that are connected in parallel between the upstream of the compressor 20 and the downstream of the condenser 21. The first bypass 401 is formed by connecting the first expansion device 34 and the second heat exchanger 25 in this order, and the first expansion device 34 has a switching valve 23 as shown in FIG. 6B. The first expansion valve 24 can also be connected in series. The second bypass 402 is configured by connecting a second expansion valve 35, a third heat exchanger 27 installed below the battery 29, and a third expansion valve 28 as a third expansion device in this order. .. Among them, the second expansion device 35 may be an electronic expansion valve as shown in FIG. 6B or a second expansion valve 26 as a mechanical expansion valve having a shut-off function.
 このように、第1バイパス401及び第2バイパス402の冷媒入口端の、冷媒循環回路400上のコンデンサ21に対して下流側寄りに第1合流点40が形成されている。第1バイパス401及び第2バイパス402の冷媒出口端の、冷媒循環回路400上の圧縮機20に対して上流側寄りに第2合流点41が形成されている。これにより第1バイパス401及び第2バイパス402が冷媒循環回路400内にまとめて並列接続される。 As described above, the first confluence point 40 is formed on the downstream side of the condenser 21 on the refrigerant circulation circuit 400 at the refrigerant inlet ends of the first bypass 401 and the second bypass 402. A second confluence 41 is formed at the refrigerant outlet ends of the first bypass 401 and the second bypass 402 on the upstream side of the compressor 20 on the refrigerant circulation circuit 400. As a result, the first bypass 401 and the second bypass 402 are collectively connected in parallel in the refrigerant circulation circuit 400.
 また、第2実施形態では、図6の(a)、(b)に示すように、冷媒循環回路400内に熱交換器22がさらに設置されている。熱交換器22は第1合流点40と第2膨張弁26の間に設置され、かつ第2合流点41と第3膨張弁28の間に設置されている。この時、熱交換器22は、第1冷媒と第2冷媒との熱交換を提供する。第1冷媒は、高温高圧冷媒の一部である。第2冷媒は、低温低圧冷媒の一部である。熱交換器22は、内部熱交換器とも呼ばれる。第1冷媒は、コンデンサ21から流出する高温高圧の全冷媒中の一部である。即ち、コンデンサ21から流出し、第1合流点40を通過して第2バイパス402に流入する冷媒部分である。第2冷媒は、第2バイパス402から流出した低温低圧の冷媒である。即ち、圧縮機20に向かって流れる全冷媒中の一部である。熱交換器22は、第2膨張弁26に流入する冷媒に放熱、降温、過冷却を行わせる。熱交換器22は、第3膨張弁28から流出する冷媒に熱量を吸収させて低温低圧の気体にする。この結果、熱交換器22は、システム全体の性能を高めることに貢献することができる。このような設置方式は、熱交換器22とバッテリ熱交換器27を一体化した熱交換器として設計するなど、熱交換器22とバッテリ29側の流路との一体化統合に役立つ。 Further, in the second embodiment, as shown in FIGS. 6A and 6B, the heat exchanger 22 is further installed in the refrigerant circulation circuit 400. The heat exchanger 22 is installed between the first confluence point 40 and the second expansion valve 26, and is installed between the second confluence point 41 and the third expansion valve 28. At this time, the heat exchanger 22 provides heat exchange between the first refrigerant and the second refrigerant. The first refrigerant is a part of the high temperature and high pressure refrigerant. The second refrigerant is a part of the low temperature low pressure refrigerant. The heat exchanger 22 is also called an internal heat exchanger. The first refrigerant is a part of all the high-temperature and high-pressure refrigerants flowing out from the capacitor 21. That is, it is a refrigerant portion that flows out from the capacitor 21, passes through the first confluence 40, and flows into the second bypass 402. The second refrigerant is a low-temperature low-pressure refrigerant flowing out of the second bypass 402. That is, it is a part of all the refrigerant flowing toward the compressor 20. The heat exchanger 22 causes the refrigerant flowing into the second expansion valve 26 to dissipate heat, lower the temperature, and supercool. The heat exchanger 22 absorbs the amount of heat in the refrigerant flowing out from the third expansion valve 28 to make it a low-temperature low-pressure gas. As a result, the heat exchanger 22 can contribute to improving the performance of the entire system. Such an installation method is useful for integrated integration of the heat exchanger 22 and the flow path on the battery 29 side, such as designing the heat exchanger 22 and the battery heat exchanger 27 as an integrated heat exchanger.
 また、図6の(a)、(b)に示すように、第2合流点41と圧縮機20の入口との間には、さらに気液分離器36を設置することもできる。気液分離器36の役割は、上で述べているように、気体と液体を分離させることにより、圧縮機20の損壊を防止することである。 Further, as shown in FIGS. 6A and 6B, a gas-liquid separator 36 can be further installed between the second confluence point 41 and the inlet of the compressor 20. The role of the gas-liquid separator 36 is to prevent damage to the compressor 20 by separating the gas and the liquid, as described above.
 第2実施形態では、同様に上記の4種類の異なる循環状態を提供することができる。この実施形態でも、第1モード、第2モード、第3モード、及び第4モードを実現することができる。以下では、図2~図5を参照して上記の4種類の動作モードを詳しく説明する。そのうち、第1モード及び第2モードは第1実施形態と同じなので、ここでは繰り返し述べず、第3モードと第4モードについてのみ簡潔に説明する。第1モードおよび第2モードは、先行する実施形態の説明を参照することができる。 In the second embodiment, the above four types of different circulation states can be provided in the same manner. Also in this embodiment, the first mode, the second mode, the third mode, and the fourth mode can be realized. Hereinafter, the above four types of operation modes will be described in detail with reference to FIGS. 2 to 5. Of these, the first mode and the second mode are the same as those in the first embodiment, so they will not be described repeatedly here, and only the third mode and the fourth mode will be briefly described. For the first mode and the second mode, the description of the preceding embodiment can be referred to.
 空調単独冷却循環
 図7は、第2実施形態の車両熱管理システムによる第3モードにおける状態を示す図である。(a)は車両熱管理システムの第3モードにおける構造概略図である。(b)は第3モードにおける圧力エンタルピー図である。
Air-conditioning independent cooling circulation FIG. 7 is a diagram showing a state in a third mode by the vehicle heat management system of the second embodiment. (A) is a structural schematic diagram in the third mode of the vehicle heat management system. (B) is a pressure enthalpy diagram in the third mode.
 図7の(a)、(b)に示すように、第3モードでは、制御システム500は、ファン32をオンにしてコンデンサ21を起動させ、第2膨張弁26を閉め、かつ切換弁23を開状態にしている。圧縮機20で圧縮された高温高圧の冷媒は、コンデンサ21を通過し、外部に対して放熱を行う。第2膨張弁26が閉まり、切換弁23が開いているので、放熱後の冷媒は第1バイパス401に進入する。第1バイパス401において、冷媒は、切換弁23を経て膨張弁24に進入して絞りを行い、絞り減圧によって車内温度より低い気液混合状態の冷媒になる。冷媒は、蒸発器25に進入し、吸熱を行い、吸熱後の冷媒が圧縮機20に進入して、第3モードにおける循環が完成する。 As shown in FIGS. 7A and 7B, in the third mode, the control system 500 turns on the fan 32, activates the capacitor 21, closes the second expansion valve 26, and closes the switching valve 23. It is open. The high-temperature and high-pressure refrigerant compressed by the compressor 20 passes through the capacitor 21 and dissipates heat to the outside. Since the second expansion valve 26 is closed and the switching valve 23 is open, the refrigerant after heat dissipation enters the first bypass 401. In the first bypass 401, the refrigerant enters the expansion valve 24 via the switching valve 23 to throttle the refrigerant, and the throttle is reduced in pressure to become a refrigerant in a gas-liquid mixed state lower than the vehicle interior temperature. The refrigerant enters the evaporator 25 and absorbs heat, and the refrigerant after the heat absorption enters the compressor 20 to complete the circulation in the third mode.
 空調及びバッテリの両方冷却循環状態
 図8は、第2実施形態の車両熱管理システムによる第4モードを示す図である。(a)は車両熱管理システムの第4モードにおける構造概略図である。(b)第4モードにおける圧力エンタルピー図である。
Both air conditioning and battery cooling circulation state FIG. 8 is a diagram showing a fourth mode by the vehicle heat management system of the second embodiment. (A) is a structural schematic diagram in the fourth mode of the vehicle heat management system. (B) It is a pressure enthalpy diagram in the 4th mode.
 図8の(a)、(b)に示すように、第4モードでは、制御システム500は、ファン32をオンにしてコンデンサ21を起動させ、切換弁23及び第2膨張弁26を開いている。圧縮機20で圧縮されて排出された高温高圧の冷媒は、コンデンサ21を通って放熱を行う。熱交換器21から出てきた高温高圧の液体冷媒は、第1合流点40で2つに分かれる。分流された冷媒の一方は第1バイパス401に進入して蒸発器25を通り、車内の冷却を行う。分流された冷媒の他方は第2膨張弁26からバッテリ29側を通り、バッテリ29の冷却を行う。 As shown in FIGS. 8A and 8B, in the fourth mode, the control system 500 turns on the fan 32 to activate the capacitor 21 and opens the switching valve 23 and the second expansion valve 26. .. The high-temperature and high-pressure refrigerant compressed and discharged by the compressor 20 dissipates heat through the capacitor 21. The high-temperature and high-pressure liquid refrigerant discharged from the heat exchanger 21 is divided into two at the first confluence point 40. One of the divided refrigerants enters the first bypass 401, passes through the evaporator 25, and cools the inside of the vehicle. The other of the diverted refrigerant passes from the second expansion valve 26 to the battery 29 side to cool the battery 29.
 第1バイパス401に進入し、切換弁23を経て流出した冷媒は、第1膨張弁24に進入して絞り減圧を行い、降圧降温後に低温低圧の気液混合状態の冷媒となる。この冷媒は、蒸発器25に進入する。冷媒は蒸発器25内で空気の熱量を吸収し、低温低圧の気体となって圧縮機20に向かって流れる。 The refrigerant that has entered the first bypass 401 and has flowed out through the switching valve 23 enters the first expansion valve 24, is throttled and depressurized, and becomes a low-temperature low-pressure gas-liquid mixed state refrigerant after the temperature is lowered. This refrigerant enters the evaporator 25. The refrigerant absorbs the amount of heat of air in the evaporator 25, becomes a low-temperature low-pressure gas, and flows toward the compressor 20.
 第2バイパス402を通る冷媒は、まず熱交換器22において、放熱を行う。望ましい状態では、熱交換器22において、冷媒は過冷却を獲得する。熱交換器22においては、第3膨張弁28によって減圧された低温低圧の冷媒が、コンデンサ21からの高温高圧の冷媒の温度低下に貢献する。次に、冷媒は、第2膨張弁26に流入する。冷媒は、第2膨張弁26において、1回目の絞りに供される。第2膨張弁26は、中温中圧の気液混合飽和状態の冷媒を供給する。この中圧は、コンデンサ21内の高圧と、蒸発器25内の低圧との中間の圧力値である。中間圧力下にある冷媒は、バッテリ29の熱量を吸収する。なお、バッテリ入口の第2膨張弁26の開度を制御することによって、冷媒の圧力値を調節することができる。熱交換器27から出てきた冷媒は、続いて第3膨張弁28に進入して2回目の絞りに供される。第3膨張弁28での絞り後の冷媒は、熱交換器22に進入して2回目の吸熱を行う。吸熱後の冷媒は、第2合流点41で第1バイパス401の冷媒と合流し、合流後の冷媒が圧縮機20に戻る。中間圧力下にある冷媒の飽和温度は低圧下にある冷媒の飽和温度より高いので、中間圧力下にある冷媒とバッテリ29との間の温度差は、相対的に減少する。このため、中間圧力下にある冷媒が吸収するバッテリ29の熱量は相対的に少ない。そのため、冷媒の事前蒸発を抑制し、冷媒が常に気液飽和状態下で吸熱を行うことができるので、バッテリ29の表面温度が比較的均一で、温度差が小さい。第2膨張弁26の開度を制御することによって冷媒の圧力値を調節し、バッテリ29出口側の第3膨張弁28の開度を制御することにより、冷媒が吸熱過程で常に飽和状態にあることを確保できる。第2膨張弁26と第3膨張弁28とは、機械的な温度感応型の制御システムにより制御される場合がある。第2膨張弁26と第3膨張弁28とは、制御システム500によって制御される場合がある。それによってバッテリ29の温度差が要求の範囲内であることを保証して、バッテリ29の均温冷却を実現する。 The refrigerant passing through the second bypass 402 first dissipates heat in the heat exchanger 22. In the desired state, in the heat exchanger 22, the refrigerant acquires supercooling. In the heat exchanger 22, the low-temperature low-pressure refrigerant decompressed by the third expansion valve 28 contributes to lowering the temperature of the high-temperature high-pressure refrigerant from the capacitor 21. Next, the refrigerant flows into the second expansion valve 26. The refrigerant is supplied to the second expansion valve 26 for the first throttle. The second expansion valve 26 supplies a medium-temperature, medium-pressure, gas-liquid mixed saturated refrigerant. This medium pressure is an intermediate pressure value between the high pressure in the capacitor 21 and the low pressure in the evaporator 25. The refrigerant under the intermediate pressure absorbs the amount of heat of the battery 29. The pressure value of the refrigerant can be adjusted by controlling the opening degree of the second expansion valve 26 at the battery inlet. The refrigerant discharged from the heat exchanger 27 subsequently enters the third expansion valve 28 and is used for the second throttle. The refrigerant after throttle in the third expansion valve 28 enters the heat exchanger 22 and absorbs heat for the second time. The refrigerant after endothermic merges with the refrigerant of the first bypass 401 at the second merging point 41, and the merging refrigerant returns to the compressor 20. Since the saturation temperature of the refrigerant under the intermediate pressure is higher than the saturation temperature of the refrigerant under the low pressure, the temperature difference between the refrigerant under the intermediate pressure and the battery 29 is relatively reduced. Therefore, the amount of heat of the battery 29 absorbed by the refrigerant under the intermediate pressure is relatively small. Therefore, since the pre-evaporation of the refrigerant can be suppressed and the refrigerant can always absorb heat under the gas-liquid saturation state, the surface temperature of the battery 29 is relatively uniform and the temperature difference is small. By controlling the opening degree of the second expansion valve 26 to adjust the pressure value of the refrigerant and controlling the opening degree of the third expansion valve 28 on the outlet side of the battery 29, the refrigerant is always saturated in the endothermic process. You can be assured that. The second expansion valve 26 and the third expansion valve 28 may be controlled by a mechanical temperature-sensitive control system. The second expansion valve 26 and the third expansion valve 28 may be controlled by the control system 500. Thereby, the temperature difference of the battery 29 is guaranteed to be within the required range, and the uniform temperature cooling of the battery 29 is realized.
 第3実施形態
 第3実施形態の車両熱管理システムは、第1実施形態の車両熱管理システムと構造がほぼ同じである。よって、違う点についてのみ説明する。図9は、この開示の第3実施形態に基づく車両熱管理システムの構造概略図である。図9に示すように、第1膨張装置34は、第1膨張弁33によって提供されている。第1膨張装置34は、シャットオフ切換機能を有する一体型の電子膨張弁(EXV)によって提供することができる。代替的に、第1膨張装置34は、シャットオフ機能を有する機械式膨張弁(Shut-off TXV)によって提供することができる。そのため、第1膨張弁33を使用するだけで、切換機能と絞り機能を両立させることができる。第3実施形態でも、同様に上記の4種類の異なる循環モードを実行することができるが、ここでは繰り返し述べない。また、第1膨張弁33が電子膨張弁である場合は、電子膨張弁の開度はコンデンサ21後面の過冷却度の大きさにより決定することができる。例えば、制御システム500は、目標過冷却度SCOを設定することができ、観測される過冷却度との比較結果に応じて第1膨張弁33の開度を制御することができる。制御システム500は、コンデンサ21後面の過冷却度がSCOを上回る場合は電子膨張弁の開度を小さくし、コンデンサ21後面の過冷却度がSCOを下回る場合は電子膨張弁の開度を大きくする。
Third Embodiment The vehicle heat management system of the third embodiment has substantially the same structure as the vehicle heat management system of the first embodiment. Therefore, only the differences will be described. FIG. 9 is a schematic structural diagram of a vehicle heat management system based on the third embodiment of the disclosure. As shown in FIG. 9, the first expansion device 34 is provided by the first expansion valve 33. The first expansion device 34 can be provided by an integrated electronic expansion valve (EXV) having a shut-off switching function. Alternatively, the first expansion device 34 can be provided by a mechanical expansion valve (Shut-off TXV) having a shut-off function. Therefore, the switching function and the throttle function can be compatible with each other only by using the first expansion valve 33. Similarly, in the third embodiment, the above-mentioned four different circulation modes can be executed, but they will not be described repeatedly here. When the first expansion valve 33 is an electronic expansion valve, the opening degree of the electronic expansion valve can be determined by the magnitude of the degree of supercooling on the rear surface of the capacitor 21. For example, the control system 500 can set a target supercooling degree SCO and can control the opening degree of the first expansion valve 33 according to the comparison result with the observed supercooling degree. The control system 500 reduces the opening degree of the electronic expansion valve when the degree of supercooling of the rear surface of the condenser 21 exceeds SCO, and increases the opening degree of the electronic expansion valve when the degree of supercooling of the rear surface of the condenser 21 is lower than SCO. ..
 他の実施形態
 以上のように、冷媒循環回路内に並列して設置され、車内の冷却に用いられる空調回路の状況を説明してきた。この開示はこれに限定されるわけではなく、空調回路を設置せずに、冷媒循環回路のみを利用してバッテリの均温加熱及び均温冷却を実現することもできる。
Other Embodiments As described above, the situation of the air conditioning circuit installed in parallel in the refrigerant circulation circuit and used for cooling the inside of the vehicle has been described. This disclosure is not limited to this, and it is also possible to realize soaking heating and soaking cooling of the battery by using only the refrigerant circulation circuit without installing the air conditioning circuit.
 以上述べた具体的実施形態では、この開示の目的、技術手法及び有益な効果についてさらに詳細に説明している。上記はこの開示の具体的実施形態の一つにすぎず、この開示の保護範囲を限定するものではない。この開示の基本的特徴を逸脱しないことを旨として、この開示は様々な形式で体現することができる。この開示中の実施形態は限定ではなく説明のために用いられることを理解しておかなければならない。また、この開示の範囲は、明細書ではなく請求項によって限定され、かつ請求項で画定される範囲に含まれており、請求項で画定される範囲と同等の範囲内のすべての変更は、いずれも請求項内に含まれていることを理解しなければならない。この開示の主旨及び原則内で行われる修正、同等の置換、改良などは、すべてこの開示の保護範囲に含まれるものとする。

 
In the specific embodiments described above, the purpose, technical method and beneficial effects of this disclosure will be described in more detail. The above is only one of the specific embodiments of this disclosure and does not limit the scope of protection of this disclosure. This disclosure can be embodied in various forms, with the intent that it does not deviate from the basic characteristics of this disclosure. It should be understood that the embodiments in this disclosure are used for illustration and not limitation. Also, the scope of this disclosure is limited by the claims, not the specification, and is included in the claims, and all changes within the scope equivalent to the claims. It must be understood that both are included in the claims. All modifications, equivalent replacements, improvements, etc. made within the gist and principles of this disclosure shall be within the scope of this disclosure.

Claims (11)

  1.  車両熱管理システムにおいて、
     冷媒循環回路を有し、前記冷媒循環回路は、圧縮機と、ファンが設置された第1熱交換器と、前記圧縮機の上流側と前記第1熱交換器の下流側との間に並列接続された第1バイパス及び第2バイパスと、を含み、
     前記第1バイパスは順に接続された第1膨張装置及び第2熱交換器を含み、
     前記第2バイパスは、順に接続された第2膨張装置と、バッテリとの熱交換を行うための第3熱交換器及び第3膨張装置を含み、
     前記冷媒循環回路上にはさらに第4熱交換器が設置されており、前記第4熱交換器は前記第1熱交換器から流出する冷媒と前記圧縮機に向かって流れる冷媒に熱交換を行わせ、或いは、前記第1熱交換器から流出する冷媒の一部と前記圧縮機に向かって流れる冷媒の一部に熱交換を行わせ、
     前記第2膨張装置及び第3膨張装置の開度を制御することによって、前記第3熱交換器に流入する冷媒を飽和状態にし、それにより前記第3熱交換器に流入する冷媒の温度を調節することを特徴とする車両熱管理システム。
    In the vehicle heat management system
    It has a refrigerant circulation circuit, and the refrigerant circulation circuit is parallel to a compressor, a first heat exchanger in which a fan is installed, and an upstream side of the compressor and a downstream side of the first heat exchanger. Including the connected first bypass and second bypass,
    The first bypass includes a first inflator and a second heat exchanger connected in sequence.
    The second bypass includes a second inflator connected in sequence, a third heat exchanger and a third inflator for heat exchange with the battery.
    A fourth heat exchanger is further installed on the refrigerant circulation circuit, and the fourth heat exchanger exchanges heat between the refrigerant flowing out of the first heat exchanger and the refrigerant flowing toward the compressor. Alternatively, heat exchange is performed between a part of the refrigerant flowing out from the first heat exchanger and a part of the refrigerant flowing toward the compressor.
    By controlling the opening degree of the second expansion device and the third expansion device, the refrigerant flowing into the third heat exchanger is saturated, thereby adjusting the temperature of the refrigerant flowing into the third heat exchanger. A vehicle heat management system characterized by
  2.  前記第1バイパス及び前記第2バイパスは、前記第1熱交換器の下流側に位置する第1合流点と圧縮機の上流側に位置する第2合流点の間に並列接続されており、
     前記第4熱交換器は、前記第1熱交換器と前記第1合流点の間であって、かつ前記第2合流点と前記圧縮機の間に位置しており、前記第1熱交換器から前記第1合流点に向かって流れる冷媒と、前記第2合流点から前記圧縮機に向かって流れる冷媒に熱交換を行わせるために用いられることを特徴とする請求項1に記載の車両熱管理システム。
    The first bypass and the second bypass are connected in parallel between the first confluence point located on the downstream side of the first heat exchanger and the second confluence point located on the upstream side of the compressor.
    The fourth heat exchanger is located between the first heat exchanger and the first confluence, and between the second confluence and the compressor, and is the first heat exchanger. The vehicle heat according to claim 1, wherein the heat is used to exchange heat between the refrigerant flowing from the first confluence toward the first confluence and the refrigerant flowing from the second confluence toward the compressor. Management system.
  3.  前記第1バイパス及び前記第2バイパスは、前記第1熱交換器の下流側に位置する第1合流点と圧縮機の上流側に位置する第2合流点の間に並列接続されており、
     前記第4熱交換器は、前記第1合流点と前記第2膨張装置の間であって、かつ前記第3膨張装置と前記第2合流点の間に位置しており、前記第1合流点から前記第2膨張装置に流入する冷媒と、前記第3膨張装置から前記第2合流点に向かう冷媒に熱交換を行わせるために用いられることを特徴とする請求項1に記載の車両熱管理システム。
    The first bypass and the second bypass are connected in parallel between the first confluence point located on the downstream side of the first heat exchanger and the second confluence point located on the upstream side of the compressor.
    The fourth heat exchanger is located between the first confluence point and the second expansion device, and between the third expansion device and the second confluence point, and the first confluence point. The vehicle heat management according to claim 1, wherein the refrigerant is used to exchange heat between the refrigerant flowing into the second expansion device and the refrigerant from the third expansion device toward the second confluence. system.
  4.  前記第1膨張装置は、電子膨張弁またはシャットオフ機能を有する機械式膨張弁によって単独で構成され、或いは、機械式温度膨張弁と前記第1バイパス上で前記機械式温度膨張弁の上流側に取り付けられた電磁弁とによって構成されていることを特徴とする請求項1~3のいずれかに記載の車両熱管理システム。 The first expansion device is configured independently by an electronic expansion valve or a mechanical expansion valve having a shut-off function, or on the mechanical temperature expansion valve and the first bypass on the upstream side of the mechanical temperature expansion valve. The vehicle heat management system according to any one of claims 1 to 3, wherein the vehicle is composed of an attached solenoid valve.
  5.  前記第2膨張装置は、電子膨張弁またはシャットオフ機能を有する機械式膨張弁によって単独で構成され、或いは、機械式温度膨張弁と前記第2バイパス上で前記機械式温度膨張弁の上流側に取り付けられた電磁弁とによって構成されていることを特徴とする請求項1~3のいずれかに記載の車両熱管理システム。 The second expansion device is configured independently by an electronic expansion valve or a mechanical expansion valve having a shut-off function, or on the mechanical temperature expansion valve and the second bypass on the upstream side of the mechanical temperature expansion valve. The vehicle heat management system according to any one of claims 1 to 3, wherein the vehicle is composed of an attached solenoid valve.
  6.  前記圧縮機の入口側に気液分離器が設置されていることを特徴とする請求項1~3のいずれかに記載の車両熱管理システム。 The vehicle heat management system according to any one of claims 1 to 3, wherein a gas-liquid separator is installed on the inlet side of the compressor.
  7.  前記車両熱管理システムは、前記バッテリを単独冷却する場合は第1モードを実行し、
    前記バッテリを加熱する場合は第2モードを実行し、車内のみを冷却する場合は第3モードを実行し、車内冷却と前記バッテリの冷却を同時に行う場合は第4モードを実行することを特徴とする請求項1~3のいずれかに記載の車両熱管理システム。
    The vehicle heat management system executes a first mode when cooling the battery independently.
    The feature is that the second mode is executed when the battery is heated, the third mode is executed when only the inside of the vehicle is cooled, and the fourth mode is executed when the inside of the vehicle and the battery are cooled at the same time. The vehicle heat management system according to any one of claims 1 to 3.
  8.  前記第1モードを行う場合は、前記第1熱交換器上の前記ファンをオンにし、前記第1膨張装置を閉じ、前記第3熱交換器の出口側の冷媒の過熱度に基づいて前記第2膨張装置の開度を制御して、前記第3膨張装置を全開に保つことを特徴とする請求項7に記載の車両熱管理システム。 When performing the first mode, the fan on the first heat exchanger is turned on, the first expansion device is closed, and the first mode is based on the degree of superheat of the refrigerant on the outlet side of the third heat exchanger. 2. The vehicle heat management system according to claim 7, wherein the opening degree of the expansion device is controlled to keep the third expansion device fully open.
  9.  前記第2モードを行う場合は、前記第1熱交換器上の前記ファンをオフにし、前記第1膨張装置を閉じて前記第2膨張装置を開くとともに、前記第2膨張装置に進入する前の冷媒の過熱度に基づいて前記第2膨張装置の開度を制御し、前記圧縮機の入口側の過熱度に基づいて前記第3膨張装置の開度を制御し、かつ前記第3熱交換器に必要な熱交換量に基づいて前記圧縮機の回転速度を制御することを特徴とする請求項7に記載の車両熱管理システム。 When the second mode is performed, the fan on the first heat exchanger is turned off, the first expansion device is closed, the second expansion device is opened, and before entering the second expansion device. The opening degree of the second expansion device is controlled based on the degree of superheat of the refrigerant, the opening degree of the third expansion device is controlled based on the degree of superheat on the inlet side of the compressor, and the third heat exchanger is controlled. The vehicle heat management system according to claim 7, wherein the rotation speed of the compressor is controlled based on the amount of heat exchange required for the compressor.
  10.  前記第3モードを行う場合は、前記第1熱交換器上の前記ファンをオンにし、前記第1膨張装置を開き、前記第2膨張装置を閉じることを特徴とする請求項7に記載の車両熱管理システム。 The vehicle according to claim 7, wherein when the third mode is performed, the fan on the first heat exchanger is turned on, the first expansion device is opened, and the second expansion device is closed. Thermal management system.
  11.  前記第4モードを行う場合は、前記第1熱交換器上の前記ファンをオンにし、前記第1膨張装置を開き、前記第2膨張装置を開くとともに、冷媒が前記第3熱交換器に伝達する熱量に基づいて前記第2膨張装置の開度を制御し、前記第3熱交換器の出口側の冷媒の過熱度に基づいて前記第3膨張装置の開度を制御することを特徴とする請求項7に記載の車両熱管理システム。

     
    When the fourth mode is performed, the fan on the first heat exchanger is turned on, the first expansion device is opened, the second expansion device is opened, and the refrigerant is transmitted to the third heat exchanger. It is characterized in that the opening degree of the second expansion device is controlled based on the amount of heat generated, and the opening degree of the third expansion device is controlled based on the degree of overheating of the refrigerant on the outlet side of the third heat exchanger. The vehicle heat management system according to claim 7.

PCT/JP2021/032765 2020-09-30 2021-09-07 Vehicle heat management system WO2022070796A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011065011.X 2020-09-30
CN202011065011.XA CN113547956A (en) 2020-09-30 2020-09-30 Vehicle thermal management system

Publications (1)

Publication Number Publication Date
WO2022070796A1 true WO2022070796A1 (en) 2022-04-07

Family

ID=78101650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032765 WO2022070796A1 (en) 2020-09-30 2021-09-07 Vehicle heat management system

Country Status (2)

Country Link
CN (1) CN113547956A (en)
WO (1) WO2022070796A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114643833A (en) * 2022-04-20 2022-06-21 广州小鹏汽车科技有限公司 Thermal management system and vehicle
CN115042582A (en) * 2022-06-10 2022-09-13 智己汽车科技有限公司 Integrated heat exchange valve module, vehicle heat management system and control method thereof
CN115771377A (en) * 2022-11-25 2023-03-10 经纬恒润(天津)研究开发有限公司 Thermal management system
WO2025007878A1 (en) * 2023-07-03 2025-01-09 比亚迪股份有限公司 Thermal management system and control method thereof, and vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024092359A1 (en) * 2022-11-01 2024-05-10 Litens Automotive Partnership Coolant-refrigerant heat exchanger with induction heater and thermal management system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032298A (en) * 2006-07-27 2008-02-14 Calsonic Kansei Corp Internal heat exchanger
WO2018198611A1 (en) * 2017-04-26 2018-11-01 株式会社デンソー Refrigeration cycle device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013021360B4 (en) * 2013-12-05 2022-12-08 Audi Ag Thermal management system of a motor vehicle and corresponding method for operating a thermal management system of a motor vehicle
JPWO2017217099A1 (en) * 2016-06-16 2018-11-08 株式会社デンソー Refrigeration cycle equipment
CN107782020B (en) * 2016-08-30 2021-03-30 浙江盾安人工环境股份有限公司 Air conditioning system of pure electric vehicle
DE112019004660B4 (en) * 2018-09-18 2024-02-22 Nidec Corporation Vehicle heat exchanger system and engine unit used therein

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032298A (en) * 2006-07-27 2008-02-14 Calsonic Kansei Corp Internal heat exchanger
WO2018198611A1 (en) * 2017-04-26 2018-11-01 株式会社デンソー Refrigeration cycle device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114643833A (en) * 2022-04-20 2022-06-21 广州小鹏汽车科技有限公司 Thermal management system and vehicle
CN115042582A (en) * 2022-06-10 2022-09-13 智己汽车科技有限公司 Integrated heat exchange valve module, vehicle heat management system and control method thereof
CN115042582B (en) * 2022-06-10 2024-05-14 智己汽车科技有限公司 Integrated heat exchange valve module, vehicle thermal management system and control method of vehicle thermal management system
CN115771377A (en) * 2022-11-25 2023-03-10 经纬恒润(天津)研究开发有限公司 Thermal management system
WO2025007878A1 (en) * 2023-07-03 2025-01-09 比亚迪股份有限公司 Thermal management system and control method thereof, and vehicle
WO2025007877A1 (en) * 2023-07-03 2025-01-09 比亚迪股份有限公司 Thermal management system and control method thereof, and vehicle

Also Published As

Publication number Publication date
CN113547956A (en) 2021-10-26

Similar Documents

Publication Publication Date Title
WO2022070796A1 (en) Vehicle heat management system
US20220032732A1 (en) Battery heating device for vehicle
US10040334B2 (en) R744 based heat pump system with a water cooled gas cooler for cooling, heating and dehumidification of an EV/HEV
JP7172815B2 (en) In-vehicle temperature controller
JP5870903B2 (en) Refrigeration cycle equipment
JP5646681B2 (en) Refrigerant circuit of air conditioner with heat pump and reheating function
WO2013136693A1 (en) Refrigeration cycle device
JP7251229B2 (en) In-vehicle temperature controller
CN110997369B (en) Refrigeration cycle device
WO2015011919A1 (en) Vehicle air conditioner
CN113454407B (en) Device for thermal management of an electric or hybrid motor vehicle
WO2015011887A1 (en) Vehicular air conditioning device, and constituent unit thereof
JP6590321B2 (en) Air conditioner for vehicles
WO2020158423A1 (en) Refrigeration cycle device
WO2022142164A1 (en) Vehicle thermal management system, and vehicle
US12187094B2 (en) Thermal management system
CN111033145A (en) Refrigeration cycle device
WO2015008463A1 (en) Vehicle air conditioner and constituent unit thereof
KR101941026B1 (en) Heat pump system for vehicle
JP7185412B2 (en) Vehicle air conditioner
CN111094025B (en) Indirect reversible air conditioning circuit for motor vehicles
CN113424000B (en) Thermal management device for an electric or hybrid motor vehicle
JP7153170B2 (en) COMPOSITE VALVE AND VEHICLE AIR CONDITIONER USING THE SAME
JP7494139B2 (en) Vehicle air conditioning system
US20240326562A1 (en) Vehicular refrigeration cycle unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP