JP2007212091A - Shell-and-tube type condenser - Google Patents

Shell-and-tube type condenser Download PDF

Info

Publication number
JP2007212091A
JP2007212091A JP2006034373A JP2006034373A JP2007212091A JP 2007212091 A JP2007212091 A JP 2007212091A JP 2006034373 A JP2006034373 A JP 2006034373A JP 2006034373 A JP2006034373 A JP 2006034373A JP 2007212091 A JP2007212091 A JP 2007212091A
Authority
JP
Japan
Prior art keywords
heat transfer
refrigerant
shell
transfer tube
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006034373A
Other languages
Japanese (ja)
Inventor
Michiko Endo
道子 遠藤
Kyuhei Ishihane
久平 石羽根
Masayuki Aiyama
真之 相山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006034373A priority Critical patent/JP2007212091A/en
Publication of JP2007212091A publication Critical patent/JP2007212091A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shell-and-tube type condenser being hardly influenced by the circulating composition of zeotropic refrigerant mixture. <P>SOLUTION: The shell-and-tube type condenser comprises a cylindrical shell part 1, first and second partition chambers 2, 3 provided at both ends of the shell part, and a plurality of heat transfer tubes 6 provided in the shell part for communicating the first and second partition chambers with each other. The zeotropic refrigerant mixture is distributed in the heat transfer tubes of small flow path cross section to increase the flow speed of the refrigerant so that the condensed liquid refrigerant entraps non-condensed refrigerant vapor and flows in the heat transfer tubes at a similar speed. Thus, the non-condensed refrigerant vapor is discharged from the condenser without being left, suppressing the deviation of the refrigerant composition from refrigerant composition when filled. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、シェルアンドチューブ型凝縮器に係り、具体的には、非共沸混合冷媒を用いた冷凍機又は空調機器の凝縮器に使用されるシェルアンドチューブ型凝縮器に関する。   The present invention relates to a shell-and-tube condenser, and more particularly to a shell-and-tube condenser used for a refrigerator or a condenser of an air conditioner using a non-azeotropic refrigerant mixture.

冷凍機又は空調機器の凝縮器における冷媒凝縮過程においては、非共沸混合冷媒を用いた場合、二相域では飽和蒸気線上で最も高温であり、飽和液線上で最も低温となる。この温度勾配のために、冷媒と冷却水とが対向流になるような構造にすれば、冷却水と冷媒の温度差を確保でき、熱交換を効率よく行うことができる。   In the refrigerant condensation process in the refrigerator or the condenser of the air conditioner, when a non-azeotropic refrigerant mixture is used, the temperature is highest on the saturated vapor line and lowest on the saturated liquid line in the two-phase region. Due to this temperature gradient, if a structure is adopted in which the refrigerant and the cooling water are opposed to each other, a temperature difference between the cooling water and the refrigerant can be secured, and heat exchange can be performed efficiently.

例えば、特許文献1には、円筒状容器のシェル(胴部)内の両端に仕切板(管板)で仕切った仕切室を形成し、両端の仕切室間を複数の伝熱管で連通させ、シェル内に冷媒を流通し、伝熱管内に冷却水を流通するシェルアンドチューブ型凝縮器において、シェル内の冷媒の流れと伝熱管内の冷却水の流れとが対向流となるように構成することが提案されている。つまり、複数の伝熱管を複数の伝熱管群に分け、伝熱管群ごとの冷却水の流れが逆向きになるように両側の仕切室に中仕切板を設けるとともに、シェル内の冷媒の流れが各伝熱管群の冷却水の流れと逆向きになるように、シェル内の各伝熱管群の間に邪魔板を配置し、シェル内に流入される冷媒の入口部に伝熱管群に流入される冷却水の出口部を配置し、シェル内から流出される冷媒の出口部に伝熱管群に流入される冷却水の入口部を配置して構成している。これによれば、シェル内の冷媒の流れと伝熱管内の冷却水の流れとが対向流となることから、冷却水と冷媒の温度差を確保でき、熱交換を効率よく行うことができる。   For example, in Patent Document 1, a partition chamber partitioned by a partition plate (tube plate) is formed at both ends in a shell (body) of a cylindrical container, and the partition chambers at both ends are communicated by a plurality of heat transfer tubes, In the shell and tube type condenser in which the refrigerant is circulated in the shell and the cooling water is circulated in the heat transfer tube, the refrigerant flow in the shell and the cooling water flow in the heat transfer tube are configured to face each other. It has been proposed. In other words, a plurality of heat transfer tubes are divided into a plurality of heat transfer tube groups, and partition walls on both sides are provided so that the flow of cooling water for each heat transfer tube group is reversed, and the flow of refrigerant in the shell A baffle plate is arranged between each heat transfer tube group in the shell so as to be opposite to the flow of the cooling water in each heat transfer tube group, and is introduced into the heat transfer tube group at the inlet of the refrigerant flowing into the shell. The cooling water outlet portion is arranged, and the cooling water inlet portion flowing into the heat transfer tube group is arranged at the refrigerant outlet portion flowing out of the shell. According to this, since the flow of the refrigerant in the shell and the flow of the cooling water in the heat transfer tube are opposed, a temperature difference between the cooling water and the refrigerant can be secured and heat exchange can be performed efficiently.

特開平11−325787号公報(図1)Japanese Patent Laid-Open No. 11-325787 (FIG. 1)

しかし、特許文献1のシェルアンドチューブ型凝縮器では、流路断面積ないし流路空間が大きなシェル側に冷媒を流す構成としていることから、非共沸混合冷媒を使用した場合、高沸点冷媒が先に凝縮して比重の大きな液冷媒がシェルの底部に溜まり、シェル底部から排出される冷媒の組成が富高沸点冷媒になり、凝縮器から排出される循環冷媒の組成が封入時の冷媒組成からずれて、冷凍性能に影響を及ぼすおそれがある。   However, since the shell and tube type condenser of Patent Document 1 is configured to flow the refrigerant to the shell side where the channel cross-sectional area or channel space is large, when a non-azeotropic refrigerant mixture is used, the high boiling point refrigerant is Liquid refrigerant having a large specific gravity that has been condensed first accumulates at the bottom of the shell, the composition of the refrigerant discharged from the shell bottom becomes a high-boiling-point refrigerant, and the composition of the circulating refrigerant discharged from the condenser is the refrigerant composition at the time of sealing May cause refrigeration performance to be affected.

本発明は、非共沸混合冷媒の循環組成に影響を与えにくいシェルアンドチューブ型凝縮器を提供することを課題とする。   An object of the present invention is to provide a shell-and-tube condenser that hardly affects the circulation composition of a non-azeotropic refrigerant mixture.

上記課題を解決するため、本発明は、筒状の胴部と、該胴部の両端に設けられた第1と第2の仕切室と、該第1と第2の仕切室を連通して前記胴部内に設けられた複数の伝熱管とを備えてなるシェルアンドチューブ型凝縮器において、前記伝熱管内に非共沸混合冷媒を流通し、前記胴部内に冷却流体を流通してなることを特徴とする。   In order to solve the above-described problems, the present invention communicates a cylindrical body, first and second partition chambers provided at both ends of the body, and the first and second partition chambers. In a shell and tube type condenser having a plurality of heat transfer tubes provided in the body portion, a non-azeotropic mixed refrigerant is circulated in the heat transfer tube, and a cooling fluid is circulated in the body portion. It is characterized by.

すなわち、非共沸混合冷媒を流路断面積が小さい伝熱管内に流通させることにより、冷媒の流速が大きくなることから、凝縮した液冷媒が未凝縮の冷媒蒸気を取り込んで伝熱管内を同等の速度で流れることになる。その結果、未凝縮の冷媒蒸気が取り残されることがなくなり、凝縮器から排出される循環冷媒の組成が封入時の冷媒組成からずれるのを抑制できる。つまり、非共沸混合冷媒を用いた冷凍サイクルにおいて、冷媒組成変動による性能低下を防止することができる。また、冷媒が伝熱管内を流れる流速が大きいことから、冷媒側の熱伝達率が向上し、凝縮性能を向上できる。   In other words, the flow rate of the refrigerant increases by flowing the non-azeotropic refrigerant mixture through the heat transfer tube having a small channel cross-sectional area, so that the condensed liquid refrigerant takes in the uncondensed refrigerant vapor and is equivalent in the heat transfer tube. Will flow at a speed of. As a result, uncondensed refrigerant vapor is not left behind, and the composition of the circulating refrigerant discharged from the condenser can be suppressed from deviating from the refrigerant composition at the time of sealing. That is, in a refrigeration cycle using a non-azeotropic refrigerant mixture, it is possible to prevent performance degradation due to refrigerant composition fluctuations. Moreover, since the flow velocity at which the refrigerant flows through the heat transfer tube is large, the heat transfer coefficient on the refrigerant side is improved, and the condensation performance can be improved.

また、伝熱管の容積は、胴部の容積に比べて小さいから、凝縮器内の冷媒体積が小さくなるため、冷媒封入量を少なくできる。また、胴部内は伝熱管が占める領域を除いて冷却流体室となるため、高圧の非共沸混合冷媒を使用した場合でも、伝熱管と仕切室を構成する部分以外は、その冷媒に対応する耐圧仕様とする必要がない。そのため、特許文献1の従来技術に比べて、シェル部分の耐圧力を冷媒の高い圧力に合わせる必要がないことから、コストアップを抑えることができる。   Moreover, since the volume of the heat transfer tube is smaller than the volume of the body portion, the refrigerant volume in the condenser is reduced, so that the amount of refrigerant enclosed can be reduced. Further, since the inside of the body portion is a cooling fluid chamber except for the area occupied by the heat transfer tube, even when a high-pressure non-azeotropic refrigerant mixture is used, the portion other than the portion constituting the heat transfer tube and the partition chamber corresponds to the refrigerant. There is no need for pressure resistance specifications. Therefore, compared with the prior art of Patent Document 1, it is not necessary to match the pressure resistance of the shell portion to the high pressure of the refrigerant, so that an increase in cost can be suppressed.

上記の場合において、複数の前記伝熱管を複数の伝熱管群に分け、隣り合う前記伝熱管群に流れる流体の流れが互いに逆向きになるように前記第1と第2の仕切室に互い違いに中仕切板を設けるとともに、前記胴部内の流体の流れが各伝熱管群の流体の流れと互いに逆向きになるように、前記胴部内の各伝熱管群の間に邪魔板を配置し、前記胴部内に流通される流体の入口側に前記伝熱管群に通流される流体の出口側を配置し、前記胴部内に流通される流体の出口側に前記伝熱管群に流通される流体の入口側を配置して構成することができる。   In the above case, the plurality of heat transfer tubes are divided into a plurality of heat transfer tube groups, and the first and second partition chambers are staggered so that the flow of fluid flowing in the adjacent heat transfer tube groups is opposite to each other. In addition to providing an intermediate partition plate, a baffle plate is disposed between each heat transfer tube group in the body portion so that the fluid flow in the body portion is opposite to the fluid flow in each heat transfer tube group, and An inlet side of a fluid that is circulated through the heat transfer tube group is disposed on an inlet side of a fluid that is circulated in the body part, and an inlet of a fluid that is circulated through the heat transfer tube group on an outlet side of the fluid circulated within the body part Sides can be arranged and configured.

これによれば、冷媒と冷却流体を対向流により熱交換できるから、冷媒の下流側で低温の冷却流体と熱交換でき、冷媒の過冷却度を取りやすく、冷凍サイクルの性能を向上できる。   According to this, since heat exchange can be performed between the refrigerant and the cooling fluid by the counter flow, heat exchange with the low-temperature cooling fluid can be performed on the downstream side of the refrigerant, the degree of supercooling of the refrigerant can be easily obtained, and the performance of the refrigeration cycle can be improved.

また、各伝熱管群の間に配置される邪魔板は平板とすることができ、あるいは、円筒体で形成することができる。さらに、伝熱管群の流路面積は、非共沸混合冷媒の入口側よりも出口側を小さく形成することができる。すなわち、冷媒が凝縮するにつれて冷媒の体積が減ることから、入口側から出口側に至る伝熱管群の圧力損失を均等化できる。なお、冷却流体の流路面積は、冷却流体の上流側から下流側まであまり差がないことが望ましい。   Moreover, the baffle plate arrange | positioned between each heat exchanger tube group can be made into a flat plate, or can be formed with a cylindrical body. Furthermore, the flow path area of the heat transfer tube group can be formed smaller on the outlet side than on the inlet side of the non-azeotropic refrigerant mixture. That is, since the volume of the refrigerant decreases as the refrigerant condenses, the pressure loss of the heat transfer tube group from the inlet side to the outlet side can be equalized. It is desirable that the flow area of the cooling fluid is not so different from the upstream side to the downstream side of the cooling fluid.

本発明によれば、非共沸混合冷媒の循環組成に影響を与えにくいシェルアンドチューブ型凝縮器を提供することができる。   According to the present invention, it is possible to provide a shell and tube type condenser that hardly affects the circulation composition of the non-azeotropic refrigerant mixture.

以下、本発明のシェルアンドチューブ型凝縮器を図示実施例により説明する。   Hereinafter, the shell and tube type condenser of the present invention will be described with reference to the illustrated embodiments.

図1に、本発明の実施例1のシェルアンドチューブ型凝縮器の軸方向の断面図を示し、図2に軸直交方向の断面図を示す。それらの図に示すように、本実施例のシェルアンドチューブ型凝縮器は、円筒状の胴部1と、胴部1の両端に設けられた第1と第2の仕切室2、3と、仕切室2、3を連通して胴部1内に設けられた複数の伝熱管6とを備えて構成される。仕切室2、3は、それぞれ管板4、5によって胴部1と仕切られている。   FIG. 1 shows a cross-sectional view in the axial direction of the shell-and-tube condenser of Example 1 of the present invention, and FIG. 2 shows a cross-sectional view in the direction perpendicular to the axis. As shown in those figures, the shell and tube condenser of the present embodiment includes a cylindrical body 1, first and second partition chambers 2, 3 provided at both ends of the body 1, A plurality of heat transfer tubes 6 provided in the body 1 through the partition chambers 2 and 3 are configured. The partition chambers 2 and 3 are partitioned from the body portion 1 by tube plates 4 and 5, respectively.

複数の伝熱管6は、複数の伝熱管群7a〜7fに分けられている。各伝熱管群7a〜7fは、それぞれ複数の伝熱管6から構成されるが、煩雑さを避けるため、図1では代表して1本の伝熱管で示している。隣り合う伝熱管群7a〜7fに流れる流体の流れは、図示白抜き矢印8に示すように、互いに逆向きになるように、仕切室2、3に互い違いに中仕切板9が設けられている。この中仕切板9により、仕切室2、3は、それぞれ小仕切室2a〜2d、3a〜3cに仕切られている。また、胴部1内の流体の流れが各伝熱管群7a〜7fの流体の流れと互いに逆向きになるように、胴部1内の各伝熱管群7a〜7fの間にそれぞれ邪魔板10が配置されている。これにより、胴部1内に図示矢印11に示す蛇行状の流路が形成される。   The plurality of heat transfer tubes 6 are divided into a plurality of heat transfer tube groups 7a to 7f. Each of the heat transfer tube groups 7a to 7f is composed of a plurality of heat transfer tubes 6, but in order to avoid complexity, FIG. 1 shows a single heat transfer tube as a representative. The partition plates 9 are alternately provided in the partition chambers 2 and 3 so that the flow of the fluid flowing through the adjacent heat transfer tube groups 7a to 7f is opposite to each other as indicated by the white arrows 8 in the figure. . By this middle partition plate 9, the partition chambers 2 and 3 are partitioned into small partition chambers 2a to 2d and 3a to 3c, respectively. Further, the baffle plates 10 are provided between the heat transfer tube groups 7a to 7f in the body portion 1 so that the fluid flow in the body portion 1 is opposite to the fluid flow in the heat transfer tube groups 7a to 7f. Is arranged. As a result, a meandering flow path indicated by an arrow 11 is formed in the body 1.

また、図において胴部1の下部壁に冷却水入口管12が設けられ、上部壁に冷却水出口管13が連通されている。そして、冷却水出口管13に近い小仕切室2aに非共沸混合冷媒の冷媒入口管14が連通され、冷却水入口管12に近い小仕切室2dに非共沸混合冷媒の冷媒出口管15が連通されている。ここで、非共沸混合冷媒には、周知の非共沸混合冷媒を用いることができる。例えば、R407C(HFC32―HFC125−HFC134a)、二酸化炭素−炭化水素(例えば、プロパン)、炭化水素(例えば、プロパン)−炭化水素(例えば、イソブタン)、などが知られている。   Further, in the figure, a cooling water inlet pipe 12 is provided on the lower wall of the body 1, and a cooling water outlet pipe 13 is communicated with the upper wall. The refrigerant inlet pipe 14 for the non-azeotropic refrigerant mixture communicates with the small partition chamber 2 a near the cooling water outlet pipe 13, and the refrigerant outlet pipe 15 for the non-azeotropic refrigerant mixture communicates with the small compartment 2 d near the cooling water inlet pipe 12. Is communicated. Here, a known non-azeotropic mixed refrigerant can be used as the non-azeotropic mixed refrigerant. For example, R407C (HFC32-HFC125-HFC134a), carbon dioxide-hydrocarbon (for example, propane), hydrocarbon (for example, propane) -hydrocarbon (for example, isobutane), and the like are known.

このように構成される本実施例の凝縮器の動作について説明する。冷却水は、冷却水入口管12から胴部1内の冷却水室16に流入され、邪魔板10によって仕切られた図示矢印11のジグザグ状の流路を通って冷却水出口管13から排出される。一方、図示していない圧縮機で圧縮された非共沸混合冷媒の冷媒蒸気は、冷媒入口管14から小仕切室2aに流入され、胴部1内の冷却水室16に設置された伝熱管群7a内を通って小仕切室3aに流入される。小仕切室3aに流入された非共沸混合冷媒は流れの向きを変えて伝熱管群7b内を通って小仕切室2bに流入される。このようにして、非共沸混合冷媒の冷媒蒸気は、小仕切室2b→伝熱管群7c→小仕切室3b→伝熱管群7d→小仕切室2c→伝熱管群7e→小仕切室3c→伝熱管群7f→小仕切室2dに流入し、冷媒出口管15を通って冷凍サイクルに戻される。   The operation of the condenser of this embodiment configured as described above will be described. The cooling water flows from the cooling water inlet pipe 12 into the cooling water chamber 16 in the body portion 1 and is discharged from the cooling water outlet pipe 13 through the zigzag flow path indicated by the arrow 11 shown in FIG. The On the other hand, the refrigerant vapor of the non-azeotropic refrigerant mixture compressed by a compressor (not shown) flows into the small partition chamber 2a from the refrigerant inlet pipe 14 and is installed in the cooling water chamber 16 in the body 1. It flows into the small compartment 3a through the group 7a. The non-azeotropic refrigerant mixture that has flowed into the small partition 3a changes the flow direction and flows into the small partition 2b through the heat transfer tube group 7b. In this way, the refrigerant vapor of the non-azeotropic refrigerant mixture is the small partition chamber 2b → the heat transfer tube group 7c → the small partition chamber 3b → the heat transfer tube group 7d → the small partition chamber 2c → the heat transfer tube group 7e → the small partition chamber 3c → The heat transfer tube group 7f flows into the small partition 2d, returns to the refrigeration cycle through the refrigerant outlet tube 15.

非共沸混合冷媒の冷媒蒸気は、伝熱管群7a〜7fを流通する過程で、伝熱管群7a〜7fを構成する1本1本の伝熱管6の周りの冷却水と熱交換して冷却されて凝縮し、冷媒出口管15から液冷媒として排出される。また、本実施例のシェルアンドチューブ型凝縮器では、非共沸混合冷媒と冷却水は、対向流により熱交換するようになっている。   The refrigerant vapor of the non-azeotropic refrigerant mixture is cooled by exchanging heat with the cooling water around each of the heat transfer tubes 6 constituting the heat transfer tube groups 7a to 7f in the process of flowing through the heat transfer tube groups 7a to 7f. Then, it is condensed and discharged from the refrigerant outlet pipe 15 as a liquid refrigerant. Moreover, in the shell and tube type condenser of the present embodiment, the non-azeotropic refrigerant mixture and the cooling water are heat-exchanged by counterflow.

ここで、非共沸混合冷媒の凝縮特性について、図3を参照して説明する。図3は、沸点が異なる2種類の冷媒A、Bの非共沸混合冷媒の気液平衡線図を示したものである。図において、横軸はA/Bの組成を表し、縦軸は任意の温度を示している。このような非共沸混合冷媒の液相線と気相線は図示のようにずれがあり、冷媒の封入組成が図示の場合、任意の温度における液の組成とガスの組成が異なり、飽和域は気相線、液相線に沿って組成が変化する特性となっている。なお、温度勾配は、封入組成が気相線と液相線と交わる点の温度差である。   Here, the condensation characteristics of the non-azeotropic refrigerant mixture will be described with reference to FIG. FIG. 3 shows a vapor-liquid equilibrium diagram of a non-azeotropic refrigerant mixture of two types of refrigerants A and B having different boiling points. In the figure, the horizontal axis represents the A / B composition, and the vertical axis represents an arbitrary temperature. The liquid phase line and the gas phase line of such a non-azeotropic refrigerant mixture are shifted as shown in the figure, and when the refrigerant sealing composition is shown in the figure, the liquid composition and gas composition at an arbitrary temperature are different, and the saturation region Has a characteristic that the composition changes along the gas phase line and the liquid phase line. The temperature gradient is the temperature difference at the point where the encapsulated composition intersects the gas phase line and the liquid phase line.

このような特性を有することから、特許文献1のシェルアンドチューブ型凝縮器では、図4に示す模式図のように、流路断面積が大きなシェル側に冷媒を流していることから、高沸点冷媒が先に凝縮して比重の大きな液冷媒がシェルの底部に溜まり、シェル底部から排出される冷媒の組成が富高沸点冷媒になり、循環冷媒の組成が封入時の冷媒組成からずれてしまうという問題がある。   Since it has such characteristics, in the shell and tube type condenser of Patent Document 1, as shown in the schematic diagram shown in FIG. The refrigerant condenses first and liquid refrigerant with a large specific gravity accumulates at the bottom of the shell, the composition of the refrigerant discharged from the shell bottom becomes a high-boiling-point refrigerant, and the composition of the circulating refrigerant deviates from the refrigerant composition at the time of encapsulation. There is a problem.

この点、本実施例によれば、非共沸混合冷媒を比較的断面積の小さい伝熱管6内を流すようにしているため、特に、図5(a)〜(c)に示すように、伝熱管6の上流側から下流側に向うにつれて、伝熱管6の内壁面側から冷媒の凝縮が進むことになる。このとき、伝熱管6内を流れる冷媒流速が大きいことから、凝縮した液冷媒が冷媒蒸気を取り込んで伝熱管内を同等の速度で流れることになる。また、非共沸混合冷媒では低沸点冷媒より高沸点冷媒のほうが凝縮しやすいが、伝熱管6内を冷媒が流れることで、高沸点冷媒が凝縮したのちには新たな高沸点冷媒の供給がないため、速やかに低沸点冷媒の凝縮がすすむ。その結果、未凝縮の冷媒蒸気が取り残されることがなくなり、非共沸混合冷媒の凝縮温度の違いによって凝縮器から排出される循環冷媒の組成が封入時の冷媒組成からずれるのを抑制できる。また、伝熱管6内の流速が大きくなるから、冷媒側の熱伝達率を向上させることができる。   In this regard, according to the present embodiment, the non-azeotropic refrigerant mixture is caused to flow through the heat transfer tube 6 having a relatively small cross-sectional area, and therefore, particularly, as shown in FIGS. The refrigerant condenses from the inner wall surface side of the heat transfer tube 6 as it goes from the upstream side to the downstream side of the heat transfer tube 6. At this time, since the flow velocity of the refrigerant flowing through the heat transfer tube 6 is large, the condensed liquid refrigerant takes in the refrigerant vapor and flows through the heat transfer tube at an equivalent speed. In addition, in a non-azeotropic refrigerant mixture, a high-boiling point refrigerant is more likely to condense than a low-boiling point refrigerant. However, after the high-boiling point refrigerant is condensed due to the refrigerant flowing in the heat transfer tube 6, a new high-boiling point refrigerant is supplied. As a result, condensation of the low boiling point refrigerant proceeds promptly. As a result, uncondensed refrigerant vapor is not left behind, and the composition of the circulating refrigerant discharged from the condenser due to the difference in the condensation temperature of the non-azeotropic refrigerant mixture can be prevented from deviating from the refrigerant composition at the time of filling. Moreover, since the flow velocity in the heat transfer tube 6 is increased, the heat transfer coefficient on the refrigerant side can be improved.

したがって、非共沸混合冷媒を用いた冷凍サイクルにおいて、冷媒組成変動による性能低下を防止することができる。また、最終的な冷媒液の高沸点冷媒の割合が多くなるのを防止でき、熱交換性能が落ちたり、高圧側圧力が高くなったりして圧縮機で消費するエネルギーが増加することを防止できる。   Therefore, in a refrigeration cycle using a non-azeotropic refrigerant mixture, it is possible to prevent performance degradation due to refrigerant composition fluctuations. Moreover, it is possible to prevent an increase in the ratio of the high boiling point refrigerant in the final refrigerant liquid, and it is possible to prevent the heat exchange performance from being reduced and the high pressure side pressure from being increased to increase the energy consumed by the compressor. .

また、冷却水は邪魔板10により流路断面積が小さくなるため、邪魔板10がない場合と比較して、流速が大きくなり、冷却水側の熱伝達性能も向上する。   Moreover, since the flow path cross-sectional area of the cooling water is reduced by the baffle plate 10, the flow rate is increased and the heat transfer performance on the cooling water side is improved as compared with the case without the baffle plate 10.

また、本実施例によれば、冷媒入口管14を上部に設け、冷媒出口管15を下部に設けているから、凝縮した冷媒液は冷媒蒸気より重いため下に流れやすく、冷媒は全体として上から下に流れやすい構造となっている。一方、冷却水入口管12は冷媒出口管15側に設けられ、冷却水出口管13は、冷媒入口管14側に設けられているから、温度の高い上流側の冷媒は、温度の高い下流側の冷却水と熱交換し、温度の低い下流側の冷媒は、温度の低い上流側の冷却水と熱交換する。したがって、冷媒と冷却水の流れが対向流になっているから、非共沸混合冷媒の二相域の温度勾配による性能低下を防ぐことができる。これにより、性能を確保する目的で冷媒と冷却水の温度差を大きくするために、凝縮器の下流側に設けられる蒸発器の入口温度を上げる必要がない。そのため、圧縮機の吐出圧力を上げる必要がないから、圧縮機の消費電力増大を防ぐことができる。   Further, according to the present embodiment, the refrigerant inlet pipe 14 is provided at the upper part and the refrigerant outlet pipe 15 is provided at the lower part. Therefore, since the condensed refrigerant liquid is heavier than the refrigerant vapor, it easily flows downward. It has a structure that is easy to flow down from. On the other hand, the cooling water inlet pipe 12 is provided on the refrigerant outlet pipe 15 side, and the cooling water outlet pipe 13 is provided on the refrigerant inlet pipe 14 side. The refrigerant on the downstream side having a low temperature exchanges heat with the cooling water on the upstream side having a low temperature. Therefore, since the refrigerant and the cooling water flow are counterflows, it is possible to prevent performance degradation due to the temperature gradient in the two-phase region of the non-azeotropic refrigerant mixture. Thus, in order to increase the temperature difference between the refrigerant and the cooling water in order to ensure performance, it is not necessary to increase the inlet temperature of the evaporator provided on the downstream side of the condenser. Therefore, since it is not necessary to increase the discharge pressure of the compressor, an increase in power consumption of the compressor can be prevented.

さらに、本実施例によれば、伝熱管群7a〜7fの容積は、胴部1の容積に比べて小さいから、凝縮器内の冷媒体積が小さくなり、冷媒封入量を少なくできる。その結果、冷媒の廃棄時や漏洩時の地球環境へのリスクを低減できる。   Furthermore, according to the present embodiment, since the volume of the heat transfer tube groups 7a to 7f is smaller than the volume of the body portion 1, the volume of the refrigerant in the condenser is reduced, and the amount of refrigerant enclosed can be reduced. As a result, the risk to the global environment when the refrigerant is discarded or leaked can be reduced.

また、胴部内は伝熱管が占める領域を除いて冷却流体室となるため、高圧の非共沸混合冷媒を使用した場合でも、伝熱管と仕切室を構成する部分以外は、その冷媒に対応する耐圧仕様とする必要がない。そのため、特許文献1の従来技術に比べて、シェル部分の耐圧力を冷媒の高い圧力に合わせる必要がないことから、コストアップを抑えることができる。   Further, since the inside of the body portion is a cooling fluid chamber except for the area occupied by the heat transfer tube, even when a high-pressure non-azeotropic refrigerant mixture is used, the portion other than the portion constituting the heat transfer tube and the partition chamber corresponds to the refrigerant. There is no need for pressure resistance specifications. Therefore, compared with the prior art of Patent Document 1, it is not necessary to match the pressure resistance of the shell portion to the high pressure of the refrigerant, so that an increase in cost can be suppressed.

図6、図7に、本発明のシェルアンドチューブ型凝縮器の実施例2の断面図を示す。図6は、本実施例の軸方向の断面図であり、図7は、本実施例の軸直角方向の断面図である。それらの図に示すように、本実施例が実施例1と相違する点は、伝熱管群7a〜7eの断面積を、冷媒の上流側ほど大きく、下流側ほど小さくしたことにある。また、伝熱管群7a〜7eのパス数が奇数となった関係で、冷却水出口管13と、冷媒入口管14の位置を反対側に変更している。その他の点は、実施例1と同一であることから、同一の符号を付して説明を省略する。   6 and 7 are sectional views of Embodiment 2 of the shell-and-tube condenser of the present invention. 6 is a sectional view in the axial direction of the present embodiment, and FIG. 7 is a sectional view in the direction perpendicular to the axis of the present embodiment. As shown in these figures, the difference between the present embodiment and the first embodiment is that the cross-sectional areas of the heat transfer tube groups 7a to 7e are increased toward the upstream side of the refrigerant and decreased toward the downstream side. Further, the positions of the cooling water outlet pipe 13 and the refrigerant inlet pipe 14 are changed to the opposite side because the number of passes of the heat transfer pipe groups 7a to 7e is an odd number. Since the other points are the same as those of the first embodiment, the same reference numerals are given and description thereof is omitted.

すなわち、冷媒最上流側の伝熱管群7aの断面積は、最下流側の伝熱管群7e断面積の例えば2〜10倍になっており、比体積の大きい冷媒蒸気が多い上流側と比体積の小さい冷媒液が多い下流側とで冷媒流速を同等レベルにでき、熱交換器全体を有効に活用できる。   That is, the cross-sectional area of the heat transfer tube group 7a on the most upstream side of the refrigerant is, for example, 2 to 10 times the cross-sectional area of the heat transfer tube group 7e on the most downstream side. The refrigerant flow rate can be made equivalent at the downstream side where there are many refrigerant liquids with a small amount of refrigerant, and the entire heat exchanger can be used effectively.

ここで、伝熱管群7a〜7eの断面積を上流側と下流側とで変化させたが、冷却水流路の断面積は、冷却水流速を一定にするために上流側から下流側まで変化がないほうが望ましい。つまり、冷媒上流側の伝熱管群の配管本数は多くするが、冷却水流路の断面積が同じレベルになるように、邪魔板10の位置を設定する必要がある。冷却水流路の断面積の変動がないことで、冷却水の圧力損失の増加が防止できる。   Here, the cross-sectional areas of the heat transfer tube groups 7a to 7e are changed between the upstream side and the downstream side, but the cross-sectional area of the cooling water flow path changes from the upstream side to the downstream side in order to make the cooling water flow rate constant. It is better not to. That is, although the number of pipes in the heat transfer tube group on the upstream side of the refrigerant is increased, it is necessary to set the position of the baffle plate 10 so that the cross-sectional areas of the cooling water flow paths are at the same level. Since there is no change in the cross-sectional area of the cooling water flow path, an increase in cooling water pressure loss can be prevented.

図8、図9に、本発明のシェルアンドチューブ型凝縮器の実施例3の断面図を示す。図8は、本実施例の軸方向の断面図であり、図9は、本実施例の軸直角方向の断面図である。それらの図に示すように、本実施例が実施例1と相違する点は、伝熱管群のパス数を2としたこと、及び邪魔板10を円筒体にしたことにある。   8 and 9 are sectional views of Embodiment 3 of the shell-and-tube condenser of the present invention. FIG. 8 is a sectional view in the axial direction of the present embodiment, and FIG. 9 is a sectional view in the direction perpendicular to the axis of the present embodiment. As shown in these figures, this embodiment is different from the first embodiment in that the number of passes of the heat transfer tube group is 2 and that the baffle plate 10 is a cylindrical body.

すなわち、伝熱管群7a、7bは、円筒体の邪魔板10の内側と外側の2つに分かれている。邪魔板10を平板に比べ変形に強い円筒型とすることで構造が単純化できる。   That is, the heat transfer tube groups 7a and 7b are divided into two inside and outside the cylindrical baffle plate 10. The structure can be simplified by making the baffle plate 10 a cylindrical type that is more resistant to deformation than a flat plate.

図10、図11に、本発明のシェルアンドチューブ型凝縮器の実施例4の断面図を示す。図10は、本実施例の軸直角方向の断面図である。図示のように、邪魔板10によって冷却流体流路が4つに分割されている。図11は、邪魔板10の部分の斜視図を示す。図11に示すように、邪魔板10は、冷却水の流れ18が4つの冷却流体流路を直列に流れるように形成されている。また、伝熱管群の冷媒の流れの向きは、冷却水の流れとは逆向きであり、対向流配置となっている。   10 and 11 are sectional views of a shell-and-tube condenser according to a fourth embodiment of the present invention. FIG. 10 is a cross-sectional view of the present embodiment in the direction perpendicular to the axis. As shown in the figure, the cooling fluid flow path is divided into four by the baffle plate 10. FIG. 11 shows a perspective view of a portion of the baffle plate 10. As shown in FIG. 11, the baffle plate 10 is formed so that a flow 18 of cooling water flows in series in four cooling fluid flow paths. Moreover, the direction of the flow of the refrigerant in the heat transfer tube group is opposite to the flow of the cooling water, and has a counter flow arrangement.

本実施例によれば、冷媒上流側より冷媒下流側の伝熱管群の断面積が小さいから、冷媒の流速を上流から下流まで同等レベルにできる。また、邪魔板10を平板を組み合わせた構造とすることで、邪魔板10の強度が増す利点がある。   According to this embodiment, since the cross-sectional area of the heat transfer tube group on the downstream side of the refrigerant is smaller than that on the upstream side of the refrigerant, the flow rate of the refrigerant can be made equal from upstream to downstream. Moreover, there exists an advantage which the intensity | strength of the baffle plate 10 increases by making the baffle plate 10 into the structure which combined the flat plate.

図12に、本発明のシェルアンドチューブ型凝縮器の実施例5の軸方向の断面図を示す。本実施例が、図6の実施例2と相違する点は、邪魔板10を胴部1の軸方向に直交する方向に配置し、冷却水の流路を軸方向にジグザグに形成したことにある。これにより、冷却水出口管13と冷媒入口管14との関係、及び冷却水入口管12と冷媒出口管15との関係は、対向流となっているが、その他の部分の冷却水流路と伝熱管6との関係は、十字流となる。   FIG. 12 is a sectional view in the axial direction of Example 5 of the shell and tube type condenser of the present invention. This embodiment is different from the second embodiment of FIG. 6 in that the baffle plate 10 is arranged in a direction orthogonal to the axial direction of the trunk portion 1 and the cooling water flow path is formed in a zigzag in the axial direction. is there. As a result, the relationship between the cooling water outlet pipe 13 and the refrigerant inlet pipe 14 and the relationship between the cooling water inlet pipe 12 and the refrigerant outlet pipe 15 are opposed to each other. The relationship with the heat pipe 6 is a cross flow.

本実施例によっても、実施例1と同様に、非共沸混合冷媒を比較的断面積の小さい伝熱管6内を流すようにしているため、伝熱管6内の流速が大きくなり、冷媒側の熱伝達率を向上させることができる。特に、伝熱管6の上流側から下流側に向うにつれて、伝熱管6の内壁面側から冷媒の凝縮が進むことになるが、伝熱管6内を流れる冷媒流速が大きいことから、凝縮した冷媒液が冷媒蒸気を取り込んで伝熱管内を同一レベルの速度で流れることになる。また、非共沸混合冷媒では低沸点冷媒より高沸点冷媒のほうが凝縮しやすいが、伝熱管6内を冷媒が流れることで、高沸点冷媒が凝縮したのちには新たな高沸点冷媒の供給がないため、速やかに低沸点冷媒の凝縮がすすむ。その結果、凝縮しなかった冷媒蒸気が取り残されることがなくなり、非共沸混合冷媒の凝縮温度の違いによって、凝縮器から排出される循環冷媒の組成が封入時の冷媒組成からずれるのを抑制できる。したがって、非共沸混合冷媒を用いた冷凍サイクルにおいて、冷媒組成変動による性能低下を防止することができる。また、最終的な冷媒液の高沸点冷媒の割合が多くなるのを防止でき、熱交換性能が落ちたり、高圧側圧力が高くなったりして圧縮機で消費するエネルギーが増加することを防止できる。   Also in this embodiment, since the non-azeotropic refrigerant mixture flows in the heat transfer tube 6 having a relatively small cross-sectional area, the flow velocity in the heat transfer tube 6 increases, The heat transfer rate can be improved. In particular, the condensation of the refrigerant proceeds from the inner wall surface side of the heat transfer tube 6 as it goes from the upstream side to the downstream side of the heat transfer tube 6. However, since the flow velocity of the refrigerant flowing in the heat transfer tube 6 is large, the condensed refrigerant liquid Takes in the refrigerant vapor and flows in the heat transfer tube at the same level. In addition, in a non-azeotropic refrigerant mixture, a high-boiling point refrigerant is more likely to condense than a low-boiling point refrigerant. However, after the high-boiling point refrigerant is condensed due to the refrigerant flowing in the heat transfer tube 6, a new high-boiling point refrigerant is supplied. As a result, condensation of the low boiling point refrigerant proceeds promptly. As a result, the refrigerant vapor that has not been condensed is not left behind, and the composition of the circulating refrigerant discharged from the condenser can be prevented from deviating from the refrigerant composition at the time of encapsulation due to the difference in the condensation temperature of the non-azeotropic refrigerant mixture. . Therefore, in a refrigeration cycle using a non-azeotropic refrigerant mixture, it is possible to prevent performance degradation due to refrigerant composition fluctuations. Moreover, it is possible to prevent an increase in the ratio of the high boiling point refrigerant in the final refrigerant liquid, and it is possible to prevent the heat exchange performance from being reduced and the high pressure side pressure from being increased to increase the energy consumed by the compressor. .

本発明の実施例1のシェルアンドチューブ型凝縮器の軸方向の断面図を示す。The sectional view of the axial direction of the shell and tube type condenser of Example 1 of the present invention is shown. 実施例1の軸直交方向の断面図を示す。Sectional drawing of the axis orthogonal direction of Example 1 is shown. 沸点が異なる2種類の冷媒A、Bの非共沸混合冷媒の気液平衡線図の例である。It is an example of the vapor-liquid equilibrium diagram of the non-azeotropic refrigerant mixture of two types of refrigerants A and B having different boiling points. 特許文献1のシェルアンドチューブ型凝縮器に非共沸混合冷媒を使用したときの問題点を説明する模式図である。It is a schematic diagram explaining a problem when a non-azeotropic refrigerant mixture is used for the shell and tube type condenser of patent document 1. 本発明の実施例1の効果を説明する図である。It is a figure explaining the effect of Example 1 of this invention. 本発明の実施例2のシェルアンドチューブ型凝縮器の軸方向の断面図を示す。Sectional drawing of the axial direction of the shell and tube type | mold condenser of Example 2 of this invention is shown. 実施例2の軸直交方向の断面図を示す。Sectional drawing of the axis orthogonal direction of Example 2 is shown. 本発明の実施例3のシェルアンドチューブ型凝縮器の軸方向の断面図を示す。Sectional drawing of the axial direction of the shell and tube type | mold condenser of Example 3 of this invention is shown. 実施例3の軸直交方向の断面図を示す。Sectional drawing of the axis orthogonal direction of Example 3 is shown. 本発明の実施例4のシェルアンドチューブ型凝縮器の軸直交方向の断面図を示す。Sectional drawing of the axis orthogonal direction of the shell and tube type | mold condenser of Example 4 of this invention is shown. 実施例4の冷却水の流れを説明する斜視図である。It is a perspective view explaining the flow of the cooling water of Example 4. 本発明の実施例5のシェルアンドチューブ型凝縮器の軸直交方向の断面図を示す。Sectional drawing of the axis orthogonal direction of the shell and tube type condenser of Example 5 of this invention is shown.

符号の説明Explanation of symbols

1 胴部
2、3 仕切室
4、5 管板
6 伝熱管
7a〜7f 伝熱管群
9 中仕切板
10 邪魔板
12 冷却水入口管
13 冷却水出口管
14 冷媒入口管
15 冷媒出口管
DESCRIPTION OF SYMBOLS 1 Body part 2, 3 Partition chamber 4, 5 Tube plate 6 Heat transfer tube 7a-7f Heat transfer tube group 9 Middle partition plate 10 Baffle plate 12 Cooling water inlet pipe 13 Cooling water outlet pipe 14 Refrigerant inlet pipe 15 Refrigerant outlet pipe

Claims (6)

筒状の胴部と、該胴部の両端に設けられた第1と第2の仕切室と、該第1と第2の仕切室を連通して前記胴部内に設けられた複数の伝熱管とを備えてなるシェルアンドチューブ型凝縮器において、
前記伝熱管内に非共沸混合冷媒を流通し、前記胴部内に冷却流体を流通してなることを特徴とするシェルアンドチューブ型凝縮器。
A cylindrical body, first and second partition chambers provided at both ends of the body, and a plurality of heat transfer tubes provided in the body through the first and second partition chambers In a shell-and-tube condenser comprising
A shell-and-tube condenser, wherein a non-azeotropic refrigerant mixture is circulated in the heat transfer tube, and a cooling fluid is circulated in the body portion.
請求項1に記載のシェルアンドチューブ型凝縮器において、
複数の前記伝熱管を複数の伝熱管群に分け、隣り合う前記伝熱管群に流れる流体の流れが互いに逆向きになるように前記第1と第2の仕切室に互い違いに中仕切板を設けるとともに、前記胴部内の流体の流れが各伝熱管群の流体の流れと互いに逆向きになるように、前記胴部内の各伝熱管群の間に邪魔板を配置し、前記胴部内に流通される流体の入口側に前記伝熱管群に通流される流体の出口側を配置し、前記胴部内に流通される流体の出口側に前記伝熱管群に流通される流体の入口側を配置してなることを特徴とするシェルアンドチューブ型凝縮器。
The shell and tube condenser according to claim 1,
Dividing the plurality of heat transfer tubes into a plurality of heat transfer tube groups, and alternately providing intermediate partition plates in the first and second partition chambers so that the flow of fluid flowing in the adjacent heat transfer tube groups is opposite to each other In addition, a baffle plate is arranged between each heat transfer tube group in the body portion so that the fluid flow in the body portion is opposite to the fluid flow in each heat transfer tube group, and is distributed in the body portion. An outlet side of the fluid that is passed through the heat transfer tube group is disposed on the inlet side of the fluid to be disposed, and an inlet side of the fluid that is circulated through the heat transfer tube group is disposed on the outlet side of the fluid that is circulated in the body portion. A shell and tube type condenser characterized by comprising:
請求項2に記載のシェルアンドチューブ型凝縮器において、
前記各伝熱管群の間に配置される邪魔板が平板であることを特徴とするシェルアンドチューブ型凝縮器。
The shell and tube condenser according to claim 2,
A shell-and-tube condenser, wherein the baffle plate disposed between the heat transfer tube groups is a flat plate.
請求項2に記載のシェルアンドチューブ型凝縮器において、
前記各伝熱管群の間に配置される邪魔板が円筒体であることを特徴とするシェルアンドチューブ型凝縮器。
The shell and tube condenser according to claim 2,
A shell-and-tube condenser, wherein a baffle plate disposed between the heat transfer tube groups is a cylindrical body.
請求項2乃至4のいずれかに記載のシェルアンドチューブ型凝縮器において、
前記伝熱管群の流路面積は、前記非共沸混合冷媒の入口側よりも出口側が小さく形成されてなることを特徴とするシェルアンドチューブ型凝縮器。
In the shell and tube type condenser according to any one of claims 2 to 4,
A shell-and-tube condenser having a flow passage area of the heat transfer tube group formed smaller on the outlet side than the inlet side of the non-azeotropic refrigerant mixture.
請求項1に記載のシェルアンドチューブ型凝縮器において、
複数の前記伝熱管を複数の伝熱管群に分け、隣り合う前記伝熱管群に流れる流体の流れが互いに逆向きになるように前記第1と第2の仕切室に互い違いに中仕切板を設けるとともに、前記胴部内に前記伝熱管が直交する複数の邪魔板を配置し、該複数の邪魔板により前記胴部内に流通される流体流路を蛇行させてなることを特徴とするシェルアンドチューブ型凝縮器。
The shell and tube condenser according to claim 1,
Dividing the plurality of heat transfer tubes into a plurality of heat transfer tube groups, and alternately providing intermediate partition plates in the first and second partition chambers so that the flow of fluid flowing in the adjacent heat transfer tube groups is opposite to each other And a shell-and-tube type wherein a plurality of baffle plates in which the heat transfer tubes are orthogonal to each other are arranged in the body portion, and a fluid flow path circulating in the body portion is meandered by the plurality of baffle plates. Condenser.
JP2006034373A 2006-02-10 2006-02-10 Shell-and-tube type condenser Pending JP2007212091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006034373A JP2007212091A (en) 2006-02-10 2006-02-10 Shell-and-tube type condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006034373A JP2007212091A (en) 2006-02-10 2006-02-10 Shell-and-tube type condenser

Publications (1)

Publication Number Publication Date
JP2007212091A true JP2007212091A (en) 2007-08-23

Family

ID=38490700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006034373A Pending JP2007212091A (en) 2006-02-10 2006-02-10 Shell-and-tube type condenser

Country Status (1)

Country Link
JP (1) JP2007212091A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261642A (en) * 2009-05-01 2010-11-18 S−Spec株式会社 Condenser and air conditioning device having the same
WO2011029412A1 (en) * 2009-09-14 2011-03-17 珠海格力电器股份有限公司 Shell and tube type condenser for recycling heat
CN102080901A (en) * 2010-12-13 2011-06-01 上海环球制冷设备有限公司 Integrated condensing dry evaporator device and use method thereof
JP2011191047A (en) * 2010-03-15 2011-09-29 Lg Electronics Inc Heat exchanger for air conditioner
CN102519182A (en) * 2011-12-20 2012-06-27 芜湖博耐尔汽车电气系统有限公司 Parallel flow condenser for automobile air conditioner
CN103185425A (en) * 2013-03-08 2013-07-03 哈尔滨工大金涛科技股份有限公司 Shell-and-tube sewage-refrigerant phase change heat exchanger
KR101290786B1 (en) * 2011-06-02 2013-07-30 세협기계(주) Heat exchanger with divided interior of fluid system
JP2013231591A (en) * 2009-06-29 2013-11-14 Johnson Controls Technology Co System for limiting pressure difference in dual compressor chiller
JP2016070420A (en) * 2014-09-30 2016-05-09 株式会社酉島製作所 mechanical seal
CN105890408A (en) * 2016-05-27 2016-08-24 合肥海川石化设备有限公司 Multichannel and multipass pipe shell type gas-liquid heat exchanger
CN108870811A (en) * 2018-08-18 2018-11-23 福建恒力汽车空调配件有限公司 A kind of parallel flow condenser with vapor-liquid separating device
WO2019054812A1 (en) * 2017-09-18 2019-03-21 주식회사 플로우포스 Swirling flow path type heat exchanger
CN110701833A (en) * 2019-10-11 2020-01-17 天津商业大学 Water-cooling shell and tube condenser
KR102087228B1 (en) * 2018-12-27 2020-03-11 (주)순정에너지환경 Water Removing Apparatus for Biogas
WO2021145069A1 (en) * 2020-01-14 2021-07-22 ダイキン工業株式会社 Shell-and-plate heat exchanger
JP2021113654A (en) * 2020-01-20 2021-08-05 パナソニック株式会社 Shell-and-tube type heat exchanger and refrigeration cycle device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124792U (en) * 1980-02-21 1981-09-22
JPS6423071A (en) * 1987-07-15 1989-01-25 Technol Res Assoc Super Heat P Condenser
JPH028661A (en) * 1987-11-09 1990-01-12 Technol Res Assoc Super Heat Pump Energ Accum Syst Heat pump
JPH051865A (en) * 1991-10-25 1993-01-08 Showa Alum Corp Aluminum made condenser for air condioner
JPH05203375A (en) * 1992-01-23 1993-08-10 Kubota Corp Heat exchanger for sewage
JPH08338671A (en) * 1995-06-14 1996-12-24 Kobe Steel Ltd Horizontal type condenser for non-azeotrope refrigerant
JPH09257324A (en) * 1996-03-21 1997-10-03 Hitachi Ltd Refrigerator and water-cooled refrigerator
JP2001027157A (en) * 1999-07-13 2001-01-30 Mitsubishi Motors Corp Strut for egr cooler

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124792U (en) * 1980-02-21 1981-09-22
JPS6423071A (en) * 1987-07-15 1989-01-25 Technol Res Assoc Super Heat P Condenser
JPH028661A (en) * 1987-11-09 1990-01-12 Technol Res Assoc Super Heat Pump Energ Accum Syst Heat pump
JPH051865A (en) * 1991-10-25 1993-01-08 Showa Alum Corp Aluminum made condenser for air condioner
JPH05203375A (en) * 1992-01-23 1993-08-10 Kubota Corp Heat exchanger for sewage
JPH08338671A (en) * 1995-06-14 1996-12-24 Kobe Steel Ltd Horizontal type condenser for non-azeotrope refrigerant
JPH09257324A (en) * 1996-03-21 1997-10-03 Hitachi Ltd Refrigerator and water-cooled refrigerator
JP2001027157A (en) * 1999-07-13 2001-01-30 Mitsubishi Motors Corp Strut for egr cooler

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261642A (en) * 2009-05-01 2010-11-18 S−Spec株式会社 Condenser and air conditioning device having the same
JP2013231591A (en) * 2009-06-29 2013-11-14 Johnson Controls Technology Co System for limiting pressure difference in dual compressor chiller
WO2011029412A1 (en) * 2009-09-14 2011-03-17 珠海格力电器股份有限公司 Shell and tube type condenser for recycling heat
JP2011191047A (en) * 2010-03-15 2011-09-29 Lg Electronics Inc Heat exchanger for air conditioner
CN102080901A (en) * 2010-12-13 2011-06-01 上海环球制冷设备有限公司 Integrated condensing dry evaporator device and use method thereof
CN102080901B (en) * 2010-12-13 2013-06-26 上海环球制冷设备有限公司 Integrated condensing dry evaporator device and use method thereof
KR101290786B1 (en) * 2011-06-02 2013-07-30 세협기계(주) Heat exchanger with divided interior of fluid system
CN102519182A (en) * 2011-12-20 2012-06-27 芜湖博耐尔汽车电气系统有限公司 Parallel flow condenser for automobile air conditioner
CN103185425A (en) * 2013-03-08 2013-07-03 哈尔滨工大金涛科技股份有限公司 Shell-and-tube sewage-refrigerant phase change heat exchanger
JP2016070420A (en) * 2014-09-30 2016-05-09 株式会社酉島製作所 mechanical seal
CN105890408A (en) * 2016-05-27 2016-08-24 合肥海川石化设备有限公司 Multichannel and multipass pipe shell type gas-liquid heat exchanger
WO2019054812A1 (en) * 2017-09-18 2019-03-21 주식회사 플로우포스 Swirling flow path type heat exchanger
CN108870811A (en) * 2018-08-18 2018-11-23 福建恒力汽车空调配件有限公司 A kind of parallel flow condenser with vapor-liquid separating device
KR102087228B1 (en) * 2018-12-27 2020-03-11 (주)순정에너지환경 Water Removing Apparatus for Biogas
CN110701833A (en) * 2019-10-11 2020-01-17 天津商业大学 Water-cooling shell and tube condenser
WO2021145069A1 (en) * 2020-01-14 2021-07-22 ダイキン工業株式会社 Shell-and-plate heat exchanger
JP2021110531A (en) * 2020-01-14 2021-08-02 ダイキン工業株式会社 Shell-and-plate type heat exchanger
JP2021113654A (en) * 2020-01-20 2021-08-05 パナソニック株式会社 Shell-and-tube type heat exchanger and refrigeration cycle device
JP7445438B2 (en) 2020-01-20 2024-03-07 パナソニックホールディングス株式会社 Shell and tube heat exchanger and refrigeration cycle equipment

Similar Documents

Publication Publication Date Title
JP2007212091A (en) Shell-and-tube type condenser
US9494368B2 (en) Heat exchanger and air conditioner
JP6701372B2 (en) Heat exchanger
JP6202451B2 (en) Heat exchanger and air conditioner
US6883347B2 (en) End bonnets for shell and tube DX evaporator
JP5790730B2 (en) Heat exchanger
US20090071189A1 (en) Condenser for a motor vehicle air conditioning circuit, and circuit comprising same
KR101120223B1 (en) Refrigeration cycle device
US7367388B2 (en) Evaporator for carbon dioxide air-conditioner
CN102230692B (en) Heat exchanger with improved heat exchange performance
US20150027672A1 (en) Heat exchanger
CN101858672B (en) Heat exchanger with improved heat exchange property
US10041710B2 (en) Heat exchanger and air conditioner
JP2016525205A (en) Heat exchanger
US20160054038A1 (en) Heat exchanger and refrigeration cycle apparatus
JP4646302B2 (en) Shell and tube heat exchanger
JP3866905B2 (en) Heat exchanger and refrigeration cycle equipment
JP2018112379A (en) Air conditioner
JP4701147B2 (en) 2-stage absorption refrigerator
JP2014020755A (en) Downward flow liquid film type evaporator
JP3576486B2 (en) Evaporators and refrigerators
JP2011257111A5 (en)
US20110024083A1 (en) Heat exchanger
JP2005127529A (en) Heat exchanger
JP5194279B2 (en) Evaporator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080121

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080619

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Effective date: 20100430

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100622