JPH03168565A - Refrigeration cycle - Google Patents

Refrigeration cycle

Info

Publication number
JPH03168565A
JPH03168565A JP30815689A JP30815689A JPH03168565A JP H03168565 A JPH03168565 A JP H03168565A JP 30815689 A JP30815689 A JP 30815689A JP 30815689 A JP30815689 A JP 30815689A JP H03168565 A JPH03168565 A JP H03168565A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
compressor
valve
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30815689A
Other languages
Japanese (ja)
Inventor
Isao Azeyanagi
功 畔柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP30815689A priority Critical patent/JPH03168565A/en
Publication of JPH03168565A publication Critical patent/JPH03168565A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate a lack of oil of a refrigerant compressor even in case of high speed operation of the refrigerant compressor by a method wherein a bypassing circuit is provided with a differential pressure valve to be opened when a pressure at a refrigerant evaporator is higher than a pressure at the refrigerant compressor by a predetermined value. CONSTITUTION:When a cooling compressor 2 is operated at a high speed, a differential pressure between a refrigerant evaporator 6 and a refrigerant compressor 2 is increased as its suction force is increased. As the differential pressure is more than a predetermined pressure of about 1kg/cm<2> a differential pressure valve 8 is opened. As a result, liquid refrigerant containing oil is flowed out of the bottom part of the refrigerant evaporator 6, the refrigerant may pass through an accumulator 15 and a bypassing pipe 16 and then the refrigerant is sucked into the refrigerant compressor 2. In this way, in the cycle 1, the refrigerant compressor 2 is operated at a high speed when the pressure adjusting valve 7 is operated, and in case that a lack of oil may easily occur, the liquid refrigerant containing oil is returned back from the bypassing passage 16 to the refrigerant compressor 2, resulting in that the lack of oil can be eliminated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、冷媒蒸発器と冷媒ff縮機との間に圧力調整
弁を配設した冷凍サイクルに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a refrigeration cycle in which a pressure regulating valve is provided between a refrigerant evaporator and a refrigerant FF compressor.

「従宋の技術1 従来より、冷房装置に使用される冷凍ザイクルでは、冷
媒蒸発器と冷媒E’Elii機との間に『力調整弁を説
け、冷媒蒸発器から冷媒圧縮機I\戻る冷媒量をA節し
て冷媒魚発器での蒸発圧力を一定値(約1. 9Kg/
cJ)以上に保つことにより、低負荷時における冷媒蒸
発器のフロストを肋1[.する方式( E P R方式
)が知られている。
``Tsong Song Technology 1 Conventionally, in the refrigeration cycle used in air-conditioning equipment, there is a ``power adjustment valve'' between the refrigerant evaporator and the refrigerant E'Elii machine, and the refrigerant returns from the refrigerant evaporator to the refrigerant compressor I\. The amount is set to A and the evaporation pressure in the refrigerant fish generator is set to a constant value (approximately 1.9 kg/
cJ) or more, the frost of the refrigerant evaporator at low loads can be reduced to 1[. A method (EPR method) is known.

圧力調整弁は、冷媒の蒸発圧力か作用するダイヤフラム
と、該ダイヤフラムに連動するスライドバルブとを備え
、そのスライドバルブが冷媒通路を開ulすることによ
り、冷媒流量を調節するものてある。
The pressure regulating valve includes a diaphragm on which the evaporation pressure of the refrigerant acts, and a slide valve interlocked with the diaphragm, and the slide valve opens a refrigerant passage to adjust the flow rate of the refrigerant.

ダイヤフラムは、スプリングにより所定の力で押J−「
されており、蒸発圧力の変1ヒに応じて、スプリングカ
と蒸発圧力とが釣り合う付置まで変位すろ。
The diaphragm is pushed with a predetermined force by a spring.
As the evaporation pressure changes, the spring force will be displaced to a position where the evaporation pressure is balanced.

例えば、冷房負荷が小さくなって冷媒の蒸発圧力が低下
し、蒸発圧力よりスプリングの押圧力の方が大きくなる
と、スライドバルブが冷媒通路を閉じる方向に移動して
冷flJtを減少させ、その結果、蒸発圧力を設定値に
保つ。
For example, when the cooling load decreases and the evaporation pressure of the refrigerant decreases, and the pressing force of the spring becomes greater than the evaporation pressure, the slide valve moves in the direction of closing the refrigerant passage, reducing the cooling flJt, and as a result, Keep evaporation pressure at set point.

逆に、冷房負荷が大きくなって冷媒の蒸発圧力か上界し
、スプリングの押圧力より冷媒の蒸発圧力のほうが大き
くなると、スライ}〜バルブが全開となり、冷媒蒸発器
で蒸発した冷媒は、そのまま冷媒圧縮機に吸込まれる。
Conversely, when the cooling load increases and the evaporation pressure of the refrigerant reaches its upper limit, and the evaporation pressure of the refrigerant becomes greater than the pressing force of the spring, the slide valve opens fully, and the refrigerant evaporated in the refrigerant evaporator remains as it is. The refrigerant is sucked into the compressor.

[発明か解決しようとする課題] しかるに、低負荷時において、冷媒『縮機が高速で運転
された場合には、冷媒蒸発器での蒸発圧力の低下に伴っ
て、圧力調整弁による冷媒通路の絞り地が大きくなる。
[Problem to be solved by the invention] However, when the refrigerant compressor is operated at high speed during low load, as the evaporation pressure in the refrigerant evaporator decreases, the refrigerant passage is closed by the pressure regulating valve. The squeeze area becomes larger.

従って、冷媒蒸発器から冷媒圧縮機へ戻る冷媒量が減少
するため、冷媒に含まれて流れるオイル(冷媒圧縮機の
潤滑油)の量も減少し、冷媒圧縮機の各摺動部などで焼
き付けを起こす可能性があった。
Therefore, since the amount of refrigerant that returns from the refrigerant evaporator to the refrigerant compressor decreases, the amount of flowing oil contained in the refrigerant (lubricating oil for the refrigerant compressor) also decreases, causing seizure on each sliding part of the refrigerant compressor. could have occurred.

本発明は上記事情に基づいて成されたもので、その目的
は、圧力調整弁の作動時に、冷媒圧縮機が高速で運転さ
れた場合でも、冷媒圧縮機のオイル不足を解消すること
のできる冷凍サイクルを提供することにある。
The present invention has been made based on the above circumstances, and an object of the present invention is to provide a refrigeration system that can eliminate oil shortage in a refrigerant compressor even when the refrigerant compressor is operated at high speed when the pressure regulating valve is activated. The goal is to provide a cycle.

1課題を解決するための千段1 本発明は上記目的を達成するために、冷媒蒸発器と冷媒
圧縮機との間に、前記冷媒蒸発器から前記冷媒圧縮機へ
戻る冷媒量を調節することで、前記冷媒蒸発器での蒸発
圧力を一定値以上に保つ圧力1弁を設けた冷凍サイクル
において、前記圧力調整弁をバイパスして、前記冷媒蒸
発器内でオイルの溜まりやすい部位と前記圧力調整弁の
下流とを接続するバイパス通路を設けるとともに、該バ
イパス通路に、前記冷媒蒸発器側の『力か前記冷媒圧縮
機側の圧力より所定値以上高い時に開弁する差圧弁を設
けたことを技術的手段とする。
1,000 Steps to Solve the Problems 1 In order to achieve the above object, the present invention includes adjusting the amount of refrigerant that returns from the refrigerant evaporator to the refrigerant compressor between a refrigerant evaporator and a refrigerant compressor. In a refrigeration cycle equipped with a single pressure valve that maintains the evaporation pressure in the refrigerant evaporator at a certain value or higher, the pressure adjustment valve is bypassed and the pressure adjustment is performed in a region where oil tends to accumulate in the refrigerant evaporator. A bypass passage connecting the downstream side of the valve is provided, and a differential pressure valve that opens when the pressure on the refrigerant evaporator side is higher than the pressure on the refrigerant compressor side by a predetermined value or more is provided in the bypass passage. Use technical means.

1作川] 上記格成よりなる本発明の冷凍サイクルは、以下の作用
を廟する。
1. The refrigeration cycle of the present invention having the above structure has the following functions.

冷房負荷が大きく、冷媒蒸発器での蒸発圧力が一定値以
上の場合には、圧力調整弁が作動することなく、また、
差『弁も閉じているため、冷媒蒸発器で蒸発した冷媒は
、そのまま冷媒圧縮機に吸い込まれる。
When the cooling load is large and the evaporation pressure in the refrigerant evaporator is above a certain value, the pressure regulating valve will not operate, and
Difference: Since the valve is also closed, the refrigerant evaporated in the refrigerant evaporator is directly sucked into the refrigerant compressor.

冷房負荷が小さく、冷媒蒸発器での蒸発圧力が低↑゜し
て圧力調整弁が作動(冷媒通路が絞られる)すると、蒸
発圧力を一定値以上に保つように、圧力A鷲弁を通過す
る冷媒量が滅少する。
When the cooling load is small and the evaporation pressure in the refrigerant evaporator is low and the pressure regulating valve is activated (the refrigerant passage is throttled), the air passes through the pressure A eagle valve to keep the evaporation pressure above a certain value. The amount of refrigerant is running low.

圧力調浩弁の作動とともに、冷媒圧縮機の運転状態に応
じて、差『弁の冷媒蒸発器11plと冷媒圧縮代側とで
差圧が生じる。
Along with the operation of the pressure regulating valve, a pressure difference is generated between the refrigerant evaporator 11pl and the refrigerant compression side of the differential valve depending on the operating state of the refrigerant compressor.

このとき、冷媒蒸発器側と冷媒ff縮v1lItlIと
の差圧が所定値(例えばI K(1/cJ )未満の時
には、差『弁は閉じている。
At this time, when the differential pressure between the refrigerant evaporator side and the refrigerant ff compression v1lItlI is less than a predetermined value (for example, I K (1/cJ)), the differential valve is closed.

冷媒圧縮機が高速運転されると、冷媒蒸発器側と冷媒『
縮機側との差圧が大きくなり、その差圧が所定1直以上
になると、差圧弁が開弁する。その結果、オイル(冷媒
ff1i!i機の濶滑泊)を魚んだ液冷媒が、冷媒蒸発
器の底部より流出し、バイパス通路を通って冷媒圧縮機
に吸引される。
When the refrigerant compressor is operated at high speed, the refrigerant evaporator side and the refrigerant
When the differential pressure with the compressor side increases and the differential pressure reaches a predetermined one or more, the differential pressure valve opens. As a result, the liquid refrigerant containing the oil (refrigerant ff1i!i) flows out from the bottom of the refrigerant evaporator and is sucked into the refrigerant compressor through the bypass passage.

[発明の効果] 上記作用を有ナる本発明によれば、圧力調整弁をバイパ
スするバイパス通路に差『弁を設けたことにより、その
差圧弁の開弁によって、オイルを罰んだ液冷媒をバイパ
ス通路から冷媒圧縮機に戻すことができる。
[Effects of the Invention] According to the present invention having the above-mentioned effects, by providing a differential valve in the bypass passage that bypasses the pressure regulating valve, the opening of the differential pressure valve allows liquid refrigerant that has evaporated oil. can be returned to the refrigerant compressor through the bypass passage.

従って、圧力調整弁の作動時に冷媒圧WI機が高速で運
転された場合に、圧力調整弁を通過するオイル量が減少
しても、差圧弁が開弁してオイルを富んだ液冷媒が冷媒
E縮機に吸引されるため、従来のようなオイル不足を解
消することができる。
Therefore, if the refrigerant pressure WI machine is operated at high speed when the pressure regulating valve is activated, even if the amount of oil passing through the pressure regulating valve decreases, the differential pressure valve will open and the oil-rich liquid refrigerant will be transferred to the refrigerant. Since it is sucked into the E-compressor, it is possible to eliminate oil shortages that occur in the past.

L実施例コ 次に、本発明の冷凍サイクルを図面に示ず一実施例に基
づき説明する。
L Embodiment Next, the refrigeration cycle of the present invention will be explained based on an embodiment not shown in the drawings.

第1図は冷凍サイクlレの概略構成図を示す。FIG. 1 shows a schematic diagram of the refrigeration cycle.

冷凍サイクル1は、冷媒『縮機2、冷媒凝縮器3、レシ
ーバ4、膨脹弁(外部均圧式エキスパンションバルブ)
5、および冷媒蒸発器6などの各機能部品から横戊され
、冷媒蒸発器6のフロスI〜lI方11のために、冷媒
蒸発器6と冷媒『縮機2との間に圧力調整弁7が設けら
れている。
The refrigeration cycle 1 consists of a refrigerant, a compressor 2, a refrigerant condenser 3, a receiver 4, and an expansion valve (external pressure equalization type expansion valve).
A pressure regulating valve 7 is provided between the refrigerant evaporator 6 and the refrigerant compressor 2 for the froth I to II side 11 of the refrigerant evaporator 6. is provided.

また、本実施例の冷凍サイクル1には、圧力調整弁7を
バイパスして、冷媒蒸発器6の底部と圧力調整弁7の下
流側とを接続するバイパス通路(後述する)が設けられ
るとともに、そのバイパス通路に、冷媒蒸発器6 1T
[lIの圧力が冷媒『縮機2側の圧力より所定値(本実
施例ではIKq/aJ)以上高い時に開弁する差圧弁8
が配設されている。
In addition, the refrigeration cycle 1 of this embodiment is provided with a bypass passage (described later) that bypasses the pressure regulation valve 7 and connects the bottom of the refrigerant evaporator 6 and the downstream side of the pressure regulation valve 7. A refrigerant evaporator 6 1T is installed in the bypass passage.
[Differential pressure valve 8 that opens when the pressure of lI is higher than the pressure on the compressor 2 side of the refrigerant by more than a predetermined value (IKq/aJ in this embodiment)
is installed.

冷媒蒸発器6は、第2図に示Vように、偏平チューブ9
とコルゲートフィン10とを多数f?fJFlして構戊
され、冷媒タンク11が各偏平チ二−ブ9の上部のみに
形威されたシングルタンク式である。
The refrigerant evaporator 6 includes a flat tube 9 as shown in FIG.
and a large number of corrugated fins 10 f? It is a single-tank type in which the refrigerant tank 11 is formed only in the upper part of each flat tube 9.

この冷媒蒸発器6には、ボックス型膨脹弁5が組み付け
られるため、冷媒タンク11の中央部に入口パイブ12
と出口バイプ13とが取り付けられている。
Since the box-type expansion valve 5 is assembled to the refrigerant evaporator 6, an inlet pipe 12 is installed in the center of the refrigerant tank 11.
and an outlet pipe 13 are attached.

また、冷媒蒸発器6の特定のチューブ9aには、チュー
ブ9a内に形戒された冷媒流路と連通ずる接続パイブ1
4が形成されている。この接続バイプ14は、チューブ
9a内の冷jX流路の途中から、オイル〈冷媒圧縮機2
の潤滑抽)を含んだ冷媒を取り出,ずなめの取り出し口
である。従って、接続パイブ14は、冷媒蒸発器6内で
オイルの溜まりやケい部位に設けるとともに、冷媒を取
り出すことによる冷媒蒸発器Gの能力低下を抑えるため
に、できるだけ冷媒流路の1流に設ける必要がある。
Further, a specific tube 9a of the refrigerant evaporator 6 has a connecting pipe 1 that communicates with a refrigerant flow path formed in the tube 9a.
4 is formed. This connecting pipe 14 connects oil (refrigerant compressor 2
This is a diagonal outlet for taking out the refrigerant containing the lubricating fluid. Therefore, the connecting pipe 14 is installed in the refrigerant evaporator 6 at a place where oil accumulates or in the groove, and is installed in the first flow of the refrigerant flow path as much as possible in order to suppress a decrease in the performance of the refrigerant evaporator G due to taking out the refrigerant. There is a need.

そこで、本実胞例の冷媒蒸発器6では、冷媒タンク11
の中央より出口バイプ13側に配置された特定のチコ、
一ブ9aの下端部に形戊されている。接続バイプ14は
、第3図に示すように、チューブ9aを禍成づーる2枚
の戒型プレート9bの下端部に、断面形状が半楕円形を
呈する突設部14aをそれぞれ設け、その2枚の成型プ
レート9bを向かい合わせて接合することにより形或さ
れる。
Therefore, in the refrigerant evaporator 6 of this example, the refrigerant tank 11
A specific chico placed on the exit pipe 13 side from the center of
It is shaped at the lower end of the tube 9a. As shown in FIG. 3, the connecting pipe 14 is provided with protrusions 14a each having a semi-elliptical cross-sectional shape at the lower ends of two circular plates 9b that connect the tube 9a. It is formed by joining two molded plates 9b facing each other.

この接続バイブ14には、第2図に示すように、バイパ
ス通路の一部を成すアキュムレータ15か組み付けられ
、炉中にて冷媒蒸発器6と一体的にろう付け接合される
。なお、アキュムレータ15は、内部に所定量のオイル
が蓄えられており、アキュムレータ15の出口配管〈図
示しない)がオイル中より取り出されている。従って、
冷媒蒸発器6よりオイルを含んだ冷媒が、接続バイプ1
4を介してアキュムレータ15内に流入すると、アキュ
ムレータ15内に蓄えられているオイルが出口配管を介
して流出することになる。
As shown in FIG. 2, an accumulator 15 forming a part of the bypass passage is assembled to this connecting vibe 14, and is integrally brazed to the refrigerant evaporator 6 in the furnace. Note that a predetermined amount of oil is stored inside the accumulator 15, and an outlet pipe (not shown) of the accumulator 15 is taken out from the oil. Therefore,
The refrigerant containing oil from the refrigerant evaporator 6 is transferred to the connecting pipe 1.
4 into the accumulator 15, the oil stored in the accumulator 15 will flow out via the outlet pipe.

アキュムレータ15の出口配管には、ユニオンハーフ〈
図示しない)を使用して上記の差圧弁8が接続され、さ
らに、差圧弁8と圧力調整弁7の下流側とが、アキスム
レータ15とともにバイパス通路を成すバイパス管16
によって接続されている。
The outlet piping of the accumulator 15 has a union half
(not shown) to which the differential pressure valve 8 is connected, and furthermore, the differential pressure valve 8 and the downstream side of the pressure regulating valve 7 form a bypass passage together with the axmulator 15 through a bypass pipe 16.
connected by.

圧力調整弁7は、冷媒蒸発器6から冷媒圧縮機2へ戻る
冷媒量を調節して、冷媒蒸発器6での冷媒の蒸発圧力を
一定値(約1. 9K(1/a{ )以上に保つもので
、第4図に示すように、ボースブロック17を介して、
冷媒配管18に接続されている。また、ホースブロック
17には、ブロックプレート19を介してバイパス管1
6が接続されている。
The pressure regulating valve 7 adjusts the amount of refrigerant returned from the refrigerant evaporator 6 to the refrigerant compressor 2, and keeps the evaporation pressure of the refrigerant in the refrigerant evaporator 6 to a constant value (approximately 1.9 K (1/a { ) or more). As shown in FIG.
It is connected to the refrigerant pipe 18. In addition, a bypass pipe 1 is connected to the hose block 17 via a block plate 19.
6 is connected.

この圧力調整弁7は、冷媒蒸発器6での冷媒の蒸発圧力
が作用するダイヤフラム(図示しない)と、該ダイヤフ
ラムに連動するスライドバルブ(図示しない)とを備え
、該スライドバルブが冷媒通路を開閉することにより、
冷媒流壕を調節するものである。
The pressure regulating valve 7 includes a diaphragm (not shown) on which the evaporation pressure of the refrigerant in the refrigerant evaporator 6 acts, and a slide valve (not shown) interlocked with the diaphragm, and the slide valve opens and closes the refrigerant passage. By doing so,
This is to adjust the refrigerant flow trench.

ダイヤフラムは、スプリング(図示しない)により所定
の力で押圧さ力,ており、蒸発圧力の変化に応じて、ス
プリングカと蒸発圧力とが釣り合う付置まで変位する。
The diaphragm is pressed with a predetermined force by a spring (not shown), and is displaced in response to changes in evaporation pressure to a position where the spring force and evaporation pressure are balanced.

例えば、冷房負荷が小さくなって冷媒の蒸発圧力が低十
し、蒸発圧力よりスプリングの押『力の方が大きくなる
と、スライドバルブが冷媒通路を閉じる方向に移動して
冷媒量を減少させ、その結果、蒸発圧力を設定値に保つ
For example, when the cooling load decreases and the evaporation pressure of the refrigerant becomes low, and the pushing force of the spring becomes greater than the evaporation pressure, the slide valve moves in the direction of closing the refrigerant passage, reducing the amount of refrigerant. As a result, the evaporation pressure is maintained at the set value.

逆に、冷房負荷が大きくなって冷媒の魚発圧力が上昇し
、スプリングの押圧力より冷媒の蒸発圧力のほうが大き
くなると、スライドバルブが全114となり、冷媒蒸発
器6で蒸発した冷媒は、そのまま冷媒/[a!2に吸込
まれる。
Conversely, when the cooling load increases and the refrigerant pressure increases, and the evaporation pressure of the refrigerant becomes greater than the pressing force of the spring, the total number of slide valves becomes 114, and the refrigerant evaporated in the refrigerant evaporator 6 remains as it is. Refrigerant/[a! Sucked into 2.

次に、木失施例の作動について説明する。Next, the operation of the tree loss embodiment will be explained.

イ)冷房負荷が大きく、冷媒魚発器6での茗発■;力が
ー・定値以」一の場合。
b) When the cooling load is large and the power of the refrigerant generator 6 is higher than the fixed value.

圧力調整弁7のスプリングカよりも蒸発圧力の方が大き
くなるため、圧力調整弁7は作動しない.つまり、スラ
イドバルブが全開状態であるため、冷媒とともに冷媒圧
縮機2に吸引されるオイル量も多く、冷媒圧縮Ja2で
のオイル不足にはならない。なお、この場合、冷媒魚発
器6 +tlllと冷媒圧縮fi2 {1111との差
圧が生じないため、差圧弁8は閉じている。
Since the evaporation pressure is greater than the spring force of the pressure regulating valve 7, the pressure regulating valve 7 does not operate. In other words, since the slide valve is fully open, the amount of oil sucked into the refrigerant compressor 2 together with the refrigerant is large, and there is no shortage of oil in the refrigerant compression Ja2. In this case, the differential pressure valve 8 is closed because no differential pressure is generated between the refrigerant generator 6 +tlll and the refrigerant compressor fi2 {1111.

口)冷房負荷が小さく、冷媒蒸発器6での蒸発圧力が圧
力調整弁7のスプリングカより小さくなった場合。
(Example) When the cooling load is small and the evaporation pressure in the refrigerant evaporator 6 becomes smaller than the spring force of the pressure regulating valve 7.

スプリングに押圧されたダイヤフラムに連動して、スラ
イドバルブが冷媒通路を絞ることにより、冷媒蒸発器6
での蒸発圧力を一定値以上に保つ。
The slide valve narrows the refrigerant passage in conjunction with the diaphragm pressed by the spring, and the refrigerant evaporator 6
Keep the evaporation pressure at or above a certain value.

このとき、冷媒『縮機2が低速運転で吸引力が小さい場
合には、冷媒蒸発器6側と冷媒圧縮機2開との差圧がI
 K(]/一未満となり、差j丁弁8は閉じている。
At this time, if the refrigerant compressor 2 is operated at low speed and the suction force is small, the differential pressure between the refrigerant evaporator 6 side and the refrigerant compressor 2 open is I
It becomes less than K(]/1, and the differential valve 8 is closed.

従って、冷媒圧縮機2が高速運転されると、冷媒『f5
機2の吸引力が大きくなり、冷媒蒸発器6での蒸発圧力
がさらに低下するため、スライドバルブの絞り量が大き
くなる。その結果、冷媒蒸発器6から冷媒圧11!11
2に戻る冷媒1Lの減少に伴なって、圧力A整弁7を通
過して冷媒圧縮機2に吸引されるオイル量も減少する。
Therefore, when the refrigerant compressor 2 is operated at high speed, the refrigerant "f5
Since the suction force of the refrigerant evaporator 2 increases and the evaporation pressure in the refrigerant evaporator 6 further decreases, the amount of throttle of the slide valve increases. As a result, the refrigerant pressure from the refrigerant evaporator 6 is 11!11
As the refrigerant 1L decreases, the amount of oil that passes through the pressure A regulating valve 7 and is sucked into the refrigerant compressor 2 also decreases.

ところが,この場合、冷媒圧縮機2の吸引力が大きくな
るにつれて、冷媒蒸発器6側と冷媒圧縮1?’12 f
l.IllIとの差圧が大きくなり、その差圧がI K
g/(−以北となることで、差圧弁8が開弁する。
However, in this case, as the suction force of the refrigerant compressor 2 increases, the refrigerant evaporator 6 side and the refrigerant compressor 1? '12 f
l. The differential pressure between IllI and IllI increases, and that differential pressure becomes IK
By being north of g/(-, the differential pressure valve 8 opens.

その結果、冷媒魚発器6の底部よりオイルを含んだ液冷
媒が流出し、アキュムレータ15およびバイパス管16
を通って、冷媒圧縮機2に吸引される。
As a result, liquid refrigerant containing oil flows out from the bottom of the refrigerant generator 6, causing the accumulator 15 and the bypass pipe 16 to flow out.
The refrigerant is sucked into the refrigerant compressor 2.

以七のように、本実施例の冷凍サイクル1では、圧力調
整弁7の作動時(低負荷時)において、冷媒ffW+i
8 2が高速運転されてオイル不足になりやすい場合で
も、差『弁8の開弁によって、オイルを含んだ液冷媒を
バイパス通路(アキュムレータ15およびバイパス管1
6)から冷媒圧縮機2に戻すことができるため、従来の
ようなオイル不足を解消することができる。
As described above, in the refrigeration cycle 1 of this embodiment, when the pressure regulating valve 7 is operated (during low load), the refrigerant ffW+i
Even if the refrigerant 82 is operated at high speed and is likely to run out of oil, the opening of the differential valve 8 allows the oil-containing liquid refrigerant to flow through the bypass passage (accumulator 15 and bypass pipe 1).
6), the refrigerant can be returned to the refrigerant compressor 2, which eliminates the problem of oil shortage that occurs in the prior art.

(変形例) 上記実施例では、冷媒蒸発器6の接続パイプ14にアキ
ュムレータ15を取り付けたが、アキュムレータ15を
設けなくても本発明の効果を得ることは可能である。つ
まり、低負荷時において差『弁8が開弁するため、冷媒
蒸発36より流出する冷媒は、ほぼ液相冷媒となる。こ
のため、必ずしもアキュムレータ15を設ける必要はな
い。
(Modification) In the above embodiment, the accumulator 15 is attached to the connection pipe 14 of the refrigerant evaporator 6, but it is possible to obtain the effects of the present invention without providing the accumulator 15. That is, since the differential valve 8 is opened during low load, the refrigerant flowing out from the refrigerant evaporator 36 becomes almost liquid phase refrigerant. Therefore, it is not necessarily necessary to provide the accumulator 15.

差『弁8が開弁する際の差『をI K(]/cJ以Jと
したが、この数値に限定するものではない。
Although the difference "difference when valve 8 opens" is defined as IK(]/cJ or J, it is not limited to this value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明の一実施例を示すもので、
第1図は冷凍サイクルの概略構成図、第2図はアキスム
レータおよび差圧弁が組み付けられた冷媒蒸発器の斜視
図、第3図は接続バイブが形成された偏平チューブの平
面図、第4図は圧力調整弁とバイパス管および冷媒配管
との接続状態を示す図である。 図中 1・・・冷凍サイクル 2・・・冷媒圧縮機 6・・冷媒蒸発器 7・・・圧力調整弁 8・・差『弁 1h・・・アキュムレータ〈バイパス通路〉16・バイ
パス管〈バイパス通路)
1 to 4 show an embodiment of the present invention,
Fig. 1 is a schematic diagram of the refrigeration cycle, Fig. 2 is a perspective view of the refrigerant evaporator with an axmulator and differential pressure valve assembled, Fig. 3 is a plan view of the flat tube on which the connecting vibe is formed, and Fig. 4 is It is a figure showing the connection state of a pressure regulation valve, a bypass pipe, and a refrigerant piping. In the diagram: 1... Refrigeration cycle 2... Refrigerant compressor 6... Refrigerant evaporator 7... Pressure adjustment valve 8... Difference valve 1h... Accumulator (bypass passage) 16. Bypass pipe (bypass passage) )

Claims (1)

【特許請求の範囲】 1)冷媒蒸発器と冷媒圧縮機との間に、前記冷媒蒸発器
から前記冷媒圧縮機へ戻る冷媒量を調節することで、前
記冷媒蒸発器での蒸発圧力を一定値以上に保つ圧力調整
弁を設けた冷凍サイクルにおいて、 前記圧力調整弁をバイパスして、前記冷媒蒸発器内でオ
イルの溜まりやすい部位と前記圧力調整弁の下流とを接
続するバイパス通路を設けるとともに、 該バイパス通路に、前記冷媒蒸発器側の圧力が前記冷媒
圧縮機側の圧力より所定値以上高い時に開弁する差圧弁
を設けたことを特徴とする冷凍サイクル。
[Claims] 1) Between a refrigerant evaporator and a refrigerant compressor, the evaporation pressure in the refrigerant evaporator is kept at a constant value by adjusting the amount of refrigerant that returns from the refrigerant evaporator to the refrigerant compressor. In a refrigeration cycle provided with a pressure regulating valve that maintains the pressure above, a bypass passage is provided that bypasses the pressure regulating valve and connects a region in the refrigerant evaporator where oil tends to accumulate and a downstream side of the pressure regulating valve; A refrigeration cycle characterized in that the bypass passage is provided with a differential pressure valve that opens when the pressure on the refrigerant evaporator side is higher than the pressure on the refrigerant compressor side by a predetermined value or more.
JP30815689A 1989-11-28 1989-11-28 Refrigeration cycle Pending JPH03168565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30815689A JPH03168565A (en) 1989-11-28 1989-11-28 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30815689A JPH03168565A (en) 1989-11-28 1989-11-28 Refrigeration cycle

Publications (1)

Publication Number Publication Date
JPH03168565A true JPH03168565A (en) 1991-07-22

Family

ID=17977572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30815689A Pending JPH03168565A (en) 1989-11-28 1989-11-28 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JPH03168565A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355695A (en) * 1992-11-30 1994-10-18 Mitsubishi Denki Kabushiki Kaisha Refrigeration device using hydrofluorocarbon refrigerant
KR100598376B1 (en) * 2004-10-29 2006-07-06 엘지전자 주식회사 The cool air and refrigrant supply system of a refrigerator with liquid separator bypass valve
JP2011080736A (en) * 2009-10-09 2011-04-21 Itsuwa Kogyo Kk Heat exchange device
JP2016217559A (en) * 2015-05-15 2016-12-22 アイシン精機株式会社 Air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355695A (en) * 1992-11-30 1994-10-18 Mitsubishi Denki Kabushiki Kaisha Refrigeration device using hydrofluorocarbon refrigerant
KR100598376B1 (en) * 2004-10-29 2006-07-06 엘지전자 주식회사 The cool air and refrigrant supply system of a refrigerator with liquid separator bypass valve
JP2011080736A (en) * 2009-10-09 2011-04-21 Itsuwa Kogyo Kk Heat exchange device
JP2016217559A (en) * 2015-05-15 2016-12-22 アイシン精機株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
US5619861A (en) Refrigeration apparatus
US5816055A (en) Refrigeration system anad a method for regulating the refrigeration capacity of such a system
EP0838640A2 (en) Oil level equalizing system for plural compressors
JPH0232546B2 (en)
JPH11248266A (en) Air conditioner and condenser
JPH06117728A (en) Vapor-liquid separation type heat exchanger
JPH03168565A (en) Refrigeration cycle
JPH085169A (en) Air conditioner
CN106440565A (en) Throttling assembly for air conditioner and air conditioner
JPH08189732A (en) Refrigeration cycle
JPH0658653A (en) Gas liquid separator
JPH05196324A (en) Expansion valve for refrigerating cycle
JPH09145167A (en) Air conditioner
JPS62276368A (en) Oil return mechanism in air conditioner
JPS6038847Y2 (en) air conditioner
JPH0755268A (en) Refrigerating machine
JPS6240135Y2 (en)
JPS6038846Y2 (en) air conditioner
JPS6230703Y2 (en)
JPH0442682Y2 (en)
JPH063336Y2 (en) Refrigeration cycle
JP2002243316A (en) Accumulator used for heat pump device
JPS604039Y2 (en) air conditioner
JPS60171362A (en) Air conditioner
JPH02287058A (en) Screw type refrigerator