JPH085169A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH085169A
JPH085169A JP6138697A JP13869794A JPH085169A JP H085169 A JPH085169 A JP H085169A JP 6138697 A JP6138697 A JP 6138697A JP 13869794 A JP13869794 A JP 13869794A JP H085169 A JPH085169 A JP H085169A
Authority
JP
Japan
Prior art keywords
compressor
oil
pipe
compressors
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6138697A
Other languages
Japanese (ja)
Inventor
Mitsuo Ogawa
光夫 小川
Masayuki Tanaka
優行 田中
Tomiyuki Noma
富之 野間
Shunji Moriwaki
俊二 森脇
Hiroaki Eguchi
弘明 江口
Junji Hayashi
淳二 林
Akihiro Yabushita
明弘 藪下
Takayuki Takatani
隆幸 高谷
Tetsuei Kuramoto
哲英 倉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP6138697A priority Critical patent/JPH085169A/en
Publication of JPH085169A publication Critical patent/JPH085169A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/02Centrifugal separation of gas, liquid or oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To prevent the level of the refrigerating machine oil of each compressor from being extremely uneven when all of a plurality of compressors operate or even when a part of a plurality of compressors stops. CONSTITUTION:An oil recovering circuit 26 is provided with ends communicating with the closed containers of compressors 10, 11 and 12, other ends communicating with inlet side pipelines 20, 21 and 22, an oil recovering and collecting pipeline 19 provided between both the ends and choke devices 16, 17 and 18 provided between the compressors 10, 11 and 12 and the oil recovering and collecting pipeline 19.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数台の圧縮機を備え
た空気調和機に係り、特に各圧縮機が保有する冷凍機油
の均等化を図った空気調和機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner having a plurality of compressors, and more particularly to an air conditioner in which refrigerating machine oil held by each compressor is equalized.

【0002】[0002]

【従来の技術】近年、空気調和機は、生活レベルおよび
施工性の向上により、省スペース化が図られ、建物全体
の空気調和を可能とする要求が高まり、それにともな
い、複数台の圧縮機を備えた室外ユニットと複数台の室
内ユニットからなる多室型空気調和機の需要が増え、均
油管などを用いて各圧縮機が保有する冷凍機油の均等化
を図る設計がなされている。
2. Description of the Related Art In recent years, air conditioners have been made more space-saving due to improvements in living standards and workability, and there is an increasing demand for air conditioning of the entire building. A demand for a multi-room air conditioner including an outdoor unit provided and a plurality of indoor units has increased, and a design is made to equalize the refrigerating machine oil held by each compressor by using an oil equalizing pipe or the like.

【0003】従来の複数台の圧縮機を備え、各圧縮機が
保有する冷凍機油の均等化を図った空気調和機として
は、実開昭63−201964号公報に開示されている
ものがある。
As an air conditioner equipped with a plurality of conventional compressors to equalize the refrigerating machine oil held by each compressor, there is one disclosed in Japanese Utility Model Laid-Open No. 63-201964.

【0004】以下、図面を参照にしながら、上述した従
来の空気調和機について説明する。図11は従来の空気
調和機の冷凍サイクル図である。図11において、1は
能力の小さい第1圧縮機、2は能力の大きい第2圧縮
機、3a,3bは第1圧縮機1または第2圧縮機2のう
ち1台が運転、1台が停止したときに停止側の圧縮機へ
の冷媒寝込みを防止する逆止弁、4は室外熱交換器、5
はアキュムレータ、6はアキュムレータ5から第1圧縮
機1と第2圧縮機2へ冷媒を導く吸入主配管、7は第1
圧縮機1と第2圧縮機2の密閉容器内部の冷凍機油のレ
ベルを同一にする均油管である。
The above-mentioned conventional air conditioner will be described below with reference to the drawings. FIG. 11 is a refrigeration cycle diagram of a conventional air conditioner. In FIG. 11, 1 is a first compressor having a small capacity, 2 is a second compressor having a large capacity, and 3a and 3b, one of the first compressor 1 or the second compressor 2 is in operation and one is stopped. Check valve for preventing refrigerant from stagnation in the compressor on the stop side when the above occurs, 4 is an outdoor heat exchanger, 5
Is an accumulator, 6 is a main suction pipe for guiding the refrigerant from the accumulator 5 to the first compressor 1 and the second compressor 2, and 7 is a first
It is an oil equalizing pipe that equalizes the levels of refrigerating machine oil inside the closed containers of the compressor 1 and the second compressor 2.

【0005】8a,8b,8c,8dは全閉機能を備え
た減圧装置、9a,9b,9c,9dは室内側熱交換器
であり、これら第1、第2圧縮機1,2、逆止弁3a,
3b、室外熱交換器4、減圧装置8a,8b,8c,8
d、室内熱交換器9a,9b,9c,9d、アキュムレ
ータ5を順次環状に連結して冷凍サイクルを構成してい
る。
Reference numerals 8a, 8b, 8c and 8d are pressure reducing devices having a fully-closed function, and 9a, 9b, 9c and 9d are indoor heat exchangers. Valve 3a,
3b, outdoor heat exchanger 4, pressure reducing devices 8a, 8b, 8c, 8
d, the indoor heat exchangers 9a, 9b, 9c, 9d, and the accumulator 5 are sequentially connected in an annular shape to form a refrigeration cycle.

【0006】以上のように構成された空気調和機につい
て、以下その動作を説明する。まず、第1圧縮機1、第
2圧縮機2より吐出された冷媒は、逆止弁3a,3bを
通って室外熱交換器4に送られる。減圧装置8a,8
b,8c,8dで適度に減圧され、室内側熱交換器9
a,9b,9c,9dで蒸発、ガス化した冷媒はアキュ
ムレータ5を通って第1圧縮機1、第2圧縮機2へ還流
する。
The operation of the air conditioner configured as above will be described below. First, the refrigerant discharged from the first compressor 1 and the second compressor 2 is sent to the outdoor heat exchanger 4 through the check valves 3a and 3b. Pressure reducing device 8a, 8
The pressure is moderately reduced by b, 8c, and 8d, and the indoor heat exchanger 9
The refrigerant evaporated and gasified in a, 9b, 9c, 9d is returned to the first compressor 1 and the second compressor 2 through the accumulator 5.

【0007】また、各圧縮機1,2からは冷媒とともに
冷凍機油も吐出されるが、冷凍サイクル内を循環して各
圧縮機1,2まで戻ってくる。2台の圧縮機1,2の油
吐出量は能力の大きい第2圧縮機2の方が多いが、均油
管7によって内部の冷凍機油のレベルを同一にすること
ができる。
Refrigerator oil is discharged from the compressors 1 and 2 together with the refrigerant, but circulates in the refrigeration cycle and returns to the compressors 1 and 2. The amount of oil discharged from the two compressors 1 and 2 is larger in the second compressor 2 having a larger capacity, but the level of the refrigerating machine oil inside can be made equal by the oil equalizing pipe 7.

【0008】[0008]

【発明が解決しようとする課題】しかしながら上記従来
の構成の空気調和機では、2台の圧縮機1,2が同時に
運転されている場合には均油管7の働きで、2台の圧縮
機1,2内部の冷凍機油レベルが同一に保たれている。
室内負荷の減少により、例えば減圧装置8c,8dが全
閉となり、能力制御のために第1圧縮機1が停止し、第
2圧縮機2のみを運転した場合に、運転している第2圧
縮機2内部の圧力の方が停止している第1圧縮機1内部
の圧力より幾分高くなるので、第2圧縮機2内部の冷凍
機油が第1圧縮機1の内部へ徐々に溜まり、運転してい
る第2圧縮機2が冷凍機油不足になりやすいという課題
を有していた。また、停止中の第1圧縮機1のシリンダ
へ給油管を通して冷凍機油が押し込まれ、第1圧縮機1
の始動時に、油圧縮を起こして圧縮機が故障するという
課題を有していた。
However, in the air conditioner of the above-mentioned conventional structure, when the two compressors 1 and 2 are simultaneously operated, the oil equalizing pipe 7 works to operate the two compressors 1 , 2 has the same refrigerating machine oil level.
When the indoor load is reduced, for example, the decompression devices 8c and 8d are fully closed, the first compressor 1 is stopped for capacity control, and only the second compressor 2 is operated. Since the pressure inside the compressor 2 is somewhat higher than the pressure inside the stopped first compressor 1, the refrigeration oil inside the second compressor 2 gradually accumulates inside the first compressor 1 and operates. There is a problem that the second compressor 2 being operated tends to run out of refrigerating machine oil. Further, the refrigerating machine oil is pushed into the cylinder of the stopped first compressor 1 through the oil supply pipe, and the first compressor 1
Had a problem of causing oil compression at the time of starting and causing the compressor to malfunction.

【0009】また、上記従来の構成では、例えば冷凍サ
イクル内に溜まり込んだ冷凍機油を各圧縮機1,2に戻
すために、減圧装置8a,8b,8c,8dを全開とす
る制御運転となった場合、冷凍サイクル内に溜まり込む
冷凍機油量が減少し、急激に余剰冷凍機油が各圧縮機
1,2の密閉容器内に戻り、圧縮機1,2の密閉容器内
部の冷凍機油が最大油面を越え、圧縮機能力を低下させ
るという課題があった。
Further, in the above-mentioned conventional configuration, for example, in order to return the refrigerating machine oil accumulated in the refrigerating cycle to the compressors 1 and 2, the pressure reducing devices 8a, 8b, 8c and 8d are controlled to be fully opened. In this case, the amount of refrigerating machine oil that accumulates in the refrigeration cycle decreases, and the excess refrigerating machine oil rapidly returns to the closed containers of the compressors 1 and 2, and the refrigerating machine oil inside the closed containers of the compressors 1 and 2 is the maximum oil. There was a problem of reducing the compression function force beyond the surface.

【0010】さらに、上記従来の構成では、吸入主配管
6から第1圧縮機1の吸入側配管6aと第2圧縮機2の
吸入側配管6bへの分岐構造は、冷媒流動抵抗とならな
いような構造とされ、特に冷凍機油の分配に対しての工
夫はなされていない構造であるため、室内負荷が少なく
なっている。例えば減圧装置8c,8dが全閉となり、
第1圧縮機1を停止し、第2圧縮機2のみを運転する能
力制御運転となった場合、第1圧縮機1の吸入側配管6
a内の冷媒の動きはなくなり、吸入側配管6aが吸入主
配管6よりも下方に位置すると、吸入側配管6a内に冷
凍機油が溜まり込み、第1圧縮機1の始動時に油圧縮を
起こすという課題があった。また曲率を持った吸入主配
管6から吸入側配管6aと吸入側配管6bとに分岐する
場合、吸入主配管6の管内壁面を伝い流れる冷凍機油
は、吸入主配管6の管内壁面の一部分を不均一に流れた
まま、吸入主配管6から吸入側配管6aと吸入側配管6
bとの分岐部に至り、各圧縮機1,2の吸入ガス量比に
かかわらず不均等に分配され、第1圧縮機1と第2圧縮
機2に流入する冷凍機油量がアンバランスとなり、各圧
縮機1,2の冷凍機油レベルに格差が生じ易くなるとい
う課題を有していた。
Further, in the above-mentioned conventional configuration, the branch structure from the main suction pipe 6 to the suction side pipe 6a of the first compressor 1 and the suction side pipe 6b of the second compressor 2 does not cause refrigerant flow resistance. Since the structure is adopted and no particular device for distributing the refrigerating machine oil is made, the indoor load is reduced. For example, the pressure reducing devices 8c and 8d are fully closed,
When the capacity control operation is performed in which the first compressor 1 is stopped and only the second compressor 2 is operated, the suction side pipe 6 of the first compressor 1
When the refrigerant in a does not move and the suction side pipe 6a is located lower than the suction main pipe 6, refrigerating machine oil accumulates in the suction side pipe 6a and causes oil compression when the first compressor 1 is started. There were challenges. Further, when the suction main pipe 6 having a curvature is branched into the suction side pipe 6a and the suction side pipe 6b, the refrigerating machine oil flowing along the pipe inner wall surface of the suction main pipe 6 does not cover a part of the pipe inner wall surface of the suction main pipe 6. From the main suction pipe 6 to the suction side pipe 6a and the suction side pipe 6 while flowing uniformly.
It reaches the branching point with b, is distributed unevenly regardless of the intake gas amount ratio of the compressors 1 and 2, and the amount of refrigerating machine oil flowing into the first compressor 1 and the second compressor 2 becomes unbalanced, There is a problem that a difference easily occurs in the refrigerating machine oil levels of the compressors 1 and 2.

【0011】またさらに、上記従来の構成では、2台の
圧縮機が均油管7で接続されているため、圧縮機2台が
運転中に室内負荷が減少し、例えば減圧装置8c,8d
が全閉となり、第1圧縮機1が停止し、第2圧縮機2の
みを運転継続とした能力制御運転に入った場合、停止後
も第1圧縮機1の内部は、第2圧縮機2と同様、冷凍サ
イクルの略高圧圧力を保持しているため、室内負荷の上
昇により第1圧縮機1を再始動しようとしても、第2圧
縮機2の運転を継続したままではできず、一旦第2圧縮
機2を停止させ、冷凍サイクル内の高低圧力がバランス
するのを待ち、改めて、第1圧縮機1、第2圧縮機2を
始動しなければならず、その間、室内に対する空気調和
ができないという課題を有していた。
Furthermore, in the above-mentioned conventional structure, since the two compressors are connected by the oil equalizing pipe 7, the indoor load is reduced while the two compressors are in operation, and for example, the pressure reducing devices 8c and 8d.
Is fully closed, the first compressor 1 is stopped, and when the capacity control operation in which only the second compressor 2 is continuously operated is started, the inside of the first compressor 1 is Similarly to the above, since the substantially high pressure of the refrigeration cycle is maintained, even if the first compressor 1 is restarted due to an increase in indoor load, the operation of the second compressor 2 cannot be continued and once the first compressor 1 is restarted. 2 It is necessary to stop the compressor 2 and wait until the high and low pressures in the refrigeration cycle are balanced, and then start the first compressor 1 and the second compressor 2 again, during which air conditioning to the room is not possible. Had a problem.

【0012】本発明は上記課題に鑑み、複数台の圧縮機
の一部が停止した場合に、停止した圧縮機内に冷凍機油
が溜まり込むことを防止し、常時各圧縮機内に溜まり込
む冷凍機油量を最大油面以下とし、また複数台の内の一
部が停止している圧縮機の吸入側配管内に冷凍機油が溜
まり込むのをなくして各圧縮機への冷凍機油の分配を均
等化し、さらに複数台の内の一部が停止している圧縮機
を始動させる際に、他の運転中の圧縮機を停止もしくは
能力を低下させることなく、停止中の圧縮機を始動して
スムーズな負荷追随が可能となる空気調和機を提供する
ことを目的とするものである。
In view of the above-mentioned problems, the present invention prevents refrigerating machine oil from accumulating in the stopped compressors when a part of a plurality of compressors is stopped, and the amount of refrigerating machine oil constantly accumulating in each compressor. Is equal to or less than the maximum oil level, and refrigerating machine oil is not accumulated in the suction side piping of the compressor in which some of the multiple units are stopped, and the distribution of the refrigerating machine oil to each compressor is equalized, In addition, when starting a compressor in which some of the multiple units are stopped, the stopped compressor can be started without stopping or reducing the capacity of other compressors that are running. The object is to provide an air conditioner that can follow.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載の技術的手段による本発明の空気調
和機は、密閉容器内に吐出圧力が作用する高圧チャンバ
方式の複数台並列に接続された圧縮機と、室外側熱交換
器と、減圧装置と、室内側熱交換器と、アキュムレータ
とを冷媒流路を介して環状に接続して冷凍サイクルを形
成するとともに、一端が前記各圧縮機の給油限界油面と
最大油面の間の所定の高さで前記各密閉容器内に連通
し、他端が前記各圧縮機の吸入側配管に連通し、かつ、
両端の途中に集合部を設け、前記各圧縮機と前記集合部
との間に絞り装置を有する油回収回路を備えたものであ
る。
In order to achieve the above object, the air conditioner of the present invention according to the technical means described in claim 1 is a plurality of high pressure chamber type in which a discharge pressure acts in a closed container. A compressor connected in parallel, an outdoor heat exchanger, a decompression device, an indoor heat exchanger, and an accumulator are annularly connected via a refrigerant flow path to form a refrigeration cycle, and one end is Each of the compressors communicates with each closed container at a predetermined height between the oil supply limit oil level and the maximum oil level, and the other end communicates with the suction side pipe of each compressor, and
A collecting portion is provided in the middle of both ends, and an oil recovery circuit having a throttle device is provided between each compressor and the collecting portion.

【0014】請求項2に記載の技術的手段による本発明
の空気調和機は、室内側の空調負荷に基づき、予め設定
した運転優先順位の高い圧縮機の運転を優先させて各圧
縮機の運転を制御する圧縮機運転制御装置と、室内側の
空調負荷を検知する室内負荷検知装置とを備え、密閉容
器内に吐出圧力が作用する高圧チャンバ方式の並列接続
した複数台の圧縮機のうちの少なくとも1台で、かつ、
前記運転優先順位の一番高い圧縮機を能力可変型圧縮機
とし、複数台の圧縮機と、室外側熱交換器と、減圧装置
と、室内側熱交換器と、アキュムレータとを冷媒流路を
介して環状に接続して冷凍サイクルを形成するととも
に、一端が前記能力可変型圧縮機以外の各圧縮機の給油
限界油面と最大油面との間の所定の高さで前記各密閉容
器内に連通し、他端が前記能力可変型圧縮機の吸入側配
管に連通し、かつ、両端の途中に絞り装置を有する油回
収回路、および、一端が前記能力可変型圧縮機の給油限
界油面と最大油面との間の所定の高さで前記密閉容器内
に連通し、他端が前記能力可変型圧縮機以外の各圧縮機
の吸入側配管に連通し、かつ、両端の途中に集合部を設
け、前記能力可変型圧縮機以外の各圧縮機の吸入側配管
と前記集合部の間に他の絞り装置を有する他の油回収回
路を備えたものである。
In the air conditioner of the present invention according to the second aspect of the present invention, the operation of each compressor is performed by prioritizing the operation of the compressor having a preset high operation priority based on the air conditioning load on the indoor side. Of the plurality of compressors connected in parallel in a high-pressure chamber system in which a discharge pressure acts in a closed container. At least one, and
The compressor with the highest operation priority is a variable capacity compressor, and a plurality of compressors, an outdoor heat exchanger, a pressure reducing device, an indoor heat exchanger, and an accumulator are used as refrigerant flow paths. While forming a refrigeration cycle by annularly connecting via one end of each closed container at a predetermined height between the oil supply limit oil level and the maximum oil level of each compressor other than the variable capacity compressor Oil recovery circuit having a throttle device in the middle of both ends, and one end communicating with the suction side pipe of the variable capacity compressor, and one end having an oil supply limit oil level of the variable capacity compressor. And the maximum oil level communicate with the inside of the hermetically sealed container, the other end communicates with the suction side pipe of each compressor other than the variable capacity compressor, and gathers in the middle of both ends. Is provided between the suction side pipe of each compressor other than the variable capacity compressor and the collecting section. Those with other oil recovery circuit having a throttling device.

【0015】請求項3に記載の技術的手段による本発明
の空気調和機は、前記空気調和機の他の油回収回路にお
いて、能力可変型圧縮機と集合部との間に油溜めタンク
を備えたものである。
The air conditioner of the present invention according to the technical means as defined in claim 3 is provided with an oil sump tank between the variable capacity compressor and the collecting portion in another oil recovery circuit of the air conditioner. It is a thing.

【0016】請求項4に記載の技術的手段による本発明
の空気調和機は、これまでに説明した空気調和機の油回
収回路において、各圧縮機の密閉容器に接続する配管の
一端は、各圧縮機の給油限界油面と最大油面との間で、
かつ、前記各圧縮機の密閉容器内の油溜め上方に設け、
吐出ガスから油を分離する油面仕切板の下方となる所定
の高さに設置し、かつ、前記油回収回路の一端は前記各
密閉容器内まで突出させたものである。
According to the air conditioner of the present invention by the technical means described in claim 4, in the oil recovery circuit of the air conditioner described above, one end of the pipe connected to the closed container of each compressor is Between the oil level limit and the maximum oil level of the compressor,
And provided above the oil sump in the closed container of each compressor,
The oil recovery circuit is installed at a predetermined height below the oil level partition plate that separates oil from the discharge gas, and one end of the oil recovery circuit is projected into each of the closed containers.

【0017】請求項5に記載の技術的手段による本発明
の空気調和機は、請求項2ないし4のいずれかに記載の
技術的手段による空気調和機において、アキュムレータ
と各圧縮機の吸入側配管とを連通する吸入主配管を備
え、運転優先順位の一番高い圧縮機の吸入側配管を前記
吸入主配管の冷媒流動方向の最下流部に接続したもので
ある。
The air conditioner of the present invention according to the technical means described in claim 5 is the air conditioner according to the technical means according to any one of claims 2 to 4, wherein the accumulator and the suction side pipe of each compressor are provided. And a suction side pipe of the compressor having the highest operation priority is connected to the most downstream part of the suction main pipe in the refrigerant flow direction.

【0018】請求項6に記載の技術的手段による本発明
の空気調和機は、これまでに説明したいずれかの空気調
和機において、吸入主配管と各圧縮機の吸入側配管との
接続部に対し、冷媒流動方向の上流部の前記吸入主配管
の管内側壁面に突起を設けたものである。
The air conditioner of the present invention according to the technical means described in claim 6 is the air conditioner according to any one of the above-mentioned air conditioners, wherein the connection portion between the main suction pipe and the suction pipe of each compressor is connected. On the other hand, a projection is provided on the inner wall surface of the suction main pipe at the upstream side in the refrigerant flow direction.

【0019】請求項7に記載の技術的手段による本発明
の空気調和機は、請求項1ないし4のいずれかに説明し
た空気調和機において、吸入主配管と各圧縮機の吸入側
配管との間に、前記吸入主配管内の冷媒、および油を撹
拌させる撹拌タンクを備え、前記吸入主配管の一端は前
記撹拌タンク側壁面の略接線方向に、かつ、略水平方向
となるように接続し、前記各圧縮機の吸入側配管の一端
は前記撹拌タンクの上面より接続したものである。
The air conditioner of the present invention according to the technical means described in claim 7 is the air conditioner described in any one of claims 1 to 4, wherein the main suction pipe and the suction side pipe of each compressor are connected. A stirring tank for stirring the refrigerant and the oil in the suction main pipe is provided between, and one end of the suction main pipe is connected so as to be substantially tangential to the side wall surface of the stirring tank and substantially horizontal. The one end of the suction side pipe of each compressor is connected from the upper surface of the stirring tank.

【0020】請求項8に記載の技術的手段による本発明
の空気調和機は、上記のいずれかに説明した空気調和機
において、吸入主配管は、各圧縮機の密閉容器と各圧縮
機の吸入側配管との接続位置よりも下方に、かつ、略水
平方向に設置し、前記各圧縮機の吸入側配管の前記吸入
主配管側の一端に、前記吸入主配管に対して略垂直上方
方向に延伸した配管延伸部を設け、油回収回路の各圧縮
機の吸入側配管側の一端は前記配管延伸部に接続し、か
つ、その接続部が前記各圧縮機の密閉容器と前記各圧縮
機の吸入側配管との接続位置よりも下方となるように配
置したものである。
The air conditioner of the present invention according to the technical means described in claim 8 is the air conditioner described in any of the above, wherein the main suction pipe is a closed container of each compressor and the suction of each compressor. Installed in a substantially horizontal direction below the connection position with the side pipe, at one end on the suction main pipe side of the suction side pipe of each of the compressors, in a substantially vertical upward direction with respect to the suction main pipe. An extended pipe extending portion is provided, one end of the oil recovery circuit on the suction side pipe side of each compressor is connected to the pipe extending portion, and the connecting portion is a closed container of each compressor and each of the compressors. It is arranged so as to be below the connection position with the suction side pipe.

【0021】請求項9に記載の技術的手段による本発明
の空気調和機は、請求項2ないし8のいずれかに説明し
た空気調和機において、室内側の空調負荷に基づき、予
め設定した運転優先順位の高い圧縮機の運転を優先させ
て各圧縮機の運転を制御する圧縮機運転制御装置と、室
内側の空調負荷を検知する室内負荷検知装置と、運転優
先順位の一番高い圧縮機以外の各圧縮機の吐出側配管に
設置した逆止弁とを備えたものである。
The air conditioner of the present invention according to the technical means described in claim 9 is the air conditioner described in any one of claims 2 to 8, wherein the preset operation priority is based on the air conditioning load on the indoor side. A compressor operation control device that controls the operation of each compressor by giving priority to the operation of the compressor with the highest priority, an indoor load detection device that detects the air conditioning load on the indoor side, and a compressor with the highest operation priority And a check valve installed in the discharge side pipe of each compressor.

【0022】請求項10に記載の技術的手段による本発
明の空気調和機は、請求項2ないし9のいずれかに説明
した空気調和機において、室内側の空調負荷に基づき、
予め設定した運転優先順位の高い圧縮機の運転を優先さ
せて各圧縮機の運転を制御する圧縮機運転制御装置と、
室内側の空調負荷を検知する室内負荷検知装置と、運転
優先順位の一番高い圧縮機以外の各圧縮機の吐出側配管
に設置した逆止弁と、開閉弁を介して前記各逆止弁の冷
媒流動方向上流側と下流側とをバイパスさせるバイパス
回路と、前記圧縮機運転制御装置により運転していた圧
縮機が停止したことを検知した場合に前記停止した圧縮
機のバイパス回路の開閉弁を所定時間だけ開くバイパス
制御装置とを備えたものである。
The air conditioner of the present invention according to the technical means described in claim 10 is the air conditioner according to any one of claims 2 to 9, wherein:
A compressor operation control device that controls the operation of each compressor by giving priority to the operation of a compressor having a high operation priority set in advance,
An indoor load detection device that detects the air conditioning load on the indoor side, a check valve installed in the discharge side piping of each compressor other than the compressor with the highest operation priority, and each check valve through an on-off valve. And a bypass circuit for bypassing the upstream side and the downstream side in the refrigerant flow direction of the compressor, and an on-off valve of the bypass circuit of the stopped compressor when it is detected that the compressor operating by the compressor operation controller is stopped. And a bypass control device that opens the valve for a predetermined time.

【0023】[0023]

【作用】上記のように構成された本発明の空気調和機で
は、各圧縮機と各圧縮機の吸入側配管とを連通する油回
収回路を備えているので、複数台の圧縮機が全て運転し
ている場合、複数台の圧縮機の一部が停止している場合
においても、各々の圧縮機内の冷凍機油レベルを極端に
偏ることなく調整することができる。
In the air conditioner of the present invention configured as described above, since the oil recovery circuit that connects each compressor and the suction side pipe of each compressor is provided, all the plurality of compressors are operated. In this case, even if some of the compressors are stopped, the refrigerating machine oil level in each compressor can be adjusted without being extremely biased.

【0024】また、特定の圧縮機と特定の圧縮機の吸入
側配管とを連通する油回収回路を備えているので、複数
台の圧縮機が全て運転している場合、複数台の圧縮機の
一部が停止している場合においても、各々の圧縮機内の
冷凍機油レベルが極端に偏ることなく調整することがで
き、さらに、運転優先順位が高く能力可変であるため、
油面高さの変動が最も大きくなる圧縮機に、他の圧縮機
の余剰冷凍機油を優先的に供給させ、油面高さを短時間
で複数台の圧縮機の油面高さの均一化を可能とすること
ができる。
Further, since the oil recovery circuit for communicating the specific compressor with the suction side pipe of the specific compressor is provided, when all the plurality of compressors are operating, Even when a part of the compressor is stopped, the refrigerating machine oil level in each compressor can be adjusted without being extremely biased, and further, since the operation priority is high and the capacity is variable,
The surplus refrigerating machine oil of other compressors is preferentially supplied to the compressor where the fluctuation of the oil level is the largest, and the oil level is made uniform among the multiple compressors in a short time. Can be possible.

【0025】また、油溜めタンクを備えているので、冷
凍サイクル内に溜まり込んでいた冷凍機油量が減少し
て、急激に余剰冷凍機油が各圧縮機の密閉容器内に戻っ
た場合、油溜めタンク内に冷凍機油を溜め込むことがで
き、圧縮機密閉容器内部の冷凍機油レベルを最大油面以
下に抑えて、圧縮機能力を低下させず運転することがで
きる。
Further, since the oil sump tank is provided, when the amount of refrigerating machine oil accumulated in the refrigeration cycle decreases and the surplus refrigerating machine oil suddenly returns to the closed container of each compressor, the oil sump Refrigerating machine oil can be stored in the tank, and the refrigerating machine oil level inside the compressor closed container can be suppressed to the maximum oil level or less, and operation can be performed without lowering the compression function.

【0026】また、油回収回路の一端を、吐出ガスから
油を分離する油面仕切板下方の圧縮機密閉容器内部まで
突出させているので、圧縮機密閉容器内部の冷凍機油が
所定レベルまで溜まる以前に、冷凍機油を圧縮機密閉容
器外部に流出させることがないため、圧縮機密閉容器内
部の冷凍機油を、確実に所定レベル以上に溜め込むこと
ができる。
Further, since one end of the oil recovery circuit is projected to the inside of the compressor hermetic container below the oil level partition plate for separating the oil from the discharge gas, the refrigerating machine oil inside the compressor hermetic container is accumulated to a predetermined level. Since the refrigerating machine oil has never flown out of the compressor hermetically sealed container before, the refrigerating machine oil inside the compressor hermetically sealed container can be reliably stored at a predetermined level or higher.

【0027】また、運転優先順位の一番高い圧縮機の吸
入側配管を、吸入主配管の冷媒流動方向の最下流部に接
続することにより、複数台の圧縮機の一部が停止してい
る場合、アキュムレータから流れてきた冷凍機油が停止
中圧縮機の吸入側配管に溜まり込むことを防止し、停止
中圧縮機の始動時に油圧縮を起こすことを防止すること
ができる。
Further, a part of the plurality of compressors is stopped by connecting the suction side pipe of the compressor having the highest operation priority to the most downstream part in the refrigerant flow direction of the suction main pipe. In this case, it is possible to prevent refrigerating machine oil flowing from the accumulator from accumulating in the suction side pipe of the compressor during stoppage and prevent oil compression from occurring at the time of starting the compressor during stoppage.

【0028】また、吸入主配管の管内側壁面に突起を設
けることにより、吸入主配管の管内壁面を伝い流れる冷
凍機油が、管内壁面全体を均一に流された結果、各圧縮
機の吸入ガス量比に応じて、各圧縮機に流入する冷凍機
油量をほぼ均等化し、各圧縮機の冷凍機油レベルの格差
が生じるのを低減することができる。
Further, by providing a protrusion on the inner wall surface of the main suction pipe, the refrigerating machine oil flowing along the inner wall surface of the main suction pipe is made to flow uniformly over the entire inner wall surface of the main pipe, and as a result, the amount of suction gas of each compressor According to the ratio, the amounts of refrigerating machine oil flowing into the respective compressors can be made substantially equal to reduce the occurrence of the difference in refrigerating machine oil levels of the respective compressors.

【0029】また、吸入主配管と各圧縮機の吸入側配管
との間に、冷媒および油を撹拌させる撹拌タンクを備え
ることにより、各圧縮機の吸入ガス量比に応じて、各圧
縮機に流入する冷凍機油量を均等化し、各圧縮機の冷凍
機油レベルの格差が生じるのを低減することができる。
Further, by providing a stirring tank for stirring the refrigerant and the oil between the main suction pipe and the suction side pipe of each compressor, each compressor is provided with a stirring gas amount ratio. It is possible to equalize the amount of refrigerating machine oil that flows in and reduce the occurrence of a difference in refrigerating machine oil level between the compressors.

【0030】また、吸入主配管を各圧縮機の密閉容器と
各圧縮機の吸入側配管との接続位置よりも下方にするこ
とにより、複数台の圧縮機の一部が停止している場合、
油回収回路を介して各圧縮機の吸入側配管に流れて出た
冷凍機油が、停止中圧縮機の吸入側配管に溜まり込むこ
とを防止し、停止中圧縮機の始動時に油圧縮を起こすこ
とを防止することができる。
When a part of a plurality of compressors is stopped by setting the main suction pipe below the connection position between the closed container of each compressor and the suction side pipe of each compressor,
To prevent refrigerating machine oil flowing out to the suction side pipe of each compressor through the oil recovery circuit from accumulating in the suction side pipe of the compressor while stopped, and to cause oil compression when starting the compressor during stop. Can be prevented.

【0031】また、運転優先順位の一番高い圧縮機以外
の各圧縮機の吐出側配管に逆止弁を備えることにより、
複数台の内の一部が停止している圧縮機を始動させる際
に、他の運転中圧縮機を停止もしくは能力を低下させる
ことなく、停止中の圧縮機を始動でき、スムーズな負荷
追随を可能とすることができる。
Further, by providing a check valve in the discharge side pipe of each compressor other than the compressor having the highest operation priority,
When starting a compressor in which some of the multiple units are stopped, the stopped compressor can be started without stopping other compressors in operation or reducing the capacity, and smooth load following can be performed. It can be possible.

【0032】さらに、開閉弁を介して各逆止弁の冷媒流
動方向上流側と下流側とをバイパスさせるバイパス回路
を備えることにより、スムーズな負荷追随を可能とした
上で、複数台の圧縮機の一部が停止している場合、各々
の圧縮機内の冷凍機油レベルを極端に偏ることなく調整
することができる。
Further, by providing a bypass circuit for bypassing the upstream side and the downstream side of each check valve in the refrigerant flow direction through the on-off valve, smooth load follow-up is enabled and a plurality of compressors are provided. When some of the compressors are stopped, the refrigerating machine oil level in each compressor can be adjusted without being extremely biased.

【0033】[0033]

【実施例】以下、本発明による空気調和機の第1の実施
例について、図1を参照しながら説明する。なお、従来
と同一の構成については、同一符号を付して詳細な説明
を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the air conditioner according to the present invention will be described below with reference to FIG. It should be noted that the same configurations as those of the related art are denoted by the same reference numerals and detailed description thereof will be omitted.

【0034】図1は、本発明の第1の実施例における空
気調和機の冷凍サイクル図である。図1において、1
0,11,12は圧縮機、13は圧縮機10の第1油回
収路、14は圧縮機11の第2油回収路、15は圧縮機
12の第3油回収路、16,17,18は第1、第2、
第3油回収路13,14,15のそれぞれの途中に配設
された絞り装置、19は第1、第2、第3油回収路1
3,14,15を集合する油回収集合配管である。
FIG. 1 is a refrigeration cycle diagram of the air conditioner in the first embodiment of the present invention. In FIG. 1, 1
0, 11, 12 are compressors, 13 is a first oil recovery passage of the compressor 10, 14 is a second oil recovery passage of the compressor 11, 15 is a third oil recovery passage of the compressor 12, 16, 17, 18 Is the first, second,
A throttling device, 19 disposed in the middle of each of the third oil recovery passages 13, 14, 15 is a first, second and third oil recovery passages 1.
It is an oil recovery collecting pipe that collects 3, 14 and 15.

【0035】20は吸入主配管6から圧縮機10へ至る
吸入側配管、21は吸入主配管6から圧縮機11へ至る
吸入側配管、22は吸入主配管6から圧縮機12へ至る
吸入側配管、23は油回収集合配管19から圧縮機10
の吸入側配管20に連通する油配分路、24は油回収集
合配管19から圧縮機11の吸入側配管21に連通する
油配分路、25は油回収集合配管19から圧縮機12の
吸入側配管22に連通する油配分路である。なお、これ
ら油配分路23,24,25はそれぞれ流路抵抗が等し
くなるように設計されている。
20 is a suction side pipe from the suction main pipe 6 to the compressor 10, 21 is a suction side pipe from the suction main pipe 6 to the compressor 11, and 22 is a suction side pipe from the suction main pipe 6 to the compressor 12. , 23 from the oil recovery collecting pipe 19 to the compressor 10
Oil distribution passage communicating with the suction side pipe 20 of the compressor, reference numeral 24 represents an oil distribution passage communicating with the suction side pipe 21 of the compressor 11 from the oil recovery collecting pipe 19, and 25 represents the suction side pipe of the compressor 12 from the oil collecting collective pipe 19. It is an oil distribution path communicating with 22. The oil distribution passages 23, 24, 25 are designed so that the flow passage resistances are equal to each other.

【0036】26は第1、第2、第3油回収路13,1
4,15と、第1、第2、第3油回収路13,14,1
5を集合する油回収集合配管19と、圧縮機10,1
1,12の吸入配管となる吸入側配管20,21,22
へ連通する油配分路23,24,25とから構成される
油回収回路である。
26 is the first, second, and third oil recovery paths 13, 1.
4, 15 and the first, second and third oil recovery passages 13, 14, 1
Oil recovery collecting pipe 19 for collecting 5 and compressors 10 and 1
Suction side pipes 20, 21, 22, which are suction pipes for 1, 12
Is an oil recovery circuit composed of oil distribution paths 23, 24, 25 communicating with.

【0037】第1、第2、第3油回収路13,14,1
5は一端がそれぞれ圧縮機10,11,12の限界油面
と最大油面の間の所定の高さで圧縮機密閉容器内に連通
し、他端は油回収集合配管19に連通している。
The first, second and third oil recovery passages 13, 14, 1
One end of 5 communicates with the inside of the compressor at a predetermined height between the limit oil level and the maximum oil level of the compressors 10, 11 and 12, and the other end communicates with the oil recovery collecting pipe 19. .

【0038】ここで、第1、第2、第3油回収路13,
14,15を圧縮機10、圧縮機11、圧縮機12の密
閉容器内に連通させる所定の高さとしては、各々の給油
限界油面高さに対し、運転中の変動分を余裕として上乗
せした高さとし、通常、圧縮機には十分に余裕をもって
冷凍機油が封入されているので、その最大油面高さより
は低い位置とする。また、絞り装置16,17,18は
圧縮機10、圧縮機11、圧縮機12の運転中、各々の
密閉容器内を高圧に保持するためのものである。
Here, the first, second and third oil recovery paths 13,
As the predetermined heights for communicating 14 and 15 with each other in the airtight containers of the compressor 10, the compressor 11 and the compressor 12, fluctuations during operation are added as margins to the respective oil supply limit oil level heights. Since the compressor oil is filled with refrigerating machine oil with a sufficient margin, the height is usually set to a position lower than the maximum oil level height. Further, the expansion devices 16, 17, and 18 are for maintaining the high pressure in each closed container during the operation of the compressor 10, the compressor 11, and the compressor 12.

【0039】以上のように構成された空気調和機につい
て、以下その動作を説明する。圧縮機10,11,12
はガス冷媒を吸入し、圧縮して密閉容器内に高温、高圧
のガス冷媒として吐出する。このとき、圧縮機10,1
1,12の機械部分の潤滑摺動を良好に行う為の冷凍機
油も同時に密閉容器内に吐出され、一部は冷媒と一緒に
冷凍サイクル内へ吐出される。
The operation of the air conditioner configured as above will be described below. Compressors 10, 11, 12
Sucks in the gas refrigerant, compresses it, and discharges it as a high-temperature, high-pressure gas refrigerant into the closed container. At this time, the compressors 10, 1
Refrigerating machine oil for good lubrication sliding of the mechanical parts 1 and 12 is also discharged into the closed container at the same time, and part of it is discharged together with the refrigerant into the refrigeration cycle.

【0040】サイクル内へ流出した冷凍機油は冷媒の流
れとともに冷凍サイクルを循環して、アキュムレータ5
に戻り、さらにアキュムレータ5から吸入主配管6、吸
入側配管20,21,22を経てそれぞれの圧縮機1
0,11,12へ戻ることになる。
The refrigerating machine oil flowing out into the cycle circulates in the refrigerating cycle along with the flow of the refrigerant, and the accumulator 5
, And further from the accumulator 5 through the suction main pipe 6, the suction side pipes 20, 21, 22 to the respective compressors 1
It will return to 0, 11, and 12.

【0041】このとき、サイクル内を循環してきた冷凍
機油の圧縮機10,11,12への戻り方は、それぞれ
の圧縮機10,11,12の吸入側配管20,21,2
2の長さや、吸入主配管6との位置関係により当然のこ
とながら差が生じる可能性がある。
At this time, the method of returning the refrigerating machine oil circulating in the cycle to the compressors 10, 11, 12 is determined by the suction side pipes 20, 21, 2 of the respective compressors 10, 11, 12.
As a matter of course, a difference may occur depending on the length of 2 and the positional relationship with the main suction pipe 6.

【0042】このような場合は、多く戻る圧縮機の油面
は高くなり、戻る量の少ない圧縮機の油面は下がること
となる。
In such a case, the oil level of the compressor returning a lot will be high, and the oil level of the compressor returning a small amount will be lowered.

【0043】今、圧縮機10,11,12が全て運転し
ており、それぞれの密閉容器内に十分冷凍機油がある
(第1、第2、第3油回収路13,14,15の連通口
よりも油面が高い状態)場合には、自身の密閉容器内は
冷凍サイクルの高圧と略等しいので、それぞれの密閉容
器内の冷凍機油は第1、第2、第3油回収路13,1
4,15を通じて油回収集合配管19へ移動し、油配分
路23,24,25を通じてそれぞれの圧縮機10,1
1,12の吸入側配管20,21,22へ導かれて圧縮
機10,11,12に戻り、それぞれの密閉容器内には
十分な油面高さが維持されることになる。
Now, all the compressors 10, 11 and 12 are in operation, and there is sufficient refrigerating machine oil in the respective closed containers (the communication ports of the first, second and third oil recovery paths 13, 14, 15). If the oil level is higher than that), the pressure inside the closed container is approximately equal to the high pressure of the refrigeration cycle, so the refrigeration oil in each closed container has the first, second and third oil recovery paths 13, 1
It moves to the oil recovery collecting pipe 19 through 4, 15 and the respective compressors 10, 1 through the oil distribution paths 23, 24, 25.
1, 12 are guided to the suction side pipes 20, 21, 22 and returned to the compressors 10, 11, 12 and a sufficient oil level is maintained in each closed container.

【0044】また、冷凍サイクルの能力制御や、過渡的
な動きの中で、例えば、圧縮機10の油面高さが十分で
ない(第1油回収路13の連通口よりも油面が低い状
態)状態で、圧縮機11,12の油面高さが十分ある状
態を仮定する。すなわち、サイクル内へ流出した冷凍機
油の循環の過程で、圧縮機10,11,12への油の戻
り方に差が生じた場合を仮定する。
Further, during the capacity control of the refrigeration cycle or during transient movement, for example, the oil level of the compressor 10 is not sufficient (the oil level is lower than the communication port of the first oil recovery passage 13). ) State, it is assumed that the oil level height of the compressors 11 and 12 is sufficient. That is, it is assumed that there is a difference in how the oil is returned to the compressors 10, 11, 12 during the process of circulating the refrigerating machine oil that has flowed out into the cycle.

【0045】このとき、圧縮機10から第1油回収路1
3への油の持ち出しはなくなり、圧縮機11,12から
第2、第3油回収路14,15へ油は供給され、油回収
集合配管19へ供給されることになる。
At this time, from the compressor 10 to the first oil recovery passage 1
The oil is not taken out to the compressor 3, and the oil is supplied from the compressors 11 and 12 to the second and third oil recovery passages 14 and 15, and is supplied to the oil recovery collecting pipe 19.

【0046】油回収集合配管19に供給された油は、油
配分路23,24,25の流路抵抗に応じて配分されて
各圧縮機の吸入側配管20,21,22に供給される。
The oil supplied to the oil recovery collecting pipe 19 is distributed according to the flow resistance of the oil distribution passages 23, 24, 25 and supplied to the suction side pipes 20, 21, 22 of each compressor.

【0047】圧縮機10,11,12はガス冷媒を吸入
すると同時に配分された油を吸入することで、圧縮機1
0の油面高さは上昇し、十分な状態に修正する方向に働
き、圧縮機11,12の油面高さは徐々に下降し、適正
な油面高さに修正する方向に働くことで、圧縮機10,
11,12のそれぞれの油面高さが適切な高さを常に維
持する動作が繰り返され、各圧縮機10,11,12の
油面高さの偏りを防止できる。
The compressors 10, 11 and 12 suck in the gas refrigerant and at the same time suck in the distributed oil.
The oil level of 0 rises and works in a direction to correct to a sufficient state, and the oil levels of the compressors 11 and 12 gradually drop to work in a direction to correct to an appropriate oil level. , Compressor 10,
The operation of always maintaining the appropriate oil level heights of 11 and 12 is repeated, and the deviation of the oil level heights of the compressors 10, 11 and 12 can be prevented.

【0048】今、圧縮機10,11,12の容量が等し
い場合は、油配分路23,24,25の流路抵抗を等し
く設計し、配分される油は3等分されることになる。
If the compressors 10, 11 and 12 have the same capacity, the oil distribution passages 23, 24 and 25 are designed to have the same flow resistance, and the oil to be distributed is divided into three equal parts.

【0049】また、圧縮機10,11,12の容量が異
なる場合は、圧縮機の容量が大きいほど吸入ガスの量も
多くなるため、吸入側配管への吸引力も強くなる。
When the capacities of the compressors 10, 11 and 12 are different, the larger the capacity of the compressor is, the larger the amount of suction gas is, so that the suction force to the suction side pipe becomes stronger.

【0050】このため、油回収集合配管19から油配分
路23,24,25へ供給される油の量は、それぞれの
圧縮機の容量に応じて配分されることになるため、容量
の異なる圧縮機にも適用できることは明らかである。
For this reason, the amount of oil supplied from the oil recovery collecting pipe 19 to the oil distribution passages 23, 24, 25 is distributed according to the capacity of each compressor, so that compression with different capacities is performed. Obviously, it can also be applied to machines.

【0051】また、圧縮機11あるいは圧縮機12の油
面が十分でない場合の動作についても、上記説明と同様
である。
The operation when the oil level of the compressor 11 or the compressor 12 is not sufficient is the same as the above description.

【0052】次に、圧縮機3台の運転中に室内負荷が減
少し、例えば減圧装置8c,8dが全閉となって圧縮機
10,11が停止し、圧縮機12のみを運転継続とした
能力制御運転に入った場合には、圧縮機12の吐出した
高圧のガス冷媒は、室外側熱交換器4へ流れる一方で、
停止している圧縮機10,11の密閉容器内へ逆流す
る。
Next, the indoor load is reduced during operation of the three compressors, for example, the pressure reducing devices 8c and 8d are fully closed, the compressors 10 and 11 are stopped, and only the compressor 12 is continuously operated. When the capacity control operation is started, the high-pressure gas refrigerant discharged from the compressor 12 flows to the outdoor heat exchanger 4,
Backflow into the closed containers of the compressors 10 and 11 that are stopped.

【0053】このため、圧縮機10,11の密閉容器内
は高圧に保持され、容器内の冷凍機油は油面の高さが第
1、第2油回収路13,14が接続された高さになるま
で、第1、第2油回収路13,14、吸入側配管20,
21を経て吸入主配管6を通り圧縮機12に回収される
ことになる。
Therefore, the pressure inside the hermetically sealed containers of the compressors 10 and 11 is maintained at a high pressure, and the refrigerating machine oil inside the containers has a height of the oil level at which the first and second oil recovery paths 13 and 14 are connected. Until the first and second oil recovery passages 13 and 14, the suction side pipe 20,
It will be collected by the compressor 12 through the main suction pipe 6 via 21.

【0054】以上のように本実施例の空気調和機は、一
端が圧縮機10,11,12の給油限界油面と最大油面
の間の所定の高さで圧縮機密閉容器内に連通し、他端が
圧縮機10,11,12の吸入側配管20,21,22
に連通し、かつ、他端の途中に集合部となる油回収集合
配管19を設け、圧縮機10,11,12と油回収集合
配管19の間に絞り装置16,17,18を有する油回
収回路26を備えているため、3台の圧縮機10,1
1,12の運転中はもちろん、1台が運転、2台が停
止、あるいは2台が運転、1台が停止しているといった
場合にも圧縮機10,11,12の冷凍機油レベルが極
端に偏ることなく調整することができる。
As described above, in the air conditioner of this embodiment, one end communicates with the compressor 10, 11, 12 in the compressor hermetic container at a predetermined height between the oil supply limit oil level and the maximum oil level. , The other end is the suction side pipes 20, 21, 22 of the compressors 10, 11, 12.
And an oil recovery collecting pipe 19 which is a collection part in the middle of the other end, and which has a throttle device 16, 17, 18 between the compressors 10, 11, 12 and the oil recovery collecting pipe 19. Since the circuit 26 is provided, the three compressors 10, 1
Not only during the operation of 1 and 12, but also when 1 unit is operating, 2 units are stopped, or 2 units are operating and 1 unit is stopped, the refrigerating machine oil level of the compressors 10, 11 and 12 is extremely high. It can be adjusted without bias.

【0055】なお本実施例では、第1、第2、第3油回
収路13,14,15の集合部分の油回収集合配管19
から各吸入側配管20,21,22の油配分路23,2
4,25に通常の配管を使用し、流路抵抗を均等化する
仕様としたが、ディストリビュータとの組み合わせなど
も考えられる。
In the present embodiment, the oil collecting and collecting pipe 19 at the collecting portion of the first, second and third oil collecting passages 13, 14 and 15 is used.
To the oil distribution passages 23, 2 of the suction side pipes 20, 21, 22
Although normal piping was used for Nos. 4 and 25 to equalize the flow path resistance, a combination with a distributor may be considered.

【0056】次に、本発明による空気調和機の第2の実
施例について、図2を参照しながら説明する。
Next, a second embodiment of the air conditioner according to the present invention will be described with reference to FIG.

【0057】図2は、本発明の第2の実施例における空
気調和機の冷凍サイクル図である。図2において、27
は能力可変型圧縮機で、例えばインバータ等により、回
転数をリニアに変化させることで、能力の制御を行える
圧縮機である。
FIG. 2 is a refrigeration cycle diagram of the air conditioner in the second embodiment of the present invention. In FIG. 2, 27
Is a variable capacity compressor, which can control the capacity by linearly changing the number of revolutions with an inverter or the like.

【0058】28は第1油回収回路で、途中に第1絞り
装置16,17が配設された第1、第2油回収路13,
14と、第1、第2油回収路13,14を集合して能力
可変型圧縮機27の吸入側配管22に連通する油回収集
合配管19とから構成されている。
Reference numeral 28 denotes a first oil recovery circuit, which includes first and second oil recovery passages 13, 17 in which first expansion devices 16 and 17 are provided.
14 and an oil recovery collecting pipe 19 that collects the first and second oil recovery passages 13 and 14 and communicates with the suction side pipe 22 of the variable capacity compressor 27.

【0059】29は第2油回収回路で、第3油回収路1
5と、第1、第2油配分路23,24と、圧縮機10,
11の吸入側配管20,21とから構成されている。
Reference numeral 29 is a second oil recovery circuit, which is the third oil recovery path 1
5, the first and second oil distribution passages 23 and 24, the compressor 10,
It is composed of 11 suction side pipes 20 and 21.

【0060】さらに第3油回収路15は、圧縮機10の
吸入側配管20に連通する第1油配分路23と、圧縮機
11の吸入側配管21に連通する第2油配分路24と
に、第2絞り装置18a,18bを介して連通してい
る。
Further, the third oil recovery passage 15 has a first oil distribution passage 23 communicating with the suction side pipe 20 of the compressor 10 and a second oil distribution passage 24 communicating with the suction side pipe 21 of the compressor 11. , And the second diaphragm devices 18a and 18b.

【0061】30は室内機の空調負荷に基づき、予め設
定した運転優先順位の高い圧縮機の運転を優先させて各
圧縮機の運転を制御する圧縮機運転制御装置で、室内側
の空調負荷検知装置(図示せず)の検知する空調負荷の
大小に応じて圧縮機の運転台数を調整する装置である。
Reference numeral 30 denotes a compressor operation control device for controlling the operation of each compressor by giving priority to the operation of a compressor having a high operation priority set in advance based on the air conditioning load of the indoor unit. It is a device that adjusts the number of operating compressors according to the magnitude of the air conditioning load detected by a device (not shown).

【0062】圧縮機運転制御装置30は、圧縮機を運転
する必要があると判断した場合、例えば、リモコンなど
によって暖房運転を開始する指令があった場合には、必
ず運転優先順位の最も高い能力可変型圧縮機27から運
転を開始し、さらに圧縮機を追加する必要があれば、圧
縮機10,11を適宜追加運転し、逆に、空調負荷が減
少して、圧縮機を停止させる場合は、圧縮機10,11
をまず停止させ、能力可変型圧縮機27は一番最後に停
止させる動作をする。
When the compressor operation control device 30 determines that the compressor needs to be operated, for example, when there is a command to start the heating operation from the remote controller or the like, the capacity of the operation priority is always the highest. When it is necessary to start the operation from the variable type compressor 27 and further add the compressor, the compressors 10 and 11 are appropriately added, and conversely, when the air conditioning load decreases and the compressor is stopped. , Compressors 10, 11
Is stopped first, and the variable capacity compressor 27 is stopped last.

【0063】これは、細かい空調負荷にリニアに対応す
るために、一定の空調負荷までは能力可変型圧縮機27
が対応し、この能力可変型圧縮機27の最大能力以上の
空調負荷時には、圧縮機10または圧縮機11のどちら
か一方と、能力可変型圧縮機27の2台が運転できるよ
うにしている。さらに空調負荷が大きくなれば、圧縮機
10,11および能力可変型圧縮機27の3台を運転す
ることで、能力可変型圧縮機27の最低能力に相当する
空調負荷から、圧縮機10,11と能力可変型圧縮機2
7の最大能力の合計能力に相当する空調負荷までの間を
リニアに対応することを可能としたものである。
This is because the variable capacity compressor 27 is used up to a certain air conditioning load in order to respond linearly to a fine air conditioning load.
When the air conditioning load exceeds the maximum capacity of the variable capacity compressor 27, either the compressor 10 or the compressor 11 and the variable capacity compressor 27 can be operated. If the air conditioning load further increases, the compressors 10 and 11 and the variable capacity compressor 27 are operated, so that the air conditioning load corresponding to the minimum capacity of the variable capacity compressor 27 changes from the air conditioning load to the compressors 10 and 11. And variable capacity compressor 2
It is possible to linearly correspond to the air conditioning load corresponding to the total capacity of the maximum capacity of 7.

【0064】空調負荷検知装置は、冷凍サイクルの低圧
圧力の高低を検知して、冷房負荷の大小を判断し、冷凍
サイクルの高圧圧力の高低を検知して、暖房負荷の大小
を判断するものである。これは、冷房負荷に対して、圧
縮機の容量が過小であれば冷凍サイクルの低圧圧力は上
がり、逆に圧縮機の容量が過大の場合は、冷凍サイクル
の低圧圧力は下がるからである。
The air-conditioning load detecting device detects whether the low pressure of the refrigeration cycle is high or low to judge the cooling load, and the high pressure of the refrigeration cycle is high or low to judge the heating load. is there. This is because if the capacity of the compressor is too small with respect to the cooling load, the low-pressure pressure of the refrigeration cycle rises, and conversely, if the capacity of the compressor is too large, the low-pressure pressure of the refrigeration cycle falls.

【0065】また、暖房負荷の検知についても同様で、
暖房負荷に対して、圧縮機の容量が過小であれば、サイ
クルの高圧圧力は下がり、逆に圧縮機の容量が過大とな
れば、サイクルの高圧圧力が上がることから一般的に空
調負荷の検知手段として広く使われているものである。
The same applies to the detection of the heating load.
If the capacity of the compressor is too small for the heating load, the high-pressure pressure in the cycle drops, and if the capacity of the compressor becomes too large, the high-pressure pressure in the cycle rises. It is widely used as a means.

【0066】以上のように構成された空気調和機につい
て、以下その動作を説明する。能力可変型圧縮機27は
圧縮機運転制御装置30により、室内機側の空調負荷に
応じて、最大能力運転から最低能力運転の間をリニアに
可変しながら運転している。
The operation of the air conditioner configured as described above will be described below. The variable capacity compressor 27 is operated by the compressor operation control device 30 while linearly varying between the maximum capacity operation and the minimum capacity operation according to the air conditioning load on the indoor unit side.

【0067】一般的に、インバータ等で回転数を変化さ
せる圧縮機の冷凍機油の吐出量は、回転数が高いほど多
く、逆に回転数が低いほど少なくなるため、回転数をリ
ニアに可変する能力可変型圧縮機27の油面高さの変動
は、その他の圧縮機10,11に比べて大きくなる。
Generally, the discharge amount of refrigerating machine oil of a compressor whose rotation speed is changed by an inverter or the like increases as the rotation speed increases, and conversely decreases as the rotation speed decreases. Therefore, the rotation speed is linearly changed. The fluctuation of the oil level of the variable capacity compressor 27 is larger than that of the other compressors 10 and 11.

【0068】今室内負荷検知装置の判断が、空調負荷最
大と検知し、その結果、圧縮機運転制御装置30の判断
により、全ての圧縮機が運転し、その中で能力可変型圧
縮機27が最大能力で運転している場合は、能力可変型
圧縮機27の密閉容器内の油面が低下する。これは、能
力可変型圧縮機27が最大運転のため、冷凍機油の吐出
量が多くなるためである。
Now, the indoor load detection device judges that the air conditioning load is maximum, and as a result, all the compressors are operated by the judgment of the compressor operation control device 30, in which the variable capacity compressor 27 When operating at maximum capacity, the oil level in the closed container of the variable capacity compressor 27 decreases. This is because the variable capacity compressor 27 is in the maximum operation and the discharge amount of the refrigerating machine oil is large.

【0069】この場合、圧縮機10,11の密閉容器内
の第1、第2油回収路13,14の接続部よりも上部に
ある冷凍機油は、冷凍システムの高圧圧力により、第
1、第2油回収路13,14、油回収集合配管19を経
て、能力可変型圧縮機27の吸入側配管22に供給され
るため、能力可変型圧縮機27は2台の圧縮機10,1
1の余剰冷凍機油を回収することになり、能力可変型圧
縮機27が最大運転時でも、密閉容器内の油面高さを確
保できる。
In this case, the refrigerating machine oil above the connecting portions of the first and second oil recovery passages 13 and 14 in the hermetically sealed containers of the compressors 10 and 11 is the first and second refrigerating systems due to the high pressure of the refrigerating system. Since the variable capacity compressor 27 is supplied to the suction side piping 22 of the variable capacity compressor 27 through the two oil recovery paths 13 and 14 and the oil recovery collecting pipe 19, the variable capacity compressor 27 includes two compressors 10, 1.
Since the excess refrigerating machine oil No. 1 is collected, the oil level in the closed container can be secured even when the variable capacity compressor 27 is in maximum operation.

【0070】また、圧縮機10または圧縮機11のどち
らか一方が停止している場合には、停止している圧縮機
の余剰冷凍機油は、上記したと同様の動作により、能力
可変型圧縮機27の冷凍機油として使用することが可能
となり、能力可変型圧縮機27が最大運転時でも密閉容
器内の油面高さの確保がさらに容易となる。
Further, when either the compressor 10 or the compressor 11 is stopped, the excess refrigerating machine oil of the stopped compressor is operated by the same operation as described above, and the variable capacity compressor is operated. It becomes possible to use as the refrigerating machine oil of No. 27, and it becomes easier to secure the oil level in the closed container even when the variable capacity compressor 27 is in the maximum operation.

【0071】一方、能力可変型圧縮機27が最低能力で
運転している時には、他の圧縮機10,11に比べ、冷
凍機油の吐出量が少なくなるため、能力可変型圧縮機2
7の油面高さは他の圧縮機10,11の油面高さに比べ
て高くなる。
On the other hand, when the variable capacity compressor 27 is operating at the minimum capacity, the discharge amount of refrigerating machine oil is smaller than that of the other compressors 10 and 11, so that the variable capacity compressor 2 is used.
The oil level height of 7 is higher than the oil level heights of the other compressors 10 and 11.

【0072】この場合は、第2油回収回路29により能
力可変型圧縮機27の余剰冷凍機油が他の圧縮機10,
11に配分され、圧縮機10,11と、能力可変型圧縮
機27の油面高さを均等化する方向に動作することにな
る。
In this case, the second refrigeration circuit 29 causes the excess refrigerating machine oil of the variable capacity compressor 27 to move to another compressor 10,
11 and the compressors 10, 11 and the variable capacity compressor 27 operate in the direction of equalizing the oil level.

【0073】すなわち、能力可変型圧縮機27の余剰冷
凍機油は、第3油回収路15の絞り装置18a、第1油
配分路23、吸入側配管20を経て、圧縮機10に供給
されるとともに、同じく第3油回収路15の絞り装置1
8b、第2油配分路24、吸入側配管21を経て、圧縮
機11に供給されるため、能力可変型圧縮機27の油面
高さが低くなるとともに、圧縮機10,11の油面高さ
が高くなることで、全体の油面高さのバランスを一定に
保つことが可能となる。
That is, the surplus refrigerating machine oil of the variable capacity compressor 27 is supplied to the compressor 10 via the expansion device 18a of the third oil recovery passage 15, the first oil distribution passage 23, and the suction side pipe 20. Similarly, the expansion device 1 for the third oil recovery passage 15
Since the oil is supplied to the compressor 11 via the 8b, the second oil distribution passage 24, and the suction side pipe 21, the oil level height of the variable capacity compressor 27 is reduced and the oil level heights of the compressors 10 and 11 are reduced. The higher oil level makes it possible to keep the balance of the entire oil level height constant.

【0074】次に、室内負荷が減少し、例えば減圧装置
8c,8dが全閉となり、圧縮機運転制御装置30が圧
縮機10,11を停止し、能力可変型圧縮機27のみの
運転を継続すると判断して、能力制御運転に入った場合
にも、能力可変型圧縮機27の吐出した高圧のガス冷媒
は、室外側熱交換器4へ流れる一方で、停止している圧
縮機10,11の密閉容器内へも逆流する。
Next, the indoor load is reduced, for example, the decompression devices 8c and 8d are fully closed, the compressor operation control device 30 stops the compressors 10 and 11, and the operation of only the variable capacity compressor 27 is continued. Then, even when the capacity control operation is started, the high-pressure gas refrigerant discharged from the variable capacity compressor 27 flows to the outdoor heat exchanger 4 while the stopped compressors 10, 11 are stopped. Back flow into the closed container of.

【0075】このため、圧縮機10,11の密閉容器内
は高圧を保持され、容器内の冷凍機油は油面の高さが第
1、第2油回収路13,14の接続された高さになるま
で、第1、第2油回収路13,14、油回収集合配管1
9を経て能力可変型圧縮機27の吸入側配管22を通
り、能力可変型圧縮機27に回収されることになる。
Therefore, the high pressure is maintained in the hermetically sealed containers of the compressors 10 and 11, and the refrigerating machine oil in the containers has a height of the oil level which is the height to which the first and second oil recovery passages 13 and 14 are connected. The first and second oil recovery passages 13 and 14, and the oil recovery collective pipe 1 until
9 through the suction side pipe 22 of the variable capacity compressor 27, and is collected by the variable capacity compressor 27.

【0076】このため、能力可変型圧縮機27の使用可
能な冷凍機油の絶対量が増加し、能力可変型圧縮機27
の1台だけの最大運転時にも必要油面の確保が容易に実
現できることになる。
Therefore, the absolute amount of refrigerating machine oil that can be used by the variable capacity compressor 27 is increased, and the variable capacity compressor 27 is increased.
It is possible to easily secure the required oil level even during the maximum operation of only one of the above.

【0077】以上のように本実施例の空気調和機は、室
内側の空調負荷に基づき、予め設定した運転優先順位の
高い圧縮機の運転を優先させて各圧縮機の運転を制御す
る圧縮機運転制御装置30と、室内側の空調負荷を検出
する室内負荷検知装置とを備え、密閉容器内に吐出圧力
が作用する高圧チャンバ方式の複数台の圧縮機のうち、
少なくとも1台を能力可変型圧縮機とし、かつ、運転の
優先順位を設定して運転優先順位の一番高い圧縮機を能
力可変型圧縮機27とし、並列に接続された圧縮機1
0,11と、室外側熱交換器4と、減圧装置8a,8
b,8c,8dと、室内側熱交換器9a,9b,9c,
9dと、アキュムレータ5とを冷媒流路を介して環状に
接続して冷凍サイクルを形成している。そして一端が能
力可変型圧縮機27以外の圧縮機10,11の給油限界
油面と最大油面の間の所定の高さで密閉容器内に連通
し、他端が能力可変型圧縮機27の吸入側配管22に連
通し、かつ、両端の途中に第1絞り装置16,17を有
する第1油回収回路28、および、一端が能力可変型圧
縮機27の給油限界油面と最大油面の間の所定の高さで
密閉容器内に連通し、他端が能力可変型圧縮機27以外
の圧縮機10,11の吸入側配管20,21に連通し、
かつ、両端の途中に集合部となる油回収集合配管19を
設け、能力可変型圧縮機27以外の圧縮機10,11の
吸入側配管20,21と油回収集合配管19の間に第2
絞り装置18a,18bを有する第2油回収回路29を
備えている。したがって、3台の圧縮機10,11およ
び能力可変型圧縮機27の運転中はもちろん、1台が運
転2台が停止、または2台が運転1台が停止といった場
合にも各々の圧縮機内の冷凍機油レベルが極端に偏るこ
となく調整することができる。
As described above, the air conditioner of the present embodiment controls the operation of each compressor by giving priority to the operation of the compressor having a high operation priority set in advance based on the air conditioning load on the indoor side. Of a plurality of high-pressure chamber type compressors that include an operation control device 30 and an indoor load detection device that detects an air conditioning load on the indoor side, and discharge pressure acts in a closed container,
At least one compressor is a variable capacity compressor, and the compressor having the highest operation priority by setting the operation priority order is the variable capacity compressor 27.
0, 11, the outdoor heat exchanger 4, and the pressure reducing devices 8a, 8
b, 8c, 8d and indoor heat exchangers 9a, 9b, 9c,
9d and the accumulator 5 are annularly connected via a refrigerant flow path to form a refrigeration cycle. One end of the compressors 10, 11 other than the variable capacity compressor 27 communicates with the inside of the hermetically sealed container at a predetermined height between the oil supply limit oil level and the maximum oil level, and the other end of the variable capacity compressor 27. A first oil recovery circuit 28 that communicates with the suction side pipe 22 and has first expansion devices 16 and 17 in the middle of both ends, and one end of the variable capacity compressor 27 with the oil supply limit oil level and the maximum oil level. To communicate with the inside of the hermetically sealed container at a predetermined height, and the other end to communicate with the suction side pipes 20 and 21 of the compressors 10 and 11 other than the variable capacity compressor 27,
Moreover, an oil recovery collecting pipe 19 serving as a collecting portion is provided in the middle of both ends, and a second oil collecting collecting pipe 19 is provided between the suction side pipes 20 and 21 of the compressors 10 and 11 other than the variable capacity compressor 27 and the oil collecting collective pipe 19.
A second oil recovery circuit 29 having expansion devices 18a and 18b is provided. Therefore, not only during operation of the three compressors 10 and 11 and the variable capacity compressor 27, but also during operation of one of the two compressors or two of the compressors are stopped, Refrigerating machine oil level can be adjusted without being extremely biased.

【0078】さらに、油面高さの変動が最も大きい能力
可変型圧縮機27に、他の圧縮機の余剰冷凍機油を優先
的に供給することができるため、能力可変型圧縮機27
の油面高さを短時間で復帰させることができ、3台の圧
縮機の油面高さの均一化を可能としたものである。
Furthermore, since the excess refrigerating machine oil of another compressor can be preferentially supplied to the variable capacity compressor 27 having the largest fluctuation of the oil level, the variable capacity compressor 27
The oil surface height can be restored in a short time, and the oil surface heights of the three compressors can be made uniform.

【0079】次に、本発明による空気調和機の第3の実
施例について、図3を参照しながら説明する。
Next, a third embodiment of the air conditioner according to the present invention will be described with reference to FIG.

【0080】図3は、本発明の第3の実施例における空
気調和機の冷凍サイクル図である。図3において、第2
の実施例と異なるのは、第3油回収路15の途中で、能
力可変型圧縮機27と、第2絞り装置18a,18bと
の間に油溜めタンク31を配設し、第2油回収回路29
を構成している点である。
FIG. 3 is a refrigeration cycle diagram of the air conditioner in the third embodiment of the present invention. In FIG. 3, the second
The second embodiment is different from the embodiment described above in that the oil sump tank 31 is provided between the variable capacity compressor 27 and the second expansion devices 18a and 18b in the middle of the third oil recovery passage 15 to recover the second oil recovery. Circuit 29
Is the point that constitutes.

【0081】以上のように構成された空気調和機につい
て、以下その動作を説明する。ここで、第2の実施例の
動作と異なるのは、能力可変型圧縮機27に連通した第
3油回収路15から流出した冷凍機油を油溜めタンク3
1に一旦溜める点である。
The operation of the air conditioner configured as above will be described below. Here, the difference from the operation of the second embodiment is that the refrigerating machine oil flowing out from the third oil recovery passage 15 communicating with the variable capacity compressor 27 is stored in the oil sump tank 3.
It is a point to temporarily store in 1.

【0082】一般に、冷凍システム内に封入される冷凍
機油量は、機器が設置される各環境条件および室内ユニ
ットの各運転状態においても不足しない十分な量であ
る。
In general, the amount of refrigerating machine oil enclosed in the refrigerating system is a sufficient amount that does not become insufficient even under each environmental condition where the device is installed and each operating state of the indoor unit.

【0083】このため、特定環境条件および室内ユニッ
トの運転状態によっては、冷凍サイクル内に溜まり込む
冷凍機油量が減少し、余剰冷凍機油が圧縮機10,1
1,27に戻って圧縮機密閉容器内部に溜まり込み、圧
縮機密閉容器内部の冷凍機油面が最大油面を越える場合
がある。
Therefore, the amount of refrigerating machine oil accumulated in the refrigerating cycle decreases depending on the specific environmental conditions and the operating state of the indoor unit, and the surplus refrigerating machine oil is compressed into the compressors 10, 1.
Returning to Nos. 1 and 27, the oil may accumulate in the compressor closed container, and the oil level of the refrigerator inside the compressor closed container may exceed the maximum oil level.

【0084】例えば、4台の室内機のうち3台の室内機
が停止し、減圧装置8a,8b,8cが閉止された場合
で、圧縮機運転制御装置30の判断により、圧縮機1
0,11が停止、さらに能力可変型圧縮機27が最低能
力の運転となった場合を仮定する。
For example, when three of the four indoor units are stopped and the depressurizing devices 8a, 8b, 8c are closed, the compressor 1 is judged by the compressor operation control device 30.
It is assumed that 0 and 11 are stopped and the variable capacity compressor 27 is operated at the minimum capacity.

【0085】この場合は、冷凍サイクルを循環する冷媒
量が少ないため、冷媒の流速は遅くなり、システム内へ
吐出された冷凍機油は循環しにくく、すなわち、室内機
への接続配管や、室外側熱交換器といった冷凍部品に付
着し、滞留してしまうことになる。
In this case, since the amount of the refrigerant circulating in the refrigeration cycle is small, the flow velocity of the refrigerant becomes slow, and the refrigerating machine oil discharged into the system is difficult to circulate, that is, the connecting pipe to the indoor unit and the outdoor side. It adheres to frozen parts such as heat exchangers and stays there.

【0086】しかしながら、停止する圧縮機10,11
の密閉容器内の余剰冷凍機油は第2の実施例で説明した
ように能力可変型圧縮機27に回収され、能力可変型圧
縮機27の適正油面を確保することになる。
However, the compressors 10 and 11 that are stopped
The excess refrigerating machine oil in the closed container is collected by the variable capacity compressor 27 as described in the second embodiment, and the proper oil level of the variable capacity compressor 27 is secured.

【0087】この状態から、空調負荷が増加し、室内機
がさらに1台運転されれば、減圧装置8aが開き、シス
テムを循環する冷媒量も増加し、室内機への接続配管
や、室外側熱交換器といった冷凍部品に付着して、滞留
していた冷凍機油が循環し始めた場合や、さらには、冷
凍サイクル内に溜まり込んだ冷凍機油を各圧縮機に戻す
ために、減圧装置8a,8b,8c,8dを強制的に全
開とする制御運転を行った場合には、停止している圧縮
機10,11の余剰冷凍機油の供給を受けて適正油面を
確保していた能力可変型圧縮機27の油面が異常に高く
なってくる。このとき、冷凍サイクル内から余分に戻っ
てきた冷凍機油は、能力可変型圧縮機27の第3油回収
路15を経て、油溜めタンク31に供給されるため、余
剰冷凍機油を一時的に油溜めタンク31に溜め込むこと
ができ、能力可変型圧縮機27の冷凍機油の油面高さを
所定値に保つことができ、能力可変型圧縮機27の圧縮
機能力の低下を防止することができる。
From this state, if the air-conditioning load increases and one more indoor unit is operated, the decompression device 8a opens, the amount of refrigerant circulating through the system also increases, and the connecting pipe to the indoor unit and the outdoor side When the refrigerating machine oil attached to the refrigerating parts such as the heat exchanger starts to circulate, and further, in order to return the refrigerating machine oil accumulated in the refrigeration cycle to each compressor, the pressure reducing device 8a, When the control operation for forcibly fully opening 8b, 8c, 8d is performed, the variable capacity type that secures an appropriate oil level by receiving the supply of the excess refrigerating machine oil of the stopped compressors 10, 11 The oil level of the compressor 27 becomes abnormally high. At this time, the refrigerating machine oil that has returned excessively from the refrigeration cycle is supplied to the oil sump tank 31 via the third oil recovery passage 15 of the variable capacity compressor 27, so that the excess refrigerating machine oil is temporarily removed. It can be stored in the storage tank 31, the oil level of the refrigerating machine oil of the variable capacity compressor 27 can be maintained at a predetermined value, and the reduction of the compression function of the variable capacity compressor 27 can be prevented. .

【0088】以上のように本実施例の空気調和機は、第
2油回収回路29において、第3油回収路15の途中
で、能力可変型圧縮機27と第2絞り装置18a,18
bの間に油溜めタンク31を備えているので、過剰に冷
凍機油が戻ってきた場合でも、余剰冷凍機油を一時的に
油溜めタンク31に溜め込むことができ、また能力可変
型圧縮機27の冷凍機油の油面高さを最大油面以下に保
つことができて能力可変型圧縮機27の圧縮機能力の低
下を防止することができる。
As described above, in the air conditioner of the present embodiment, in the second oil recovery circuit 29, in the middle of the third oil recovery path 15, the variable capacity compressor 27 and the second expansion devices 18a and 18a are provided.
Since the oil sump tank 31 is provided between b, the excess refrigerating machine oil can be temporarily stored in the oil sump tank 31 even when the refrigerating machine oil returns excessively. The oil level height of the refrigerating machine oil can be maintained below the maximum oil level, and the reduction of the compression function force of the variable capacity compressor 27 can be prevented.

【0089】次に、本発明による空気調和機の第4の実
施例について、図4を参照しながら説明する。
Next, a fourth embodiment of the air conditioner according to the present invention will be described with reference to FIG.

【0090】図4は、本発明の第4の実施例における空
気調和機の圧縮機密閉容器内部の構造を示す断面図で、
ここでは、第1の実施例の圧縮機10を例に説明する。
FIG. 4 is a sectional view showing the internal structure of the compressor hermetic container of the air conditioner according to the fourth embodiment of the present invention.
Here, the compressor 10 of the first embodiment will be described as an example.

【0091】図4において、第1の実施例と異なるの
は、油回収回路26において、圧縮機10に吐出側配管
32を設け、油回収路13の一端は、吐出ガスから油を
分離する油面仕切板33より下方で、かつ圧縮機10の
密閉容器34内の給油限界油面と最大油面との間に設置
し、密閉容器34内まで突出させた点である。
In FIG. 4, the difference from the first embodiment is that in the oil recovery circuit 26, the compressor 10 is provided with a discharge side pipe 32, and one end of the oil recovery passage 13 has an oil separating the oil from the discharge gas. The point is that it is installed below the surface partition plate 33 and between the oil supply limit oil level and the maximum oil level in the hermetic container 34 of the compressor 10 and protrudes into the hermetic container 34.

【0092】35は油溜め、xは圧縮機が冷凍機油を圧
縮機の機械部へ給油するために必要な最低下限となる給
油限界油面を示し、油面仕切板33は、密閉容器34の
内部の油溜め35の上方に設けられて、密閉容器34内
部の吐出ガス冷媒と、冷凍機油とを分離するものであ
る。
Reference numeral 35 denotes an oil sump, x denotes an oil supply limit oil level which is the minimum lower limit necessary for the compressor to supply refrigerating machine oil to the mechanical portion of the compressor, and the oil level partition plate 33 is a closed container 34. It is provided above the internal oil sump 35 and separates the discharge gas refrigerant inside the closed container 34 and the refrigerating machine oil.

【0093】以上のように構成された空気調和機につい
て、以下その動作を説明する。ここで、第1の実施例の
動作と異なるのは、圧縮機10の吐出ガスが、一旦密閉
容器34内に冷凍機油を含んだ高温高圧のガスとして吐
出され、吐出されたガスが油面仕切板33により冷媒と
冷凍機油に分離され、分離されて所定レベル以上に油溜
め35に溜められた冷凍機油は、密閉容器34内まで突
出させた油回収路13を介して流出する点である。
The operation of the air conditioner configured as above will be described below. Here, the difference from the operation of the first embodiment is that the gas discharged from the compressor 10 is once discharged as a high-temperature and high-pressure gas containing refrigerating machine oil in the closed container 34, and the discharged gas is an oil level partition. This is the point at which the refrigerating machine oil separated into the refrigerant and the refrigerating machine oil by the plate 33 and separated and stored in the oil sump 35 to a predetermined level or more flows out through the oil recovery passage 13 protruding into the closed container 34.

【0094】いま、圧縮機10の吐出ガスは、一旦密閉
容器34内に冷凍機油を含んだ高温高圧のガスとして吐
出され、密閉容器34内の壁面、モータ、機械部等に接
触することで、冷凍機油が分離され、壁面を伝って落下
したり、モータ、機械部等から直接滴下する。
Now, the gas discharged from the compressor 10 is once discharged as a high-temperature and high-pressure gas containing refrigerating machine oil in the closed container 34, and comes into contact with the wall surface, the motor, the mechanical section, etc. in the closed container 34, Refrigerating machine oil is separated and drops along the wall surface or drops directly from the motor, machine parts, etc.

【0095】この冷凍機油は、油面仕切板33の下方に
さらに滴下して、油溜め35に溜められる。
This refrigerating machine oil is further dripped below the oil level partition plate 33 and stored in the oil sump 35.

【0096】油溜め35に溜まっている冷凍機油の油面
高さが、第1油回収路13の一端よりも低く、第1油回
収路13の一端が密閉容器34の内壁面と同一面に接続
されている場合、壁面を伝って落下してくる冷凍機油
は、途中で、第1油回収路13に吸引され、密閉容器の
外へ持ち出されることになり、油が所定の油面高さまで
溜まらず、給油限界油面x以下に下がることが予想され
る。
The oil level of the refrigerating machine oil accumulated in the oil sump 35 is lower than one end of the first oil recovery passage 13 and one end of the first oil recovery passage 13 is flush with the inner wall surface of the closed container 34. When connected, the refrigerating machine oil falling along the wall surface is sucked into the first oil recovery passage 13 and taken out of the closed container on the way, and the oil reaches a predetermined oil level. It is expected that the oil will not accumulate and will fall below the refueling limit oil level x.

【0097】そこで、本実施例の空気調和機では、密閉
容器34の内部に連通する第1油回収路13は、圧縮機
10の給油限界油面xより上方で、油面仕切板33より
下方の所定の高さに設置し、かつ、第1油回収路13の
一端は密閉容器34の内壁面から所定長さだけ突出させ
る構成としているため、第1油回収路13を通じて密閉
容器34の壁面を流れる冷凍機油は、第1油回収路13
の開口端に直接触れないので、この開口端から吸引され
て外部に流出することはない。
Therefore, in the air conditioner of the present embodiment, the first oil recovery passage 13 communicating with the inside of the closed container 34 is above the oil supply limit oil level x of the compressor 10 and below the oil level partition plate 33. Is installed at a predetermined height, and one end of the first oil recovery passage 13 is projected from the inner wall surface of the closed container 34 by a predetermined length. Therefore, the wall surface of the closed container 34 passes through the first oil recovery passage 13. Refrigerating machine oil flowing through the first oil recovery passage 13
Since it does not directly touch the open end of the, it will not be sucked out from this open end and flow out to the outside.

【0098】以上のように本実施例の空気調和機は、第
1油回収路13において、密閉容器34に接続する配管
の一端は、各圧縮機の給油限界油面xと吐出ガス中の油
を分離する油面仕切板33との間の所定の高さに設置
し、かつ、第1油回収路の一端は各密閉容器内まで突出
させているので、油面高さが第1油回収路13の接続部
以下の場合でも、密閉容器34の内壁面を伝う冷凍機油
を外部へ流出することがなく、所定の油面高さに保つこ
とができ、冷凍機油切れによる圧縮機の焼き付け損傷を
確実に防止することができる。
As described above, in the air conditioner of this embodiment, one end of the pipe connected to the closed container 34 in the first oil recovery passage 13 has the oil supply limit oil level x of each compressor and the oil in the discharge gas. Is installed at a predetermined height from the oil surface partition plate 33 that separates the oil, and one end of the first oil recovery passage projects into each closed container. Even in the case of the connection part of the passage 13 or less, the refrigerating machine oil propagating on the inner wall surface of the closed container 34 does not flow out to the outside, and the oil level can be maintained at a predetermined level. Can be reliably prevented.

【0099】次に、本発明による空気調和機の第5の実
施例について、図5を参照しながら説明する。
Next, a fifth embodiment of the air conditioner according to the present invention will be described with reference to FIG.

【0100】図5は、本発明の第5の実施例における空
気調和機の冷凍サイクル図で、第2の実施例を例に説明
する。
FIG. 5 is a refrigeration cycle diagram of an air conditioner according to a fifth embodiment of the present invention, and the second embodiment will be described as an example.

【0101】図5において、第2の実施例と異なるの
は、アキュムレータ5と各圧縮機の吸入側配管20,2
1,22とを連通する吸入主配管6を備え、運転優先順
位の一番高い圧縮機27aの吸入側配管22を吸入主配
管6の冷媒流動方向の最下流部に接続した点である。
In FIG. 5, the difference from the second embodiment is that the accumulator 5 and the suction side pipes 20 and 2 of each compressor are different.
This is a point in which the suction main pipe 6 communicating with 1 and 22 is provided, and the suction side pipe 22 of the compressor 27a having the highest operation priority is connected to the most downstream part of the suction main pipe 6 in the refrigerant flow direction.

【0102】以上のように構成された空気調和機につい
て、以下その動作を説明する。ここで、第5の実施例の
動作は、第2の実施例の動作と略同一となるため、詳細
な説明は省略する。
The operation of the air conditioner configured as described above will be described below. Here, the operation of the fifth embodiment is substantially the same as the operation of the second embodiment, so detailed description will be omitted.

【0103】ここで、運転優先順位の最も高い圧縮機2
7aは、圧縮機運転制御装置30の判断により、室内機
が運転されている場合は常時運転されるが、圧縮機1
0,11は室内機の空調負荷の大小により適宜運転また
は停止を繰り返している。
Here, the compressor 2 having the highest operation priority
7a is operated at all times when the indoor unit is operating, as determined by the compressor operation control device 30, but the compressor 1
0 and 11 are repeatedly operated or stopped depending on the air conditioning load of the indoor unit.

【0104】今空調負荷が大きく、全ての圧縮機10,
11および、圧縮機27aが運転されている場合は、ア
キュムレータ5から循環するガス冷媒と、冷凍サイクル
を循環して戻ってきた冷凍機油は、吸入主配管6からそ
れぞれ吸入側配管20,21,22に分岐され、第1油
回収回路28、第2油回収回路29から供給される冷凍
機油とともに、それぞれの圧縮機密閉容器内に吸入され
て吸入主配管6、吸入側配管20,21,22に滞留す
ることはない。しかし空調負荷が小さくなり、例えば圧
縮機10,11が停止した場合は、第2油回収回路29
から圧縮機10,11の吸入側配管20,21に供給さ
れる冷凍機油は、圧縮機10,11に吸引されなくなる
ため、吸入側配管20,21に滞留することになる。
Now, the air conditioning load is large, and all the compressors 10,
11 and when the compressor 27a is in operation, the gas refrigerant circulating from the accumulator 5 and the refrigerating machine oil circulating in the refrigeration cycle and returned from the suction main pipe 6 are suction side pipes 20, 21, 22 respectively. And the refrigerating machine oil supplied from the first oil collecting circuit 28 and the second oil collecting circuit 29 are sucked into the respective compressor hermetically sealed containers to be sucked into the suction main pipe 6 and the suction side pipes 20, 21, 22. It does not stay. However, when the air conditioning load becomes small and, for example, the compressors 10 and 11 stop, the second oil recovery circuit 29
Since the refrigerating machine oil supplied from the compressors 10 and 11 to the suction side pipes 20 and 21 is not sucked into the compressors 10 and 11, the refrigerating machine oil stays in the suction side pipes 20 and 21.

【0105】この状態から、再度空調負荷が大きくなっ
て、圧縮機10または圧縮機11を再度運転する場合
は、吸入側配管20または吸入側配管21に溜まった冷
凍機油を一時的に吸入することとなり、油圧縮により、
圧縮機を損傷してしまうという問題がある。
From this state, when the air conditioning load increases again and the compressor 10 or the compressor 11 is to be operated again, the refrigerating machine oil accumulated in the suction side pipe 20 or the suction side pipe 21 should be temporarily sucked. And, by oil compression,
There is a problem of damaging the compressor.

【0106】そこで、本実施例では、運転優先順位の最
も高い圧縮機27aの吸入側配管22を、吸入主配管6
の冷媒流動方向の最下流に接続しているため、圧縮機1
0,11が停止して第2油回収回路29から圧縮機1
0,11の吸入側配管20,21に供給される冷凍機油
が、圧縮機10,11に吸引されなくなっても、吸入側
配管20,21に供給された冷凍機油は、第1圧縮機2
7の吸引の効果で、一旦吸入主配管6に戻され、吸入側
配管22を経て圧縮機27aに吸入されることになる。
Therefore, in this embodiment, the suction side pipe 22 of the compressor 27a having the highest operation priority is connected to the suction main pipe 6
Since it is connected to the most downstream side in the refrigerant flow direction of the compressor 1,
0 and 11 are stopped and the compressor 1 from the second oil recovery circuit 29
Even if the refrigerating machine oil supplied to the suction side pipes 20 and 21 of 0 and 11 is no longer sucked into the compressors 10 and 11, the refrigerating machine oil supplied to the suction side pipes 20 and 21 is the first compressor 2
Due to the effect of suction of No. 7, it is once returned to the main suction pipe 6 and is sucked into the compressor 27 a through the suction side pipe 22.

【0107】このため、圧縮機10または圧縮機11が
停止していても、それぞれの吸入側配管20,21に冷
凍機油が滞留することがなく、空調負荷の増加で、圧縮
機10,11の再運転時にも、油圧縮することを防止で
きることとなる。
Therefore, even when the compressor 10 or the compressor 11 is stopped, the refrigerating machine oil does not stay in the respective suction side pipes 20 and 21, and the air conditioning load increases, so that the compressor 10 or 11 is not cooled. It is possible to prevent oil compression even during re-operation.

【0108】以上のように、運転優先順位の一番高い圧
縮機の吸入側配管を、吸入主配管の冷媒流動方向の最下
流部に接続しているので、複数台の圧縮機の一部が停止
している場合でも、アキュムレータから流れてきた冷凍
機油が停止中の圧縮機の吸入側配管に溜まり込むことを
防止し、停止中の圧縮機の再運転時に油圧縮を起こすこ
とを防止することができる。
As described above, since the suction side pipe of the compressor having the highest operation priority is connected to the most downstream part in the refrigerant flow direction of the suction main pipe, a part of the plurality of compressors is Even when the compressor is stopped, it is necessary to prevent the refrigerating machine oil flowing from the accumulator from accumulating in the suction side pipe of the stopped compressor, and to prevent oil compression when restarting the stopped compressor. You can

【0109】次に、本発明による空気調和機の第6の実
施例について、図6を参照しながら説明する。
Next, a sixth embodiment of the air conditioner according to the present invention will be described with reference to FIG.

【0110】図6は、本発明の第6の実施例の空気調和
機における圧縮機の吸入側配管の要部詳細図であり、第
1の実施例を例に説明する。
FIG. 6 is a detailed view of the main parts of the suction side pipe of the compressor in the air conditioner of the sixth embodiment of the present invention, and the first embodiment will be described as an example.

【0111】図6において、第1の実施例と異なるの
は、アキュムレータ5から出た吸入主配管6と、各圧縮
機10,11,12の吸入側配管20,21,22との
接続部より、冷媒流動方向上流側の吸入主配管6の管内
側壁面に、冷媒流れ方向に対し略垂直にリング状の突起
36を設けた点である。
In FIG. 6, the difference from the first embodiment lies in the connection between the suction main pipe 6 coming out of the accumulator 5 and the suction side pipes 20, 21, 22 of the compressors 10, 11, 12, respectively. The point is that a ring-shaped projection 36 is provided on the inner wall surface of the suction main pipe 6 on the upstream side in the refrigerant flow direction, substantially perpendicular to the refrigerant flow direction.

【0112】以上のように構成された空気調和機につい
て、以下その動作を説明する。ここで、第6の実施例の
動作は、第1の実施例の動作と略同一となるため、詳細
な説明は省略する。
The operation of the air conditioner configured as described above will be described below. Here, the operation of the sixth embodiment is substantially the same as the operation of the first embodiment, so detailed description thereof will be omitted.

【0113】いま、空気調和機の冷媒の流れは、圧縮機
10,11,12から吐出され室内機を通りアキュムレ
ータ5から吸入主配管6を経て、圧縮機10,11,1
2へ戻るが、この時、吸入主配管6の内部を高速で流れ
る冷媒と低速で流れる冷凍機油との境界面に発生し、冷
凍機油推進力となるせん断力の作用方向が、通常は冷媒
の流れ方向に働くのを、吸入主配管6の内壁面に冷媒流
れ方向に対し略垂直にリング状の突起36を設けること
により、このリング状の突起36が冷凍機油の冷媒流れ
方向への流動抵抗となり、冷媒流れ方向に対して略垂直
方向にもせん断力が働くようになる。よって、吸入主配
管6管内の一部を不均一に流れる冷凍機油が、リング状
の突起36に衝突し、冷凍機油に働くせん断力の方向
が、突起36の形状と同一の冷媒流れ方向に対し略垂直
にも働くこととなり、リング状の突起36の全体を冷凍
機油で覆い、冷媒の流れの上流側の突起壁面にせきとめ
られた冷凍機油が突起高さ以上に溜められてはじめて冷
媒流れ方向に流れ出すため、吸入主配管6管内の一部を
不均一に流れる冷凍機油がいちはやく管内全体を均一に
流れるようになる。よって、各圧縮機10,11,12
に流入する冷凍機油量のアンバランスを低減し、圧縮機
10,11,12の冷凍機油レベルの格差を低減するこ
とができる。
Now, the flow of the refrigerant in the air conditioner is discharged from the compressors 10, 11, 12 and passes through the indoor unit, the accumulator 5 and the suction main pipe 6, and then the compressors 10, 11, 1.
Returning to step 2, at this time, the action direction of the shearing force, which is generated at the boundary between the refrigerant flowing at high speed and the refrigerating machine oil flowing at low speed inside the main suction pipe 6 and becomes the refrigerating machine oil propulsive force, is usually By providing a ring-shaped projection 36 on the inner wall surface of the suction main pipe 6 substantially perpendicular to the refrigerant flow direction, the ring-shaped projection 36 acts on the flow resistance of the refrigeration oil in the refrigerant flow direction. Therefore, the shearing force also acts in a direction substantially perpendicular to the flow direction of the refrigerant. Therefore, the refrigerating machine oil that flows non-uniformly in a portion of the suction main pipe 6 collides with the ring-shaped projection 36, and the direction of the shearing force acting on the refrigerating machine oil is the same as that of the projection 36 with respect to the refrigerant flow direction. It also works almost vertically, and the entire ring-shaped projection 36 is covered with refrigerating machine oil, and the refrigerating machine oil that has been settled on the projection wall surface on the upstream side of the refrigerant flow is accumulated above the projection height in the refrigerant flow direction. Since it flows out, the refrigerating machine oil that flows non-uniformly in a part of the inside of the suction main pipe 6 quickly flows uniformly in the whole pipe. Therefore, each compressor 10, 11, 12
It is possible to reduce the imbalance in the amount of refrigerating machine oil flowing into the compressor and reduce the difference in refrigerating machine oil level between the compressors 10, 11, and 12.

【0114】尚、吸入主配管6に設けたリング状の突起
36は、吸入主配管6の冷媒流れ方向の断面積を大きく
塞ぐものではないため、冷媒抵抗となることはなく、よ
って、空気調和機の能力に影響を与えることもない。
Since the ring-shaped projection 36 provided on the main intake pipe 6 does not greatly block the cross-sectional area of the main intake pipe 6 in the direction of flow of the refrigerant, it does not become a resistance to the refrigerant, and therefore the air conditioning is performed. It does not affect the ability of the machine.

【0115】更に尚、吸入主配管6に連通する圧縮機1
0,11,12の吸入側配管20,21,22は、吸入
主配管6に突き出す構造でないため、冷凍機油が圧縮機
10,11,12の吸入側配管20,21,22に流れ
出すことを阻害することはない。
Furthermore, the compressor 1 communicating with the suction main pipe 6
Since the suction side pipes 20, 21, 22 of 0, 11, 12 do not have a structure protruding to the suction main pipe 6, refrigerating machine oil is prevented from flowing out to the suction side pipes 20, 21, 22 of the compressors 10, 11, 12. There is nothing to do.

【0116】次に、本発明による空気調和機の第7の実
施例について、図7を参照しながら説明する。
Next, a seventh embodiment of the air conditioner according to the present invention will be described with reference to FIG.

【0117】図7は、本発明の第7の実施例の空気調和
機における圧縮機の吸入側配管の要部詳細図であり、第
1の実施例を例に説明する。
FIG. 7 is a detailed view of the main part of the suction side pipe of the compressor in the air conditioner of the seventh embodiment of the present invention, and the first embodiment will be described as an example.

【0118】図7において、第1の実施例と異なるの
は、アキュムレータ5に連通する吸入主配管6と、圧縮
機10,11,12の吸入側配管20,21,22との
間に冷媒と冷凍機油とを撹拌させる撹拌タンク37を備
え、吸入主配管6の一端を撹拌タンク37の側壁面の接
線方向に略水平となるように接続し、圧縮機10,1
1,12の吸入側配管20,21,22の一端を撹拌タ
ンク37の上部に接続した点である。
In FIG. 7, the difference from the first embodiment is that a refrigerant is provided between the suction main pipe 6 communicating with the accumulator 5 and the suction side pipes 20, 21, 22 of the compressors 10, 11, 12. A stirring tank 37 for stirring the refrigerating machine oil is provided, and one end of the main suction pipe 6 is connected so as to be substantially horizontal in the tangential direction of the side wall surface of the stirring tank 37.
The point is that one ends of the suction side pipes 20, 21, 22 of 1, 12 are connected to the upper part of the stirring tank 37.

【0119】以上のように構成された空気調和機につい
て、以下その動作を説明する。ここで、第7の実施例の
動作は、第1の実施例の動作と略同一となるため、詳細
な説明は省略する。
The operation of the air conditioner configured as described above will be described below. Here, the operation of the seventh embodiment is substantially the same as the operation of the first embodiment, so detailed description will be omitted.

【0120】いま、空気調和機の冷媒の流れは、圧縮機
10,11,12から吐出されて室内機を通り、アキュ
ムレータ5を出て吸入主配管6を経て圧縮機10,1
1,12へ戻るが、この時、吸入主配管6の内部を高速
で流れる冷媒と低速で流れる冷凍機油との境界面に発生
し、冷凍機油推進力となるせん断力を受けながら、冷凍
機油は管内壁面を伝い流れる。
Now, the refrigerant flow of the air conditioner is discharged from the compressors 10, 11, 12 and passes through the indoor unit, exits the accumulator 5, passes through the suction main pipe 6, and passes through the compressors 10, 1.
Returning to 1 and 12, at this time, the refrigerating machine oil is generated while receiving the shearing force which is generated at the boundary surface between the refrigerant flowing at a high speed and the refrigerating machine oil flowing at a low speed inside the suction main pipe 6 and becomes the refrigerating machine oil propulsive force. It flows along the inner wall surface of the pipe.

【0121】そこで、吸入主配管6の一端を撹拌タンク
37の側壁面の接線方向に略水平となるように接続する
ことにより、撹拌タンク37の内部に流入した冷媒は、
撹拌タンク37内部を旋回して流れるため、撹拌タンク
37の内部に流入した冷凍機油も同様に撹拌タンク37
の内部を旋回して伝い流れる。また各圧縮機10,1
1,12の吸入側配管20,21,22を撹拌タンク3
7の上部に接続することにより、各圧縮機10,11,
12の吸入側配管20,21,22により冷媒が吸い取
られる結果、撹拌タンク37の内部の冷媒流れは、撹拌
タンク37内部に流入したときの旋回流を保持したまま
撹拌タンク37の上部へ向かう方向性を有した流れとな
る。
Therefore, by connecting one end of the main suction pipe 6 to be substantially horizontal in the tangential direction of the side wall surface of the stirring tank 37, the refrigerant flowing into the stirring tank 37 is
Since the inside of the stirring tank 37 swirls and flows, the refrigerating machine oil that has flowed into the stirring tank 37 is also stirred in the same manner.
It swirls inside and flows. In addition, each compressor 10,1
The suction side pipes 20, 21 and 22 of 1, 12 are connected to the stirring tank 3
By connecting to the upper part of 7, each compressor 10, 11,
As a result of the refrigerant being sucked by the suction side pipes 20, 21, 22 of 12, the refrigerant flow inside the stirring tank 37 is directed to the upper part of the stirring tank 37 while maintaining the swirl flow when flowing into the stirring tank 37. It becomes a flow with nature.

【0122】このため、撹拌タンク37の内部の冷凍機
油の流れも撹拌タンク37の内部を旋回しながら撹拌タ
ンク37の上部に引き寄せられ、各圧縮機10,11,
12の吸入側配管20,21,22に至る流れとなる。
Therefore, the flow of the refrigerating machine oil inside the stirring tank 37 is also drawn to the upper part of the stirring tank 37 while swirling inside the stirring tank 37, and the compressors 10, 11,
The flow reaches twelve suction side pipes 20, 21, 22.

【0123】よって、撹拌タンク37内壁面を伝い、各
圧縮機10,11,12の吸入側配管20,21,22
に至る冷凍機油は、撹拌タンク37の内壁面上を均一に
流れるため、各圧縮機10,11,12へ流入する冷凍
機油量が等しくなり、各圧縮機10,11,12の冷凍
機油レベルに格差が生じるのを低減することができる。
Therefore, the suction side pipes 20, 21, 22 of the compressors 10, 11, 12 are transmitted along the inner wall surface of the stirring tank 37.
Since the refrigerating machine oil reaching the above-mentioned section evenly flows on the inner wall surface of the stirring tank 37, the refrigerating machine oil amount flowing into each of the compressors 10, 11, 12 becomes equal, and the refrigerating machine oil level of each of the compressors 10, 11, 12 becomes equal. It is possible to reduce the occurrence of disparity.

【0124】なお、圧縮機10が停止した場合において
も、停止した圧縮機10の吸入側配管20に冷凍機油を
含んだ冷媒が溜まり込むことがなく、始動時の液圧縮の
問題もなくなる。
Even when the compressor 10 is stopped, the refrigerant containing the refrigerating machine oil does not accumulate in the suction side pipe 20 of the stopped compressor 10, and the problem of liquid compression at the start is eliminated.

【0125】更に尚、一端を撹拌タンク37に接続する
各圧縮機10,11,12の吸入側配管20,21,2
2は、撹拌タンク37の内部に突き出す構造でないた
め、冷凍機油が吸入主配管6から各圧縮機10,11,
12の吸入側配管20,21,22に流れ出すことを阻
害することはない。
Furthermore, the suction side pipes 20, 21, 2 of the compressors 10, 11, 12 each having one end connected to the stirring tank 37.
Since No. 2 does not project into the stirring tank 37, refrigerating machine oil flows from the suction main pipe 6 into each of the compressors 10, 11,
It does not hinder the outflow into the 12 suction side pipes 20, 21, 22.

【0126】次に、本発明による空気調和機の第8の実
施例について、図8を参照しながら説明する。
Next, an eighth embodiment of the air conditioner according to the present invention will be described with reference to FIG.

【0127】図8は、本発明の第8の実施例の空気調和
機における圧縮機の吸入側配管の要部詳細図であり、第
1の実施例を例に説明する。
FIG. 8 is a detailed view of the main part of the suction side pipe of the compressor in the air conditioner of the eighth embodiment of the present invention, and the first embodiment will be described as an example.

【0128】図8において、第1の実施例と異なるの
は、吸入主配管6は、各圧縮機10,11,12の密閉
容器と各圧縮機10,11,12の吸入側配管20,2
1,22との接続位置よりも下方で、かつ、略水平方向
に設置している。また各圧縮機10,11,12の吸入
側配管20,21,22の吸入主配管6側の一端に、吸
入主配管6に対して略垂直に上方方向に延伸した吸入側
配管延伸部20a,21a,22aを設け、油回収回路
26における各圧縮機10,11,12の吸入側配管2
0,21,22側の一端は配管延伸部20a,21a,
22aに接続し、かつ、その接続部が各圧縮機10,1
1,12の密閉容器と各圧縮機の吸入側配管20,2
1,22との接続位置よりも下方となるように配置して
いる。
In FIG. 8, the main suction pipe 6 differs from the first embodiment in that the main suction pipe 6 is a closed container of each compressor 10, 11, 12 and the suction side pipes 20, 2 of each compressor 10, 11, 12.
It is installed below the connection position with 1, 2 and in a substantially horizontal direction. Further, at one end of the suction side pipes 20, 21, 22 of each of the compressors 10, 11, 12 on the suction main pipe 6 side, a suction side pipe extending portion 20a extending upward in a direction substantially perpendicular to the suction main pipe 6 is provided. 21a, 22a are provided, and the suction side pipe 2 of each compressor 10, 11, 12 in the oil recovery circuit 26 is provided.
One end on the 0, 21, 22 side is the pipe extending portions 20a, 21a,
22a, and the connecting portion of each compressor 10, 1
1, 12 closed containers and suction side pipes 20, 2 of each compressor
It is arranged so as to be lower than the connection position with the terminals 1 and 22.

【0129】以上のように構成された空気調和機につい
て、以下その動作を説明する。ここで、第8の実施例の
動作は、第1の実施例の動作と略同一となるため、詳細
な説明は省略する。
The operation of the air conditioner configured as above will be described below. Here, the operation of the eighth embodiment is substantially the same as the operation of the first embodiment, so detailed description will be omitted.

【0130】いま、空気調和機の冷媒の流れは、各圧縮
機10,11,12から吐出されて室内機を通り、アキ
ュムレータ5を出て吸入主配管6を経て各圧縮機10,
11,12へ戻るが、かりに、複数台の圧縮機10,1
1,12の中で一部の圧縮機10が停止した場合におい
ても、油回収路13,14,15を通して停止した圧縮
機10の吸入側配管20内に流れ込む冷凍機油は、停止
中の圧縮機10への冷媒流れがないため、冷媒から冷凍
機油に力が作用しない結果、停止している圧縮機10へ
引き寄せられることがなく、吸入側配管20内を伝って
吸入主配管6に流れ込み、運転中の圧縮機11,12へ
と吸い込まれる。よって、停止中の圧縮機10の吸入側
配管20に冷凍機油が溜まり込むことなく、停止してい
る圧縮機10の始動時の液圧縮についても問題がない。
Now, the refrigerant flow of the air conditioner is discharged from each of the compressors 10, 11, 12 and passes through the indoor unit, exits the accumulator 5, passes through the intake main pipe 6, and passes through each of the compressors 10, 11.
Returning to 11 and 12, however, a plurality of compressors 10 and 1
Even when some of the compressors 10 in 1 and 12 are stopped, the refrigerating machine oil flowing into the suction side pipe 20 of the compressor 10 stopped through the oil recovery passages 13, 14 and 15 is not stopped. Since there is no refrigerant flow to the compressor 10, no force acts on the refrigerating machine oil from the refrigerant. As a result, the refrigerant is not attracted to the stopped compressor 10 and flows through the intake side pipe 20 into the intake main pipe 6 for operation. It is sucked into the compressors 11 and 12 inside. Therefore, the refrigerating machine oil does not accumulate in the suction side pipe 20 of the compressor 10 in the stopped state, and there is no problem in the liquid compression at the start of the stopped compressor 10.

【0131】尚、上記説明では、停止している圧縮機は
1台と仮定したが、圧縮機が2台の場合にも同じ動作を
行い同じ効果が得られる。
In the above description, it is assumed that one compressor is stopped, but the same operation is performed and the same effect can be obtained even when the number of compressors is two.

【0132】次に、本発明による空気調和機の第9の実
施例について、図9を参照しながら説明する。
Next, a ninth embodiment of the air conditioner according to the present invention will be described with reference to FIG.

【0133】図9は、本発明の第9の実施例における空
気調和機の冷凍サイクル図であり、第2の実施例を例に
説明する。
FIG. 9 is a refrigeration cycle diagram of an air conditioner according to the ninth embodiment of the present invention, and the second embodiment will be described as an example.

【0134】図9において、第2の実施例と異なるの
は、室内側の空調負荷に基づき、予め設定した運転優先
順位の高い圧縮機の運転を優先させて各圧縮機の運転を
制御する圧縮機運転制御装置30と、室内側の空調負荷
を検知する室内負荷検知装置と、運転優先順位の一番高
い圧縮機27以外の圧縮機10,11の吐出側配管に設
置した逆止弁38,39とを備えた点である。
In FIG. 9, the difference from the second embodiment is that the operation of each compressor is controlled by giving priority to the operation of the compressor having a high operation priority set in advance, based on the air conditioning load on the indoor side. A machine operation control device 30, an indoor load detection device for detecting an air conditioning load on the indoor side, and a check valve 38 installed in the discharge side pipes of the compressors 10 and 11 other than the compressor 27 having the highest operation priority. And 39.

【0135】以上のように構成された空気調和機につい
て、以下その動作を説明する。ここで、第9の実施例の
動作は、第2の実施例の動作を略同一となるため、詳細
な説明は省略する。
The operation of the air conditioner configured as described above will be described below. Here, the operation of the ninth embodiment is substantially the same as the operation of the second embodiment, and detailed description thereof will be omitted.

【0136】いま、圧縮機3台が運転中に室内負荷が減
少し、例えば減圧装置8b,8c,8dが全閉となり、
圧縮機10,11を停止し、圧縮機27を運転継続とす
る能力制御運転に入った場合、圧縮機27の吐出ガスは
圧縮機10,11の吐出配管側に逆流し、圧縮機10,
11の密閉容器内に凝縮し、液冷媒となって滞留するこ
とになる。
Now, while the three compressors are in operation, the indoor load is reduced and, for example, the decompression devices 8b, 8c, 8d are fully closed,
When the compressors 10 and 11 are stopped and the capacity control operation of continuing the operation of the compressor 27 is started, the discharge gas of the compressor 27 flows backward to the discharge pipe side of the compressors 10 and 11,
It will be condensed in the closed container 11 and will become a liquid refrigerant and will stay.

【0137】このため、凝縮した冷媒量が多ければ冷凍
サイクルに循環する冷媒量が不足し、快適な空調ができ
なくなるという問題が生じることになる。
Therefore, if the amount of condensed refrigerant is large, the amount of refrigerant circulated in the refrigeration cycle will be insufficient, and there will be a problem that comfortable air conditioning cannot be performed.

【0138】そこで、本実施例の空気調和機は、運転優
先順位の一番高い圧縮機27以外の各圧縮機10,11
の吐出側配管に逆止弁38,39を備えているので、3
台の圧縮機が運転中に室内負荷が減少し、例えば減圧装
置8b,8c,8dが全閉となり、圧縮機10,11を
停止し、圧縮機27を運転継続とした能力制御運転に入
った場合、圧縮機27の吐出ガスは、圧縮機10,11
の吐出配管側に逆流することになるが、圧縮機10,1
1の吐出配管の途中に設けられた逆止弁38,39で冷
媒の逆流を防止することができる。
Therefore, in the air conditioner of this embodiment, the compressors 10 and 11 other than the compressor 27 having the highest operation priority are used.
Since check valves 38 and 39 are provided in the discharge side pipe of
The indoor load decreased during operation of one compressor, for example, the decompression devices 8b, 8c, 8d were fully closed, the compressors 10 and 11 were stopped, and the capacity control operation in which the compressor 27 was continued was entered. In this case, the discharge gas of the compressor 27 is
Will flow back to the discharge pipe side of the compressor 10,1
The check valves 38 and 39 provided in the middle of the first discharge pipe can prevent the reverse flow of the refrigerant.

【0139】また、停止した圧縮機10,11の密閉容
器内は、油回収路13,14により冷凍サイクルの低圧
となる吸入主配管6と連通しているため、停止した圧縮
機10,11の密閉容器内の圧力が冷凍サイクルの略低
圧と等しくなるまでは、内部の圧力に押される形で油回
収路13,14を介して冷凍機油が移動することにな
る。そして圧縮機10,11の密閉容器内がサイクルの
略低圧と等しい状態に保持されると、圧縮機10,11
の吸入側配管20,21と吐出側となる圧縮機10,1
1の密閉容器内は圧力的にバランス状態となる。
Further, since the closed containers of the stopped compressors 10 and 11 are communicated with the main suction pipe 6 having a low pressure in the refrigeration cycle by the oil recovery paths 13 and 14, the stopped compressors 10 and 11 are stopped. Until the pressure inside the closed container becomes substantially equal to the low pressure of the refrigeration cycle, the refrigerating machine oil moves through the oil recovery paths 13 and 14 while being pushed by the internal pressure. When the inside of the hermetically sealed containers of the compressors 10 and 11 is maintained in a state where the pressure is substantially equal to the low pressure of the cycle,
Suction side pipes 20 and 21 and the discharge side compressors 10 and 1
The inside of the closed container 1 is in a pressure-balanced state.

【0140】このため、このような状態からさらに、室
内負荷が増加し、例えば、減圧装置8b,8cが開きは
じめ、圧縮機10の運転を再開する必要が生じた場合
は、圧縮機10の吐出側および吸入側の圧力状態はバラ
ンスしているため、圧縮機27の運転を継続したままで
圧縮機10を始動させればよく、空気調和機の運転を中
断させることなく能力追加運転へと移行することができ
る。
Therefore, if the indoor load further increases from such a state and the pressure reducing devices 8b and 8c start to open, and the operation of the compressor 10 needs to be restarted, the discharge of the compressor 10 will occur. Since the pressure states on the suction side and the suction side are balanced, it is sufficient to start the compressor 10 while continuing the operation of the compressor 27, and shift to the capacity addition operation without interrupting the operation of the air conditioner. can do.

【0141】以上のように本実施例の空気調和機は、室
内側の空調負荷に基づき、予め設定した運転優先順位の
高い圧縮機の運転を優先させて各圧縮機の運転を制御す
る圧縮機運転制御装置30と、室内側の空調負荷を検出
する室内負荷検知装置とを備えて、運転優先順位の一番
高い圧縮機27以外の圧縮機10,11の吐出配管に逆
止弁38,39をそれぞれ設けているので、圧縮機27
以外の圧縮機10,11の運転を停止した場合でも、運
転を継続する圧縮機27からの冷媒の逆流を防止し、密
閉容器内に冷媒が凝縮することがなくなるので、冷凍サ
イクルに必要なガス量が不足することを防止できる。さ
らに、停止時の圧縮機の密閉容器内の圧力は冷凍サイク
ルの略低圧に保持することができるため、室内負荷の上
昇に対し圧縮機の追加運転する場合に速やかに2台目の
圧縮機が始動でき、快適な空気調和をすることができ
る。
As described above, the air conditioner of the present embodiment controls the operation of each compressor by giving priority to the operation of the compressor having a higher operation priority set in advance, based on the air conditioning load on the indoor side. The operation control device 30 and the indoor load detection device for detecting the air conditioning load on the indoor side are provided, and the check valves 38, 39 are provided in the discharge pipes of the compressors 10, 11 other than the compressor 27 having the highest operation priority. Since each is provided, the compressor 27
Even when the operation of the compressors 10 and 11 other than the above is stopped, the backflow of the refrigerant from the compressor 27 that continues the operation is prevented, and the refrigerant is not condensed in the closed container, so that the gas required for the refrigeration cycle It is possible to prevent the quantity from becoming insufficient. Furthermore, since the pressure in the closed container of the compressor at the time of stoppage can be maintained at a substantially low pressure of the refrigeration cycle, when the compressor is additionally operated in response to an increase in indoor load, the second compressor can be quickly operated. It can be started, and comfortable air conditioning can be performed.

【0142】次に、本発明による空気調和機の第10の
実施例について、図10を参照しながら説明する。
Next, a tenth embodiment of the air conditioner according to the present invention will be described with reference to FIG.

【0143】図10は、本発明の第10の実施例におけ
る空気調和機の冷凍サイクル図であり、第2の実施例を
例に説明する。
FIG. 10 is a refrigeration cycle diagram of the air conditioner in the tenth embodiment of the present invention, and the second embodiment will be described as an example.

【0144】図10において、第2の実施例と異なるの
は、室内側の空調負荷に基づき、予め設定した運転優先
順位の高い圧縮機の運転を優先させて各圧縮機の運転を
制御する圧縮機運転制御装置30と、室内側の空調負荷
を検知する室内負荷検知装置と、運転優先順位の一番高
い圧縮機27以外の各圧縮機10,11の吐出側配管に
設置した逆止弁38,39と、開閉弁40,41を介し
て各逆止弁38,39の冷媒流動方向の上流側と下流側
とをバイパスさせるバイパス回路42,43と、圧縮機
運転制御装置30により運転していた圧縮機が停止した
ことを検知した場合に、停止した圧縮機のバイパス回路
の開閉弁を所定時間だけ開くバイパス制御装置44を備
えた点である。
In FIG. 10, the difference from the second embodiment is that the operation of each compressor is controlled by giving priority to the operation of the compressor having a high operation priority set in advance based on the air conditioning load on the indoor side. The machine operation control device 30, the indoor load detection device for detecting the air conditioning load on the indoor side, and the check valve 38 installed in the discharge side pipes of the compressors 10 and 11 other than the compressor 27 having the highest operation priority. , 39, bypass circuits 42, 43 for bypassing the upstream and downstream sides of the check valves 38, 39 in the refrigerant flow direction via the on-off valves 40, 41, and the compressor operation control device 30. In addition, when the stop of the compressor is detected, the bypass control device 44 that opens the on-off valve of the bypass circuit of the stopped compressor for a predetermined time is provided.

【0145】以上のように構成された空気調和機につい
て、以下その動作を説明する。ここで、第10の実施例
の動作は、第2の実施例の動作と略同一となるため、詳
細な説明は省略する。
The operation of the air conditioner configured as described above will be described below. Here, the operation of the tenth embodiment is substantially the same as the operation of the second embodiment, so detailed description will be omitted.

【0146】いま、3台の圧縮機が運転中に室内負荷が
減少した場合、例えば減圧装置8b,8c,8dが全閉
となり、圧縮機10,11が停止し、圧縮機27を運転
継続とした能力制御運転に入った場合に、圧縮機10,
11の冷凍機油の油面高さが高い状態、すなわち、3台
の圧縮機の油面高さのバランスが十分とれていない状態
で、圧縮機10,11が停止すると、逆止弁38,39
の働きで、圧縮機27の吐出圧力の影響は圧縮機10,
11の密閉容器内部に受けなくなる。
When the indoor load is reduced while the three compressors are in operation, for example, the decompression devices 8b, 8c and 8d are fully closed, the compressors 10 and 11 are stopped, and the compressor 27 is continuously operated. When the capacity control operation is started, the compressor 10,
When the oil level height of the refrigerating machine oil 11 is high, that is, the oil level heights of the three compressors are not well balanced, when the compressors 10 and 11 stop, the check valves 38 and 39
The effect of the discharge pressure of the compressor 27 is
It will not be received inside the sealed container of 11.

【0147】このため、十分に油面高さのバランスされ
ていない圧縮機10,11の余剰冷凍機油は、絞り装置
16,17を経て圧縮機27に供給されるが、絞り装置
16,17の前後の圧力差が非常に小さいため、圧縮機
10,11の余剰冷凍機油を圧縮機27に供給するまで
の時間は多大を要することになる。
Therefore, the excess refrigerating machine oil of the compressors 10 and 11 whose oil surface heights are not sufficiently balanced is supplied to the compressor 27 through the expansion devices 16 and 17, but the excess expansion oil of the expansion devices 16 and 17 is used. Since the pressure difference between the front and the rear is very small, it takes a long time to supply the excess refrigerating machine oil of the compressors 10 and 11 to the compressor 27.

【0148】そこで、本実施例の空気調和機は、開閉弁
40,41を介して逆止弁38,39の冷媒流動方向の
上流側と下流側とを連通させるバイパス回路42,43
と、圧縮機が停止した場合に、停止した圧縮機のバイパ
ス回路42,43の開閉弁40,41を所定時間開とす
るバイパス制御装置44とを備えているので、3台の圧
縮機が運転中に室内負荷が減少し、例えば減圧装置8
b,8c,8dが全閉となり、圧縮機10,11を停止
し、圧縮機27を運転継続とした能力制御運転に入った
場合には、圧縮機10,11の冷凍機油の油面高さが高
い状態、すなわち、3台の圧縮機の油面高さのバランス
が十分とれていない状態で、圧縮機10,11が停止す
ると、バイパス制御装置44は、圧縮機10,11が停
止すると同時に、開閉弁40,41を所定時間開放す
る。
Therefore, in the air conditioner of this embodiment, the bypass circuits 42, 43 for connecting the upstream side and the downstream side of the check valves 38, 39 in the refrigerant flow direction via the open / close valves 40, 41.
And the bypass control device 44 that opens the on-off valves 40 and 41 of the bypass circuits 42 and 43 of the stopped compressors for a predetermined time when the compressors stop, so that the three compressors are operated. The indoor load decreases during the operation, for example, the decompression device 8
When b, 8c, and 8d are fully closed, the compressors 10 and 11 are stopped, and the capacity control operation in which the compressor 27 is continuously operated is started, the oil level of the refrigerating machine oil of the compressors 10 and 11 is increased. Is high, that is, when the compressors 10 and 11 stop in a state in which the oil level heights of the three compressors are not well balanced, the bypass control device 44 causes the bypass controllers 44 to stop at the same time as the compressors 10 and 11 stop. The on-off valves 40 and 41 are opened for a predetermined time.

【0149】このため、開閉弁40,41の働きで、圧
縮機27の吐出圧力の影響は圧縮機10,11の密閉容
器内部に所定時間受けることになり、絞り装置16,1
7前後の圧力差を十分維持できるため、十分に油面高さ
のバランスされていない圧縮機10,11の余剰冷凍機
油は、圧縮機27に短時間で供給されることになる。
Therefore, the operation of the on-off valves 40 and 41 causes the influence of the discharge pressure of the compressor 27 to be exerted in the hermetically sealed containers of the compressors 10 and 11 for a predetermined time.
Since the pressure difference around 7 can be sufficiently maintained, the surplus refrigerating machine oil of the compressors 10 and 11 whose oil surface heights are not sufficiently balanced is supplied to the compressor 27 in a short time.

【0150】以上のように本実施例の空気調和機は、運
転優先順位の一番高い圧縮機27以外の各圧縮機10,
11の吐出側配管に設置した逆止弁38,39と、開閉
弁40,41を介して各逆止弁の冷媒流動方向の上流側
と下流側とをバイパスさせるバイパス回路42,43
と、圧縮機運転制御装置30により運転していた圧縮機
が停止したことを検知した場合に停止した圧縮機のバイ
パス回路42,43の開閉弁を所定時間だけ開くバイパ
ス制御装置44とを備えているので、油面高さが高い状
態で圧縮機を停止させた場合でも、短時間で、その圧縮
機の余剰冷凍機油を他の圧縮機に供給することができ、
圧縮機の給油に関する信頼性を向上させることができ
る。
As described above, in the air conditioner of this embodiment, each of the compressors 10 other than the compressor 27 having the highest operation priority,
By-pass circuits 42 and 43 for bypassing the check valves 38 and 39 installed in the discharge side pipe 11 and the upstream and downstream sides of the respective check valves in the refrigerant flow direction via the on-off valves 40 and 41.
And a bypass control device 44 that opens the on-off valves of the bypass circuits 42, 43 of the compressor that have stopped when the compressor operating controller 30 detects that the compressor that was operating has stopped. Therefore, even if the compressor is stopped when the oil level is high, it is possible to supply the excess refrigeration oil of the compressor to other compressors in a short time,
The reliability of refueling the compressor can be improved.

【0151】[0151]

【発明の効果】本発明の空気調和機は以上説明したよう
に構成されているので、以下に記載されるような効果を
奏する。
Since the air conditioner of the present invention is constructed as described above, it has the following effects.

【0152】密閉容器内に吐出圧力が作用する高圧チャ
ンバ方式の複数台並列に接続された圧縮機と、室外側熱
交換器と、減圧装置と、室内側熱交換器と、アキュムレ
ータとを冷媒流路を介して環状に接続して冷凍サイクル
を形成するとともに、一端が前記各圧縮機の給油限界油
面と最大油面の間の所定の高さで前記各密閉容器内に連
通し、他端が前記各圧縮機の吸入側配管に連通し、か
つ、両端の途中に集合部を設け、前記各圧縮機と前記集
合部の間に絞り装置を有する油回収回路を備えているの
で、例えば3台の圧縮機の運転中はもちろん、1台が運
転2台が停止、または2台が運転1台が停止といった場
合にも各々の圧縮機内の冷凍機油レベルが極端に偏るこ
となく調整することができる。
A plurality of high-pressure chamber type compressors connected in parallel to each other in which a discharge pressure acts in an airtight container, an outdoor heat exchanger, a pressure reducing device, an indoor heat exchanger, and an accumulator are used as a refrigerant flow. While forming a refrigeration cycle by connecting in an annular shape through a passage, one end communicates with each of the hermetically sealed containers at a predetermined height between the oil supply limit oil level and the maximum oil level of each compressor, and the other end. Is connected to the suction side pipes of the compressors, and a collecting section is provided in the middle of both ends, and an oil recovery circuit having a throttle device is provided between the compressors and the collecting section. It is possible to adjust the refrigerating machine oil level in each compressor without being extremely biased not only during the operation of one compressor but also during operation of one compressor, two of them are stopped, or two of them are stopped. it can.

【0153】また、室内側の空調負荷に基づき、予め設
定した運転優先順位の高い圧縮機の運転を優先させて各
圧縮機の運転を制御する圧縮機運転制御装置と、室内側
の空調負荷を検出する室内負荷検知装置とを備え、密閉
容器内に吐出圧力が作用する高圧チャンバ方式の複数台
の圧縮機のうち少なくとも1台を能力可変型圧縮機と
し、かつ、前記各圧縮機には運転の優先順位を設定して
運転優先順位の一番高い圧縮機を能力可変型圧縮機と
し、並列に接続された前記複数台の圧縮機と、室外側熱
交換器と、減圧装置と、室内側熱交換器と、アキュムレ
ータとを冷媒流路を介して環状に接続して冷凍サイクル
を形成するとともに、一端が前記能力可変型圧縮機以外
の各圧縮機の給油限界油面と最大油面の間の所定の高さ
で前記各密閉容器内に連通し、他端が前記能力可変型圧
縮機の吸入側配管に連通し、かつ、両端の途中に第1絞
り装置を有する第1油回収回路、および、一端が前記能
力可変型圧縮機の給油限界油面と最大油面の間の所定の
高さで前記密閉容器内に連通し、他端が前記能力可変型
圧縮機以外の各圧縮機の吸入側配管に連通し、かつ、両
端の途中に集合部を設け、前記能力可変型圧縮機以外の
各圧縮機の吸入側配管と前記集合部の間に第2絞り装置
を有する第2油回収回路を備えているので、例えば3台
の圧縮機の運転中はもちろん、1台が運転2台が停止、
または2台が運転1台が停止といった場合にも各々の圧
縮機内の冷凍機油レベルが極端に偏ることなく調整する
ことができる。さらに、油面高さの変動が最も大きい能
力可変型圧縮機に、他の圧縮機の余剰冷凍機油を優先的
に供給することができるため、能力可変型圧縮機の油面
高さを短時間で復帰させることができ、複数台の圧縮機
の油面高さの均一化を可能としたものである。
Further, based on the air conditioning load on the indoor side, the compressor operation control device for controlling the operation of each compressor by giving priority to the operation of the compressor having a high preset operation priority, and the air conditioning load on the indoor side are set. An indoor load detection device for detecting, and at least one of a plurality of high-pressure chamber type compressors in which a discharge pressure acts in a closed container is a variable capacity compressor, and each of the compressors is operated. The compressor with the highest operation priority is set as the variable capacity compressor, and the plurality of compressors connected in parallel, the outdoor heat exchanger, the pressure reducing device, and the indoor side are set. A heat exchanger and an accumulator are annularly connected via a refrigerant flow path to form a refrigeration cycle, and one end is between the oil supply limit oil level and the maximum oil level of each compressor other than the variable capacity compressor. At a predetermined height of Through, the other end communicates with the suction side pipe of the variable capacity compressor, and a first oil recovery circuit having a first expansion device in the middle of both ends, and one end has an oil supply limit of the variable capacity compressor It communicates with the inside of the closed container at a predetermined height between the oil level and the maximum oil level, the other end communicates with the suction side pipe of each compressor other than the variable capacity compressor, and in the middle of both ends. Since a collecting section is provided and a second oil recovery circuit having a second expansion device is provided between the suction side piping of each compressor other than the variable capacity compressor and the collecting section, for example, three compressors are provided. Of course, one is running and two are stopped,
Alternatively, even when two units are operated and one unit is stopped, the refrigerating machine oil level in each compressor can be adjusted without being extremely biased. Furthermore, since the excess refrigerating machine oil of other compressors can be preferentially supplied to the variable capacity compressor with the largest fluctuation of the oil level height, the variable surface compressor can reduce the oil level height in a short time. The oil level can be made uniform among a plurality of compressors.

【0154】また、上記第2油回収回路において、油回
収路の途中で、能力可変型圧縮機と第2絞り装置との間
に油溜めタンクを備えているので、余剰冷凍機油を一時
的に油溜めタンクに溜め込むことができ、冷凍機油レベ
ルを所定値に保ち、かつ、圧縮機能力を低下させること
がない優れた効果を有する。
In the second oil recovery circuit, an oil sump tank is provided between the variable capacity compressor and the second expansion device in the middle of the oil recovery path, so that excess refrigerating machine oil is temporarily removed. It has an excellent effect that it can be stored in the oil sump tank, the refrigerating machine oil level is maintained at a predetermined value, and the compression function force is not lowered.

【0155】また、油回収路において、各圧縮機の密閉
容器に接続する配管の一端は、各圧縮機の給油限界油面
と最大油面との間で、かつ、各圧縮機の密閉容器内の油
溜めの上方に設けられ吐出ガス中の油を分離する油面仕
切板の下方に位置する所定の高さに設置し、かつ、上記
油回収路の一端は、各密閉容器内まで突出させることに
より、冷凍機油が所定レベルまで溜まる以前に、油回収
路を通じて各圧縮機密閉容器の壁面を流れる冷凍機油を
流出させることがなく、所定の油面高さに保つことがで
き、冷凍機油切れによる圧縮機の焼き付け損傷を確実に
防止することができる。
In the oil recovery passage, one end of the pipe connected to the closed container of each compressor is located between the oil supply limit oil level and the maximum oil level of each compressor and inside the closed container of each compressor. Installed at a predetermined height below the oil surface partition plate that is provided above the oil sump and separates the oil in the discharge gas, and one end of the oil recovery passage is projected into each closed container. This prevents the refrigerating machine oil flowing through the wall surface of each compressor closed container from flowing out through the oil recovery path before the refrigerating machine oil accumulates to a predetermined level, and can maintain the specified oil level, which causes the refrigerator oil to run out. It is possible to reliably prevent burning damage to the compressor due to.

【0156】また、アキュムレータと各圧縮機の吸入側
配管とを連通する吸入主配管を備え、運転優先順位の最
も高い圧縮機の吸入側配管を吸入主配管の冷媒流動方向
の最下流部に接続しているので、複数台の圧縮機の一部
が停止している場合、アキュムレータから流れてきた冷
凍機油が停止中の圧縮機の吸入側配管に溜まり込むこと
を防止し、停止中の圧縮機の再運転時に油圧縮を起こす
ことを防止することができる。
Further, a suction main pipe which connects the accumulator and the suction side pipe of each compressor is provided, and the suction side pipe of the compressor having the highest operation priority is connected to the most downstream portion in the refrigerant flow direction of the suction main pipe. Therefore, when some of the multiple compressors are stopped, refrigerating machine oil flowing from the accumulator is prevented from accumulating in the suction side pipe of the stopped compressor, and the stopped compressor is stopped. It is possible to prevent oil compression when restarting.

【0157】また、吸入主配管の管内側壁面に、冷媒の
流れ方向と略垂直にリング状の突起を設けたことによ
り、空気調和機の能力に影響を与えることもなく、吸入
主配管の管内壁面を伝い流れる冷凍機油は均一に流すこ
とができ、各圧縮機に流入する冷凍機油量のアンバラン
スを低減し、各圧縮機の冷凍機油レベルの格差を低減す
ることができる。
Further, since the ring-shaped projection is provided on the inner wall surface of the main suction pipe in a direction substantially perpendicular to the flow direction of the refrigerant, the performance of the air conditioner is not affected, and the inside of the main pipe of the suction pipe is not affected. The refrigerating machine oil flowing along the wall surface can be evenly flowed, the imbalance of the refrigerating machine oil amount flowing into each compressor can be reduced, and the difference in the refrigerating machine oil level of each compressor can be reduced.

【0158】また、アキュムレータに連通する吸入主配
管と、各圧縮機の吸入側配管との間に冷媒と冷凍機油と
を撹拌させる撹拌タンクとを備えたことにより、吸入主
配管より撹拌タンク内へと流出した冷媒と冷凍機油は撹
拌タンク内部を旋回しながら圧縮機の吸入側配管に至る
ため、各圧縮機への流入冷凍機油量が等しくなり、各圧
縮機の冷凍機油レベル格差が生じるのを低減することが
できる。
Further, since the suction main pipe communicating with the accumulator and the agitation tank for agitating the refrigerant and the refrigerating machine oil are provided between the suction side pipe of each compressor, the suction main pipe enters the agitation tank. Since the refrigerant and the refrigerating machine oil that have flown out reach the suction side pipe of the compressor while swirling inside the stirring tank, the amount of refrigerating machine oil that flows into each compressor becomes equal, and there is a difference in the refrigerating machine oil level of each compressor. It can be reduced.

【0159】また、吸入主配管は、各圧縮機の密閉容器
と各圧縮機の吸入側配管の接続位置よりも下方に位置
し、かつ、略水平に設置し、前記吸入主配管からの分岐
部より各圧縮機の密閉容器への接続部までを垂直に上方
に接続させることにより、複数台の圧縮機の一部の圧縮
機が停止した場合においても、連通管を通じて停止した
圧縮機の吸入側配管内に流れ込む冷凍機油は、停止中の
圧縮機への冷媒流れがないため、冷媒から冷凍機油に力
が作用しなく、停止中に圧縮機へ引き寄せられることが
なく、停止中の圧縮機の吸入側配管に冷凍機油が溜まり
込むことがなく、停止している圧縮機の始動時の液圧縮
についても問題がなくなる。
Further, the main suction pipe is located below the connecting position of the airtight container of each compressor and the suction pipe of each compressor, and is installed substantially horizontally, and is branched from the main suction pipe. Even if some compressors of a plurality of compressors are stopped by connecting the compressor up to the connection to the closed container vertically, the suction side of the compressor stopped through the communication pipe. The refrigerating machine oil flowing into the pipe has no refrigerant flow to the stopped compressor, so that no force acts on the refrigerating machine oil from the refrigerant, and the refrigerating machine oil is not drawn to the compressor during the stoppage. Refrigerating machine oil does not collect in the suction side pipe, and there is no problem in liquid compression at the time of starting the stopped compressor.

【0160】また、運転優先順位の一番高い圧縮機以外
の圧縮機の吐出配管に逆止弁をそれぞれ設けているの
で、優先順位が一番高い圧縮機以外の圧縮機の運転を停
止した場合でも、運転を継続している優先順位が一番高
い圧縮機からの冷媒の逆流を防止し、密閉容器内に冷媒
が凝縮することがないので、冷凍サイクルに必要なガス
量が不足することを防止でき、さらに、停止時の圧縮機
の密閉容器内の圧力を冷凍サイクルの略低圧に保持する
ことができるため、室内負荷の上昇に対し、圧縮機の追
加運転する場合に速やかに2台目の圧縮機が始動でき、
快適な空気調和をすることができる。
Further, since check valves are provided in the discharge pipes of the compressors other than the compressor having the highest operation priority, when the operation of the compressors other than the compressor having the highest priority is stopped. However, it prevents the backflow of the refrigerant from the compressor with the highest priority that continues the operation and prevents the refrigerant from condensing in the closed container, so that the amount of gas required for the refrigeration cycle is insufficient. In addition, the pressure inside the airtight container of the compressor at the time of stop can be maintained at a substantially low pressure of the refrigeration cycle, so that the second unit can be promptly operated when the compressor is additionally operated against an increase in indoor load. Can start the compressor of
Comfortable air conditioning can be achieved.

【0161】さらに、運転優先順位の一番高い圧縮機以
外の各圧縮機の吐出側配管に設置した逆止弁と、開閉弁
を介して前記各逆止弁の冷媒流動方向の上流側と下流側
とをバイパスさせるバイパス回路と、前記圧縮機運転制
御装置により運転していた圧縮機が停止したことを検知
した場合に前記停止した圧縮機のバイパス回路の開閉弁
を所定時間だけ開くバイパス制御装置とを備えているの
で、油面高さが高い状態で圧縮機を停止させた場合で
も、短時間で、その圧縮機の余剰冷凍機油を他の圧縮機
に供給することができ、圧縮機の給油に関する信頼性を
向上させることができる。
Further, the check valves installed in the discharge side pipes of the compressors other than the compressor having the highest operation priority, and the upstream and downstream sides of the respective check valves in the refrigerant flow direction via the on-off valves. Side bypass circuit and a bypass control device that opens the opening / closing valve of the bypass circuit of the stopped compressor for a predetermined time when it detects that the compressor operating by the compressor is stopped Therefore, even if the compressor is stopped in a state where the oil level is high, the excess refrigerating machine oil of the compressor can be supplied to another compressor in a short time. The reliability regarding refueling can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における空気調和機の冷
凍サイクル図
FIG. 1 is a refrigeration cycle diagram of an air conditioner according to a first embodiment of the present invention.

【図2】本発明の第2の実施例における空気調和機の冷
凍サイクル図
FIG. 2 is a refrigeration cycle diagram of an air conditioner according to a second embodiment of the present invention.

【図3】本発明の第3の実施例における空気調和機の冷
凍サイクル図
FIG. 3 is a refrigeration cycle diagram of an air conditioner according to a third embodiment of the present invention.

【図4】本発明の第4の実施例における空気調和機の圧
縮機密閉容器の断面図
FIG. 4 is a sectional view of a compressor hermetic container of an air conditioner according to a fourth embodiment of the present invention.

【図5】本発明の第5の実施例における空気調和機の冷
凍サイクル図
FIG. 5 is a refrigeration cycle diagram of an air conditioner according to a fifth embodiment of the present invention.

【図6】本発明の第6の実施例における空気調和機の圧
縮機の吸入側配管の要部詳細図
FIG. 6 is a detailed view of a main part of a suction side pipe of a compressor of an air conditioner according to a sixth embodiment of the present invention.

【図7】本発明の第7の実施例における空気調和機の圧
縮機の吸入側配管の要部詳細図
FIG. 7 is a detailed view of a main part of a suction side pipe of a compressor of an air conditioner according to a seventh embodiment of the present invention.

【図8】本発明の第8の実施例における空気調和機の圧
縮機の吸入側配管の要部詳細図
FIG. 8 is a detailed view of a main part of a suction side pipe of a compressor of an air conditioner according to an eighth embodiment of the present invention.

【図9】本発明の第9の実施例における空気調和機の冷
凍サイクル図
FIG. 9 is a refrigeration cycle diagram of an air conditioner according to a ninth embodiment of the present invention.

【図10】本発明の第10の実施例における空気調和機
の冷凍サイクル図
FIG. 10 is a refrigeration cycle diagram of an air conditioner according to a tenth embodiment of the present invention.

【図11】従来の空気調和機の冷凍サイクル図FIG. 11 is a refrigeration cycle diagram of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

4 室外側熱交換器 5 アキュムレータ 8a,8b,8c,8d 減圧装置 10,11,12 圧縮機 13 第1油回収路 14 第2油回収路 15 第3油回収路 16,17,18 絞り装置 19 油回収集合配管 20,21,22 吸入側配管 23,24,25 油配分路 26 油回収回路 27 能力可変型圧縮機 28 第1油回収回路 29 第2油回収回路 30 圧縮機運転制御装置 31 油溜めタンク 33 油面仕切板 34 圧縮機密閉容器 35 油溜め 36 突起 37 撹拌タンク 38,39 逆止弁 40,41 開閉弁 42,43 バイパス回路 44 バイパス制御装置 4 Outdoor heat exchanger 5 Accumulator 8a, 8b, 8c, 8d Pressure reducing device 10, 11, 12 Compressor 13 1st oil recovery path 14 2nd oil recovery path 15 3rd oil recovery path 16, 17, 18 Throttling device 19 Oil recovery collective pipe 20,21,22 Suction side pipe 23,24,25 Oil distribution line 26 Oil recovery circuit 27 Variable capacity compressor 28 First oil recovery circuit 29 Second oil recovery circuit 30 Compressor operation control device 31 Oil Reservoir tank 33 Oil surface partition plate 34 Compressor closed container 35 Oil sump 36 Protrusion 37 Stirring tank 38,39 Check valve 40,41 Open / close valve 42,43 Bypass circuit 44 Bypass controller

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森脇 俊二 大阪府東大阪市高井田本通3丁目22番地 松下冷機株式会社内 (72)発明者 江口 弘明 大阪府東大阪市高井田本通3丁目22番地 松下冷機株式会社内 (72)発明者 林 淳二 大阪府東大阪市高井田本通3丁目22番地 松下冷機株式会社内 (72)発明者 藪下 明弘 大阪府東大阪市高井田本通3丁目22番地 松下冷機株式会社内 (72)発明者 高谷 隆幸 大阪府東大阪市高井田本通3丁目22番地 松下冷機株式会社内 (72)発明者 倉本 哲英 大阪府東大阪市高井田本通3丁目22番地 松下冷機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shunji Moriwaki 3-22 Takaidahondori, Higashi-Osaka City, Osaka Prefecture Matsushita Refrigerator Co., Ltd. (72) Hiroaki Eguchi 3-22 Takaidahondori, Higashi-Osaka, Osaka Matsushita Refrigerator Co., Ltd. (72) Inventor Junji Hayashi 3-22 Takaidahondori, Higashi-Osaka City, Osaka Prefecture Matsushita Refrigerator Co., Ltd. (72) Inventor Akihiro Yabushita 3-22 Takaidamoto-dori, East Osaka City, Osaka Matsushita Refrigerator Co., Ltd. (72) Inventor Takayuki Takaya 3-22 Takaidahondori, Higashi-Osaka, Osaka Prefecture Matsushita Refrigerator Co., Ltd. (72) Inventor Tetsuhide Kuramoto 3-22, Takaidahondori, East Osaka, Osaka Matsushita Refrigerator Co., Ltd. Within

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 密閉容器内に吐出圧力が作用する高圧チ
ャンバ方式で複数台が並列に接続された圧縮機と、室外
側熱交換器と、減圧装置と、室内側熱交換器と、アキュ
ムレータとを冷媒流路を介して環状に接続して冷凍サイ
クルを形成するとともに、一端が前記各圧縮機の給油限
界油面と最大油面との間の所定の高さで前記各密閉容器
内に連通し、他端が前記各圧縮機の吸入側配管に連通
し、かつ、両端の途中に集合部を設け、前記各圧縮機と
前記集合部との間に絞り装置を設けた油回収回路を備え
た空気調和機。
1. A compressor in which a plurality of units are connected in parallel by a high-pressure chamber system in which a discharge pressure acts in a closed container, an outdoor heat exchanger, a pressure reducing device, an indoor heat exchanger, and an accumulator. To form a refrigeration cycle by connecting them annularly through a refrigerant flow path, and one end communicates with each of the hermetically sealed containers at a predetermined height between the oil supply limit oil level and the maximum oil level of each compressor. And an oil recovery circuit in which the other end communicates with the suction side pipe of each compressor, a collecting section is provided in the middle of both ends, and a throttle device is provided between each compressor and the collecting section. Air conditioner.
【請求項2】 室内側の空調負荷に基づき、予め設定し
た運転優先順位の高い圧縮機の運転を優先させて各圧縮
機の運転を制御する圧縮機運転制御装置と、室内側の空
調負荷を検知する室内負荷検知装置とを備え、密閉容器
内に吐出圧力が作用する高圧チャンバ方式の複数台の圧
縮機のうち少なくとも1台を能力可変型圧縮機とし、か
つ、前記運転優先順位の一番高い圧縮機を能力可変型圧
縮機とし、並列に接続された前記複数台の圧縮機と、室
外側熱交換器と、減圧装置と、室内側熱交換器と、アキ
ュムレータとを冷媒流路を介して環状に接続して冷凍サ
イクルを形成するとともに、一端が前記能力可変型圧縮
機以外の各圧縮機の給油限界油面と最大油面との間の所
定の高さで前記各密閉容器内に連通し、他端が前記能力
可変型圧縮機の吸入側配管に連通し、かつ、両端の途中
に第1の絞り装置を有する第1の油回収回路、および、
一端が前記能力可変型圧縮機の給油限界油面と最大油面
との間の所定の高さで前記密閉容器内に連通し、他端が
前記能力可変型圧縮機以外の各圧縮機の吸入側配管に連
通し、かつ、両端の途中に集合部を設け、前記能力可変
型圧縮機以外の各圧縮機の吸入側配管と前記集合部の間
に第2の絞り装置を有する第2の油回収回路を備えた空
気調和機。
2. A compressor operation control device for controlling the operation of each compressor by giving priority to the operation of a compressor having a high operation priority set in advance based on the indoor air conditioning load, and an indoor air conditioning load. An indoor load detection device for detecting, and at least one of a plurality of high-pressure chamber type compressors in which a discharge pressure acts in a closed container is a variable capacity compressor, and the operation priority is the highest. A high compressor as a variable capacity compressor, the plurality of compressors connected in parallel, an outdoor heat exchanger, a decompressor, an indoor heat exchanger, and an accumulator through a refrigerant flow path. To form a refrigeration cycle by connecting in an annular manner with one end in each of the hermetically sealed containers at a predetermined height between the oil supply limit oil level and the maximum oil level of each compressor other than the variable capacity compressor. Communication, the other end is the suction of the variable capacity compressor A first oil recovery circuit communicating with the side pipe and having a first expansion device in the middle of both ends; and
One end communicates with the variable capacity compressor at a predetermined height between the oil supply limit oil level and the maximum oil level in the closed container, and the other end sucks in a compressor other than the variable capacity compressor. A second oil that communicates with the side pipe and has a collecting portion in the middle of both ends, and has a second expansion device between the suction side pipe of each compressor other than the variable capacity compressor and the collecting portion. An air conditioner equipped with a recovery circuit.
【請求項3】 第2の油回収回路において、能力可変型
圧縮機と集合部との間に油溜めタンクを備えた請求項2
記載の空気調和機。
3. The second oil recovery circuit, further comprising an oil sump tank between the variable capacity compressor and the collecting section.
Air conditioner described.
【請求項4】 油回収回路において、各圧縮機の密閉容
器に接続する配管の一端は、各圧縮機の給油限界油面と
最大油面との間で、かつ、前記各圧縮機の密閉容器内の
油溜めの上方に設けられて吐出ガスから油を分離する油
面仕切板の下方となる所定の高さに設置し、かつ、前記
油回収回路の一端は前記各密閉容器内まで突出させた請
求項1ないし3のいずれかに記載の空気調和機。
4. In the oil recovery circuit, one end of a pipe connected to the closed container of each compressor is between the oil supply limit oil level and the maximum oil level of each compressor, and the closed container of each compressor. It is installed at a predetermined height below the oil surface partition plate that is provided above the oil sump inside and separates oil from the discharge gas, and one end of the oil recovery circuit is projected into each closed container. The air conditioner according to any one of claims 1 to 3.
【請求項5】 アキュムレータと各圧縮機の吸入側配管
とを連通する吸入主配管を備え、運転優先順位の一番高
い圧縮機の吸入側配管を前記吸入主配管の冷媒流動方向
の最下流部に接続した請求項2ないし4のいずれかに記
載の空気調和機。
5. A suction main pipe that connects the accumulator and the suction side pipe of each compressor is provided, and the suction side pipe of the compressor having the highest operation priority is the most downstream part in the refrigerant flow direction of the suction main pipe. The air conditioner according to any one of claims 2 to 4, which is connected to the air conditioner.
【請求項6】 吸入主配管と各圧縮機の吸入側配管との
接続部に対し、冷媒流動方向の上流部の前記吸入主配管
の管内側壁面に、突起を設けた請求項1ないし5のいず
れかに記載の空気調和機。
6. The projection according to claim 1, wherein a projection is provided on a pipe inner wall surface of the suction main pipe at an upstream portion in a refrigerant flow direction with respect to a connecting portion between the suction main pipe and a suction side pipe of each compressor. The air conditioner according to any one.
【請求項7】 吸入主配管と各圧縮機の吸入側配管との
間に、前記吸入主配管内の冷媒、及び油を撹拌させる撹
拌タンクを備え、前記吸入主配管の一端は前記撹拌タン
クの側壁面の略接線方向に、かつ、略水平方向となるよ
うに接続し、前記各圧縮機の吸入側配管の一端は前記撹
拌タンクの上面より接続した請求項1ないし4のいずれ
かに記載の空気調和機。
7. A stirring tank for stirring the refrigerant and oil in the suction main pipe is provided between the suction main pipe and the suction side pipe of each compressor, and one end of the suction main pipe is connected to the stirring tank. 5. The connection is made in a substantially tangential direction of a side wall surface and in a substantially horizontal direction, and one end of a suction side pipe of each compressor is connected from an upper surface of the stirring tank. Air conditioner.
【請求項8】 吸入主配管は、各圧縮機の密閉容器と各
圧縮機の吸入側配管との接続位置よりも下方に、かつ、
略水平方向に設置し、前記各圧縮機の吸入側配管の前記
吸入主配管側の一端に、前記吸入主配管に対して略垂直
に上方方向に延伸した配管延伸部を設け、油回収回路の
各圧縮機の吸入側配管側の一端は前記配管延伸部に接続
し、かつ、その接続部が前記各圧縮機の密閉容器と前記
各圧縮機の吸入側配管との接続位置よりも下方となるよ
うに配置した請求項1ないし7のいずれかに記載の空気
調和機。
8. The main suction pipe is below the connection position between the closed container of each compressor and the suction pipe of each compressor, and
Installed in a substantially horizontal direction, at one end of the suction side piping of each of the compressors on the suction main piping side, a pipe extending portion extending upward in a direction substantially perpendicular to the suction main piping is provided, and an oil recovery circuit One end of each compressor on the suction side pipe side is connected to the pipe extending part, and the connecting part is below the connection position between the closed container of each compressor and the suction side pipe of each compressor. The air conditioner according to any one of claims 1 to 7, which is arranged as described above.
【請求項9】 室内側の空調負荷に基づき、予め設定し
た運転優先順位の高い圧縮機の運転を優先させて各圧縮
機の運転を制御する圧縮機運転制御装置と、室内側の空
調負荷を検知する室内負荷検知装置と、運転優先順位の
一番高い圧縮機以外の各圧縮機の吐出側配管に設置した
逆止弁とを備えた請求項2ないし8のいずれかに記載の
空気調和機。
9. A compressor operation control device for controlling the operation of each compressor by giving priority to the operation of a compressor having a high operation priority set in advance based on the air conditioning load on the indoor side, and an air conditioning load on the indoor side. The air conditioner according to any one of claims 2 to 8, further comprising: an indoor load detection device for detecting; and a check valve installed in a discharge side pipe of each compressor other than the compressor having the highest operation priority. .
【請求項10】 室内側の空調負荷に基づき、予め設定
した運転優先順位の高い圧縮機の運転を優先させて各圧
縮機の運転を制御する圧縮機運転制御装置と、室内側の
空調負荷を検知する室内負荷検知装置と、運転優先順位
の一番高い圧縮機以外の各圧縮機の吐出側配管に設置し
た逆止弁と、開閉弁を介して前記各逆止弁の冷媒流動方
向の上流側と下流側とをバイパスさせるバイパス回路
と、前記圧縮機運転制御装置により運転していた圧縮機
が停止したことを検知した場合に前記停止した圧縮機の
バイパス回路の開閉弁を所定時間だけ開くバイパス制御
装置とを備えた請求項2ないし9のいずれかに記載の空
気調和機。
10. A compressor operation control device for controlling the operation of each compressor by giving priority to the operation of a compressor having a high operation priority set in advance on the basis of the air conditioning load on the indoor side, and an air conditioning load on the indoor side. An indoor load detection device for detecting, a check valve installed in the discharge side pipe of each compressor other than the compressor with the highest operation priority, and an upstream side in the refrigerant flow direction of each check valve via an on-off valve. A bypass circuit for bypassing the downstream side and the downstream side, and when the compressor operating by the compressor operation control device detects that the compressor has stopped, the on-off valve of the bypass circuit of the stopped compressor is opened for a predetermined time. The air conditioner according to any one of claims 2 to 9, further comprising a bypass control device.
JP6138697A 1994-06-21 1994-06-21 Air conditioner Pending JPH085169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6138697A JPH085169A (en) 1994-06-21 1994-06-21 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6138697A JPH085169A (en) 1994-06-21 1994-06-21 Air conditioner

Publications (1)

Publication Number Publication Date
JPH085169A true JPH085169A (en) 1996-01-12

Family

ID=15228014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6138697A Pending JPH085169A (en) 1994-06-21 1994-06-21 Air conditioner

Country Status (1)

Country Link
JP (1) JPH085169A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001006181A1 (en) * 1999-07-21 2001-01-25 Daikin Industries, Ltd. Refrigerating device
WO2002046664A1 (en) * 2000-12-08 2002-06-13 Daikin Industries, Ltd. Refrigerator
WO2003036188A1 (en) * 2001-10-19 2003-05-01 Toshiba Carrier Corporation Refrigerating equipment
CN1302236C (en) * 2003-11-14 2007-02-28 Lg电子株式会社 Air-conditioner having multiple compressors
CN1324274C (en) * 2004-05-25 2007-07-04 三星电子株式会社 Multi-stage air conditioner
EP1965159A1 (en) * 2005-12-16 2008-09-03 Daikin Industries, Ltd. Air conditioner
US20120304685A1 (en) * 2010-02-15 2012-12-06 Toshiba Carrier Corporation Air conditioner
JP2014228177A (en) * 2013-05-21 2014-12-08 日立アプライアンス株式会社 Air conditioner
CN104990307A (en) * 2015-08-05 2015-10-21 珠海格力电器股份有限公司 Air conditioner, compression module and compression module group
CN105180493A (en) * 2015-09-01 2015-12-23 珠海格力电器股份有限公司 Compressor module, multi-module unit and oil balancing control method of multi-module unit
CN107339826A (en) * 2017-07-04 2017-11-10 重庆美的通用制冷设备有限公司 Compressor assembly and there is its refrigeration system

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1120611A4 (en) * 1999-07-21 2012-05-23 Daikin Ind Ltd Refrigerating device
EP1120611A1 (en) * 1999-07-21 2001-08-01 Daikin Industries, Ltd. Refrigerating device
WO2001006181A1 (en) * 1999-07-21 2001-01-25 Daikin Industries, Ltd. Refrigerating device
WO2002046664A1 (en) * 2000-12-08 2002-06-13 Daikin Industries, Ltd. Refrigerator
WO2003036188A1 (en) * 2001-10-19 2003-05-01 Toshiba Carrier Corporation Refrigerating equipment
EP1443286A1 (en) * 2001-10-19 2004-08-04 Toshiba Carrier Corporation Refrigerating equipment
CN100406815C (en) * 2001-10-19 2008-07-30 东芝开利株式会社 Refrigerating equipment
EP1443286A4 (en) * 2001-10-19 2009-09-30 Toshiba Carrier Corp Refrigerating equipment
CN1302236C (en) * 2003-11-14 2007-02-28 Lg电子株式会社 Air-conditioner having multiple compressors
CN1324274C (en) * 2004-05-25 2007-07-04 三星电子株式会社 Multi-stage air conditioner
EP1965159A1 (en) * 2005-12-16 2008-09-03 Daikin Industries, Ltd. Air conditioner
US7854134B2 (en) 2005-12-16 2010-12-21 Daikin Industries, Ltd. Air conditioner
EP1965159A4 (en) * 2005-12-16 2015-11-25 Daikin Ind Ltd Air conditioner
US20120304685A1 (en) * 2010-02-15 2012-12-06 Toshiba Carrier Corporation Air conditioner
JP5655014B2 (en) * 2010-02-15 2015-01-14 東芝キヤリア株式会社 Air conditioner
JP2014228177A (en) * 2013-05-21 2014-12-08 日立アプライアンス株式会社 Air conditioner
CN104990307A (en) * 2015-08-05 2015-10-21 珠海格力电器股份有限公司 Air conditioner, compression module and compression module group
CN105180493A (en) * 2015-09-01 2015-12-23 珠海格力电器股份有限公司 Compressor module, multi-module unit and oil balancing control method of multi-module unit
CN107339826A (en) * 2017-07-04 2017-11-10 重庆美的通用制冷设备有限公司 Compressor assembly and there is its refrigeration system

Similar Documents

Publication Publication Date Title
US4562700A (en) Refrigeration system
US20080209924A1 (en) Air conditioner and control method thereof
US6941767B2 (en) Compression mechanism oil equalizing circuit, refrigeration system heat source unit, and refrigeration system provided with the same
JP4013261B2 (en) Refrigeration equipment
JP4108957B2 (en) Refrigeration equipment
EP1666806A2 (en) Multi-air condition system and method for controlling the same
EP1120611A1 (en) Refrigerating device
JP4323484B2 (en) Refrigeration cycle equipment
JPH085169A (en) Air conditioner
KR102688990B1 (en) An air conditioning apparatus and control method thereof
JPH04324069A (en) Refrigerating plant
JPH07120086A (en) Heat pump
JP3584514B2 (en) Refrigeration equipment
JPH06109337A (en) Refrigerant circuit for air-conditioning machine
JP2000097481A (en) Air conditioner
JP2001324231A (en) Refrigerating apparatus
JP3883725B2 (en) Method of operating air conditioner and air conditioner
JP3480778B2 (en) Multi-type air conditioner
JPH01302072A (en) Heat pump type air conditioner
CN113007917B (en) Air conditioner and control method thereof
JPH03122460A (en) Operating controller for refrigerating machine
JP3441914B2 (en) Air conditioner
JPH05240522A (en) Air conditioning apparatus
JPH1183223A (en) Air conditioner
JP3249246B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050617

A131 Notification of reasons for refusal

Effective date: 20050719

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060620

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060622

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100630

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100630

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120630

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7