WO2018163345A1 - Heat pump hot water supply device - Google Patents

Heat pump hot water supply device Download PDF

Info

Publication number
WO2018163345A1
WO2018163345A1 PCT/JP2017/009418 JP2017009418W WO2018163345A1 WO 2018163345 A1 WO2018163345 A1 WO 2018163345A1 JP 2017009418 W JP2017009418 W JP 2017009418W WO 2018163345 A1 WO2018163345 A1 WO 2018163345A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
temperature
hot water
inlet
condenser
Prior art date
Application number
PCT/JP2017/009418
Other languages
French (fr)
Japanese (ja)
Inventor
徹 小出
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP17899425.7A priority Critical patent/EP3594587B1/en
Priority to PCT/JP2017/009418 priority patent/WO2018163345A1/en
Priority to JP2019504216A priority patent/JP6704505B2/en
Publication of WO2018163345A1 publication Critical patent/WO2018163345A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21162Temperatures of a condenser of the refrigerant at the inlet of the condenser

Definitions

  • This invention relates to a heat pump water heater equipped with a refrigerant amount regulator.
  • the refrigerant from the condenser outlet to the expansion valve inlet is cooled, thereby increasing the refrigerant density on the high-pressure side and suppressing an abnormal increase in the high-pressure side pressure.
  • the refrigerant from the condenser outlet to the expansion valve inlet is cooled by the refrigerant from the evaporator outlet to the compressor.
  • Patent Document 1 the efficiency is improved by adjusting the refrigerant amount and pressure on the high-pressure side using a refrigerant quantity regulator.
  • a refrigerant volume regulator having a large volume is necessary, and there is a problem that the equipment becomes large and the cost increases.
  • Patent Document 2 since the refrigerant quantity regulator is not used, an increase in the size of the apparatus can be avoided, but an internal heat exchanger is used in place of the refrigerant quantity regulator as means for suppressing an increase in the high-pressure side pressure during high-temperature water entry. . In this case, there are the following problems.
  • the refrigerant flows into the evaporator having a small heat capacity and accumulates as a liquid refrigerant. After a certain period of time, liquid refrigerant accumulates in the compressor having a large heat capacity.However, when the apparatus is restarted immediately after the liquid refrigerant is accumulated in the evaporator, there is no refrigerant amount regulator, so the refrigerant is liquid in the compressor. There is a risk of backing. If the compressor liquid-compresses the liquid-backed refrigerant, it may lead to failure.
  • This invention has been made to solve the above-mentioned problems, and while suppressing the increase in size and cost of the equipment, it reduces the high pressure at the time of high-temperature incoming water and avoids liquid compression due to liquid back during transition. It aims at providing the heat pump hot-water supply apparatus which can ensure the reliability of an apparatus.
  • a heat pump hot water supply apparatus includes a refrigerant circuit formed by annularly connecting a compressor, a condenser, an expansion valve, an evaporator, and a refrigerant amount regulator, and a hot water tank for storing hot water heated by the condenser
  • a hot water circulation pump that circulates hot water between the condenser and the hot water tank, an inlet refrigerant temperature detector that detects an inlet refrigerant temperature of the condenser, and an inlet that detects an inlet water temperature of the condenser
  • the valve opening of the expansion valve is set so that the difference between the temperature of the hot water supplied from the water temperature detector and the tank controller provided in the hot water tank and the inlet refrigerant temperature is a preset temperature difference.
  • a heat source device control unit that adjusts, and the heat source device control unit adjusts the valve opening of the expansion valve in the opening direction by changing the temperature difference when the inlet water temperature becomes equal to or higher than a threshold value. It is characterized by that
  • the heat pump hot water supply apparatus adjusts the opening degree of the expansion valve in the opening direction when the fluid sent from the hot water tank to the condenser by the hot water circulation pump is at a high temperature (that is, at high temperature water entry),
  • the refrigerant density on the high-pressure side is reduced to suppress the high pressure so as not to exceed a certain pressure.
  • the liquid is stored in the refrigerant quantity regulator as an excess liquid refrigerant. Even when the apparatus is restarted immediately after the liquid refrigerant is stored in the evaporator, the refrigerant backed from the evaporator can be stored as the liquid refrigerant in the refrigerant amount regulator.
  • the heat pump hot water supply apparatus includes a hot water instruction temperature from a tank control unit provided in a hot water tank and a temperature detected by an inlet refrigerant detection unit of the condenser (hereinafter referred to as an inlet refrigerant temperature).
  • the valve opening degree of the expansion valve is controlled so that the difference becomes a preset temperature difference (hereinafter referred to as a set temperature difference).
  • the temperature difference is set in advance so that the inlet refrigerant temperature ⁇ the temperature of the hot water instruction> 0, and the opening of the expansion valve is adjusted so as to be the temperature difference.
  • the water can be boiled reliably.
  • FIG. 6 is a pressure-enthalpy diagram showing the effect of improving the coefficient of performance (Coefficent of Performance; hereinafter referred to as COP).
  • Embodiment 1 FIG.
  • an outdoor unit 100 of an air conditioner according to Embodiment 1 of the present invention will be described with reference to the drawings.
  • FIG. 1 is a circuit diagram of a heat pump water heater 100 according to an embodiment of the present invention.
  • the heat pump hot water supply apparatus 100 includes a heat source unit 200 and a tank unit 300.
  • the heat source unit 200 includes a compressor 1 that compresses and discharges a refrigerant, a condenser 2 that exchanges heat between the refrigerant and water, an electronically controlled expansion valve 3 that depressurizes a high-pressure refrigerant to a low pressure with variable opening, and air And an evaporator 4 for exchanging heat between the refrigerant and the refrigerant, and a refrigerant circuit formed by annularly connecting a refrigerant amount regulator 6 capable of temporarily storing liquid refrigerant by a refrigerant pipe 19.
  • the heat source unit 200 includes an inlet water temperature detection unit 9 that detects the inlet water temperature of the condenser 2, an outlet water temperature detection unit 10 that detects the outlet water temperature of the condenser 2, and the outside air that detects the outside air temperature.
  • a temperature detector 16, an inlet refrigerant temperature detector 17 that detects the inlet refrigerant temperature of the condenser 2, and an outlet refrigerant temperature detector 18 that detects the outlet refrigerant temperature of the evaporator 4 are provided.
  • Each of these detection units can be constituted by a temperature sensor.
  • a fan 8 is installed near the evaporator 4 for promoting heat exchange between the refrigerant in the evaporator 4 and air.
  • the fan 8 is rotated by driving the fan motor 7, and an air flow passing through the evaporator 4 is generated by the rotation.
  • Carbon dioxide (CO 2 ) can be used as the refrigerant.
  • the operation of the heat source unit 200 is controlled by the heat source unit control unit 13.
  • the tank unit 300 includes a hot water tank 14 that stores hot water heated by the condenser 2, and a hot water circulation pump 11 that is disposed between the condenser 2 and the hot water tank 14 and circulates the hot water therebetween. .
  • the condenser 2 and the hot water tank 14 are connected to each other by a hot water circulation pipe 15.
  • the operation of the tank unit 300 is controlled by the tank control unit 12.
  • the tank control unit 12 can transmit a tapping instruction temperature to the heat source unit control unit of the heat source unit 200.
  • FIG. 2 is a block diagram of the heat source machine control unit 13.
  • the heat source machine control unit 13 sets the rotation speed of the compressor rotation speed control section 21 that controls the rotation speed of the compressor 1, the fan rotation speed control section 22 that controls the rotation speed of the fan motor 7, and the rotation speed of the hot water circulation pump 11.
  • a pump speed controller 23 for controlling, a detection temperature receiver 24 for receiving a detected temperature such as an inlet refrigerant temperature of the condenser 2, an expansion valve opening adjusting unit 25 for adjusting the opening of the expansion valve 3, and a tank
  • a hot water command temperature receiving unit 26 that receives the hot water command temperature emitted from the control unit 12.
  • the expansion valve opening degree adjusting unit 25 adjusts the valve opening degree of the expansion valve 3 so that the difference between the tapping instruction temperature and the inlet refrigerant temperature becomes a set temperature difference.
  • the expansion valve opening degree adjusting unit 25 changes the set temperature difference and adjusts the valve opening degree of the expansion valve 3 in the opening direction when the inlet water temperature becomes equal to or higher than a predetermined threshold value.
  • the set temperature difference is stored in advance in the storage unit 30 in the heat source unit 200.
  • the heat source machine control unit 13 is configured by, for example, a microchip.
  • the storage unit 30 is configured by a semiconductor memory, for example.
  • FIG. 3 is a cross-sectional view of the compressor 1 and the refrigerant amount regulator 6.
  • the refrigerant in the gas-liquid two-phase state flows from the evaporator 4 into the refrigerant amount adjuster 6 through the suction pipe 31, the gas refrigerant flows into the compressor 1 through the relay pipe 32, and the liquid refrigerant is surplus.
  • the refrigerant is stored in the liquid refrigerant storage section 33 of the refrigerant amount regulator 6.
  • the compressor 1 compresses the gaseous refrigerant, discharges it from the discharge pipe 34, and sends it to the condenser 2.
  • the liquid refrigerant reservoir 33 is an internal space provided at the bottom of the cylindrical refrigerant quantity regulator 6.
  • a so-called suction muffler that provides a silencing effect can be used as the refrigerant amount adjuster 6.
  • the suction muffler serves as both a muffler and a surplus refrigerant reservoir.
  • Refrigerating machine oil flows into the refrigerant amount adjuster 6 from the suction pipe 31 together with the refrigerant.
  • the relay pipe 32 is provided with an oil return hole 35 for returning the refrigeration oil accumulated at the bottom of the liquid refrigerant reservoir 33 to the compressor 1.
  • the refrigerant and the refrigerating machine oil may be mixed or separated and temporarily stored.
  • FIG. 4 is a flowchart of the boiling operation control by the heat source machine control unit 13.
  • the boiling operation control of the heat pump water heater 100 will be described with reference to FIG.
  • the heat source device control unit 13 provided in the heat source device unit 200 starts the boiling operation when receiving a boiling operation instruction from the tank control unit 12 provided in the tank unit 300 (step S11).
  • the heat source machine control unit 13 receives the hot water instruction temperature together with the boiling operation instruction.
  • the heat source device control unit 13 receives the inlet water temperature of the condenser 2 (step S12).
  • the heat source machine control unit 13 ends the operation control without performing the boiling operation (step S13).
  • the heat source machine controller 13 controls the rotation frequency of the compressor 1 based on the inlet water temperature detected by the outside air temperature detector 16 and the inlet water temperature detector 9 ( Step S14).
  • the heat source machine control unit 13 determines whether or not the inlet water temperature detected by the inlet water temperature detection unit 9 of the condenser 2 is equal to or higher than a predetermined threshold (step S15). When the inlet water temperature is less than the predetermined threshold, the heat source machine control unit 13 reads the first temperature difference stored in the storage unit 30 and sets this as the set temperature difference (step S16). When the inlet water temperature is equal to or higher than the predetermined threshold, the heat source machine control unit 13 reads the second temperature difference stored in the storage unit 30 and sets this as the set temperature difference (step S17). The second temperature difference is smaller than the first temperature difference.
  • the heat source machine control unit 13 performs the following processing after setting the temperature difference.
  • the heat source device controller 13 receives the inlet refrigerant temperature detected by the inlet refrigerant detector 17 of the condenser 2 (step S18).
  • the heat source machine control unit 13 calculates the difference between the tapping temperature and the inlet refrigerant temperature (step S19).
  • the difference is referred to as a calculated temperature difference.
  • the heat source machine control unit 13 adjusts the opening degree of the expansion valve 3 so that the calculated temperature difference becomes the set temperature difference (step S20).
  • the valve opening is adjusted in the opening direction as a result of adjusting the valve opening in accordance with a second temperature difference smaller than the first temperature difference.
  • the first temperature difference should be set to be the optimum COP under environmental conditions, for example, certain outside air temperature conditions, incoming water temperature conditions (winter standard heating conditions, intermediate standard heating conditions, etc. defined by JIS). Can do.
  • the second temperature difference is set to a value smaller than the first temperature difference so that the high-pressure side pressure at the time of high-temperature water entry does not exceed the designed upper limit value.
  • These temperature differences are constant values under certain conditions such as the outside air temperature and the incoming water temperature, and can be constant values within a range of 15 to 30 ° C., for example.
  • the opening degree of the expansion valve 3 is the target value of the outside air temperature, the inlet water temperature detected by the inlet water temperature detector 9 of the condenser 2, and the inlet refrigerant temperature detected by the inlet refrigerant detector 17 of the condenser 2. And it is controllable only with the hot water instruction temperature from the tank controller 12. However, depending on the environmental conditions, there is a relationship of the hot water instruction temperature> the target value of the inlet refrigerant temperature, and the hot water may not boil.
  • the relationship between the hot water instruction temperature> the target value of the inlet refrigerant temperature Can be.
  • a temperature difference that satisfies the inlet refrigerant temperature ⁇ the hot water instruction temperature> 0 is stored in advance in the storage unit 30 as the first and second temperature differences.
  • the first temperature difference is set as the set temperature difference
  • the second temperature difference smaller than the first temperature difference is set as the set temperature difference. Then, the opening degree of the expansion valve 3 is adjusted so that the calculated temperature difference becomes the set temperature difference.
  • FIG. 5 is a schematic diagram showing the temperature transition of hot water in the hot water tank 14.
  • the temperature of water supplied to the heat source unit 200 is low (for example, 5 ° C.) from the start of boiling to the time of boiling operation, the inlet water temperature of the condenser 2 increases (for example, 5 to 5) before the completion of boiling. 60 ° C.).
  • the temperature of the water in the hot water tank 14 before the boiling operation is about 5 ° C.
  • the temperature of the hot water in the hot water tank 14 during the boiling operation is The upper side is 90 ° C and the lower side is 5 ° C.
  • the temperature of the hot water in the hot water tank 14 before completion of boiling is 90 ° C. on the upper side and medium temperature water, for example, 60 ° C. on the lower side.
  • the inlet water temperature rises When the inlet water temperature rises, the density of the refrigerant present in the condenser 2 decreases. At this time, the pressure rises abnormally with the first temperature difference set in advance so that the optimum COP is obtained under certain environmental conditions. Therefore, the environmental conditions where the pressure on the high pressure side may exceed the design pressure (for example, under the low outside air conditions, the maximum boiling temperature and the maximum heating capacity are required, the high inlet refrigerant temperature of the condenser 2 and the compressor Under the condition of reaching a maximum rotational speed of 1, a second temperature difference smaller than the first temperature difference is set as a set temperature difference. Since the second temperature difference is smaller than the first temperature difference, the set temperature difference becomes small when the inlet water temperature becomes equal to or higher than the predetermined temperature.
  • the design pressure for example, under the low outside air conditions, the maximum boiling temperature and the maximum heating capacity are required, the high inlet refrigerant temperature of the condenser 2 and the compressor
  • the opening degree of the expansion valve 3 is adjusted so that the difference between the tapping temperature from the tank controller 12 and the detected temperature obtained by the inlet refrigerant detector 17 of the condenser 2 becomes the set temperature difference after the change. adjust.
  • the refrigerant density on the high pressure side can be reduced, and the high pressure can be suppressed so that the pressure on the high pressure side does not exceed the design pressure.
  • FIG. 6 shows an inlet water temperature 41 of the condenser 2, an inlet refrigerant temperature 42 of the condenser 2, a tapping instruction temperature 43 of the tank controller 12, a stored refrigerant quantity 44 of the refrigerant quantity regulator 6, and a valve opening of the expansion valve. It is a time chart which shows.
  • the liquid refrigerant is not stored in the refrigerant quantity regulator 6.
  • the inlet refrigerant temperature 42 and the tapping hot water instruction temperature 43 are also constant.
  • the excess liquid refrigerant is stored in the refrigerant amount regulator 6 in order to operate at a design pressure or lower. And suppress high pressure. That is, the valve opening adjustment in steps S17 to S20 is started from time T1 when the inlet water temperature exceeds the predetermined threshold value 41.
  • the valve opening degree 45 is adjusted so that the difference between the inlet refrigerant temperature 42 and the hot water instruction temperature 43 is the same as a certain set temperature difference (second temperature difference).
  • the valve opening 45 increases from time T1. This reduces the actual temperature difference. For example, the temperature difference between the inlet refrigerant temperature 42 and the tapping temperature 43 until the time point T1 when the inlet water temperature 41 reaches the predetermined threshold value 41a is 30 ° C., and after the time point T1 when the inlet water temperature 41 reaches the predetermined threshold value 41a. The temperature difference is 25 ° C.
  • the boiling operation is terminated at time T2 when the inlet water temperature 41 reaches the predetermined temperature 41b (step S13).
  • the refrigerant filling amount of the entire refrigeration circuit can be about 1000 g, for example.
  • the target value 44a of the liquid refrigerant storage amount 44 in the refrigerant amount adjuster 6 can be set to about 30 g, for example.
  • the heat source machine control unit 13 may start the boiling operation soon after the boiling operation is stopped. After the operation is stopped, the expansion valve 3 is fully opened, and the pressures on the high pressure side and the low pressure side are balanced. At this time, the refrigerant is drawn to the outside air temperature, flows into the evaporator 4 having a small heat capacity (easy to radiate heat), and is stored as a liquid refrigerant. After a certain period of time, the liquid refrigerant is stored in the compressor 1 having a large heat capacity. However, when restarted immediately after the liquid refrigerant has been stored in the evaporator 4, the liquid refrigerant stored in the evaporator 4 flows into the compressor 1 at once. .
  • the liquid refrigerant when there is no refrigerant amount adjuster 6, the liquid refrigerant may be liquid-backed to the compressor 1 and the compressor 1 may be liquid-compressed.
  • the liquid refrigerant from the evaporator 4 at the time of starting the apparatus is temporarily stored in the refrigerant amount regulator 6, so that the refrigerant liquid by the compressor 1 is stored. Compression can be prevented and the reliability of the compressor 1 can be ensured.
  • the expansion valve 3 when the fluid sent from the bottom of the hot water tank 14 to the condenser 2 by the hot water circulation pump 11 is high temperature (that is, at high temperature water entry), the expansion valve 3.
  • the refrigerant density on the high pressure side is decreased by adjusting the valve opening degree of the valve in the opening direction, and the high pressure is suppressed so as not to exceed a certain pressure.
  • the refrigerant density on the low pressure side increases, the excess liquid refrigerant is stored in the refrigerant amount regulator 6.
  • the refrigerant amount regulator 6 Since the surplus liquid refrigerant is stored in the refrigerant amount regulator 6, it is not necessary to provide an internal heat exchanger for exchanging heat between the high-pressure side refrigerant and the low-pressure side refrigerant, and the cost can be reduced.
  • the refrigerant flows into the evaporator 4 having a small heat capacity and is stored as a liquid refrigerant. Thereafter, when a certain time has elapsed, the liquid refrigerant is stored in the compressor 1 having a large heat capacity.
  • the apparatus is restarted immediately after the liquid refrigerant is stored in the evaporator 4, the compression is performed when the refrigerant amount regulator 6 is not provided. There is a risk of liquid back into the machine 1 and liquid compression.
  • the heat pump hot water supply apparatus 100 of the present embodiment is provided with the refrigerant amount adjuster 6, and by storing the liquid refrigerant in this, the liquid compression of the compressor 1 can be avoided and the reliability of the compressor 1 can be ensured. It becomes possible.
  • a suction muffler can be used as the refrigerant amount regulator 6. By combining the suction muffler with the silencer and the refrigerant amount adjuster 6, it is not necessary to provide another refrigerant amount adjuster, and the effects of cost reduction and volume increase suppression of the outdoor unit are obtained.
  • Embodiment 2 FIG.
  • an outdoor unit 100 for an air conditioner according to Embodiment 2 of the present invention will be described with reference to the drawings.
  • FIG. 7 is a circuit diagram of the heat pump hot water supply apparatus 100 including the internal heat exchanger 5.
  • the refrigerant quantity regulator 6 having a certain size or more may not be installed due to structural restrictions.
  • the refrigerant from the outlet of the condenser 2 to the inlet of the expansion valve 3 and the outlet of the evaporator 4 to the compressor 1 It is possible to provide an internal heat exchanger 5 that exchanges heat with the refrigerant up to the inlet.
  • the expansion valve 3 is provided on the refrigerant flow path between the evaporator 4 and the internal heat exchanger 5.
  • FIG. 8 is a pressure-enthalpy diagram showing the effect of suppressing high pressure.
  • FIG. 9 is a pressure-enthalpy diagram showing the effect when COP is improved.
  • the internal heat exchanger 5 has two roles. One role is to increase the refrigerant density of the evaporator 4 when the inlet water temperature of the condenser 2 rises due to heat exchange by the internal heat exchanger 5, as shown in FIG. Accumulate. Accordingly, the refrigerant density on the high pressure side can be reduced to suppress high pressure.
  • Reference numerals 51 and 52 indicate enthalpy ranges on the low-pressure side and the high-pressure side that vary due to heat exchange by the internal heat exchanger 5. Another role is to apply superheat at the outlet of the evaporator 4 as shown in FIG.
  • Reference numeral 54 in FIG. 9 indicates an enthalpy range that increases when superheat is applied to the outlet of the evaporator 4 by the internal heat exchanger 5.
  • Reference numeral 55 is a refrigerant state transition when the internal heat exchanger 5 is present, and reference numeral 56 is a refrigerant state transition when the internal heat exchanger 5 is not present.
  • the internal heat exchanger 5 and the refrigerant amount regulator 6 are used in combination as in the present embodiment, the above-described effects of high pressure suppression and COP improvement are obtained. If the amount of liquid stored in the refrigerant amount controller 6 can be increased to an extent that does not overflow, the internal heat exchanger 5 can be made compact, leading to cost reduction. Moreover, if it controls so that only the refrigerant

Abstract

The present invention ensures the reliability of a compressor by reducing the maximum pressure by way of storing refrigerant in a refrigerant quantity regulator serving as a high-pressure suppressor when high temperature water is injected and by avoiding liquid compression by way of storing liquid backflow during overflow in the refrigerant quantity regulator. The degree that an expansion valve is opened is adjusted so that the difference between the indicated hot water discharge temperature and the inlet refrigerant temperature during boiling is a preset temperature differential, and when a fluid sent from the hot water tank to a condenser is at a high temperature, high pressure is suppressed by reducing the high-pressure side refrigerant density by way of changing the temperature differential and adjusting, to the opening direction, the degree that the expansion valve is opened. Meanwhile, because the low-pressure side refrigerant density increases, excess liquid refrigerant is stored in the refrigerant quantity regulator. In addition, after operation is stopped and restarted immediately after liquid refrigerant is stored in the evaporator, there is a risk of liquid compression occurring by liquid backflowing into the compressor if there is no refrigerant quantity regulator. Thus, liquid compression is avoided by storing refrigerant in the refrigerant quantity regulator and compressor reliability is ensured.

Description

ヒートポンプ給湯装置Heat pump water heater
 この発明は、冷媒量調節器を備えたヒートポンプ給湯装置に関するものである。 This invention relates to a heat pump water heater equipped with a refrigerant amount regulator.
 従来、圧縮機、凝縮器、膨張弁、蒸発器、及び冷媒量調節器を備えたヒートポンプサイクルにおいて、冷媒量調節器の液冷媒貯留量を変動させることにより、最適効率で所定能力を達成する技術が提案されている(例えば、特許文献1)。ヒートポンプサイクルの能力は凝縮器内の冷媒量を変動させ、高圧側の圧力を調整することにより制御される。凝縮器内の冷媒量は膨張弁の開度を一時的に小さくすることにより増大する。これに伴い、蒸発器出口における冷媒量調節器の液冷媒貯留量は減る。高圧側の冷媒量が増えることによって、圧力が大きくなり、能力が大きくなる。一方で膨張弁の開放により、蒸発器出口における冷媒量調節器の液冷媒貯留量が増え、高圧側の冷媒量は減る。高圧側の圧力を低減することによって能力は小さくなる。以上のように、サイクルとして冷媒量調節器の液冷媒貯留量を調節することによって最適効率で運転することができる。 Conventionally, in a heat pump cycle equipped with a compressor, a condenser, an expansion valve, an evaporator, and a refrigerant quantity regulator, a technique for achieving a predetermined capacity with optimum efficiency by changing the amount of liquid refrigerant stored in the refrigerant quantity regulator. Has been proposed (for example, Patent Document 1). The capacity of the heat pump cycle is controlled by changing the amount of refrigerant in the condenser and adjusting the pressure on the high pressure side. The amount of refrigerant in the condenser is increased by temporarily reducing the opening of the expansion valve. Along with this, the amount of liquid refrigerant stored in the refrigerant quantity regulator at the evaporator outlet decreases. As the amount of refrigerant on the high pressure side increases, the pressure increases and the capacity increases. On the other hand, by opening the expansion valve, the amount of liquid refrigerant stored in the refrigerant amount regulator at the evaporator outlet increases, and the amount of refrigerant on the high-pressure side decreases. The capacity is reduced by reducing the pressure on the high pressure side. As described above, it is possible to operate with optimum efficiency by adjusting the amount of liquid refrigerant stored in the refrigerant quantity regulator as a cycle.
 また、従来、冷媒量調節器を用いず、圧縮機、凝縮器、膨張弁、蒸発器、及び内部熱交換器を備えたヒートポンプサイクルにおいて、冷媒量調節器を設けないことによってコストを抑制しつつ、内部熱交換器によって高温入水時の高圧側圧力の上昇を抑制する技術が提案されている(例えば、特許文献2)。温水タンクの底部から温水循環ポンプにより、凝縮器に送り込まれた流体が高温の場合(すなわち高温入水時)には、凝縮器に存在する冷媒の密度が低下し、圧力が異常に上昇する。これを抑制するため、凝縮器出口から膨張弁入口までの冷媒を冷却することにより、高圧側の冷媒密度を増大させ、異常な高圧側圧力の上昇を抑制している。凝縮器出口から膨張弁入口までの冷媒は、蒸発器出口から圧縮機までの冷媒で冷却される。以上のように、冷媒量調節器を用いず、内部熱交換器により高圧側の圧力抑制をすることで、低コスト化を達成することができる。 Further, conventionally, in a heat pump cycle provided with a compressor, a condenser, an expansion valve, an evaporator, and an internal heat exchanger without using a refrigerant quantity regulator, cost is suppressed by not providing a refrigerant quantity regulator. In addition, a technique for suppressing an increase in the high-pressure side pressure at the time of high-temperature water entry using an internal heat exchanger has been proposed (for example, Patent Document 2). When the fluid sent to the condenser by the hot water circulation pump from the bottom of the hot water tank is at a high temperature (that is, at the time of high-temperature water entry), the density of the refrigerant existing in the condenser decreases and the pressure increases abnormally. In order to suppress this, the refrigerant from the condenser outlet to the expansion valve inlet is cooled, thereby increasing the refrigerant density on the high-pressure side and suppressing an abnormal increase in the high-pressure side pressure. The refrigerant from the condenser outlet to the expansion valve inlet is cooled by the refrigerant from the evaporator outlet to the compressor. As described above, cost reduction can be achieved by suppressing the pressure on the high pressure side with the internal heat exchanger without using the refrigerant amount regulator.
特公平7-18602号公報Japanese Patent Publication No. 7-18602 特開2005-164103号公報JP 2005-164103 A
 特許文献1においては、冷媒量調節器を用いて高圧側の冷媒量及び圧力を調節することによって効率を改善する。しかしながら、液冷媒を貯留するために容積の大きな冷媒量調節器が必要であり、機器が大型化し、コストアップにつながるという問題があった。特許文献2においては、冷媒量調節器を用いないので機器の大型化を回避できるが、高温入水時の高圧側圧力の上昇抑制手段として冷媒量調節器の代わりに内部熱交換器を用いている。この場合には以下の問題がある。装置の運転停止直後、熱容量の小さい蒸発器に冷媒が流れ込み、液冷媒として溜まる。その後、ある時間経過すると熱容量の大きい圧縮機に液冷媒が溜まるが、蒸発器に液冷媒が貯留した直後に装置を再起動した場合、冷媒量調節器が存在しないので、冷媒が圧縮機に液バックするおそれがある。液バックした冷媒を圧縮機が液圧縮すれば故障に繋がるおそれがある。 In Patent Document 1, the efficiency is improved by adjusting the refrigerant amount and pressure on the high-pressure side using a refrigerant quantity regulator. However, in order to store the liquid refrigerant, a refrigerant volume regulator having a large volume is necessary, and there is a problem that the equipment becomes large and the cost increases. In Patent Document 2, since the refrigerant quantity regulator is not used, an increase in the size of the apparatus can be avoided, but an internal heat exchanger is used in place of the refrigerant quantity regulator as means for suppressing an increase in the high-pressure side pressure during high-temperature water entry. . In this case, there are the following problems. Immediately after the operation of the apparatus is stopped, the refrigerant flows into the evaporator having a small heat capacity and accumulates as a liquid refrigerant. After a certain period of time, liquid refrigerant accumulates in the compressor having a large heat capacity.However, when the apparatus is restarted immediately after the liquid refrigerant is accumulated in the evaporator, there is no refrigerant amount regulator, so the refrigerant is liquid in the compressor. There is a risk of backing. If the compressor liquid-compresses the liquid-backed refrigerant, it may lead to failure.
 この発明は、上記の課題を解決するためになされたもので、機器の大型化及びコストアップを抑えつつ、高温入水時の高圧力を低減するとともに過渡時の液バックによる液圧縮を回避して装置の信頼性を担保できるヒートポンプ給湯装置を提供することを目的とする。 This invention has been made to solve the above-mentioned problems, and while suppressing the increase in size and cost of the equipment, it reduces the high pressure at the time of high-temperature incoming water and avoids liquid compression due to liquid back during transition. It aims at providing the heat pump hot-water supply apparatus which can ensure the reliability of an apparatus.
 この発明に係るヒートポンプ給湯装置は、圧縮機、凝縮器、膨張弁、蒸発器、及び冷媒量調節器を環状に接続してなる冷媒回路と、前記凝縮器によって加熱された温水を貯湯する温水タンクと、前記凝縮器と前記温水タンクとの間で温水を循環させる温水循環ポンプと、前記凝縮器の入口冷媒温度を検出する入口冷媒温度検出部と、前記凝縮器の入口水温度を検出する入口水温度検出部と、前記温水タンクに設けられたタンク制御部から発せられた出湯指示温度と前記入口冷媒温度との差が予め設定された温度差になるように前記膨張弁の弁開度を調整する熱源機制御部と、を含み、前記熱源機制御部は、前記入口水温度が閾値以上になったときに前記温度差を変更して前記膨張弁の弁開度を開方向に調整することを特徴とする。 A heat pump hot water supply apparatus according to the present invention includes a refrigerant circuit formed by annularly connecting a compressor, a condenser, an expansion valve, an evaporator, and a refrigerant amount regulator, and a hot water tank for storing hot water heated by the condenser A hot water circulation pump that circulates hot water between the condenser and the hot water tank, an inlet refrigerant temperature detector that detects an inlet refrigerant temperature of the condenser, and an inlet that detects an inlet water temperature of the condenser The valve opening of the expansion valve is set so that the difference between the temperature of the hot water supplied from the water temperature detector and the tank controller provided in the hot water tank and the inlet refrigerant temperature is a preset temperature difference. A heat source device control unit that adjusts, and the heat source device control unit adjusts the valve opening of the expansion valve in the opening direction by changing the temperature difference when the inlet water temperature becomes equal to or higher than a threshold value. It is characterized by that.
 この発明に係るヒートポンプ給湯装置は、温水タンクから温水循環ポンプによって凝縮器に送り込まれた流体が高温の場合(すなわち高温入水時)に、膨張弁の弁開度を開方向に調整することによって、高圧側の冷媒密度を低下させて一定の圧力を超過しないように高圧抑制する。一方で、低圧側の冷媒密度が上昇するので、余剰液冷媒として冷媒量調節器に液貯留する。蒸発器に液冷媒が貯留した直後に装置を再起動した場合であっても、蒸発器から液バックした冷媒を冷媒量調節器に液冷媒として貯留できる。かかる構成によって、冷媒量調節器に貯留して液圧縮を回避し、圧縮機の信頼性を担保できる。更に、冷媒量調節器として液冷媒を貯留できる空間を有するサクションマフラーを用いれば、機器の大型化及びコストアップを抑えることもできる。 The heat pump hot water supply apparatus according to the present invention adjusts the opening degree of the expansion valve in the opening direction when the fluid sent from the hot water tank to the condenser by the hot water circulation pump is at a high temperature (that is, at high temperature water entry), The refrigerant density on the high-pressure side is reduced to suppress the high pressure so as not to exceed a certain pressure. On the other hand, since the refrigerant density on the low pressure side increases, the liquid is stored in the refrigerant quantity regulator as an excess liquid refrigerant. Even when the apparatus is restarted immediately after the liquid refrigerant is stored in the evaporator, the refrigerant backed from the evaporator can be stored as the liquid refrigerant in the refrigerant amount regulator. With this configuration, it is possible to avoid liquid compression by storing in the refrigerant amount regulator and to ensure the reliability of the compressor. Furthermore, if a suction muffler having a space capable of storing liquid refrigerant is used as the refrigerant amount regulator, it is possible to suppress the increase in size and cost of the device.
 また、この発明に係るヒートポンプ給湯装置は、温水タンクに備えられたタンク制御部からの出湯指示温度と、凝縮器の入口冷媒検出部で検出された温度(以下、入口冷媒温度と称する)との差が予め設定された温度差(以下、設定温度差と称する)になるように膨張弁の弁開度を制御する。凝縮器の水入口検出部で得られた検出温度と凝縮器の入口冷媒検出部の目標値のみを用いて膨張弁の開度を制御することもできるが、運転の環境条件によっては、出湯指示温度>当該目標値の関係となり、湯が沸かないおそれがある。一方、本発明によれば、入口冷媒温度-出湯指示温度>0となるように温度差を予め設定し、この温度差となるように膨張弁の開度を調整するので、環境条件にかかわらず、湯を確実に沸かすことができる。 Further, the heat pump hot water supply apparatus according to the present invention includes a hot water instruction temperature from a tank control unit provided in a hot water tank and a temperature detected by an inlet refrigerant detection unit of the condenser (hereinafter referred to as an inlet refrigerant temperature). The valve opening degree of the expansion valve is controlled so that the difference becomes a preset temperature difference (hereinafter referred to as a set temperature difference). Although it is possible to control the opening of the expansion valve using only the detected temperature obtained by the water inlet detector of the condenser and the target value of the condenser inlet refrigerant detector, depending on the environmental conditions of operation There is a possibility that hot water does not boil because temperature> target value. On the other hand, according to the present invention, the temperature difference is set in advance so that the inlet refrigerant temperature−the temperature of the hot water instruction> 0, and the opening of the expansion valve is adjusted so as to be the temperature difference. The water can be boiled reliably.
本発明のヒートポンプ給湯装置の回路図である。It is a circuit diagram of the heat pump hot-water supply apparatus of this invention. 熱源機制御部及び記憶部のブロック図である。It is a block diagram of a heat source machine control part and a storage part. 圧縮機及び冷媒量調節器の断面図である。It is sectional drawing of a compressor and a refrigerant | coolant amount regulator. 熱源機制御部の沸上げ運転制御のフローチャートである。It is a flowchart of the boiling operation control of a heat source machine control part. 温水タンク内の貯湯温度推移を示す模式図である。It is a schematic diagram which shows the hot water storage temperature transition in a hot water tank. 凝縮器の入口水温度、入口冷媒温度、冷媒量調節器の貯留冷媒量、タンク制御部の出湯指示温度、及び膨張弁の弁開度のタイムチャートである。It is a time chart of the inlet water temperature of the condenser, the inlet refrigerant temperature, the amount of refrigerant stored in the refrigerant amount regulator, the hot water instruction temperature of the tank controller, and the valve opening degree of the expansion valve. 内部熱交換器を備える本発明のヒートポンプ給湯装置の回路図である。It is a circuit diagram of the heat pump hot-water supply apparatus of this invention provided with an internal heat exchanger. 高圧抑制時の効果を示す圧力-エンタルピー線図である。It is a pressure-enthalpy diagram showing the effect at the time of high pressure suppression. 成績係数(Coefficient of Performance。以下、COPと称する)改善時の効果を示す圧力-エンタルピー線図である。FIG. 6 is a pressure-enthalpy diagram showing the effect of improving the coefficient of performance (Coefficent of Performance; hereinafter referred to as COP).
実施の形態1.
 以下、本発明の実施の形態1による空気調和機の室外機100について、図面を参照しつつ説明する。
Embodiment 1 FIG.
Hereinafter, an outdoor unit 100 of an air conditioner according to Embodiment 1 of the present invention will be described with reference to the drawings.
図1は、本発明の実施の形態におけるヒートポンプ給湯装置100の回路図である。ヒートポンプ給湯装置100は、熱源機ユニット200と、タンクユニット300とを備える。 FIG. 1 is a circuit diagram of a heat pump water heater 100 according to an embodiment of the present invention. The heat pump hot water supply apparatus 100 includes a heat source unit 200 and a tank unit 300.
 熱源機ユニット200は、冷媒を圧縮して吐出する圧縮機1、冷媒と水とを熱交換させる凝縮器2、開度可変で高圧の冷媒を低圧に減圧する電子制御式の膨張弁3、空気と冷媒とを熱交換させる蒸発器4、及び、液冷媒を一時的に貯留可能な冷媒量調節器6を冷媒配管19によって環状に接続してなる冷媒回路を備える。また、熱源機ユニット200は、凝縮器2の入口水温度を検出する入口水温度検出部9と、凝縮器2の出口水温度を検出する出口水温度検出部10と、外気温度を検出する外気温度検出部16と、凝縮器2の入口冷媒温度を検出する入口冷媒温度検出部17と、蒸発器4の出口冷媒温度を検出する出口冷媒温度検出部18と、を備える。これらの検出部は、それぞれ温度センサによって構成されることができる。蒸発器4の近くには、蒸発器4内の冷媒と空気との熱交換を促進させるためのファン8が設置されている。ファン8はファンモータ7の駆動によって回転し、当該回転によって蒸発器4を通過する空気流が生成される。冷媒には、二酸化炭素(CO)を用いることができる。熱源機ユニット200の運転は、熱源機制御部13によって制御される。 The heat source unit 200 includes a compressor 1 that compresses and discharges a refrigerant, a condenser 2 that exchanges heat between the refrigerant and water, an electronically controlled expansion valve 3 that depressurizes a high-pressure refrigerant to a low pressure with variable opening, and air And an evaporator 4 for exchanging heat between the refrigerant and the refrigerant, and a refrigerant circuit formed by annularly connecting a refrigerant amount regulator 6 capable of temporarily storing liquid refrigerant by a refrigerant pipe 19. The heat source unit 200 includes an inlet water temperature detection unit 9 that detects the inlet water temperature of the condenser 2, an outlet water temperature detection unit 10 that detects the outlet water temperature of the condenser 2, and the outside air that detects the outside air temperature. A temperature detector 16, an inlet refrigerant temperature detector 17 that detects the inlet refrigerant temperature of the condenser 2, and an outlet refrigerant temperature detector 18 that detects the outlet refrigerant temperature of the evaporator 4 are provided. Each of these detection units can be constituted by a temperature sensor. A fan 8 is installed near the evaporator 4 for promoting heat exchange between the refrigerant in the evaporator 4 and air. The fan 8 is rotated by driving the fan motor 7, and an air flow passing through the evaporator 4 is generated by the rotation. Carbon dioxide (CO 2 ) can be used as the refrigerant. The operation of the heat source unit 200 is controlled by the heat source unit control unit 13.
 タンクユニット300は、凝縮器2で加熱された温水を貯湯する温水タンク14と、凝縮器2と温水タンク14との間に配置され、これらの間で温水を循環させる温水循環ポンプ11とを備える。凝縮器2と温水タンク14とは、温水循環配管15によって互いに接続されている。タンクユニット300の運転は、タンク制御部12によって制御される。タンク制御部12は、熱源機ユニット200の熱源機制御部に対して出湯指示温度を送信できる。 The tank unit 300 includes a hot water tank 14 that stores hot water heated by the condenser 2, and a hot water circulation pump 11 that is disposed between the condenser 2 and the hot water tank 14 and circulates the hot water therebetween. . The condenser 2 and the hot water tank 14 are connected to each other by a hot water circulation pipe 15. The operation of the tank unit 300 is controlled by the tank control unit 12. The tank control unit 12 can transmit a tapping instruction temperature to the heat source unit control unit of the heat source unit 200.
 図2は、熱源機制御部13のブロック図である。熱源機制御部13は、圧縮機1の回転数を制御する圧縮機回転数制御部21と、ファンモータ7の回転数を制御するファン回転数制御部22と、温水循環ポンプ11の回転数を制御するポンプ回転数制御部23と、凝縮器2の入口冷媒温度などの検出温度を受信する検出温度受信部24と、膨張弁3の開度を調整する膨張弁開度調整部25と、タンク制御部12から発せられる出湯指示温度を受信する出湯指示温度受信部26と、を含む。膨張弁開度調整部25は、出湯指示温度と入口冷媒温度との差が設定温度差になるように膨張弁3の弁開度を調整する。膨張弁開度調整部25は、入口水温度が所定の閾値以上になったときに、設定温度差を変更して膨張弁3の弁開度を開方向に調整する。当該設定温度差は、熱源機ユニット200内の記憶部30に予め記憶されている。熱源機制御部13は例えばマイクロチップにより構成される。記憶部30は例えば半導体メモリにより構成される。 FIG. 2 is a block diagram of the heat source machine control unit 13. The heat source machine control unit 13 sets the rotation speed of the compressor rotation speed control section 21 that controls the rotation speed of the compressor 1, the fan rotation speed control section 22 that controls the rotation speed of the fan motor 7, and the rotation speed of the hot water circulation pump 11. A pump speed controller 23 for controlling, a detection temperature receiver 24 for receiving a detected temperature such as an inlet refrigerant temperature of the condenser 2, an expansion valve opening adjusting unit 25 for adjusting the opening of the expansion valve 3, and a tank And a hot water command temperature receiving unit 26 that receives the hot water command temperature emitted from the control unit 12. The expansion valve opening degree adjusting unit 25 adjusts the valve opening degree of the expansion valve 3 so that the difference between the tapping instruction temperature and the inlet refrigerant temperature becomes a set temperature difference. The expansion valve opening degree adjusting unit 25 changes the set temperature difference and adjusts the valve opening degree of the expansion valve 3 in the opening direction when the inlet water temperature becomes equal to or higher than a predetermined threshold value. The set temperature difference is stored in advance in the storage unit 30 in the heat source unit 200. The heat source machine control unit 13 is configured by, for example, a microchip. The storage unit 30 is configured by a semiconductor memory, for example.
 図3は、圧縮機1及び冷媒量調節器6の断面図である。気液二相状態の冷媒が蒸発器4から吸入管31を介して冷媒量調節器6に流れ込んできた場合には、気体冷媒は中継管32を通って圧縮機1に流れ込み、液冷媒は余剰の冷媒として冷媒量調節器6の液冷媒貯留部33に貯留される。圧縮機1は、気体冷媒を圧縮して吐出管34から吐出させ、凝縮器2に送り込む。液冷媒貯留部33は、筒状の冷媒量調節器6の底部に設けられた内部空間である。冷媒量調節器6として、消音効果を奏するいわゆるサクションマフラーを用いることができる。この場合、サクションマフラーは、消音手段と余剰冷媒貯留手段とを兼ねる。冷媒量調節器6には、吸入管31から冷媒と共に冷凍機油が流れ込む。中継管32には、液冷媒貯留部33の底に溜まった冷凍機油を圧縮機1に戻す油戻し穴35が設けられている。液冷媒貯留部33の底には、冷媒と冷凍機油が混合又は分離して一時的に貯留される場合がある。 FIG. 3 is a cross-sectional view of the compressor 1 and the refrigerant amount regulator 6. When the refrigerant in the gas-liquid two-phase state flows from the evaporator 4 into the refrigerant amount adjuster 6 through the suction pipe 31, the gas refrigerant flows into the compressor 1 through the relay pipe 32, and the liquid refrigerant is surplus. The refrigerant is stored in the liquid refrigerant storage section 33 of the refrigerant amount regulator 6. The compressor 1 compresses the gaseous refrigerant, discharges it from the discharge pipe 34, and sends it to the condenser 2. The liquid refrigerant reservoir 33 is an internal space provided at the bottom of the cylindrical refrigerant quantity regulator 6. A so-called suction muffler that provides a silencing effect can be used as the refrigerant amount adjuster 6. In this case, the suction muffler serves as both a muffler and a surplus refrigerant reservoir. Refrigerating machine oil flows into the refrigerant amount adjuster 6 from the suction pipe 31 together with the refrigerant. The relay pipe 32 is provided with an oil return hole 35 for returning the refrigeration oil accumulated at the bottom of the liquid refrigerant reservoir 33 to the compressor 1. In the bottom of the liquid refrigerant storage part 33, the refrigerant and the refrigerating machine oil may be mixed or separated and temporarily stored.
 図4は、熱源機制御部13による沸上げ運転制御のフローチャートである。以下、図4を参照しつつ、ヒートポンプ給湯装置100の沸上げ運転制御について説明する。 FIG. 4 is a flowchart of the boiling operation control by the heat source machine control unit 13. Hereinafter, the boiling operation control of the heat pump water heater 100 will be described with reference to FIG.
先ず、熱源機ユニット200に備えられた熱源機制御部13は、タンクユニット300に備えられたタンク制御部12からの沸上げ運転指示を受信した時に沸上げ運転を開始する(ステップS11)。熱源機制御部13は、当該沸上げ運転指示と共に出湯指示温度を受信する。次に、熱源機制御部13は、凝縮器2の入口水温度を受信する(ステップS12)。熱源機制御部13は、入口水温度が所定温度以上である場合、沸き上げ運転を行わずに運転制御を終了する(ステップS13)。熱源機制御部13は、入口水温度が所定温度未満である場合、外気温度検出部16及び入口水温度検出部9によって検出された入口水温度に基づいて圧縮機1の回転周波数を制御する(ステップS14)。 First, the heat source device control unit 13 provided in the heat source device unit 200 starts the boiling operation when receiving a boiling operation instruction from the tank control unit 12 provided in the tank unit 300 (step S11). The heat source machine control unit 13 receives the hot water instruction temperature together with the boiling operation instruction. Next, the heat source device control unit 13 receives the inlet water temperature of the condenser 2 (step S12). When the inlet water temperature is equal to or higher than the predetermined temperature, the heat source machine control unit 13 ends the operation control without performing the boiling operation (step S13). When the inlet water temperature is lower than the predetermined temperature, the heat source machine controller 13 controls the rotation frequency of the compressor 1 based on the inlet water temperature detected by the outside air temperature detector 16 and the inlet water temperature detector 9 ( Step S14).
 次に、熱源機制御部13は、凝縮器2の入口水温度検出部9によって検出された入口水温度が所定閾値以上であるか判別する(ステップS15)。熱源機制御部13は、入口水温度が所定閾値未満である場合には、記憶部30に記憶されている第一の温度差を読み出し、これを設定温度差とする(ステップS16)。熱源機制御部13は、入口水温度が所定閾値以上である場合には、記憶部30に記憶されている第二の温度差を読み出し、これを設定温度差とする(ステップS17)。第二の温度差は、第一の温度差より小さい。 Next, the heat source machine control unit 13 determines whether or not the inlet water temperature detected by the inlet water temperature detection unit 9 of the condenser 2 is equal to or higher than a predetermined threshold (step S15). When the inlet water temperature is less than the predetermined threshold, the heat source machine control unit 13 reads the first temperature difference stored in the storage unit 30 and sets this as the set temperature difference (step S16). When the inlet water temperature is equal to or higher than the predetermined threshold, the heat source machine control unit 13 reads the second temperature difference stored in the storage unit 30 and sets this as the set temperature difference (step S17). The second temperature difference is smaller than the first temperature difference.
 熱源機制御部13は、温度差の設定後に以下の処理を行う。先ず、熱源機制御部13は、凝縮器2の入口冷媒検出部17によって検出された入口冷媒温度を受信する(ステップS18)。次に、熱源機制御部13は、出湯指示温度と入口冷媒温度との差を算出する(ステップS19)。以下、当該差を算出温度差と称する。次に、熱源機制御部13は、この算出温度差が設定温度差になるように膨張弁3の開度を調整する(ステップS20)。凝縮器2の入口水温度が所定閾値以上になったときに、第一の温度差よりも小さい第二の温度差に合わせて弁開度を調整する結果、弁開度は開方向に調整される。 The heat source machine control unit 13 performs the following processing after setting the temperature difference. First, the heat source device controller 13 receives the inlet refrigerant temperature detected by the inlet refrigerant detector 17 of the condenser 2 (step S18). Next, the heat source machine control unit 13 calculates the difference between the tapping temperature and the inlet refrigerant temperature (step S19). Hereinafter, the difference is referred to as a calculated temperature difference. Next, the heat source machine control unit 13 adjusts the opening degree of the expansion valve 3 so that the calculated temperature difference becomes the set temperature difference (step S20). When the inlet water temperature of the condenser 2 exceeds a predetermined threshold, the valve opening is adjusted in the opening direction as a result of adjusting the valve opening in accordance with a second temperature difference smaller than the first temperature difference. The
 第一の温度差は、環境条件、例えば、ある外気温度条件、入水温度条件(JISで定められている冬期標準加熱条件、中間期標準加熱条件など)において最適なCOPとなるように設定することができる。第二の温度差は、高温入水時の高圧側圧力が設計上の上限値を超えないように第一の温度差よりも小さい値としたものである。これらの温度差は、上記外気温度や入水温度等のある一定条件下においてそれぞれ一定の値であり、例えば15~30℃の範囲内の一定値とすることができる。膨張弁3の開度は、外気温度と、凝縮器2の入口水温度検出部9によって検出された入口水温度と、凝縮器2の入口冷媒検出部17によって検出される入口冷媒温度の目標値と、タンク制御部12からの出湯指示温度のみでも制御可能である。しかし、環境条件によっては、出湯指示温度>入口冷媒温度の目標値の関係となり、湯が沸かない場合がある。例えば、高温入水時に、高圧側圧力抑制のために、出湯指示温度にかかわらず、入口冷媒温度の目標値を一律に低下させる処理を行った場合、出湯指示温度>入口冷媒温度の目標値の関係となり得る。これに対して、本実施形態のヒートポンプ給湯装置100においては、入口冷媒温度-出湯指示温度>0となる温度差を第一及び第二の温度差として記憶部30に予め記憶しておく。そして、入口水温度が所定閾値未満のときには第一の温度差を設定温度差とし、入口水温度が所定閾値以上になったときには第一の温度差よりも小さい第二の温度差を設定温度差として、算出温度差が設定温度差になるように膨張弁3の開度を調整する。かかる処理によって、高温入水時に高圧側圧力が設計上の上限圧力を超えないように調整しつつ、湯が沸かないという不具合を回避できる。 The first temperature difference should be set to be the optimum COP under environmental conditions, for example, certain outside air temperature conditions, incoming water temperature conditions (winter standard heating conditions, intermediate standard heating conditions, etc. defined by JIS). Can do. The second temperature difference is set to a value smaller than the first temperature difference so that the high-pressure side pressure at the time of high-temperature water entry does not exceed the designed upper limit value. These temperature differences are constant values under certain conditions such as the outside air temperature and the incoming water temperature, and can be constant values within a range of 15 to 30 ° C., for example. The opening degree of the expansion valve 3 is the target value of the outside air temperature, the inlet water temperature detected by the inlet water temperature detector 9 of the condenser 2, and the inlet refrigerant temperature detected by the inlet refrigerant detector 17 of the condenser 2. And it is controllable only with the hot water instruction temperature from the tank controller 12. However, depending on the environmental conditions, there is a relationship of the hot water instruction temperature> the target value of the inlet refrigerant temperature, and the hot water may not boil. For example, in the case of performing a process of uniformly reducing the target value of the inlet refrigerant temperature regardless of the hot water instruction temperature in order to suppress the high-pressure side pressure during high temperature water injection, the relationship between the hot water instruction temperature> the target value of the inlet refrigerant temperature Can be. On the other hand, in the heat pump hot water supply apparatus 100 of the present embodiment, a temperature difference that satisfies the inlet refrigerant temperature−the hot water instruction temperature> 0 is stored in advance in the storage unit 30 as the first and second temperature differences. When the inlet water temperature is less than the predetermined threshold, the first temperature difference is set as the set temperature difference, and when the inlet water temperature is equal to or higher than the predetermined threshold, the second temperature difference smaller than the first temperature difference is set as the set temperature difference. Then, the opening degree of the expansion valve 3 is adjusted so that the calculated temperature difference becomes the set temperature difference. By such treatment, it is possible to avoid the problem that hot water does not boil while adjusting the high-pressure side pressure so as not to exceed the designed upper limit pressure at the time of high-temperature water entry.
 図5は、温水タンク14内の貯湯温度推移を示す模式図である。沸き上げ開始時~沸き上げ運転中は熱源機ユニット200に供給される水の温度は低いが(例えば5℃)、沸き上げ完了前には凝縮器2の入口水温度が上昇する(例えば5~60℃)。例えば、市水最低温度が5℃、出湯最高温度が90℃である場合、沸上げ運転前の温水タンク14の水の温度は約5℃、沸上げ運転中の温水タンク14の湯の温度は上部側が90℃、下部側が5℃である。沸上げ完了前の温水タンク14の湯の温度は上部側が90℃、下部側は例えば60℃の中温水である。 FIG. 5 is a schematic diagram showing the temperature transition of hot water in the hot water tank 14. Although the temperature of water supplied to the heat source unit 200 is low (for example, 5 ° C.) from the start of boiling to the time of boiling operation, the inlet water temperature of the condenser 2 increases (for example, 5 to 5) before the completion of boiling. 60 ° C.). For example, when the city water minimum temperature is 5 ° C. and the hot water maximum temperature is 90 ° C., the temperature of the water in the hot water tank 14 before the boiling operation is about 5 ° C., and the temperature of the hot water in the hot water tank 14 during the boiling operation is The upper side is 90 ° C and the lower side is 5 ° C. The temperature of the hot water in the hot water tank 14 before completion of boiling is 90 ° C. on the upper side and medium temperature water, for example, 60 ° C. on the lower side.
 入口水温度が上昇すると、凝縮器2に存在する冷媒の密度が低下する。このとき、ある環境条件において最適COPとなるように予め設定した第一の温度差のままでは圧力が異常に上昇する。そこで、高圧側の圧力が設計圧力を超過する恐れがある環境条件下(例えば、低外気条件において、最高沸き上げ温度と最大加熱能力を要し、凝縮器2の高温の入口冷媒温度と圧縮機1の最高回転数に達する条件下)においては、第一の温度差よりも小さい第二の温度差を設定温度差とする。第二の温度差は第一の温度差よりも小さいので、入口水温度が所定温度以上になったときに、設定温度差は小さくなる。そして、タンク制御部12からの出湯指示温度と凝縮器2の入口冷媒検出部17で得られた検出温度との差が、当該変更後の設定温度差となるように膨張弁3の開度を調整する。かかる制御によって、高圧側の冷媒密度を低下させ、高圧側の圧力が設計圧力を超過しないように高圧抑制することができる。 When the inlet water temperature rises, the density of the refrigerant present in the condenser 2 decreases. At this time, the pressure rises abnormally with the first temperature difference set in advance so that the optimum COP is obtained under certain environmental conditions. Therefore, the environmental conditions where the pressure on the high pressure side may exceed the design pressure (for example, under the low outside air conditions, the maximum boiling temperature and the maximum heating capacity are required, the high inlet refrigerant temperature of the condenser 2 and the compressor Under the condition of reaching a maximum rotational speed of 1, a second temperature difference smaller than the first temperature difference is set as a set temperature difference. Since the second temperature difference is smaller than the first temperature difference, the set temperature difference becomes small when the inlet water temperature becomes equal to or higher than the predetermined temperature. And the opening degree of the expansion valve 3 is adjusted so that the difference between the tapping temperature from the tank controller 12 and the detected temperature obtained by the inlet refrigerant detector 17 of the condenser 2 becomes the set temperature difference after the change. adjust. By such control, the refrigerant density on the high pressure side can be reduced, and the high pressure can be suppressed so that the pressure on the high pressure side does not exceed the design pressure.
 図6は、凝縮器2の入口水温度41、凝縮器2の入口冷媒温度42、タンク制御部12の出湯指示温度43、冷媒量調節器6の貯留冷媒量44、及び膨張弁の弁開度を示すタイムチャートである。上記した膨張弁3の開度調整によって高圧側の圧力が抑制される一方、低圧側の冷媒密度は上昇する。凝縮器2の入口水温度検出部9によって検出された入口水温度41が所定閾値41(例えば50℃)に達する時点T1までは、設計圧力以下で冷媒を使いきるので、余剰液冷媒は発生せず、冷媒量調節器6に液冷媒は貯留しない。この間、入口冷媒温度42及び出湯指示温度43も一定である。凝縮器2の入口水温度検出部9によって検出された入口水温度41が所定閾値41aを超過してからは、設計圧力以下で動作させるために、余剰液冷媒を冷媒量調節器6に液貯留して高圧抑制する。すなわち、入口水温度が所定閾値41を超えた時点T1から、ステップS17~S20の弁開度調整を開始する。このとき、入口冷媒温度42と出湯指示温度43との差が一定の設定温度差(第二の温度差)と同じになるように弁開度45を調整する。弁開度45は時点T1から大きくなる。これによって、現実の温度差が小さくなる。例えば、入口水温度41が所定閾値41aに達する時点T1までの入口冷媒温度42と出湯指示温度43との温度差は30℃であり、入口水温度41が所定閾値41aに達した時点T1以後の温度差は25℃である。入口水温度41が所定温度41bに達した時点T2において沸き上げ運転を終了する(ステップS13)。冷凍回路全体の冷媒充填量は例えば1000g程度とすることができる。冷媒量調節器6への液冷媒貯留量44の目標値44aは例えば30g程度とすることができる。サクションマフラーを冷媒量調節器6として用いる場合、サクションマフラーの底部に余剰液冷媒が貯留される。 FIG. 6 shows an inlet water temperature 41 of the condenser 2, an inlet refrigerant temperature 42 of the condenser 2, a tapping instruction temperature 43 of the tank controller 12, a stored refrigerant quantity 44 of the refrigerant quantity regulator 6, and a valve opening of the expansion valve. It is a time chart which shows. By adjusting the opening degree of the expansion valve 3, the pressure on the high pressure side is suppressed, while the refrigerant density on the low pressure side increases. Until the time T1 when the inlet water temperature 41 detected by the inlet water temperature detection unit 9 of the condenser 2 reaches a predetermined threshold value 41 (for example, 50 ° C.), the refrigerant is used up below the design pressure, so that excess liquid refrigerant is not generated. Therefore, the liquid refrigerant is not stored in the refrigerant quantity regulator 6. During this time, the inlet refrigerant temperature 42 and the tapping hot water instruction temperature 43 are also constant. After the inlet water temperature 41 detected by the inlet water temperature detector 9 of the condenser 2 exceeds the predetermined threshold value 41a, the excess liquid refrigerant is stored in the refrigerant amount regulator 6 in order to operate at a design pressure or lower. And suppress high pressure. That is, the valve opening adjustment in steps S17 to S20 is started from time T1 when the inlet water temperature exceeds the predetermined threshold value 41. At this time, the valve opening degree 45 is adjusted so that the difference between the inlet refrigerant temperature 42 and the hot water instruction temperature 43 is the same as a certain set temperature difference (second temperature difference). The valve opening 45 increases from time T1. This reduces the actual temperature difference. For example, the temperature difference between the inlet refrigerant temperature 42 and the tapping temperature 43 until the time point T1 when the inlet water temperature 41 reaches the predetermined threshold value 41a is 30 ° C., and after the time point T1 when the inlet water temperature 41 reaches the predetermined threshold value 41a. The temperature difference is 25 ° C. The boiling operation is terminated at time T2 when the inlet water temperature 41 reaches the predetermined temperature 41b (step S13). The refrigerant filling amount of the entire refrigeration circuit can be about 1000 g, for example. The target value 44a of the liquid refrigerant storage amount 44 in the refrigerant amount adjuster 6 can be set to about 30 g, for example. When a suction muffler is used as the refrigerant quantity regulator 6, excess liquid refrigerant is stored at the bottom of the suction muffler.
 熱源機制御部13は、沸上げ運転停止後、まもなく、沸上げ運転を開始する場合がある。運転停止後、膨張弁3は全開となり、高圧側、低圧側の圧力はバランスされる。この際、冷媒は、外気温度に引っ張られて熱容量の小さい(放熱しやすい)蒸発器4に流れ込み、液冷媒として貯留される。一定時間経過すると熱容量の大きい圧縮機1に液冷媒が貯留するが、蒸発器4に液冷媒が貯留しきった直後に再起動すると、蒸発器4に貯留された液冷媒が圧縮機1に一気に流れ込む。本実施の形態とは異なり、冷媒量調節器6がない場合には、液冷媒が圧縮機1に液バックして圧縮機1が液圧縮する恐れがある。これに対して、本実施形態のヒートポンプ給湯装置100によれば、装置起動時における蒸発器4からの液冷媒が冷媒量調節器6に一時的に貯留されるので、圧縮機1による冷媒の液圧縮を阻止し、圧縮機1の信頼性を担保することができる。 The heat source machine control unit 13 may start the boiling operation soon after the boiling operation is stopped. After the operation is stopped, the expansion valve 3 is fully opened, and the pressures on the high pressure side and the low pressure side are balanced. At this time, the refrigerant is drawn to the outside air temperature, flows into the evaporator 4 having a small heat capacity (easy to radiate heat), and is stored as a liquid refrigerant. After a certain period of time, the liquid refrigerant is stored in the compressor 1 having a large heat capacity. However, when restarted immediately after the liquid refrigerant has been stored in the evaporator 4, the liquid refrigerant stored in the evaporator 4 flows into the compressor 1 at once. . Unlike the present embodiment, when there is no refrigerant amount adjuster 6, the liquid refrigerant may be liquid-backed to the compressor 1 and the compressor 1 may be liquid-compressed. On the other hand, according to the heat pump hot water supply apparatus 100 of the present embodiment, the liquid refrigerant from the evaporator 4 at the time of starting the apparatus is temporarily stored in the refrigerant amount regulator 6, so that the refrigerant liquid by the compressor 1 is stored. Compression can be prevented and the reliability of the compressor 1 can be ensured.
 上記したように、本実施形態のヒートポンプ給湯装置100においては、温水タンク14の底部から温水循環ポンプ11によって凝縮器2に送り込まれた流体が高温である場合(すなわち高温入水時)、膨張弁3の弁開度を開方向に調整することによって高圧側の冷媒密度を低下させ、ある一定の圧力を超過しないように高圧抑制する。一方で、低圧側の冷媒密度が上昇するので、余剰液冷媒を冷媒量調節器6に液貯留する。冷媒量調節器6に余剰液冷媒を貯留するので、高圧側冷媒と低圧側冷媒とを熱交換させる内部熱交換器を設ける必要が無くなり、コストを低減できる。運転停止後には、熱容量の小さい蒸発器4に冷媒が流れ込み、液冷媒として貯留される。その後、一定時間経過すると、熱容量の大きい圧縮機1に液冷媒が貯留するが、蒸発器4に液冷媒が貯留した直後に装置を再起動すると、冷媒量調節器6がない場合には、圧縮機1に液バックして液圧縮する恐れがある。そこで、本実施形態のヒートポンプ給湯装置100には冷媒量調節器6を設け、これに液冷媒を貯留することで圧縮機1の液圧縮を回避し、圧縮機1の信頼性を担保することが可能となる。冷媒量調節器6としてサクションマフラーを用いることができる。サクションマフラーが消音手段と冷媒量調節器6とを兼ね備えることによって、別の冷媒量調節器を設ける必要が無くなり、コスト抑制、及び室外機の容積増大抑制の効果がある。 As described above, in the heat pump hot water supply apparatus 100 of the present embodiment, when the fluid sent from the bottom of the hot water tank 14 to the condenser 2 by the hot water circulation pump 11 is high temperature (that is, at high temperature water entry), the expansion valve 3. The refrigerant density on the high pressure side is decreased by adjusting the valve opening degree of the valve in the opening direction, and the high pressure is suppressed so as not to exceed a certain pressure. On the other hand, since the refrigerant density on the low pressure side increases, the excess liquid refrigerant is stored in the refrigerant amount regulator 6. Since the surplus liquid refrigerant is stored in the refrigerant amount regulator 6, it is not necessary to provide an internal heat exchanger for exchanging heat between the high-pressure side refrigerant and the low-pressure side refrigerant, and the cost can be reduced. After the operation is stopped, the refrigerant flows into the evaporator 4 having a small heat capacity and is stored as a liquid refrigerant. Thereafter, when a certain time has elapsed, the liquid refrigerant is stored in the compressor 1 having a large heat capacity. However, when the apparatus is restarted immediately after the liquid refrigerant is stored in the evaporator 4, the compression is performed when the refrigerant amount regulator 6 is not provided. There is a risk of liquid back into the machine 1 and liquid compression. Therefore, the heat pump hot water supply apparatus 100 of the present embodiment is provided with the refrigerant amount adjuster 6, and by storing the liquid refrigerant in this, the liquid compression of the compressor 1 can be avoided and the reliability of the compressor 1 can be ensured. It becomes possible. A suction muffler can be used as the refrigerant amount regulator 6. By combining the suction muffler with the silencer and the refrigerant amount adjuster 6, it is not necessary to provide another refrigerant amount adjuster, and the effects of cost reduction and volume increase suppression of the outdoor unit are obtained.
実施の形態2.
 以下、本発明の実施の形態2による空気調和機の室外機100について、図面を参照しつつ説明する。
Embodiment 2. FIG.
Hereinafter, an outdoor unit 100 for an air conditioner according to Embodiment 2 of the present invention will be described with reference to the drawings.
 図7は、内部熱交換器5を備えるヒートポンプ給湯装置100の回路図である。例えば、構造上の制約によって、ある一定サイズ以上の大きさの冷媒量調節器6を設置できない場合もある。このような場合に高圧側の設計圧力を超過するおそれがあるときには、図7に示すように、凝縮器2の出口から膨張弁3の入口までの冷媒と、蒸発器4の出口から圧縮機1の入口までの冷媒とを熱交換させる内部熱交換器5を備えることができる。この場合には、膨張弁3は、蒸発器4と内部熱交換器5との間の冷媒流路上に設けられる。 FIG. 7 is a circuit diagram of the heat pump hot water supply apparatus 100 including the internal heat exchanger 5. For example, the refrigerant quantity regulator 6 having a certain size or more may not be installed due to structural restrictions. In such a case, when there is a possibility that the design pressure on the high pressure side may be exceeded, as shown in FIG. 7, the refrigerant from the outlet of the condenser 2 to the inlet of the expansion valve 3 and the outlet of the evaporator 4 to the compressor 1 It is possible to provide an internal heat exchanger 5 that exchanges heat with the refrigerant up to the inlet. In this case, the expansion valve 3 is provided on the refrigerant flow path between the evaporator 4 and the internal heat exchanger 5.
 図8は、高圧抑制時の効果を示す圧力-エンタルピー線図である。図9は、COP改善時の効果を示す圧力-エンタルピー線図である。内部熱交換器5の役割は2つある。1つの役割は、図8に示されるように、内部熱交換器5による熱交換によって、凝縮器2の入口水温度が上昇した際に、蒸発器4の冷媒密度を増大させ、蒸発器に冷媒を溜める。それに伴って高圧側の冷媒密度を低下させて高圧を抑制できる。符号51及び52は、内部熱交換器5による熱交換によって変動する低圧側及び高圧側のエンタルピー範囲を示している。もう1つの役割は、図9に示されるように、蒸発器4の出口におけるスーパーヒートを付けることができ、COPを改善できる。図9の符号54は、内部熱交換器5によって蒸発器4の出口にスーパーヒートが付けられたときに増加するエンタルピー範囲を示している。符号55は内部熱交換器5があるときの冷媒状態遷移、符号56は内部熱交換器5が無いときの冷媒状態遷移である。 FIG. 8 is a pressure-enthalpy diagram showing the effect of suppressing high pressure. FIG. 9 is a pressure-enthalpy diagram showing the effect when COP is improved. The internal heat exchanger 5 has two roles. One role is to increase the refrigerant density of the evaporator 4 when the inlet water temperature of the condenser 2 rises due to heat exchange by the internal heat exchanger 5, as shown in FIG. Accumulate. Accordingly, the refrigerant density on the high pressure side can be reduced to suppress high pressure. Reference numerals 51 and 52 indicate enthalpy ranges on the low-pressure side and the high-pressure side that vary due to heat exchange by the internal heat exchanger 5. Another role is to apply superheat at the outlet of the evaporator 4 as shown in FIG. 9 and improve COP. Reference numeral 54 in FIG. 9 indicates an enthalpy range that increases when superheat is applied to the outlet of the evaporator 4 by the internal heat exchanger 5. Reference numeral 55 is a refrigerant state transition when the internal heat exchanger 5 is present, and reference numeral 56 is a refrigerant state transition when the internal heat exchanger 5 is not present.
 本実施形態のように内部熱交換器5と冷媒量調節器6とを併用する場合には、上記した高圧抑制及びCOP改善の効果が得られる。冷媒量調節器6の液貯留量をオーバーフローしない程度まで多くすることができれば、内部熱交換器5をコンパクト化でき、コスト低減につながる。また、冷媒量調節器6のみで余剰液冷媒の全量を貯留できるように制御すれば、実施の形態1のように内部熱交換器5を削除することができ、更なるコスト低減も可能となる。 When the internal heat exchanger 5 and the refrigerant amount regulator 6 are used in combination as in the present embodiment, the above-described effects of high pressure suppression and COP improvement are obtained. If the amount of liquid stored in the refrigerant amount controller 6 can be increased to an extent that does not overflow, the internal heat exchanger 5 can be made compact, leading to cost reduction. Moreover, if it controls so that only the refrigerant | coolant amount regulator 6 can store the whole quantity of an excess liquid refrigerant | coolant, the internal heat exchanger 5 can be deleted like Embodiment 1, and the further cost reduction will also be attained. .
1 圧縮機
2 凝縮器
3 膨張弁
4 蒸発器
5 内部熱交換器
6 冷媒量調節器
7 ファンモータ
8 ファン
9 入口水温度検出部
10 出口水温度検出部
11 温水循環ポンプ
12 タンク制御部
13 熱源機制御部
14 温水タンク
15 温水循環配管
16 外気温度検出部
17 入口冷媒温度検出部
18 出口冷媒温度検出部
19 冷媒配管
21 圧縮機回転数制御部
22 ファン回転数制御部
23 ポンプ回転数制御部
24 検出温度受信部
25 膨張弁開度調整部
26 温度指示受信部
30 記憶部
31 吸入管
32 中継管
33 液冷媒貯留部
34 吐出管
35 油戻し穴
100 ヒートポンプ給湯装置
200 熱源機ユニット
300 タンクユニット
DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Expansion valve 4 Evaporator 5 Internal heat exchanger 6 Refrigerant amount regulator 7 Fan motor 8 Fan 9 Inlet water temperature detection part 10 Outlet water temperature detection part 11 Hot water circulation pump 12 Tank control part 13 Heat source machine Control unit 14 Hot water tank 15 Hot water circulation pipe 16 Outside air temperature detection unit 17 Inlet refrigerant temperature detection unit 18 Outlet refrigerant temperature detection unit 19 Refrigerant pipe 21 Compressor rotation speed control unit 22 Fan rotation speed control unit 23 Pump rotation speed control unit 24 Detection Temperature receiving section 25 Expansion valve opening adjusting section 26 Temperature instruction receiving section 30 Storage section 31 Suction pipe 32 Relay pipe 33 Liquid refrigerant storage section 34 Discharge pipe 35 Oil return hole 100 Heat pump hot water supply apparatus 200 Heat source unit 300 Tank unit

Claims (6)

  1.  圧縮機、凝縮器、膨張弁、蒸発器、及び冷媒量調節器を環状に接続してなる冷媒回路と、前記凝縮器によって加熱された温水を貯湯する温水タンクと、前記凝縮器と前記温水タンクとの間で温水を循環させる温水循環ポンプと、前記凝縮器の入口冷媒温度を検出する入口冷媒温度検出部と、前記凝縮器の入口水温度を検出する入口水温度検出部と、前記温水タンクに設けられたタンク制御部から発せられた出湯指示温度と前記入口冷媒温度との差が予め設定された温度差になるように前記膨張弁の弁開度を調整する熱源機制御部と、を含み、前記熱源機制御部は、前記入口水温度が閾値以上になったときに前記温度差を変更して前記膨張弁の弁開度を開方向に調整することを特徴とするヒートポンプ給湯装置。 A refrigerant circuit formed by annularly connecting a compressor, a condenser, an expansion valve, an evaporator, and a refrigerant amount regulator, a hot water tank for storing hot water heated by the condenser, the condenser and the hot water tank A hot water circulation pump for circulating hot water between, an inlet refrigerant temperature detector for detecting an inlet refrigerant temperature of the condenser, an inlet water temperature detector for detecting an inlet water temperature of the condenser, and the hot water tank A heat source machine controller that adjusts the valve opening of the expansion valve so that the difference between the hot water discharge instruction temperature generated from the tank controller provided in the tank and the inlet refrigerant temperature becomes a preset temperature difference, and In addition, the heat source machine control unit is configured to adjust the valve opening degree of the expansion valve in the opening direction by changing the temperature difference when the inlet water temperature is equal to or higher than a threshold value.
  2.  前記冷媒量調節器には、前記入口水温度が閾値以上になったときに冷媒が貯留されることを特徴とする請求項1に記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to claim 1, wherein the refrigerant amount regulator stores refrigerant when the inlet water temperature becomes equal to or higher than a threshold value.
  3.  前記冷媒量調節器は、前記圧縮機の入口に設けられていることを特徴とする請求項1又は2に記載のヒートポンプ給湯装置。 The heat pump hot water supply apparatus according to claim 1 or 2, wherein the refrigerant amount regulator is provided at an inlet of the compressor.
  4.  前記冷媒量調節器は、液冷媒を貯留可能な空間を有するサクションマフラーであることを特徴とする請求項1~3のいずれか1項に記載のヒートポンプ給湯装置。 The heat pump water heater according to any one of claims 1 to 3, wherein the refrigerant amount regulator is a suction muffler having a space capable of storing liquid refrigerant.
  5.  前記凝縮器の出口から前記膨張弁の入口までの冷媒と、前記蒸発器の出口から前記圧縮機の入口までの冷媒とを熱交換させる内部熱交換器を備えることを特徴とする請求項1~4のいずれか1項に記載のヒートポンプ給湯装置。 An internal heat exchanger is provided that exchanges heat between the refrigerant from the outlet of the condenser to the inlet of the expansion valve and the refrigerant from the outlet of the evaporator to the inlet of the compressor. The heat pump hot water supply apparatus according to any one of 4.
  6.  前記予め設定された温度差を記憶する記憶部を含み、
     前記予め設定された温度差は、入口冷媒温度-出湯指示温度>0となる温度差であることを特徴とする請求項1~5のいずれか1項に記載のヒートポンプ給湯装置。
    A storage unit for storing the preset temperature difference;
    The heat pump hot-water supply apparatus according to any one of claims 1 to 5, wherein the preset temperature difference is a temperature difference that satisfies an inlet refrigerant temperature-a hot water instruction temperature> 0.
PCT/JP2017/009418 2017-03-09 2017-03-09 Heat pump hot water supply device WO2018163345A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17899425.7A EP3594587B1 (en) 2017-03-09 2017-03-09 Heat pump hot water supply device
PCT/JP2017/009418 WO2018163345A1 (en) 2017-03-09 2017-03-09 Heat pump hot water supply device
JP2019504216A JP6704505B2 (en) 2017-03-09 2017-03-09 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/009418 WO2018163345A1 (en) 2017-03-09 2017-03-09 Heat pump hot water supply device

Publications (1)

Publication Number Publication Date
WO2018163345A1 true WO2018163345A1 (en) 2018-09-13

Family

ID=63448305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009418 WO2018163345A1 (en) 2017-03-09 2017-03-09 Heat pump hot water supply device

Country Status (3)

Country Link
EP (1) EP3594587B1 (en)
JP (1) JP6704505B2 (en)
WO (1) WO2018163345A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115095986A (en) * 2022-06-30 2022-09-23 九阳股份有限公司 Control method of instant heating water outlet machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718602A (en) 1993-06-29 1995-01-20 Sekisui Chem Co Ltd Tie plug
JPH0718602B2 (en) * 1989-01-09 1995-03-06 シンヴェント・アクシェセルスカープ Operation method and apparatus for supercritical vapor compression cycle
JP2005164103A (en) 2003-12-01 2005-06-23 Matsushita Electric Ind Co Ltd Refrigerating cycle device and its control method
JP2007212103A (en) * 2006-02-13 2007-08-23 Matsushita Electric Ind Co Ltd Heat pump type hot water supply apparatus
JP2012013267A (en) * 2010-06-30 2012-01-19 Corona Corp Heat pump type water heater
JP2012233626A (en) * 2011-04-28 2012-11-29 Noritz Corp Heat pump water heater
JP2014016041A (en) * 2012-07-05 2014-01-30 Denso Corp Hot-water supply apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3659197B2 (en) * 2000-06-21 2005-06-15 松下電器産業株式会社 Heat pump water heater
JP4948374B2 (en) * 2007-11-30 2012-06-06 三菱電機株式会社 Refrigeration cycle equipment
JP5173469B2 (en) * 2008-02-15 2013-04-03 三菱電機株式会社 Heat pump water heater

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718602B2 (en) * 1989-01-09 1995-03-06 シンヴェント・アクシェセルスカープ Operation method and apparatus for supercritical vapor compression cycle
JPH0718602A (en) 1993-06-29 1995-01-20 Sekisui Chem Co Ltd Tie plug
JP2005164103A (en) 2003-12-01 2005-06-23 Matsushita Electric Ind Co Ltd Refrigerating cycle device and its control method
JP2007212103A (en) * 2006-02-13 2007-08-23 Matsushita Electric Ind Co Ltd Heat pump type hot water supply apparatus
JP2012013267A (en) * 2010-06-30 2012-01-19 Corona Corp Heat pump type water heater
JP2012233626A (en) * 2011-04-28 2012-11-29 Noritz Corp Heat pump water heater
JP2014016041A (en) * 2012-07-05 2014-01-30 Denso Corp Hot-water supply apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115095986A (en) * 2022-06-30 2022-09-23 九阳股份有限公司 Control method of instant heating water outlet machine
CN115095986B (en) * 2022-06-30 2023-03-14 九阳股份有限公司 Control method of instant heating water outlet machine

Also Published As

Publication number Publication date
EP3594587A4 (en) 2020-02-26
JPWO2018163345A1 (en) 2019-07-18
EP3594587B1 (en) 2021-04-21
JP6704505B2 (en) 2020-06-03
EP3594587A1 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
JP4337880B2 (en) Heat pump water heater
JP5042058B2 (en) Heat pump type hot water supply outdoor unit and heat pump type hot water supply device
EP2631562B1 (en) Heat pump-type air-warming device
JP4931848B2 (en) Heat pump type outdoor unit for hot water supply
EP3301380B1 (en) Refrigeration cycle device and refrigeration cycle device control method
JP3783711B2 (en) Heat pump water heater
WO2018185841A1 (en) Refrigeration cycle device
EP2752628A1 (en) Supercritical cycle and heat pump hot-water supplier using same
JP3915770B2 (en) Heat pump water heater
WO2014010531A1 (en) Heat-pump-type heating device
EP3267130B1 (en) Refrigeration cycle device
JP3919736B2 (en) Start-up control device and start-up control method for heat pump water heater
EP2594867A2 (en) Refrigeration cycle apparatus and hot water producing apparatus
JP2009264715A (en) Heat pump hot water system
CN112739966A (en) Heat pump device
WO2018163345A1 (en) Heat pump hot water supply device
JP2009264718A (en) Heat pump hot water system
JP2008008499A (en) Refrigerating cycle device and heat pump type water heater
JP6076583B2 (en) heat pump
JP2016048126A (en) Supply water heating system
KR102460317B1 (en) Refrigeration cycle device and its control method
JP2012026637A (en) Heat pump water heater device
JP3516519B2 (en) Engine heat pump outdoor unit
JP5753977B2 (en) Refrigeration cycle equipment
JP2016133238A (en) Heat pump cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899425

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504216

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017899425

Country of ref document: EP

Effective date: 20191009