JP2016048126A - Supply water heating system - Google Patents
Supply water heating system Download PDFInfo
- Publication number
- JP2016048126A JP2016048126A JP2014172515A JP2014172515A JP2016048126A JP 2016048126 A JP2016048126 A JP 2016048126A JP 2014172515 A JP2014172515 A JP 2014172515A JP 2014172515 A JP2014172515 A JP 2014172515A JP 2016048126 A JP2016048126 A JP 2016048126A
- Authority
- JP
- Japan
- Prior art keywords
- water
- temperature side
- heat
- water supply
- low temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 130
- 239000008400 supply water Substances 0.000 title claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 633
- 239000003507 refrigerant Substances 0.000 claims abstract description 76
- 239000012530 fluid Substances 0.000 claims abstract description 72
- 239000007788 liquid Substances 0.000 claims description 23
- 238000010792 warming Methods 0.000 claims description 20
- 238000010079 rubber tapping Methods 0.000 description 9
- 230000001276 controlling effect Effects 0.000 description 8
- 238000001816 cooling Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000005057 refrigeration Methods 0.000 description 4
- 239000002826 coolant Substances 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000008234 soft water Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000008236 heating water Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Landscapes
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
Description
本発明は、ヒートポンプを用いた給水加温システムに関するものである。 The present invention relates to a feed water heating system using a heat pump.
従来、下記特許文献1に開示されるように、ヒートポンプを用いた給水加温システムが知られている。この給水加温システム(1)は、ヒートポンプ(4)と給水加温用熱交換器(12)とを備え、給水路(8)を介した給水タンク(3)への給水は、給水加温用熱交換器(12)、過冷却器(17)および凝縮器(14)を順に通される。給水加温用熱交換器(12)は、給水路(8)を介した給水タンク(3)への給水と、蒸発器(16)を通過後の熱源流体との熱交換器であり、過冷却器(17)は、給水路(8)を介した給水タンク(3)への給水と、凝縮器(14)から膨張弁(15)への冷媒との熱交換器であり、凝縮器(14)は、給水路(8)を介した給水タンク(3)への給水と、圧縮機(13)からの冷媒との熱交換器である。 Conventionally, as disclosed in Patent Document 1 below, a feed water heating system using a heat pump is known. This feed water heating system (1) includes a heat pump (4) and a feed water heating heat exchanger (12), and the feed water to the feed water tank (3) via the feed water channel (8) is the feed water warming. The heat exchanger for heat (12), the supercooler (17) and the condenser (14) are passed in order. The feed water heating heat exchanger (12) is a heat exchanger for supplying water to the feed water tank (3) via the feed water channel (8) and the heat source fluid after passing through the evaporator (16). The cooler (17) is a heat exchanger for supplying water to the water supply tank (3) via the water supply channel (8) and refrigerant from the condenser (14) to the expansion valve (15). 14) is a heat exchanger for supplying water to the water supply tank (3) via the water supply channel (8) and the refrigerant from the compressor (13).
また、下記特許文献2に開示されるように、第1冷凍サイクル(10)と第2冷凍サイクル(10´)とを並列に備えたヒートポンプ装置が知られている。このヒートポンプ装置によれば、配管(16)により、第2冷凍サイクル(10´)の凝縮器(12´)で昇温された中間温水をさらに第1冷凍サイクル(10)の凝縮器(12)に通して高温水化する。
Moreover, as disclosed in
従来技術では、熱源流体の温度が低い場合(たとえば30〜40℃の場合)、ヒートポンプで加温後の出湯温度を高めることが難しい。特に、前記特許文献1に記載の発明では、熱源流体は、ヒートポンプの蒸発器を通された後、給水加温用熱交換器に通されるので、給水加温用熱交換器において、給水の加温を十分に行えないおそれがある。つまり、給水加温用熱交換器において給水を加温するための流体は、ヒートポンプの熱源として利用されて温度低下した後、給水加温用熱交換器に供給されるので、給水加温用熱交換器において、給水の加温を十分に行えないおそれがある。 In the prior art, when the temperature of the heat source fluid is low (for example, 30 to 40 ° C.), it is difficult to increase the temperature of the hot water after heating with a heat pump. In particular, in the invention described in Patent Document 1, since the heat source fluid is passed through the evaporator of the heat pump and then passed to the feed water heating heat exchanger, in the feed water heating heat exchanger, There is a possibility that heating cannot be performed sufficiently. In other words, the fluid for heating the feed water in the feed water heating heat exchanger is used as a heat source for the heat pump, and after being lowered in temperature, is supplied to the feed water heating heat exchanger. In the exchanger, there is a possibility that the water supply cannot be sufficiently heated.
そこで、本発明が解決しようとする課題は、熱源流体の温度が低くても、効率よく給水を所望温度まで加温できる給水加温システムを提供することにある。 Therefore, the problem to be solved by the present invention is to provide a feed water heating system that can efficiently heat feed water to a desired temperature even when the temperature of the heat source fluid is low.
本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、圧縮機、凝縮器、膨張弁および蒸発器が順次環状に接続されて冷媒を循環させるヒートポンプを複数備えると共に、熱源流体との熱交換により通水を加温する給水加温用熱交換器を備え、前記各ヒートポンプの凝縮器は、ヒートポンプの冷媒と通水との熱交換器であり、前記各ヒートポンプの蒸発器は、ヒートポンプの冷媒と熱源流体との熱交換器であり、前記各ヒートポンプの蒸発器に、熱源流体が、設定順序で直列に通されるか、一部または全部の蒸発器には並列に通され、これら各蒸発器への熱源流体の供給とは並列に、前記給水加温用熱交換器に熱源流体が通され、給水路を介した給水タンクへの給水が、前記給水加温用熱交換器に通された後、前記各ヒートポンプの凝縮器に順に通されることを特徴とする給水加温システムである。 The present invention has been made to solve the above problems, and the invention according to claim 1 includes a plurality of heat pumps in which a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected in an annular manner to circulate a refrigerant. A heat exchanger for supplying water that heats the water through heat exchange with the heat source fluid, and the condenser of each heat pump is a heat exchanger between the refrigerant of the heat pump and the water, The evaporator of the heat pump is a heat exchanger between the refrigerant of the heat pump and the heat source fluid, and the heat source fluid passes through the evaporator of each heat pump in series in a set order, or to some or all of the evaporators. Are passed in parallel, and in parallel with the supply of the heat source fluid to each of these evaporators, the heat source fluid is passed through the feed water heating heat exchanger, and the feed water to the feed water tank via the feed water channel is supplied to the feed water After passing through a heat exchanger for heating, A water supply warming system, characterized in that passed sequentially to the condenser of the heat pump.
請求項1に記載の発明によれば、熱源流体は、各ヒートポンプの蒸発器に設定順序で直列に通されるか、一部または全部の蒸発器には並列に通されると共に、これと並列に給水加温用熱交換器に通される。その一方、給水路を介した給水タンクへの給水は、給水加温用熱交換器に通された後、各ヒートポンプの凝縮器に順に通される。給水加温用熱交換器には、各蒸発器と並列に熱源流体が通されるので、各蒸発器を通過後の熱源流体が直列に通される場合と比較して、給水の加温量を増すことができ、各ヒートポンプの効率を向上することができる。また、並列に配置された複数のヒートポンプにより、熱源流体が比較的低温であっても、給水路の通水を所望に加温することができる。 According to the first aspect of the present invention, the heat source fluid is passed through the evaporators of the heat pumps in series in a set order, or is passed in parallel through some or all of the evaporators, and in parallel therewith. Is passed through a heat exchanger for heating the feed water. On the other hand, the water supplied to the water supply tank via the water supply passage is passed through the condenser of each heat pump after being passed through the heat exchanger for water supply heating. Since the heat source fluid is passed in parallel with each evaporator in the heat exchanger for heating the feed water, the heating amount of the feed water is compared with the case where the heat source fluid after passing through each evaporator is passed in series. And the efficiency of each heat pump can be improved. Moreover, even if a heat source fluid is comparatively low temperature by the some heat pump arrange | positioned in parallel, the water flow of a water supply path can be heated as desired.
請求項2に記載の発明は、前記ヒートポンプとして、少なくとも低温側ヒートポンプと高温側ヒートポンプとを備え、前記低温側ヒートポンプは、低温側圧縮機、低温側凝縮器、低温側過冷却器、低温側膨張弁および低温側蒸発器が順次環状に接続されて冷媒を循環させ、前記高温側ヒートポンプは、高温側圧縮機、高温側凝縮器、高温側過冷却器、高温側膨張弁および高温側蒸発器が順次環状に接続されて冷媒を循環させ、前記高温側蒸発器および前記低温側蒸発器に、熱源流体が順に通され、前記給水路を介した前記給水タンクへの給水が、前記給水加温用熱交換器、前記低温側過冷却器、前記低温側凝縮器、前記高温側過冷却器および前記高温側凝縮器に順に通されることを特徴とする請求項1に記載の給水加温システムである。
The invention according to
請求項2に記載の発明によれば、少なくとも低温側ヒートポンプと高温側ヒートポンプとを備え、熱源流体は、高温側蒸発器および低温側蒸発器に順に通されると共に、これと並列に給水加温用熱交換器に通される。その一方、給水路を介した給水タンクへの給水は、給水加温用熱交換器、低温側過冷却器、低温側凝縮器、高温側過冷却器および高温側凝縮器に順に通される。給水加温用熱交換器には、各蒸発器と並列に熱源流体が通されるので、各蒸発器を通過後の熱源流体が直列に通される場合と比較して、給水の加温量を増やすことができ、各ヒートポンプの効率を向上することができる。また、並列に配置された複数のヒートポンプは、比較的高温の給水を加温するヒートポンプほど、比較的高温の熱源流体を用いるので、各ヒートポンプにおける汲み上げ温度差を低減して、ヒートポンプの効率を向上することができる。 According to the second aspect of the present invention, at least a low-temperature side heat pump and a high-temperature side heat pump are provided, and the heat source fluid is passed through the high-temperature side evaporator and the low-temperature side evaporator in this order, and the water supply heating is performed in parallel therewith. Through the heat exchanger. On the other hand, the water supplied to the water supply tank via the water supply passage is sequentially passed through a heat exchanger for water supply heating, a low temperature side subcooler, a low temperature side condenser, a high temperature side subcooler, and a high temperature side condenser. Since the heat source fluid is passed in parallel with each evaporator in the heat exchanger for heating the feed water, the heating amount of the feed water is compared with the case where the heat source fluid after passing through each evaporator is passed in series. And the efficiency of each heat pump can be improved. Also, multiple heat pumps arranged in parallel use a relatively high temperature heat source fluid for heat pumps that heat relatively high temperature feed water, thus reducing the pumping temperature difference in each heat pump and improving the efficiency of the heat pump can do.
請求項3に記載の発明は、前記低温側ヒートポンプは、低温側液ガス熱交換器を備える一方、前記高温側ヒートポンプは、高温側液ガス熱交換器を備え、前記低温側液ガス熱交換器は、前記低温側凝縮器から前記低温側過冷却器への冷媒と、前記低温側蒸発器から前記低温側圧縮機への冷媒との熱交換器であり、前記高温側液ガス熱交換器は、前記高温側凝縮器から前記高温側過冷却器への冷媒と、前記高温側蒸発器から前記高温側圧縮機への冷媒との熱交換器であることを特徴とする請求項2に記載の給水加温システムである。 According to a third aspect of the present invention, the low temperature side heat pump includes a low temperature side liquid gas heat exchanger, while the high temperature side heat pump includes a high temperature side liquid gas heat exchanger, and the low temperature side liquid gas heat exchanger. Is a heat exchanger between the refrigerant from the low temperature side condenser to the low temperature side subcooler and the refrigerant from the low temperature side evaporator to the low temperature side compressor, and the high temperature side liquid gas heat exchanger is The heat exchanger of the refrigerant | coolant from the said high temperature side condenser to the said high temperature side subcooler, and the refrigerant | coolant from the said high temperature side evaporator to the said high temperature side compressor is characterized by the above-mentioned. This is a water heating system.
請求項3に記載の発明によれば、各ヒートポンプに液ガス熱交換器を設置して、各ヒートポンプの効率を向上することができる。凝縮器と過冷却器とを備えるヒートポンプに液ガス熱交換器を設置する場合、文字通り液冷媒とガス冷媒との熱交換を図るために、過冷却器から膨張弁への冷媒と、蒸発器から圧縮機への冷媒とを熱交換させるのが通常であろうが、本請求項に記載の発明では、凝縮器から過冷却器への冷媒と、蒸発器から圧縮機への冷媒とを熱交換させる。比較的高温の凝縮器出口側の冷媒により、ガス冷媒の過熱を確保して、ヒートポンプの効率を向上することができる。
According to invention of
請求項4に記載の発明は、前記給水路を介した前記給水タンクへの給水中、設定条件を満たすと、前記高温側圧縮機の運転を維持しつつ、前記低温側圧縮機の運転を停止することを特徴とする請求項2または請求項3に記載の給水加温システムである。
The invention according to claim 4 stops the operation of the low temperature side compressor while maintaining the operation of the high temperature side compressor when a set condition is satisfied during the water supply to the water supply tank via the water supply channel. The feed water warming system according to
請求項4に記載の発明によれば、給水路を介した給水タンクへの給水中、所望により、低温側圧縮機を停止させて、高温側ヒートポンプのみで給水の加温を図ることができる。 According to the fourth aspect of the present invention, it is possible to stop the low-temperature side compressor and to warm the water supply only with the high-temperature side heat pump, if desired, during the water supply to the water supply tank via the water supply channel.
請求項5に記載の発明は、前記高温側蒸発器への熱源流体温度が低温側停止温度を超えると、前記設定条件を満たしたとして、前記低温側圧縮機を停止することを特徴とする請求項4に記載の給水加温システムである。
The invention according to
請求項5に記載の発明によれば、熱源流体温度が所定より高ければ、低温側圧縮機を停止させて、高温側ヒートポンプのみで給水の加温を図ることができる。これにより、消費電力の削減を図ることができる。 According to the fifth aspect of the present invention, if the heat source fluid temperature is higher than a predetermined temperature, the low-temperature side compressor can be stopped and only the high-temperature side heat pump can warm the supplied water. Thereby, power consumption can be reduced.
請求項6に記載の発明は、前記給水路を介した前記給水タンクへの給水中、前記高温側凝縮器の出口側水温を設定温度に維持するように通水量を調整し、前記通水量を調整するポンプの回転数または弁の開度が低温側停止値を超えると、前記設定条件を満たしたとして、前記低温側圧縮機を停止することを特徴とする請求項4または請求項5に記載の給水加温システムである。 According to a sixth aspect of the present invention, during the water supply to the water supply tank via the water supply channel, the water flow rate is adjusted so as to maintain the outlet water temperature of the high temperature side condenser at a set temperature, and the water flow rate is reduced. The said low temperature side compressor is stopped as the said setting conditions are satisfy | filled when the rotation speed of the pump to adjust or the opening degree of a valve exceeds the low temperature side stop value, The said low temperature side compressor is stopped. This is a water heating system.
請求項6に記載の発明によれば、給水路を介した給水タンクへの給水中、高温側凝縮器の出口側水温を設定温度に維持するように通水量を調整することで、給水源の水温や熱源流体の温度に拘わらず、所望温度の温水を得ることができる。また、通水量を調整するポンプの回転数または弁の開度が所定より大きくなり過ぎると、前記通水量の調整が不可能になるおそれがあるので、低温側圧縮機を停止させることで、出湯温度一定制御を安定して行うことができる。
According to the invention described in
請求項7に記載の発明は、前記給水タンクの水位が低温側停止水位を上回ると、前記設定条件を満たしたとして、前記低温側圧縮機を停止することを特徴とする請求項4〜6のいずれか1項に記載の給水加温システムである。 According to a seventh aspect of the present invention, when the water level of the water supply tank exceeds a low temperature side stop water level, the low temperature side compressor is stopped assuming that the setting condition is satisfied. It is a feed water heating system of any one.
請求項7に記載の発明によれば、給水タンクの水位が所定より高まれば、低温側圧縮機を停止させて、高温側ヒートポンプのみで給水の加温を図るので、給水量を落とした制御が容易となる。 According to the seventh aspect of the present invention, when the water level of the water supply tank becomes higher than a predetermined level, the low temperature side compressor is stopped and the water supply is heated only by the high temperature side heat pump. It becomes easy.
請求項8に記載の発明は、前記給水タンクの水位が下限水位を下回ると、前記給水路を介した前記給水タンクへの給水を開始すると共に、前記各圧縮機を起動し、前記給水タンクの水位が上限水位を上回ると、前記給水路を介した前記給水タンクへの給水を停止すると共に、前記各圧縮機を停止することを特徴とする請求項2〜7のいずれか1項に記載の給水加温システムである。 When the water level of the water supply tank falls below a lower limit water level, the invention according to claim 8 starts water supply to the water supply tank via the water supply channel, starts each compressor, When the water level exceeds an upper limit water level, water supply to the water supply tank via the water supply channel is stopped, and the compressors are stopped. This is a water heating system.
請求項8に記載の発明によれば、給水タンクの水位に応じて、各ヒートポンプを制御して、給水タンクへの給水を制御することができる。
According to invention of
請求項9に記載の発明は、前記各圧縮機の停止状態からの起動時、まずは前記高温側圧縮機を起動し、その後、設定タイミングで前記低温側圧縮機を起動することを特徴とする請求項2〜8のいずれか1項に記載の給水加温システムである。
The invention according to
仮に、先に低温側圧縮機を起動し、遅れて高温側圧縮機を起動すると、高温側圧縮機の起動時に通水温度(高温側凝縮器の出口側水温)が高くなり過ぎるおそれがあるが、請求項9に記載の発明によれば、先に高温側圧縮機を起動し、遅れて低温側圧縮機を起動するので、低温側圧縮機の起動時に通水温度が過度に上昇するのが防止される。
If the low temperature side compressor is started first and the high temperature side compressor is started after a delay, the water flow temperature (the outlet side water temperature of the high temperature side condenser) may become too high when the high temperature side compressor is started. According to the invention of
請求項10に記載の発明は、前記給水加温用熱交換器への熱源流体温度と、前記給水加温用熱交換器の出口側水温との温度差を設定値に維持するように、前記給水加温用熱交換器への熱源流体の供給流量を調整することを特徴とする請求項1〜9のいずれか1項に記載の給水加温システムである。
The invention according to
請求項10に記載の発明によれば、給水加温用熱交換器への熱源流体温度と、給水加温用熱交換器の出口側水温との温度差を設定値に維持するように、給水加温用熱交換器への熱源流体の供給流量を制御することで、給水加温用熱交換器における熱交換効率を高めることができる。また、給水加温用熱交換器への熱源流体温度が、給水加温用熱交換器の入口側水温よりも低い場合には、給水加温用熱交換器への熱源流体の供給が規制されるので、給水加温用熱交換器に熱源流体を通すと却って給水を冷却してしまう不都合が防止される。
According to the invention described in
さらに、請求項11に記載の発明は、前記各ヒートポンプの蒸発器に、熱源流体が設定順序で順に通され、前記各ヒートポンプの蒸発器を通過後の熱源流体温度と、前記給水加温用熱交換器を通過後の熱源流体温度とが等しくなるように、前記各蒸発器と前記給水加温用熱交換器とへの熱源流体の分配割合を調整することを特徴とする請求項1〜9のいずれか1項に記載の給水加温システムである。
Furthermore, in the invention described in
請求項11に記載の発明によれば、各ヒートポンプの蒸発器を通過後の熱源流体温度と、給水加温用熱交換器を通過後の熱源流体温度とが等しくなるように、各蒸発器と給水加温用熱交換器とへの熱源流体の分配割合を調整することで、各ヒートポンプと給水加温用熱交換器とにバランスよく熱を分配することができる。 According to the eleventh aspect of the invention, the heat source fluid temperature after passing through the evaporator of each heat pump and the heat source fluid temperature after passing through the feed water heating heat exchanger are equal to each evaporator. By adjusting the distribution ratio of the heat source fluid to the feed water heating heat exchanger, heat can be distributed in a balanced manner to each heat pump and the feed water heating heat exchanger.
本発明の給水加温システムによれば、熱源流体の温度が低くても、効率よく給水を所望温度まで加温することができる。 According to the feed water heating system of the present invention, even when the temperature of the heat source fluid is low, the feed water can be efficiently heated to a desired temperature.
本発明の一実施形態の給水加温システムは、ヒートポンプを用いて、給水タンクへの給水を加温するシステムである。ヒートポンプとして、蒸気圧縮式のヒートポンプを並列に複数備える。各ヒートポンプは、圧縮機、凝縮器、膨張弁および蒸発器が順次環状に接続されて冷媒を循環させる。各ヒートポンプの凝縮器は、ヒートポンプの冷媒と通水との熱交換器であり、各ヒートポンプの蒸発器は、ヒートポンプの冷媒と熱源流体との熱交換器である。 The water supply warming system of one embodiment of the present invention is a system that heats water supplied to a water supply tank using a heat pump. As a heat pump, a plurality of vapor compression heat pumps are provided in parallel. In each heat pump, a compressor, a condenser, an expansion valve, and an evaporator are sequentially connected in an annular manner to circulate the refrigerant. The condenser of each heat pump is a heat exchanger between the refrigerant of the heat pump and the water flow, and the evaporator of each heat pump is a heat exchanger between the refrigerant of the heat pump and the heat source fluid.
給水加温システムは、さらに、給水加温用熱交換器を備える。この給水加温用熱交換器は、熱源流体との熱交換により通水を加温する。熱源流体は、各ヒートポンプの蒸発器に設定順序で直列に通されるか、一部または全部の蒸発器には並列に通される。そして、これら各熱交換器への熱源流体の供給とは並列に、給水加温用熱交換器に熱源流体が通される。一方、給水路を介した給水タンクへの給水は、給水加温用熱交換器に通された後、各ヒートポンプの凝縮器に順に通される。たとえば、熱源流体は、各ヒートポンプの蒸発器に設定順序で直列に通されると共に、これと並列に給水加温用熱交換器に通される一方、給水タンクへの給水は、給水加温用熱交換器に通された後、熱源流体が通される順序とは逆の順序で、各ヒートポンプの凝縮器に順に通される。 The feed water warming system further includes a feed water warming heat exchanger. This feed water heating heat exchanger warms the water flow by heat exchange with the heat source fluid. The heat source fluid is passed through the evaporators of each heat pump in series in a set order or through some or all of the evaporators in parallel. Then, in parallel with the supply of the heat source fluid to each of these heat exchangers, the heat source fluid is passed through the feed water heating heat exchanger. On the other hand, the water supply to the water supply tank via the water supply channel is passed through the condenser of each heat pump after being passed through the heat exchanger for heating the feed water. For example, the heat source fluid is passed through the evaporators of each heat pump in series in a set order, and in parallel therewith, is passed through a feed water heating heat exchanger, while the feed water to the feed water tank is used for feed water heating. After passing through the heat exchanger, the heat source fluid is sequentially passed through the condenser of each heat pump in the reverse order of passing the heat source fluid.
給水加温用熱交換器には、各蒸発器と並列に熱源流体が通されるので、各蒸発器を通過後の熱源流体が直列に通される場合と比較して、給水の加温量を増やすことができる。ヒートポンプの手前で給水を予熱しておくことで、ヒートポンプの効率を向上することができる。また、並列に配置された複数のヒートポンプにより、熱源流体が比較的低温であっても、給水路の給水を所望に加温することができる。さらに、各蒸発器と並列に給水加温用熱交換器に熱源流体を通すことで、給水加温用熱交換器への熱源流体の供給流量を、各蒸発器への熱源流体の供給流量とは別個に調整することが可能となる。 Since the heat source fluid is passed in parallel with each evaporator in the heat exchanger for heating the feed water, the heating amount of the feed water is compared with the case where the heat source fluid after passing through each evaporator is passed in series. Can be increased. By preheating water supply before the heat pump, the efficiency of the heat pump can be improved. Moreover, even if a heat source fluid is comparatively low temperature, the water supply of a water supply path can be heated as desired with the several heat pump arrange | positioned in parallel. Further, by passing the heat source fluid through the feed water heating heat exchanger in parallel with each evaporator, the supply flow rate of the heat source fluid to the feed water heating heat exchanger is changed to the supply flow rate of the heat source fluid to each evaporator. Can be adjusted separately.
以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の一実施例の給水加温システム1を示す概略図である。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram showing a feed water heating system 1 according to an embodiment of the present invention.
本実施例の給水加温システム1は、ボイラ2の給水タンク3への給水をヒートポンプ4,5で加温できるシステムであり、ボイラ2への給水を貯留する給水タンク3と、この給水タンク3への給水を貯留する補給水タンク6と、この補給水タンク6から給水タンク3への給水を加温するヒートポンプ4,5と、このヒートポンプ4,5の熱源としての熱源水(たとえば廃温水)を貯留する熱源水タンク7とを備える。
The feed water warming system 1 of the present embodiment is a system that can heat feed water to the
ボイラ2は、蒸気ボイラであり、給水タンク3からの給水を加熱して蒸気にする。ボイラ2は、典型的には、蒸気の圧力を所望に維持するように、燃焼量を調整される。また、ボイラ2は、缶体内の水位を所望に維持するように、給水タンク3からボイラ2への給水路またはボイラ2の内部に設けたポンプ8が制御される。ボイラ2からの蒸気は、各種の蒸気使用設備(図示省略)へ送られるが、蒸気使用設備からのドレン(蒸気の凝縮水)を給水タンク3へ戻してもよい。
The
給水タンク3は、補給水タンク6から、ヒートポンプ4,5を介して給水路9により給水可能であると共に、ヒートポンプ4,5を介さずに補給水路10により給水可能である。給水路9に設けた給水ポンプ11と、補給水路10に設けた補給水ポンプ12との作動を制御することで、給水路9と補給水路10との内、いずれか一方または双方を介して、補給水タンク6から給水タンク3へ給水可能である。
The
給水ポンプ11は、本実施例では、インバータにより回転数を制御可能とされる。給水ポンプ11の回転数を変更することで、給水路9を介した給水タンク3への給水流量を調整することができる。一方、補給水ポンプ12は、本実施例では、オンオフ制御される。
In this embodiment, the
補給水タンク6は、給水タンク3への給水を貯留する。補給水タンク6への給水として、本実施例では軟水が用いられる。すなわち、軟水器(図示省略)にて水中の硬度分を除去された軟水は、補給水タンク6に供給され貯留される。補給水タンク6の水位に基づき軟水器からの給水を制御することで、補給水タンク6の水位は所望に維持される。
The
ヒートポンプは、並列に複数設置され、少なくとも低温側ヒートポンプ4と高温側ヒートポンプ5とを備える。各ヒートポンプ4,5は、蒸気圧縮式のヒートポンプである。各ヒートポンプ4,5の冷媒や出力は、同じでもよいし、異なってもよい。たとえば、各ヒートポンプ4,5は、同一冷媒であるが、高温側ヒートポンプ5の圧縮機の出力や質量流量は、低温側ヒートポンプ4より大きく構成される。
A plurality of heat pumps are installed in parallel, and include at least a low temperature side heat pump 4 and a high temperature
低温側ヒートポンプ4は、低温側圧縮機13、低温側凝縮器14、低温側過冷却器15、低温側膨張弁16および低温側蒸発器17が順次環状に接続されて、冷媒を循環させる。低温側ヒートポンプ4は、低温側蒸発器17において、冷媒が外部から熱を奪って気化する一方、低温側凝縮器14および低温側過冷却器15において、冷媒が外部へ放熱して凝縮、過冷却する。これを利用して、低温側ヒートポンプ4は、低温側蒸発器17において熱源水から熱を汲み上げ、低温側過冷却器15および低温側凝縮器14において給水路9の水を加温する。
In the low temperature side heat pump 4, the low
低温側ヒートポンプ4の各構成要素を順に説明する。低温側圧縮機13は、ガス冷媒を圧縮して高温高圧にする。低温側凝縮器14は、低温側ヒートポンプ4の冷媒と給水路9の水とを混ぜることなく熱交換する間接熱交換器であり、低温側圧縮機13からのガス冷媒を凝縮する一方、給水路9の水を加温する。低温側過冷却器15は、低温側ヒートポンプ4の冷媒と給水路9の水とを混ぜることなく熱交換する間接熱交換器であり、低温側凝縮器14からの冷媒を過冷却する一方、給水路9の水を加温する。低温側膨張弁16は、低温側過冷却器15からの液冷媒を通過させることで、冷媒の圧力と温度とを低下させる。低温側蒸発器17は、低温側ヒートポンプ4の冷媒と熱源水とを混ぜることなく熱交換する間接熱交換器であり、低温側膨張弁16からの冷媒を蒸発させる一方、熱源水を冷却する。
Each component of the low temperature side heat pump 4 is demonstrated in order. The low
高温側ヒートポンプ5は、高温側圧縮機18、高温側凝縮器19、高温側過冷却器20、高温側膨張弁21および高温側蒸発器22が順次環状に接続されて、冷媒を循環させる。高温側ヒートポンプ5は、高温側蒸発器22において、冷媒が外部から熱を奪って気化する一方、高温側凝縮器19および高温側過冷却器20において、冷媒が外部へ放熱して凝縮、過冷却する。これを利用して、高温側ヒートポンプ5は、高温側蒸発器22において熱源水から熱を汲み上げ、高温側過冷却器20および高温側凝縮器19において給水路9の水を加温する。
In the high temperature
高温側ヒートポンプ5の各構成要素を順に説明する。高温側圧縮機18は、ガス冷媒を圧縮して高温高圧にする。高温側凝縮器19は、高温側ヒートポンプ5の冷媒と給水路9の水とを混ぜることなく熱交換する間接熱交換器であり、高温側圧縮機18からのガス冷媒を凝縮する一方、給水路9の水を加温する。高温側過冷却器20は、高温側ヒートポンプ5の冷媒と給水路9の水とを混ぜることなく熱交換する間接熱交換器であり、高温側凝縮器19からの冷媒を過冷却する一方、給水路9の水を加温する。高温側膨張弁21は、高温側過冷却器20からの液冷媒を通過させることで、冷媒の圧力と温度とを低下させる。高温側蒸発器22は、高温側ヒートポンプ5の冷媒と熱源水とを混ぜることなく熱交換する間接熱交換器であり、高温側膨張弁21からの冷媒を蒸発させる一方、熱源水を冷却する。
Each component of the high temperature
なお、各ヒートポンプ4,5には、圧縮機13,18の入口側にアキュムレータを設置したり、圧縮機13,18の出口側に油分離器を設置したり、凝縮器14,19の出口側(凝縮器14,19と過冷却器15,20との間)に受液器を設置したりしてもよい。また、各ヒートポンプ4,5の圧縮機13,18は、本実施例では、オンオフ制御され、作動中には、回転数が一定に維持されるが、場合により、所定箇所の温度もしくは圧力または水位などに基づき、インバータにより回転数を変更させてもよい。
In addition, in each
熱源水タンク7は、各ヒートポンプ4,5の熱源としての熱源水を貯留する。熱源水とは、たとえば廃温水(工場などから排出される温水)である。本実施例の給水加温システム1の場合、熱源水温度が比較的低くても(たとえば30〜40℃程度であっても)、後述するように所望温度の温水を製造することができる。なお、熱源水タンク7には、熱源水の供給路23が設けられると共に、所定以上の水をあふれさせるオーバーフロー路24が設けられている。
The heat source water tank 7 stores heat source water as a heat source for the
給水加温システム1は、さらに、給水加温用熱交換器25を備える。この給水加温用熱交換器25は、給水路9を介した給水タンク3への給水と、熱源水タンク7からの熱源水とを混ぜることなく熱交換する間接熱交換器である。
The feed water heating system 1 further includes a feed water
給水路9を介した給水タンク3への給水は、給水加温用熱交換器25、低温側過冷却器15、低温側凝縮器14、高温側過冷却器20および高温側凝縮器19に、順に通される。一方、熱源水タンク7からの熱源水は、低温側蒸発器17、高温側蒸発器22および給水加温用熱交換器25に、設定順序で直列に通されるか、一部または全部の熱交換器には並列に通される。好ましくは、熱源水タンク7からの熱源水は、各蒸発器17,22に設定順序で直列に通されるか並列に通され、これら各蒸発器17,22への熱源水の供給とは並列に、給水加温用熱交換器25に熱源水が通される。
Water supplied to the
本実施例では、熱源水タンク7からの熱源水は、熱源供給ポンプ26を介した後、第一熱源供給路27と第二熱源供給路28とに分岐され、第一熱源供給路27の熱源水は、高温側蒸発器22および低温側蒸発器17を順に通される一方、第二熱源供給路28の熱源水は、給水加温用熱交換器25に通される。つまり、本実施例では、高温側蒸発器22と低温側蒸発器17とに熱源水が順に通されると共に、これと並行に、給水加温用熱交換器25に熱源水が通される。
In the present embodiment, the heat source water from the heat source water tank 7 is branched into a first heat
第二熱源供給路28には、開度調整可能な流量調整弁29が設けられる。この流量調整弁29の開度を調整することで、給水加温用熱交換器25への熱源水の供給流量(通水流量)を調整することができる。
The second heat
給水路9には、高温側凝縮器19の出口側に、出湯温度センサ30が設けられる。出湯温度センサ30は、高温側凝縮器19を通過後の水温を検出する。出湯温度センサ30の検出温度に基づき、給水ポンプ11が制御される。ここでは、給水ポンプ11は、出湯温度センサ30の検出温度を設定温度(たとえば75℃)に維持するようにインバータ制御される。つまり、給水路9を介した給水タンク3への給水は、出湯温度センサ30の検出温度を設定温度に維持するように、流量が調整される。但し、場合により、このような出湯温度センサ30による流量調整制御を省略することもできる。
In the
給水タンク3には、水位検出器31が設けられる。この水位検出器31は、その構成を特に問わないが、本実施例では、電極式水位検出器とされる。この場合、給水タンク3には、長さの異なる複数の電極棒32,33が、その下端部の高さ位置を互いに異ならせて差し込まれて保持されている。具体的には、給水停止電極棒32および給水開始電極棒33が、順に下端部の高さ位置を低くして、給水タンク3に挿入されている。さらに、破線で示すように、低温側停止電極棒34を設けてもよく、その場合、給水停止電極棒32、低温側停止電極棒34および給水開始電極棒33の順に、下端部の高さ位置を低くして、給水タンク3に挿入される。いずれにしても、各電極棒32〜34は、その下端部が水に浸かるか否かにより、下端部における水位の有無を検出する。なお、給水停止電極棒32による検出水位を給水停止水位(上限水位)、給水開始電極棒33による検出水位を給水開始水位(下限水位)、低温側停止電極棒34による検出水位を低温側停止水位ということにする。
A
給水加温用熱交換器25への熱源供給路(第一熱源供給路27と第二熱源供給路28との分岐部よりも上流の共通路であるのが好ましいが、場合により前記分岐部よりも下流の第二熱源供給路28であってもよい)には、給水加温用熱交換器25への熱源水温度を検出する熱源温度センサ35が設けられる。一方、給水路9の内、給水加温用熱交換器25の出口側には、給水加温用熱交換器25の出口側水温を検出する水温センサ36が設けられる。
A heat source supply path to the
各ヒートポンプ4,5(特にその圧縮機13,18)、給水ポンプ11、補給水ポンプ12、熱源供給ポンプ26、流量調整弁29、出湯温度センサ30、水位検出器31、熱源温度センサ35および水温センサ36などは、制御器(図示省略)に接続される。そして、制御器は、各センサ30,31,35,36の検出信号などに基づき、各ヒートポンプ4,5、各ポンプ11,12,26および流量調整弁29などを制御して、以下に述べる各制御を実行する。
Heat pumps 4 and 5 (particularly their
給水路9を介した給水タンク3への給水は、給水タンク3の水位に基づき制御される。具体的には、本実施例では、次のように制御される。いま、給水停止電極棒32が水位を検知し、給水タンク3の水位が十分にある場合(つまり給水停止水位を上回っている場合)、給水タンク3への給水は不要であるから、給水ポンプ11を停止している。給水タンク3からボイラ2への給水により、給水タンク3の水位が下がり、給水開始電極棒33が水位を検知しなくなると(つまり給水開始水位を下回った場合)、給水ポンプ11を作動させる。これにより、給水路9を介して給水タンク3に給水されるが、給水停止電極棒32が水位を検知すると、給水ポンプ11を停止する。
Water supply to the
給水タンク3には、給水路9を介して給水可能であると共に補給水路10を介しても給水可能であるが、給水路9を介した給水が優先されるように制御されるのが好ましい。たとえば、給水タンク3の水位を設定範囲に維持するように、上述したとおり給水路9を介した給水を制御するが、それでは給水タンク3の水位が設定範囲を維持できない場合には、補給水路10を介しても給水タンク3へ給水するのが好ましい。その場合、給水タンク3の水位検出器31は、補給水ポンプ12を発停するための水位(補給水開始水位と補給水停止水位)も検出可能に構成しておけばよい。
Although it is possible to supply water to the
給水路9を介した給水タンク3への給水中(つまり給水ポンプ11の作動中)、熱源供給ポンプ26を作動させると共に、ヒートポンプ4,5(後述するように少なくとも高温側ヒートポンプ5)を作動させる。つまり、熱源供給ポンプ26およびヒートポンプ4,5は、給水ポンプ11と連動するよう発停される。但し、ヒートポンプ4,5の起動時、まずは給水ポンプ11および熱源供給ポンプ26を作動させて、ヒートポンプ4,5への給水および熱源水の供給を確認した後、ヒートポンプ4,5を起動するのが好ましい。なお、ヒートポンプ4,5は、その圧縮機13,18の作動の有無により、運転と停止が切り替えられる。
While supplying water to the
給水路9を介した給水タンク3への給水中、給水ポンプ11は、出湯温度センサ30の検出温度を設定温度に維持するように、回転数をインバータ制御されるのがよい。以下、この制御を、出湯温度一定制御という。
During the water supply to the
ヒートポンプ4,5の起動時、まずは高温側ヒートポンプ5を起動し、その後、設定タイミングで低温側ヒートポンプ4を起動するのがよい。たとえば、まずは高温側ヒートポンプ5を起動し、その起動から設定時間(高温側ヒートポンプ5の運転が安定するまでの時間であり、たとえば5分)後、低温側ヒートポンプ4を起動するのがよい。その理由は、次のとおりである。
When the
すなわち、仮に、低温側ヒートポンプ4を先に起動し、遅れて高温側ヒートポンプ5を起動する場合、低温側ヒートポンプ4のみ運転中でも、前述した出湯温度一定制御により、出湯温度センサ30の検出温度を設定温度に維持するように給水量が調整されるので、その状態で、給水路9の下流側の高温側ヒートポンプ5をさらに起動すると、出湯温度センサ30の検出温度が設定温度を超えるおそれがある。また、比較的高温の水が高温側ヒートポンプ5に通されるので、高温側ヒートポンプ5の起動時、高温側凝縮器19や高温側過冷却器20において冷媒を所望に凝縮できず、高温側ヒートポンプ5の冷媒の圧力や温度が高まり過ぎて、高温側ヒートポンプ5をインターロック停止させるおそれもある。これに対し、高温側ヒートポンプ5を先に起動しておけば、そのような不都合を防止することができる。
That is, if the low temperature side heat pump 4 is started first and the high temperature
ヒートポンプ4,5を運転して、補給水タンク6から給水路9を介して給水タンク3へ給水する際、補給水タンク6からの給水は、給水加温用熱交換器25、低温側過冷却器15、低温側凝縮器14、高温側過冷却器20および高温側凝縮器19に順に通され加温される。一方、熱源水タンク7からの熱源水は、本実施例では、高温側蒸発器22と低温側蒸発器17とに順に通されると共に、これと並行に給水加温用熱交換器25に通される。各蒸発器22,17と給水加温用熱交換器25とに熱源水を直列に順に通す場合と比較して、各蒸発器22,17と給水加温用熱交換器25とに熱源水を並列に通す場合、比較的高温の熱源水を給水加温用熱交換器25に通すことができる。これにより、給水加温用熱交換器25における熱交換量を高めることができ、ヒートポンプ4,5の手前における給水の加温が図られるので、各圧縮機13,18の動力を小さくして、ヒートポンプ4,5の効率を向上することができる。さらに、各蒸発器22,17と給水加温用熱交換器25とに順に熱源水を通した場合、各蒸発器22,17が圧損要素となるが、各蒸発器22,17と給水加温用熱交換器25とに熱源水を並列に通す場合、そのような圧損要素がないというメリットもある。
When the
また、本実施例の給水加温システム1によれば、第一熱源供給路27を介した熱源水は、高温側ヒートポンプ5に通された後、低温側ヒートポンプ4に通される一方、給水路9を介した給水は、低温側ヒートポンプ4に通された後、高温側ヒートポンプ5に通される。このようにして、比較的高温の給水を加温するヒートポンプほど、比較的高温の熱源水を用いるので、各ヒートポンプ4,5における汲み上げ温度差を小さくして、ヒートポンプ4,5の効率を向上することができる。
Moreover, according to the feed water heating system 1 of the present embodiment, the heat source water through the first heat
両ヒートポンプ4,5を運転して、給水路9を介した給水タンク3への給水中、設定条件を満たすと、高温側圧縮機18の運転を維持しつつ、低温側圧縮機13の運転を停止してもよい。つまり、高温側ヒートポンプ5のみを運転しつつ、給水路9を介した給水タンク3への給水を図ってもよい。
When both
たとえば、高温側蒸発器22への熱源水温度が低温側停止温度を超えると、前記設定条件を満たしたとして、低温側圧縮機13を停止させればよい。具体的には、熱源温度センサ35の検出温度が低温側停止温度を超えると、低温側圧縮機13を停止させればよい。その後、給水ポンプ11の作動が継続中であることを前提に、熱源温度センサ35の検出温度が低温側起動温度以下になれば、低温側圧縮機13を起動すればよい。このようにして、熱源水が比較的高温の場合には、高温側ヒートポンプ5のみで給水を所望に加温できるから、低温側ヒートポンプ4を停止させて、消費電力の削減を図ることができる。
For example, when the temperature of the heat source water to the high
また、給水ポンプ11の回転数をインバータで制御しつつ、出湯温度一定制御を実施する場合において、給水ポンプ11の回転数が低温側停止値を超える(たとえば、インバータ制御による給水ポンプ11のモータの駆動周波数が予め設定された最大周波数を超える)と、前記設定条件を満たしたとして、低温側圧縮機13を停止すればよい。その後、給水ポンプ11の作動が継続中であることを前提に、給水ポンプ11の回転数が低温側起動値以下になれば、低温側圧縮機13を起動すればよい。
In addition, in the case where the hot water temperature constant control is performed while controlling the rotation speed of the
出湯温度一定制御により、給水ポンプ11の回転数(周波数)を調整中、通水量(給水ポンプ11の回転数)が高くなり過ぎ、出湯温度センサ30の検出温度を設定温度に維持できないおそれがある場合には、低温側ヒートポンプ4を停止させることで、そのような不都合を防止できる。また、高温側ヒートポンプ5の冷媒圧が高くなり過ぎるのを防止できる。
During the adjustment of the rotation speed (frequency) of the
さらに、給水タンク3の水位検出器31において、前述したとおり、給水停止電極棒32および給水開始電極棒33の他に、低温側停止電極棒34を設けておくなどして、給水停止水位と給水開始水位との間(典型的には中央)で、低温側停止水位を検知可能としておき、給水タンク3の水位が低温側停止水位を上回ると、前記設定条件を満たしたとして、低温側圧縮機13を停止するようにしてもよい。この場合、給水開始電極棒33が水位を検知せず(つまり給水開始水位を下回っており)、両ヒートポンプ4,5が作動中だとして、水位上昇時、低温側停止電極棒34が水位を検知する(つまり低温側停止水位を上回る)と、まずは低温側ヒートポンプ4を停止し、さらに給水停止電極棒32が水位を検知する(つまり給水停止水位を上回る)と、高温側ヒートポンプ5も停止する。その状態から逆に、水位下降時、低温側停止電極棒34が水位を検知しなくなる(つまり低温側停止水位を下回る)と、まずは高温側ヒートポンプ5を起動し、さらに給水開始電極棒33が水位を検知しなくなる(つまり給水開始水位を下回る)と、低温側ヒートポンプ4も起動する。
Further, in the
ところで、給水加温用熱交換器25への熱源水温度と、給水加温用熱交換器25の出口側水温との温度差を設定値に維持するように、給水加温用熱交換器25への熱源水の供給流量を制御するのがよい。具体的には、給水ポンプ11の作動中、水温センサ36の検出温度T1と、熱源温度センサ35の検出温度T2とを比較し、T2−T1が一定温度(たとえば1℃)になるように、流量調整弁29の開度を調整すればよい。これにより、給水加温用熱交換器25への熱源水の供給流量を最小限にできる。また、給水加温用熱交換器25への熱源水温度が、給水加温用熱交換器25の入口側水温よりも低い場合には、給水加温用熱交換器25への熱源水の供給が制限されるので、給水加温用熱交換器25に熱源水を通すと却って給水を冷却してしまう不都合が防止される。
By the way, the
次に、本実施例の給水加温システム1の変形例について説明する。
図2は、図1の給水加温システム1の変形例を示す概略図である。この給水加温システム1は、低温側ヒートポンプ4に低温側液ガス熱交換器37を設ける一方、高温側ヒートポンプ5に高温側液ガス熱交換器38を設けた点が、前記実施例と異なる。
Next, the modification of the feed water heating system 1 of a present Example is demonstrated.
FIG. 2 is a schematic diagram showing a modification of the feed water heating system 1 of FIG. This feed water heating system 1 is different from the above embodiment in that a low temperature side liquid
低温側液ガス熱交換器37は、低温側凝縮器14から低温側過冷却器15への冷媒と、低温側蒸発器17から低温側圧縮機13への冷媒とを混ぜることなく熱交換する間接熱交換器である。一方、高温側液ガス熱交換器38は、高温側凝縮器19から高温側過冷却器20への冷媒と、高温側蒸発器22から高温側圧縮機18への冷媒とを混ぜることなく熱交換する間接熱交換器である。
The low temperature side liquid
仮に、各ヒートポンプ4(5)において、過冷却器15(20)から膨張弁16(21)への冷媒と、蒸発器17(22)から圧縮機13(18)への冷媒とを熱交換するよう液ガス熱交換器を設置すると、過冷却器15(20)で過冷却した後の液冷媒で、圧縮機13(18)への冷媒を加熱することになり、過熱度を確保するのが難しい。これに対し、図2のように、各ヒートポンプ4(5)において、凝縮器14(19)から過冷却器15(20)への冷媒と、蒸発器17(22)から圧縮機13(18)への冷媒とを熱交換するよう液ガス熱交換器37(38)を設置すると、過冷却器15(20)で過冷却する前の比較的高温の冷媒(凝縮器14(19)からの冷媒であり気液二相冷媒でもよい)により、蒸発器17(22)からのガス冷媒の過熱を確保して、ヒートポンプ4(5)の効率を向上することができる。その他の構成および制御は、前記実施例と同様のため、説明を省略する。 Temporarily, in each heat pump 4 (5), heat exchange is performed between the refrigerant from the subcooler 15 (20) to the expansion valve 16 (21) and the refrigerant from the evaporator 17 (22) to the compressor 13 (18). When the liquid gas heat exchanger is installed, the refrigerant to the compressor 13 (18) is heated by the liquid refrigerant after being supercooled by the supercooler 15 (20), and the degree of superheat is ensured. difficult. On the other hand, as shown in FIG. 2, in each heat pump 4 (5), the refrigerant from the condenser 14 (19) to the supercooler 15 (20), and the evaporator 17 (22) to the compressor 13 (18). When the liquid gas heat exchanger 37 (38) is installed so as to exchange heat with the refrigerant to the refrigerant, a relatively high-temperature refrigerant (refrigerant from the condenser 14 (19)) before being supercooled by the supercooler 15 (20). Therefore, the gas refrigerant overheated from the evaporator 17 (22) can be secured, and the efficiency of the heat pump 4 (5) can be improved. Other configurations and controls are the same as those in the above embodiment, and thus the description thereof is omitted.
本発明の給水加温システム1は、前記実施例(変形例を含む)の構成に限らず、適宜変更可能である。特に、複数のヒートポンプ4,5と給水加温用熱交換器25とを備え、熱源水が、各ヒートポンプ4,5の蒸発器17,22に設定順序で直列に通されるか、一部または全部の蒸発器17,22には並列に通され、これら各蒸発器17,22への熱源水の供給とは並列に、給水加温用熱交換器25に熱源水が通される一方、給水路9を介した給水タンク3への給水が、給水加温用熱交換器25に通された後、各ヒートポンプ4,5の凝縮器14,19に順に通されるのであれば、その他の構成(制御を含む)は適宜に変更可能である。たとえば、前記実施例において、各ヒートポンプ4,5の過冷却器15,20は、場合により設置を省略してもよい。
The feed water heating system 1 of the present invention is not limited to the configuration of the above-described embodiment (including the modification), and can be changed as appropriate. In particular, a plurality of
また、前記実施例において、低温側ヒートポンプ4と高温側ヒートポンプ5との間に、第三のヒートポンプを設けてもよい。その場合、その第三のヒートポンプは、蒸発器に、たとえば、高温側ヒートポンプ5から低温側ヒートポンプ4への熱源水が通され、過冷却器および凝縮器に、たとえば、低温側ヒートポンプ4から高温側ヒートポンプ5への給水が通される。同様にして、並列に設置するヒートポンプの数は、適宜に変更可能である。
In the embodiment, a third heat pump may be provided between the low temperature side heat pump 4 and the high temperature
また、前記実施例では、給水加温用熱交換器25への第二熱源供給路28に流量調整弁29を設けたが、給水加温用熱交換器25への熱源水の供給流量(あるいは後述するように第一熱源供給路27と第二熱源供給路28とへの熱源水の供給流量つまり分配割合)を調整可能であれば、その具体的構成は適宜に変更可能である。
Moreover, in the said Example, although the flow
たとえば、前記実施例では、第一熱源供給路27との分岐後の第二熱源供給路28に流量調整弁29を設け、この流量調整弁29を熱源温度センサ35と水温センサ36の各検出温度に基づき制御したが、第二熱源供給路28に流量調整弁29を設ける代わりに、第一熱源供給路27と第二熱源供給路28との分岐部に、図1において破線で示すように三方弁39を設けてもよい。三方弁39は、熱源供給ポンプ26からの熱源水について、第一熱源供給路27と第二熱源供給路28への分配割合を調整する。前記実施例と同様に、給水加温用熱交換器25への熱源水温度と、給水加温用熱交換器25の出口側水温との温度差を設定値に維持するように、三方弁39による分配割合を調整して、給水加温用熱交換器25への熱源水の供給流量を調整してもよい。
For example, in the embodiment described above, the flow
また、このような三方弁39を設けた場合(あるいは前記実施例と同様に流量調整弁29を設けた場合)において、給水加温用熱交換器25への熱源水温度と、給水加温用熱交換器25の出口側水温との温度差を設定値に維持するように、給水加温用熱交換器25への熱源水の供給流量を制御することに代えて、次のように制御してもよい。すなわち、低温側蒸発器17と高温側蒸発器22とに、熱源水が設定順序で順に通され、これら各蒸発器17,22への熱源水の供給とは並列に、給水加温用熱交換器25に熱源水が通されるシステムにおいて、各蒸発器17,22を通過後の熱源水温度と、給水加温用熱交換器25を通過後の熱源水温度とが等しくなるように、各蒸発器17,22と給水加温用熱交換器25とへの熱源水の分配割合を調整してもよい。たとえば、図1において、熱源供給ポンプ26の作動中、低温側蒸発器17の出口側の熱源水温度(A点の温度)と、給水加温用熱交換器25の出口側の熱源水温度(B点の温度)とをそれぞれ温度センサ(図示省略)で監視し、両温度が等しくなるように三方弁39などを制御すればよい。この場合、各蒸発器17,22および給水加温用熱交換器25にバランスよく熱を分配することができる。
Further, when such a three-
また、前記実施例では、給水路9を介した給水タンク3への給水流量を調整するために、給水ポンプ11をインバータ制御したが、給水ポンプ11をオンオフ制御しつつ、給水路9に設けたバルブの開度を調整してもよい。つまり、出湯温度センサ30の検出温度などに基づき給水路9を介した給水の流量を調整可能であれば、その流量調整方法は適宜に変更可能である。
Moreover, in the said Example, although the
また、前記実施例では、給水ポンプ11の回転数をインバータで制御しつつ、出湯温度一定制御を実施する場合において、給水ポンプ11の回転数(周波数)が低温側停止値を超えると、設定条件を満たしたとして、低温側圧縮機13を停止させた。これに関し、給水ポンプ11をインバータ制御するのではなく、給水路9の通水流量をバルブの開度調整で行う場合、次のように制御してもよい。すなわち、そのバルブの開度が低温側停止値を超えると、前記設定条件を満たしたとして、低温側圧縮機13を停止させてもよい。その後、バルブの開度が低温側起動値以下になれば、低温側圧縮機13を起動すればよい。
Moreover, in the said Example, when controlling the hot water temperature constant control, controlling the rotation speed of the
また、前記実施例では、給水タンク3への給水を貯留するために補給水タンク6を設置したが、場合により補給水タンク6の設置を省略して、給水源から直接に給水路9および補給水路10に水を通してもよい。
Moreover, in the said Example, although the
また、前記実施例では、給水路9および/または補給水路10を介して、補給水タンク6から給水タンク3へ給水可能としたが、これら給水は、軟水器から直接に行ってもよい。たとえば、図1において、給水路9および補給水路10の基端部をまとめて軟水器に接続し、給水ポンプ11の設置を省略する代わりに給水路9に設けた電動弁(モータバルブ)の開度を調整し、補給水ポンプ12の設置を省略する代わりに補給水路10に設けた電磁弁の開閉を制御すればよい。
Moreover, in the said Example, although the water supply from the
また、前記実施例では、ボイラ2の給水タンク3への給水をヒートポンプ4,5で加温できるシステムについて説明したが、給水タンク3の貯留水の利用先は、ボイラ2に限らず適宜に変更可能である。そして、場合により、補給水タンク6や補給水路10を省略してもよい。
Moreover, although the said Example demonstrated the system which can heat the water supply to the
また、前記実施例では、ヒートポンプ4,5の熱源(給水加温用熱交換器25において給水を加温する流体でもある。)として熱源水を用いた例について説明したが、ヒートポンプ4,5の熱源流体として、熱源水に限らず、空気や排ガスなど各種の流体を用いることができる。
Moreover, although the said Example demonstrated the example using heat source water as a heat source of the heat pumps 4 and 5 (it is also a fluid which heats water supply in the
さらに、前記実施例では、ヒートポンプ4,5の圧縮機13,18は、電気モータにより駆動されたが、圧縮機13,18の駆動源は特に問わない。たとえば、圧縮機13,18は、電気モータに代えてまたはそれに加えて、蒸気を用いて動力を起こすスチームモータ(蒸気エンジン)により駆動されたり、ガスエンジンにより駆動されたりしてもよい。その場合、スチームモータへの給蒸量を調整したり、ガスエンジンへの供給ガス量を調整したりして、圧縮機13,18の出力が調整可能である。
Furthermore, in the said Example, although the
1 給水加温システム
3 給水タンク
4 低温側ヒートポンプ
5 高温側ヒートポンプ
7 熱源水タンク
9 給水路
11 給水ポンプ
13 低温側圧縮機
14 低温側凝縮器
15 低温側過冷却器
16 低温側膨張弁
17 低温側蒸発器
18 高温側圧縮機
19 高温側凝縮器
20 高温側過冷却器
21 高温側膨張弁
22 高温側蒸発器
25 給水加温用熱交換器
26 熱源供給ポンプ
27 第一熱源供給路
28 第二熱源供給路
29 流量調整弁
30 出湯温度センサ
31 水位検出器
32 給水停止電極棒
33 給水開始電極棒
34 低温側停止電極棒
35 熱源温度センサ
36 水温センサ
37 低温側液ガス熱交換器
38 高温側液ガス熱交換器
39 三方弁
DESCRIPTION OF SYMBOLS 1 Water
Claims (11)
前記各ヒートポンプの凝縮器は、ヒートポンプの冷媒と通水との熱交換器であり、
前記各ヒートポンプの蒸発器は、ヒートポンプの冷媒と熱源流体との熱交換器であり、
前記各ヒートポンプの蒸発器に、熱源流体が、設定順序で直列に通されるか、一部または全部の蒸発器には並列に通され、
これら各蒸発器への熱源流体の供給とは並列に、前記給水加温用熱交換器に熱源流体が通され、
給水路を介した給水タンクへの給水が、前記給水加温用熱交換器に通された後、前記各ヒートポンプの凝縮器に順に通される
ことを特徴とする給水加温システム。 A compressor, a condenser, an expansion valve, and an evaporator are sequentially connected in a ring to provide a plurality of heat pumps that circulate the refrigerant, and a heat exchanger for heating the feed water that heats water through heat exchange with the heat source fluid. ,
The condenser of each heat pump is a heat exchanger between the heat pump refrigerant and water flow,
The evaporator of each heat pump is a heat exchanger between the heat pump refrigerant and the heat source fluid,
The heat source fluid is passed in series in a set order to the evaporator of each heat pump, or in parallel to some or all of the evaporators,
In parallel with the supply of the heat source fluid to each of these evaporators, the heat source fluid is passed through the heat exchanger for heating the feed water,
The water supply heating system, wherein water supplied to the water supply tank through the water supply passage is passed through the condenser for each of the heat pumps after passing through the heat exchanger for water supply heating.
前記低温側ヒートポンプは、低温側圧縮機、低温側凝縮器、低温側過冷却器、低温側膨張弁および低温側蒸発器が順次環状に接続されて冷媒を循環させ、
前記高温側ヒートポンプは、高温側圧縮機、高温側凝縮器、高温側過冷却器、高温側膨張弁および高温側蒸発器が順次環状に接続されて冷媒を循環させ、
前記高温側蒸発器および前記低温側蒸発器に、熱源流体が順に通され、
前記給水路を介した前記給水タンクへの給水が、前記給水加温用熱交換器、前記低温側過冷却器、前記低温側凝縮器、前記高温側過冷却器および前記高温側凝縮器に順に通される
ことを特徴とする請求項1に記載の給水加温システム。 As the heat pump, at least a low temperature side heat pump and a high temperature side heat pump are provided,
The low temperature side heat pump has a low temperature side compressor, a low temperature side condenser, a low temperature side subcooler, a low temperature side expansion valve and a low temperature side evaporator connected in an annular manner in order to circulate the refrigerant,
In the high temperature side heat pump, a high temperature side compressor, a high temperature side condenser, a high temperature side subcooler, a high temperature side expansion valve and a high temperature side evaporator are sequentially connected in an annular manner to circulate the refrigerant,
A heat source fluid is sequentially passed through the high temperature side evaporator and the low temperature side evaporator,
The water supply to the water supply tank via the water supply path is sequentially supplied to the water supply heating heat exchanger, the low temperature side subcooler, the low temperature side condenser, the high temperature side subcooler, and the high temperature side condenser. The feed water warming system according to claim 1, wherein the feed water warming system is passed through.
前記低温側液ガス熱交換器は、前記低温側凝縮器から前記低温側過冷却器への冷媒と、前記低温側蒸発器から前記低温側圧縮機への冷媒との熱交換器であり、
前記高温側液ガス熱交換器は、前記高温側凝縮器から前記高温側過冷却器への冷媒と、前記高温側蒸発器から前記高温側圧縮機への冷媒との熱交換器である
ことを特徴とする請求項2に記載の給水加温システム。 While the low temperature side heat pump comprises a low temperature side liquid gas heat exchanger, the high temperature side heat pump comprises a high temperature side liquid gas heat exchanger,
The low temperature side liquid gas heat exchanger is a heat exchanger between the refrigerant from the low temperature side condenser to the low temperature side subcooler and the refrigerant from the low temperature side evaporator to the low temperature side compressor.
The high temperature side liquid gas heat exchanger is a heat exchanger between the refrigerant from the high temperature side condenser to the high temperature side subcooler and the refrigerant from the high temperature side evaporator to the high temperature side compressor. The feed water heating system according to claim 2, wherein
ことを特徴とする請求項2または請求項3に記載の給水加温システム。 The operation of the low temperature side compressor is stopped while maintaining the operation of the high temperature side compressor when a set condition is satisfied during water supply to the water supply tank via the water supply path. Or the feed water heating system of Claim 3.
ことを特徴とする請求項4に記載の給水加温システム。 The feed water heating system according to claim 4, wherein when the heat source fluid temperature to the high temperature side evaporator exceeds a low temperature side stop temperature, the low temperature side compressor is stopped assuming that the setting condition is satisfied. .
前記通水量を調整するポンプの回転数または弁の開度が低温側停止値を超えると、前記設定条件を満たしたとして、前記低温側圧縮機を停止する
ことを特徴とする請求項4または請求項5に記載の給水加温システム。 During the water supply to the water supply tank via the water supply path, the water flow rate is adjusted to maintain the outlet side water temperature of the high temperature side condenser at a set temperature,
The said low temperature side compressor is stopped as the said setting conditions are satisfy | filled when the rotation speed of the pump which adjusts the said water flow rate, or the opening degree of a valve exceeds a low temperature side stop value, The said low temperature side compressor is stopped. Item 6. A water heating system according to Item 5.
ことを特徴とする請求項4〜6のいずれか1項に記載の給水加温システム。 When the water level of the water supply tank exceeds a low-temperature-side stop water level, the low-temperature-side compressor is stopped on the assumption that the set condition is satisfied. Temperature system.
前記給水タンクの水位が上限水位を上回ると、前記給水路を介した前記給水タンクへの給水を停止すると共に、前記各圧縮機を停止する
ことを特徴とする請求項2〜7のいずれか1項に記載の給水加温システム。 When the water level of the water supply tank is below the lower limit water level, the water supply to the water supply tank via the water supply path is started, and each compressor is started,
When the water level of the water supply tank exceeds an upper limit water level, water supply to the water supply tank via the water supply channel is stopped, and the compressors are stopped. Water supply heating system according to item.
ことを特徴とする請求項2〜8のいずれか1項に記載の給水加温システム。 The start of the high temperature side compressor when starting each compressor from a stopped state, and then starting the low temperature side compressor at a set timing. Water supply heating system described in 1.
ことを特徴とする請求項1〜9のいずれか1項に記載の給水加温システム。 In order to maintain the temperature difference between the heat source fluid temperature to the feed water heating heat exchanger and the outlet water temperature of the feed water warming heat exchanger at a set value, the feed water heating heat exchanger The supply water heating system according to any one of claims 1 to 9, wherein a supply flow rate of the heat source fluid is adjusted.
前記各ヒートポンプの蒸発器を通過後の熱源流体温度と、前記給水加温用熱交換器を通過後の熱源流体温度とが等しくなるように、前記各蒸発器と前記給水加温用熱交換器とへの熱源流体の分配割合を調整する
ことを特徴とする請求項1〜9のいずれか1項に記載の給水加温システム。 The heat source fluid is sequentially passed through the evaporators of the heat pumps in a set order,
Each evaporator and the feed water heating heat exchanger so that the heat source fluid temperature after passing through the evaporator of each heat pump and the heat source fluid temperature after passing through the feed water heating heat exchanger are equal. The feed water heating system according to any one of claims 1 to 9, wherein a distribution ratio of the heat source fluid to the water is adjusted.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014172515A JP6341465B2 (en) | 2014-08-27 | 2014-08-27 | Water heating system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014172515A JP6341465B2 (en) | 2014-08-27 | 2014-08-27 | Water heating system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016048126A true JP2016048126A (en) | 2016-04-07 |
JP6341465B2 JP6341465B2 (en) | 2018-06-13 |
Family
ID=55649130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014172515A Expired - Fee Related JP6341465B2 (en) | 2014-08-27 | 2014-08-27 | Water heating system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6341465B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109237792A (en) * | 2018-10-24 | 2019-01-18 | 大连民族大学 | A kind of heating device for low temperature hot spring bubble pond |
JPWO2018163426A1 (en) * | 2017-03-10 | 2019-06-27 | 三菱電機株式会社 | Heat medium supply system |
JP2020051643A (en) * | 2018-09-25 | 2020-04-02 | 三浦工業株式会社 | Hot water manufacturing system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6023669U (en) * | 1983-07-25 | 1985-02-18 | 株式会社日立製作所 | heat pump equipment |
JPS6038561A (en) * | 1983-08-11 | 1985-02-28 | ダイキン工業株式会社 | Heater for composite heat pump |
JP2012017926A (en) * | 2010-07-08 | 2012-01-26 | Miura Co Ltd | Steam system |
JP2012097941A (en) * | 2010-11-01 | 2012-05-24 | Miura Co Ltd | Water supply heating system |
JP2013210118A (en) * | 2012-03-30 | 2013-10-10 | Miura Co Ltd | Feed water heating system |
JP2013238337A (en) * | 2012-05-15 | 2013-11-28 | Miura Co Ltd | Water supply heating system |
-
2014
- 2014-08-27 JP JP2014172515A patent/JP6341465B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6023669U (en) * | 1983-07-25 | 1985-02-18 | 株式会社日立製作所 | heat pump equipment |
JPS6038561A (en) * | 1983-08-11 | 1985-02-28 | ダイキン工業株式会社 | Heater for composite heat pump |
JP2012017926A (en) * | 2010-07-08 | 2012-01-26 | Miura Co Ltd | Steam system |
JP2012097941A (en) * | 2010-11-01 | 2012-05-24 | Miura Co Ltd | Water supply heating system |
JP2013210118A (en) * | 2012-03-30 | 2013-10-10 | Miura Co Ltd | Feed water heating system |
JP2013238337A (en) * | 2012-05-15 | 2013-11-28 | Miura Co Ltd | Water supply heating system |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2018163426A1 (en) * | 2017-03-10 | 2019-06-27 | 三菱電機株式会社 | Heat medium supply system |
JP2020051643A (en) * | 2018-09-25 | 2020-04-02 | 三浦工業株式会社 | Hot water manufacturing system |
CN109237792A (en) * | 2018-10-24 | 2019-01-18 | 大连民族大学 | A kind of heating device for low temperature hot spring bubble pond |
Also Published As
Publication number | Publication date |
---|---|
JP6341465B2 (en) | 2018-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6694582B2 (en) | Water supply heating system | |
JP2014194315A (en) | Water supply and heating system | |
JP6132188B2 (en) | Water heating system | |
KR101613374B1 (en) | Hot water supply device | |
JP6065213B2 (en) | Water heating system | |
JP6341465B2 (en) | Water heating system | |
JP6164565B2 (en) | Water heating system | |
JP5962972B2 (en) | Water heating system | |
JP6421496B2 (en) | Water heating system | |
JP6090568B2 (en) | Water heating system | |
JP6237109B2 (en) | Water heating system | |
JP6066072B2 (en) | Water heating system | |
JP2015081708A (en) | Water supply heating system | |
JP6249282B2 (en) | Water heating system | |
JP6066071B2 (en) | Water heating system | |
JP5962971B2 (en) | Water heating system | |
JP6083509B2 (en) | Water heating system | |
JP6065212B2 (en) | Water heating system | |
JP2013238336A (en) | Water supply heating system | |
JP6210204B2 (en) | Water heating system | |
JP2017146034A (en) | Feedwater heating system | |
JP2014169822A (en) | Feedwater heating system | |
JP6083508B2 (en) | Water heating system | |
JP2013238335A (en) | Water supply heating system | |
JP2015132445A (en) | Feedwater heating system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170626 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180314 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180409 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180423 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6341465 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180506 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |