WO2022030103A1 - Hot water supply system - Google Patents

Hot water supply system Download PDF

Info

Publication number
WO2022030103A1
WO2022030103A1 PCT/JP2021/022165 JP2021022165W WO2022030103A1 WO 2022030103 A1 WO2022030103 A1 WO 2022030103A1 JP 2021022165 W JP2021022165 W JP 2021022165W WO 2022030103 A1 WO2022030103 A1 WO 2022030103A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
refrigerant
heat exchanger
water
hot water
Prior art date
Application number
PCT/JP2021/022165
Other languages
French (fr)
Japanese (ja)
Inventor
有也 三津
和之 大谷
Original Assignee
三浦工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020131897A external-priority patent/JP7508933B2/en
Application filed by 三浦工業株式会社 filed Critical 三浦工業株式会社
Priority to CN202180041842.XA priority Critical patent/CN115943276A/en
Priority to KR1020227041008A priority patent/KR20230047326A/en
Publication of WO2022030103A1 publication Critical patent/WO2022030103A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type

Definitions

  • the present invention relates to a hot water supply system.
  • COP coefficient of performance
  • Patent Documents 1 and 2 a supercooler is provided after the condenser of the heat pump circuit, and the stored water in the hot water storage tank is circulated and heated in the condenser, while the supercooler is used in the hot water storage tank.
  • a hot water supply system configured to circulate and preheat make-up water is described.
  • the present invention has been made in view of the above problems, and is a hot water supply system capable of preventing damage to the compressor in a configuration in which a heat exchanger for heating stored water and a heat exchanger for heating make-up water are provided in a heat pump circuit.
  • the purpose is to provide.
  • the compressor, the first heat exchanger for heat dissipation, the second heat exchanger for heat dissipation, the expansion valve and the heat exchanger for heat absorption are connected in an annular shape by a refrigerant circulation line, and the first is driven by the compressor.
  • a steam compression type heat pump circuit that takes out heat from the heat exchanger for heat dissipation and / or the second heat exchanger for heat dissipation, a hot water storage tank that stores make-up water, and the water stored in the hot water storage tank for the first heat dissipation.
  • the present invention relates to a hot water supply system including a refrigerant temperature adjusting means for controlling the heat and a control means for controlling the refrigerant temperature adjusting means.
  • the refrigerant temperature adjusting means of the hot water supply system is connected to a temperature sensor that detects the temperature of the liquid refrigerant flowing into the expansion valve and the refrigerant circulation line, and supplies the refrigerant to the second heat dissipation heat exchanger.
  • the control means includes a first bypass line to be bypassed, a first distribution valve for adjusting the distribution amount of the refrigerant to be supplied to the second heat dissipation heat exchanger and the refrigerant to be supplied to the first bypass line. It is preferable to control the first distribution valve so that the detection temperature of the temperature sensor reaches the target temperature while the compressor is being driven.
  • the refrigerant temperature adjusting means of the hot water supply system includes a temperature sensor that detects the temperature of the liquid refrigerant flowing into the expansion valve, a pressure sensor that detects the pressure of the liquid refrigerant flowing into the expansion valve, and the refrigerant circulation line.
  • a first bypass line that is connected to and bypasses the refrigerant to the second heat dissipation heat exchanger, and a refrigerant that is supplied to the second heat dissipation heat exchanger and a refrigerant that is supplied to the first bypass line.
  • a first distribution valve for adjusting the distribution amount is provided, and the control means obtains the condensation temperature of the gas refrigerant from the detection pressure of the pressure sensor while the compressor is being driven, and obtains the condensation temperature of the gas refrigerant from the condensation temperature of the temperature sensor. It is preferable to calculate the degree of overcooling of the liquid refrigerant by subtracting the detected temperature, and control the first distribution valve so that the calculated degree of overcooling becomes the target degree of overcooling.
  • the refrigerant temperature adjusting means of the hot water supply system is connected to a temperature sensor that detects the temperature of the liquid refrigerant flowing into the expansion valve and the make-up water line, and makes up water for the second heat dissipation heat exchanger.
  • a second bypass line for bypassing the above, and a second distribution valve for adjusting the distribution amount of the make-up water supplied to the second heat dissipation heat exchanger and the make-up water supplied to the second bypass line are provided. It is preferable that the control means controls the second distribution valve so that the detection temperature of the temperature sensor reaches the target temperature while the compressor is being driven.
  • the refrigerant temperature adjusting means of the hot water supply system includes a temperature sensor that detects the temperature of the liquid refrigerant flowing into the expansion valve, a pressure sensor that detects the pressure of the liquid refrigerant flowing into the expansion valve, and the make-up water line.
  • a second bypass line that is connected to the second heat dissipation heat exchanger to bypass the make-up water, and the make-up water to be supplied to the second heat dissipation heat exchanger and the second bypass line.
  • a second distribution valve for adjusting the distribution amount of make-up water is provided, and the control means obtains the condensation temperature of the gas refrigerant from the detection pressure of the pressure sensor while the compressor is being driven, and the condensation temperature is used to obtain the condensation temperature. It is preferable to calculate the degree of supercooling of the liquid refrigerant by subtracting the detected temperature of the temperature sensor, and control the second distribution valve so that the calculated degree of supercooling becomes the target degree of supercooling.
  • the refrigerant temperature adjusting means of the hot water supply system is connected to a temperature sensor that detects the temperature of the liquid refrigerant flowing into the expansion valve and the refrigerant circulation line, and supplies the refrigerant to the first heat dissipation heat exchanger.
  • the control means includes a third bypass line to be bypassed, a third distribution valve for adjusting the distribution amount of the refrigerant to be supplied to the first heat dissipation heat exchanger and the refrigerant to be supplied to the third bypass line. It is preferable to control the third distribution valve so that the detection temperature of the temperature sensor reaches the target temperature while the compressor is being driven.
  • the refrigerant temperature adjusting means of the hot water supply system includes a temperature sensor that detects the temperature of the liquid refrigerant flowing into the expansion valve, a pressure sensor that detects the pressure of the liquid refrigerant flowing into the expansion valve, and the refrigerant circulation line.
  • a third bypass line that is connected to the first heat dissipation heat exchanger and bypasses the refrigerant, and a refrigerant that is supplied to the first heat dissipation heat exchanger and a refrigerant that is supplied to the third bypass line.
  • a third distribution valve for adjusting the distribution amount is provided, and the control means obtains the condensation temperature of the gas refrigerant from the detection pressure of the pressure sensor while the compressor is being driven, and obtains the condensation temperature of the gas refrigerant from the condensation temperature of the temperature sensor. It is preferable to calculate the degree of overcooling of the liquid refrigerant by subtracting the detected temperature, and control the third distribution valve so that the calculated degree of overcooling becomes the target degree of overcooling.
  • the refrigerant temperature adjusting means of the hot water supply system is connected to a temperature sensor that detects the temperature of the liquid refrigerant flowing into the expansion valve and the water circulation line, and supplies circulating water to the first heat dissipation heat exchanger.
  • a fourth bypass line for bypassing, and a fourth distribution valve for adjusting the distribution amount of the circulating water supplied to the first heat dissipation heat exchanger and the circulating water supplied to the fourth bypass line are provided. It is preferable that the control means controls the fourth distribution valve so that the detection temperature of the temperature sensor reaches the target temperature while the compressor is being driven.
  • the refrigerant temperature adjusting means of the hot water supply system includes a temperature sensor that detects the temperature of the liquid refrigerant flowing into the expansion valve, a pressure sensor that detects the pressure of the liquid refrigerant flowing into the expansion valve, and the water circulation line.
  • a fourth bypass line that is connected and bypasses the circulating water to the first heat dissipation heat exchanger, circulating water to be supplied to the first heat dissipation heat exchanger, and circulation to be supplied to the fourth bypass line.
  • a fourth distribution valve for adjusting the distribution amount of water is provided, and the control means obtains the condensation temperature of the gas refrigerant from the detection pressure of the pressure sensor while the compressor is being driven, and the temperature is derived from the condensation temperature. It is preferable to calculate the degree of supercooling of the liquid refrigerant by subtracting the detection temperature of the sensor, and control the fourth distribution valve so that the calculated degree of supercooling becomes the target degree of supercooling.
  • a hot water supply system capable of preventing damage to the compressor in a configuration in which a heat exchanger for heating stored water and a heat exchanger for heating make-up water are provided in a heat pump circuit.
  • line is a general term for lines capable of flowing fluids such as flow paths, routes, and pipelines.
  • FIG. 1 is a diagram schematically showing a configuration of a hot water supply system 1 according to the present embodiment.
  • the hot water supply system 1 of the present embodiment includes a heat pump circuit 10, a hot water storage tank 60, a water circulation line L1 that circulates the stored water W3 in the hot water storage tank 60 as circulating water W1, and make-up water W2.
  • a make-up water line L2 for supplying to the hot water storage tank 60 and a control unit 100 are provided.
  • the hot water supply system 1 is a system that supplies the stored water W3 in the hot water storage tank 60 heated by the heat pump circuit 10 as hot water supply water W4 to a hot water demand point or a hot water demand place.
  • the heat pump circuit 10 includes a compressor 11, a first heat heat exchanger 12A (condenser 12A), a second heat exchanger 12B (supercooler 12B), an expansion valve 13, and a heat absorption heat exchanger 14 (evaporation).
  • the vessel 14) is annularly connected by the refrigerant circulation line L9, and is absorbed by the heat absorption heat exchanger 14 by the drive of the compressor 11 and is absorbed by the first heat dissipation heat exchanger 12A and / or the second heat dissipation heat exchanger 12B. It is a steam compression type heat pump circuit that takes out heat.
  • Refrigerant R flows through the refrigerant circulation line L9.
  • the compressor 11 has an electric motor 15 as a drive source, and compresses a gaseous refrigerant R (gas refrigerant R) such as Freon gas into a high-temperature and high-pressure refrigerant R.
  • the first heat exchanger 12A is a condenser that dissipates heat to the circulating water W1 sent through the water circulation line L1 and condenses the refrigerant R from the compressor 11.
  • the second heat exchanger 12B dissipates heat to the make-up water W2 sent through the make-up water line L2, and supercools the refrigerant R (liquid refrigerant R) that has passed through the first heat exchanger 12A. It is a cooler.
  • the expansion valve 13 reduces the pressure and temperature of the refrigerant R by passing the refrigerant R sent from the second heat dissipation heat exchanger 12B.
  • the endothermic heat exchanger 14 is an evaporator that absorbs heat from the heat source fluid and evaporates the refrigerant R sent from the expansion valve 13.
  • the heat source fluid various fluids such as heat source air and heat source water can be used.
  • the first heat radiating heat exchanger 12A for heating the stored water indirectly exchanges heat between the circulating water W1 and the refrigerant R, and dissipates the latent heat and sensible heat of the refrigerant R.
  • the first heat exchanger 12A condenses and liquefies the refrigerant R using the circulating water W1 and heats the circulating water W1 using the refrigerant R.
  • the second heat radiating heat exchanger 12B for heating the make-up water indirectly exchanges heat between the make-up water W2 and the refrigerant R, and dissipates the apparent heat of the refrigerant R.
  • the second heat exchanger 12B supercools the refrigerant R using the make-up water W2 and heats the make-up water W2 using the refrigerant R.
  • the design of the heat exchanger can be facilitated and the cost can be reduced.
  • a general-purpose heat exchanger can be used. If the condensed liquefaction of the gas refrigerant R in the first heat exchanger 12A stops at a partial phase change due to operating conditions or the like, the remaining gas refrigerant R in the second heat exchanger 12B Condensation is performed.
  • the expansion valve 13 is configured as a proportionally controlled needle valve, and the stroke of the needle valve is changed by controlling the rotation speed of the drive stepping motor to adjust the valve opening degree, thereby adjusting the flow rate of the refrigerant R flowing through the refrigerant circulation line L9. Can be adjusted.
  • the refrigerant R takes heat from the outside and vaporizes
  • the heat pump circuit 10 takes heat from the outside and vaporizes it.
  • the refrigerant R dissipates heat to the outside, condenses and liquefies, and is overcooled.
  • the heat pump circuit 10 draws heat from the heat source fluid by the endothermic heat exchanger 14, heats the circulating water W1 by the first heat exchanger 12A, and heats the second heat dissipation.
  • the make-up water W2 is heated by the exchanger 12B.
  • the heat pump circuit 10 of the present embodiment is further connected to a refrigerant temperature sensor 16 as a temperature sensor for detecting the temperature of the liquid refrigerant R flowing into the expansion valve 13 and a refrigerant circulation line L9, and is connected to a second heat exchanger 12B for heat dissipation.
  • the distribution amount of the first bypass line L11 for bypassing the liquid refrigerant R, the liquid refrigerant R to be supplied to the second heat exchanger 12B, and the liquid refrigerant R to be supplied to the first bypass line L11 is adjusted.
  • a first distribution valve 31 is provided.
  • the first bypass line L11 branches from the refrigerant circulation line L9 on the upstream side of the second heat dissipation heat exchanger 12B (between the first heat dissipation heat exchanger 12A and the second heat dissipation heat exchanger 12B), and is the second. 2
  • the heat exchanger 12B merges with the refrigerant circulation line L9.
  • the refrigerant temperature sensor 16 is located on the downstream side of the confluence of the refrigerant circulation line L9 and the first bypass line L11, and is arranged on the upstream side of the expansion valve 13. More preferably, the refrigerant temperature sensor 16 is arranged on the upstream side of the expansion valve 13 and in the vicinity of the expansion valve 13 in order to measure the temperature of the refrigerant R immediately before flowing into the expansion valve 13.
  • the first distribution valve 31 is provided on the first bypass line L11.
  • the first distribution valve 31 is configured so that the valve opening degree can be adjusted.
  • the distribution amount of the liquid refrigerant R supplied to the second heat exchanger 12B for heat dissipation and the liquid refrigerant R supplied to the first bypass line L11 is adjusted. Can be done.
  • the first distribution valve 31 is opened, of the refrigerant R flowing through the refrigerant circulation line L9, the first diversion flow flowing through the first bypass line L11 is relatively in the process of passing through the first distribution valve 31. Only a small friction loss is received in the valve chamber.
  • the second diversion flow flowing through the refrigerant circulation line L9 in which the second heat exchanger 12B for heat dissipation is arranged causes a relatively large friction loss in the process of passing through the second heat exchanger 12B for heat dissipation for the second heat dissipation. It will be received in the heat exchanger 12B. Therefore, the flow rate ratio of the refrigerant R is "first diversion> second diversion", and most of the refrigerant R flows on the first bypass line L11 side. Therefore, even with such a simple configuration, by adjusting the valve opening degree of the first distribution valve 31, the liquid refrigerant R and the first bypass line L11 to be supplied to the second heat exchanger 12B for heat dissipation are supplied. The amount of liquid refrigerant R to be distributed can be adjusted.
  • refrigerant temperature sensors 16, the first bypass line L11, and the first distribution valve 31 constitute the refrigerant temperature adjusting means 50 in the present embodiment.
  • the refrigerant temperature adjusting means 50 is controlled by a control unit 100 described later, and adjusts the temperature of the liquid refrigerant R flowing into the expansion valve 13.
  • the hot water storage tank 60 is a tank that stores the circulating water W1 and the make-up water W2 heated by the heat pump circuit 10 as the stored water W3.
  • the stored water W3 in the hot water storage tank 60 is supplied as hot water supply water W4 to a hot water demand point or a hot water demand point through a hot water supply water line L4.
  • the hot water storage tank 60 includes a hot water storage temperature sensor 61 that detects the temperature of the stored water W3 in the hot water storage tank 60.
  • the hot water storage temperature sensor 61 monitors the temperature of the stored water W3 that will be supplied to the hot water demand point or the hot water demand point as the hot water supply water W4.
  • the hot water storage tank 60 includes a water level sensor 62 that detects the water level in the hot water storage tank 60.
  • the water level sensor 62 is composed of an electrode type water level detector including a plurality of electrode rods. Specifically, a plurality of electrode rods having different lengths are inserted and held at different height positions of the lower end portions thereof. Each electrode rod detects the presence or absence of a water level at the lower end portion depending on whether or not the lower end portion thereof is immersed in water. As a result, the water level sensor 62 detects the water level of the stored water W3 in the hot water storage tank 60.
  • the upstream side of the water circulation line L1 is connected to the hot water storage tank 60, and the downstream side is also connected to the hot water storage tank 60.
  • the water circulation line L1 forms a circulation path for circulating the stored water W3 in the hot water storage tank 60 as the circulating water W1.
  • the stored water W3 in the hot water storage tank 60 passes through the first heat dissipation heat exchanger 12A through the water circulation line L1 to be heated, and returns to the hot water storage tank 60.
  • the water circulation pump 21, the first heat exchanger 12A for heat dissipation, and the first temperature sensor 22 are sequentially arranged from the upstream side.
  • the rotation speed of the water circulation pump 21 can be controlled by an inverter. By changing the rotation speed of the water circulation pump 21, the flow rate of the circulating water W1 circulating in the water circulation line L1 can be adjusted.
  • the first temperature sensor 22 is arranged on the downstream side of the first heat radiating heat exchanger 12A, and detects the temperature of the circulating water W1 flowing out of the first heat radiating heat exchanger 12A.
  • the upstream side of the make-up water line L2 is connected to a make-up water source such as a make-up water tank (not shown), and the downstream side thereof is connected to the hot water storage tank 60.
  • the make-up water line L2 is a line that supplies the make-up water W2 to the hot water storage tank 60 while circulating the make-up water W2 to the second heat exchanger 12B.
  • a make-up water valve 25, a second heat exchanger 12B for heat dissipation, and a second temperature sensor 26 are sequentially arranged from the upstream side.
  • the make-up water valve 25 is configured so that the valve opening can be adjusted. By adjusting the valve opening degree of the make-up water valve 25, the flow rate of the make-up water W2 flowing through the make-up water line L2 can be adjusted.
  • the second temperature sensor 26 is arranged on the downstream side of the second heat exchanger 12B for heat dissipation, and detects the temperature of the make-up water W2 flowing out from the second heat exchanger 12B for heat dissipation.
  • the make-up water line L2 includes a second bypass line L12 as a make-up water bypass line.
  • the second bypass line L12 is a bypass line that bypasses the make-up water W2 to the second heat dissipation heat exchanger 12B.
  • a second distribution valve 32 as a make-up water distribution valve is arranged on the second bypass line L12.
  • the second distribution valve 32 adjusts the distribution amount of the make-up water W2 to be sent to the second heat exchanger 12B and the make-up water W2 to be sent to the second bypass line L12.
  • the valve opening degree of the second distribution valve 32 may be adjusted by automatic or manual input. For example, when it is detected that the water level of the stored water W3 in the hot water storage tank 60 has dropped sharply, the second distribution valve 32 may be opened by automatic or manual input. As a result, the make-up water W2 that has not been heated by the second heat radiating heat exchanger 12B is rapidly replenished in the hot water storage tank 60, and the hot water storage tank 60 is prevented from becoming drought.
  • the stored water W3 in the hot water storage tank 60 heated by passing through the water circulation line L1 and the make-up water line L2 is supplied as hot water supply water W4 to the hot water demand point or the hot water demand point through the hot water supply water line L4.
  • the hot water demand point refers to various production facilities in the factory that consume the stored water W3 by using the hot water supply water W4 as a fluid.
  • hot water demand locations include container cleaning equipment (rincers) for food, beverages, and chemicals, and heat sterilization equipment (pastorizers) for bottled, canned, and bagged products.
  • the thermal demand location refers to a production facility or the like that uses only the thermal energy of the hot water supply water W4 and does not consume the stored water W3.
  • the use of heat energy is performed via various heat exchangers, and the hot water supply water W4 whose temperature has dropped due to the extraction of heat energy is returned to the hot water storage tank 60 through a hot water return water line (not shown).
  • hot demand points include degreasing tanks and chemical conversion tanks in coating equipment for metal processed products, air handling units in air conditioning equipment, and the like.
  • the control unit 100 (control means 100) of the hot water supply system 1 of the present embodiment will be described.
  • the control unit 100 is composed of a microprocessor including a CPU and a memory.
  • the control unit 100 includes a water circulation pump control unit 110 as a circulating water flow rate control unit, a make-up water valve control unit 120 as a make-up water flow rate control unit, and a distribution valve control unit 130 as a refrigerant temperature control unit as functional blocks. , Equipped with.
  • the broken line in FIG. 1 shows the main electrical connection path in the present embodiment. Although these electrical connections actually go through the control unit 100, that point is omitted.
  • the water circulation pump control unit 110 acquires the detected temperature of the first temperature sensor 22, and controls the drive frequency of the water circulation pump 21 constituting the circulating water flow rate adjusting means according to the detected temperature. Specifically, the water circulation pump control unit 110 controls the drive frequency of the water circulation pump 21 so that the detected temperature of the first temperature sensor 22 becomes the target hot water discharge temperature, and adjusts the flow rate of the circulating water W1.
  • the feedback control that adjusts the drive frequency of the water circulation pump so that the outlet temperature is converged to the target outlet temperature by using the outlet temperature detected in real time by the first temperature sensor 22 as a feedback value. It is preferable to adopt.
  • As the feedback control in addition to the proportional control (P control), an operation amount calculation algorithm that combines the integral control (I control) and / or the differential control (D control) can be adopted.
  • the circulating water W1 supplied from the hot water storage tank 60 to the first heat dissipation heat exchanger 12A is heated to the target hot water discharge temperature (for example, 60 ° C.) by the first heat dissipation heat exchanger 12A, and then the hot water storage tank 60. Is refluxed at a constant temperature. Therefore, when the temperature of the heat source fluid (for example, heat source air) supplied to the heat absorption heat exchanger 14 fluctuates seasonally, or when the temperature of the make-up water W2 after heating by the second heat dissipation heat exchanger 12B fluctuates.
  • hot water having a required temperature for example, a hot water supply temperature required at a hot water demanding place or a hot water demanding place
  • the make-up water valve control unit 120 acquires the water level information of the stored water W3 in the hot water storage tank 60 detected by the water level sensor 62, and the valve of the make-up water valve 25 constituting the make-up water flow rate adjusting means according to the water level information. Control to adjust the opening. Specifically, the make-up water valve control unit 120 reduces the opening degree of the make-up water valve 25 to reduce the make-up water flow rate as the detected water level of the water level sensor 62 becomes higher, while the lower the detected water level of the water level sensor 62 becomes. Control is performed to increase the valve opening degree of the make-up water valve 25 to increase the make-up water flow rate.
  • valve opening of the make-up water valve 25 when the water level is full, the valve opening of the make-up water valve 25 is set to 0% (fully closed), and when the water level is just before the drought, the valve opening of the make-up water valve 25 is set to 100% (fully open). ), And when the water level is in the middle, the valve opening of the make-up water valve 25 is set to 5% to 95%.
  • the valve opening of the make-up water valve 25 is decreased as the detected water level of the water level sensor 62 is higher, while the valve opening of the make-up water valve 25 is increased as the detected water level of the water level sensor 62 is lower. Therefore, the make-up water flow rate is increased or decreased in response to the increase or decrease in the hot water demand. That is, the make-up water valve 25 is not closed unless the hot water demand becomes zero, and the make-up water W2 continues to flow in the second heat dissipation heat exchanger 12B. As a result, even when the demand for hot water is small, the supercooling of the liquid refrigerant R can be continued and the COP can be increased.
  • the make-up water valve control unit 120 is based on the detection temperature of the second temperature sensor 26 that detects the temperature of the make-up water W2 flowing out from the second heat dissipation heat exchanger 12B in addition to the detected water level of the water level sensor 62. , The valve opening degree of the make-up water valve 25 may be controlled. In this case, the make-up water valve control unit 120 adjusts the valve opening degree of the make-up water valve 25 constituting the make-up water flow rate adjusting means according to the water level information detected by the water level sensor 62, and the second temperature sensor 26.
  • the detected temperature of the second temperature sensor 26 exceeds the target hot water discharge temperature (for example, 60 ° C.) of the first heat dissipation heat exchanger 12A, the detected temperature of the second temperature sensor 26 is the target hot water discharge temperature (for example, 60 ° C.).
  • the valve opening degree of the make-up water valve 25 is controlled so as not to exceed the range.
  • the distribution valve control unit 130 acquires the detection temperature of the refrigerant temperature sensor 16 and controls to adjust the valve opening degree of the first distribution valve 31 constituting the refrigerant temperature adjusting means 50 according to the detected temperature. Specifically, the distribution valve control unit 130 controls the first distribution valve 31 so that the detection temperature of the refrigerant temperature sensor 16 reaches the target temperature while the compressor 11 is being driven. As a more specific control, for example, the refrigerant temperature detected in real time by the refrigerant temperature sensor 16 is used as a feedback value, and the valve opening degree of the first distribution valve 31 is adjusted so that the refrigerant temperature converges to the target temperature. It is preferable to adopt feedback control.
  • the feedback control in addition to the proportional control (P control), an operation amount calculation algorithm that combines the integral control (I control) and / or the differential control (D control) can be adopted.
  • the target temperature is set manually or automatically according to the state of the device or the like. As a result, the bypass amount of the liquid refrigerant R with respect to the second heat radiating heat exchanger 12B is adjusted, and the cooling amount of the liquid refrigerant R in the second heat radiating heat exchanger 12B is suppressed.
  • FIG. 2 is a diagram schematically showing a configuration of a hot water supply system according to a modified example of the first embodiment.
  • a refrigerant pressure sensor 17 for detecting the pressure of the liquid refrigerant R flowing into the expansion valve 13 is further provided, and the distribution valve control unit 130 includes the detection temperature of the refrigerant temperature sensor 16 and the detection pressure of the refrigerant pressure sensor 17.
  • the first distribution valve 31 is controlled based on the above.
  • the heat pump circuit 10 of this modification includes a refrigerant pressure sensor 17 that detects the pressure of the liquid refrigerant R flowing into the expansion valve 13. Further, the control unit 100 of this modification includes a supercooling degree calculation unit 140 that calculates the supercooling degree of the liquid refrigerant R flowing into the expansion valve 13.
  • the refrigerant pressure sensor 17 is located on the downstream side of the confluence of the refrigerant circulation line L9 and the first bypass line L11, and is arranged on the upstream side of the expansion valve 13. More preferably, the refrigerant pressure sensor 17 is arranged on the upstream side of the expansion valve 13 and in the vicinity of the expansion valve 13 in order to measure the pressure of the refrigerant R immediately before flowing into the expansion valve 13.
  • the refrigerant pressure sensor 17, the refrigerant temperature sensor 16, the first bypass line L11, and the first distribution valve 31 constitute the refrigerant temperature adjusting means 50.
  • the supercooling degree calculation unit 140 calculates the supercooling degree of the liquid refrigerant R flowing into the expansion valve 13. Specifically, the supercooling degree calculation unit 140 obtains the condensation temperature of the gas refrigerant R from the detection pressure of the refrigerant pressure sensor 17, and subtracts the detection temperature of the refrigerant temperature sensor 16 from this condensation temperature to obtain the excess of the liquid refrigerant R. Calculate the degree of cooling.
  • the distribution valve control unit 130 controls the first distribution valve 31 constituting the refrigerant temperature adjusting means 50 so that the calculated supercooling degree (value calculated by the supercooling degree calculation unit 140) becomes the target supercooling degree, and is an expansion valve.
  • the degree of supercooling of the liquid refrigerant R flowing into 13 is adjusted.
  • the calculated supercooling degree calculated in real time by the supercooling degree calculation unit 140 is used as a feedback value, and the first distribution valve 31 so as to converge this calculated supercooling degree to the target supercooling degree. It is preferable to adopt feedback control that adjusts the valve opening of the valve.
  • the feedback control in addition to the proportional control (P control), an operation amount calculation algorithm that combines the integral control (I control) and / or the differential control (D control) can be adopted.
  • the bypass amount of the liquid refrigerant R with respect to the second heat dissipation heat exchanger 12B is adjusted, and the degree of supercooling of the liquid refrigerant R flowing into the expansion valve 13 is adjusted.
  • the target supercooling degree is set manually or automatically according to the state of the device or the like.
  • the supercooling degree calculation unit 140 accurately calculates the supercooling degree of the liquid refrigerant R flowing into the expansion valve 13, and the distribution valve control unit 130 further calculates the calculated supercooling degree to be the target supercooling degree.
  • the amount of bypass of the liquid refrigerant R to the second heat exchanger 12B is adjusted, and the cooling amount of the liquid refrigerant R in the second heat exchanger 12B is suppressed.
  • the temperature of the liquid refrigerant R flowing into the expansion valve 13 can be maintained at a constant temperature that does not cause a high supercooling state.
  • the first distribution valve 31 is provided on the first bypass line L11, but the present invention is not limited to this.
  • the first distribution valve 31 may have a function of adjusting the distribution amount of the liquid refrigerant R supplied to the second heat exchanger 12B and the liquid refrigerant R supplied to the first bypass line L11.
  • it may be a three-way valve provided at a branch portion where the first bypass line L11 branches from the refrigerant circulation line L9.
  • the valve opening on the first outlet port side toward the second heat exchanger 12B is opened by inputting a valve opening designation signal of 0 to 100% to the actuator circuit that adjusts the valve opening.
  • the degree and the valve opening degree on the second outlet port side toward the first bypass line L11 are adjusted. As a result, the flow rate ratio between the flow rate of the liquid refrigerant R flowing through the second heat exchanger 12B and the flow rate of the liquid refrigerant R flowing through the first bypass line L11 is adjusted. However, the total flow rate ratio on the first outlet port side and the second outlet port side is always 100%.
  • the valve opening of the three-way valve is based on the valve opening on the first outlet port side, and the valve opening on the first outlet port side is 0% ⁇ 25% ⁇ 50% ⁇ 75% ⁇ 100. When it becomes%, the valve opening degree on the second outlet port side becomes 100% ⁇ 75% ⁇ 50% ⁇ 25% ⁇ 0%.
  • the refrigerant temperature detected in real time by the refrigerant temperature sensor 16 and the calculated supercooling degree calculated in real time by the supercooling degree calculation unit 140 are used as feedback values. It is preferable to adopt feedback control that adjusts the valve opening of the three-way valve so that the refrigerant temperature and the calculated supercooling degree converge to the target value.
  • the compressor 11, the first heat heat exchanger 12A, the second heat exchanger 12B, the expansion valve 13, and the heat absorption heat exchanger 14 are provided by the refrigerant circulation line L9.
  • a steam compression type heat pump circuit 10 that is connected in an annular shape and takes out heat by the first heat exchanger 12A and / or the second heat exchanger 12B by driving the compressor 11, and hot water storage for storing the make-up water W2.
  • a make-up water line L2 to be supplied, a refrigerant temperature adjusting means 50 for adjusting the temperature of the liquid refrigerant R flowing into the expansion valve 13, and a control means 100 for controlling the refrigerant temperature adjusting means 50 are provided.
  • the heat absorption heat exchanger 14 is provided. It is avoided that the refrigerant R in the highly overcooled state is supplied to the (evaporator 14), and the compressor 11 does not have an obstacle to suck the moist steam. This makes it possible to optimally operate the refrigeration cycle while preventing damage to the compressor 11.
  • the refrigerant temperature adjusting means 50 of the hot water supply system 1 of the present embodiment is connected to a temperature sensor 16 for detecting the temperature of the liquid refrigerant R flowing into the expansion valve 13 and a refrigerant circulation line L9, and is connected to a second heat dissipation heat. Adjust the distribution amount of the first bypass line L11 for bypassing the refrigerant R to the exchanger 12B, the refrigerant R to be fed to the second heat dissipation heat exchanger 12B, and the refrigerant R to be fed to the first bypass line L11.
  • the control means 100 includes the first distribution valve 31 and controls the first distribution valve 31 so that the detection temperature of the temperature sensor 16 reaches the target temperature while the compressor 11 is being driven.
  • the bypass amount of the refrigerant R with respect to the second heat dissipation heat exchanger 12B is adjusted.
  • the amount of cooling of the refrigerant R in the second heat exchanger 12B for heat dissipation is suppressed.
  • the temperature of the liquid refrigerant R flowing into the expansion valve 13 can be maintained at a constant temperature that does not cause a high supercooling state.
  • the refrigerant temperature adjusting means 50 of the hot water supply system 1 of the present embodiment detects the pressure of the liquid refrigerant R flowing into the expansion valve 13 and the temperature sensor 16 for detecting the temperature of the liquid refrigerant R flowing into the expansion valve 13.
  • the refrigerant to be supplied to the first bypass line L11 which is connected to the refrigerant circulation line L9 and bypasses the refrigerant R to the second heat dissipation heat exchanger 12B, and the second heat dissipation heat exchanger 12B.
  • a first distribution valve 31 for adjusting the distribution amount of the refrigerant R to be supplied to the R and the first bypass line L11 is provided, and the control means 100 is a gas refrigerant from the detection pressure of the pressure sensor 17 while the compressor 11 is being driven.
  • the first distribution valve is calculated by subtracting the detection temperature of the temperature sensor 16 from the condensation temperature to calculate the overcooling degree of the liquid refrigerant R so that the calculated overcooling degree becomes the target overcooling degree. 31 is controlled. In this way, by controlling the first distribution valve 31 so that the calculated supercooling degree of the refrigerant R flowing into the expansion valve 13 becomes the target supercooling degree, the refrigerant R is bypassed with respect to the second heat dissipation heat exchanger 12B.
  • the amount is adjusted, and the cooling amount of the refrigerant R in the second heat dissipation heat exchanger 12B is suppressed.
  • the temperature of the liquid refrigerant R flowing into the expansion valve 13 can be maintained at a constant temperature that does not cause a high supercooling state.
  • FIG. 3 is a diagram schematically showing the configuration of the hot water supply system 1 in the present embodiment.
  • the same components as those in the first embodiment may be designated by the same reference numerals and the description thereof may be omitted.
  • the heat pump circuit 10 of the present embodiment does not include the first bypass line L11 and the first distribution valve 31.
  • the refrigerant temperature sensor 16, the second bypass line L12, and the second distribution valve 32 constitute the refrigerant temperature adjusting means 50.
  • the second bypass line L12 is a line that bypasses the make-up water W2 to the second heat dissipation heat exchanger 12B.
  • the second distribution valve 32 is a valve that adjusts the distribution amount of the make-up water W2 to be supplied to the second heat dissipation heat exchanger 12B and the make-up water W2 to be supplied to the second bypass line L12.
  • the second distribution valve 32 of the present embodiment is controlled by the distribution valve control unit 130 of the control unit 100.
  • the distribution valve control unit 130 of the present embodiment acquires the detection temperature of the refrigerant temperature sensor 16, and according to the detected temperature, the valve opening degree of the second distribution valve 32 constituting the refrigerant temperature adjusting means 50 of the present embodiment. Control to adjust. Specifically, the distribution valve control unit 130 controls the second distribution valve 32 so that the detection temperature of the refrigerant temperature sensor 16 reaches the target temperature while the compressor 11 is being driven. As a more specific control, for example, the refrigerant temperature detected in real time by the refrigerant temperature sensor 16 is used as a feedback value, and the valve opening degree of the second distribution valve 32 is adjusted so that the refrigerant temperature converges to the target temperature. It is preferable to adopt feedback control.
  • FIG. 4 is a diagram schematically showing a configuration of a hot water supply system according to a modified example of the second embodiment.
  • the heat pump circuit 10 of this modified example includes a refrigerant pressure sensor 17 that detects the pressure of the liquid refrigerant R flowing into the expansion valve 13, as in the modified example of the first embodiment.
  • the control unit 100 of this modification includes a supercooling degree calculation unit 140 as in the modification of the first embodiment.
  • the refrigerant pressure sensor 17, the refrigerant temperature sensor 16, the second bypass line L12, and the second distribution valve 32 constitute the refrigerant temperature adjusting means 50.
  • the distribution valve control unit 130 of the present embodiment controls the second distribution valve 32 based on the detection temperature of the refrigerant temperature sensor 16 and the detection pressure of the refrigerant pressure sensor 17. Specifically, the distribution valve control unit 130 of this modification controls the second distribution valve 32 so that the calculated supercooling degree calculated by the supercooling degree calculation unit 140 becomes the target supercooling degree, and the expansion valve 13 The degree of supercooling of the liquid refrigerant R flowing into the water is adjusted. Also in this case, the calculated supercooling degree calculated in real time by the supercooling degree calculation unit 140 is used as a feedback value, and the valve opening degree of the second distribution valve 32 is set so as to converge this calculated supercooling degree to the target supercooling degree. It is preferable to adopt a feedback control that adjusts.
  • the supercooling degree calculation unit 140 accurately calculates the supercooling degree of the liquid refrigerant R flowing into the expansion valve 13, and the distribution valve control unit 130 further calculates the calculated supercooling degree to be the target supercooling degree.
  • the second distribution valve 32 By controlling the second distribution valve 32, the amount of bypass of the make-up water W2 with respect to the second heat exchanger 12B is adjusted, and the cooling amount of the liquid refrigerant R in the second heat exchanger 12B is suppressed. To. As a result, even when the water source temperature of the make-up water W2 is low, the temperature of the liquid refrigerant R flowing into the expansion valve 13 can be maintained at a constant temperature that does not cause a high supercooling state.
  • the second distribution valve 32 is not limited to the mode provided in the second bypass line L12.
  • the second distribution valve 32 may be a three-way valve provided at a branch portion where the second bypass line L12 branches from the make-up water line L2.
  • the refrigerant temperature adjusting means 50 of the hot water supply system 1 of the present embodiment is connected to a temperature sensor 16 for detecting the temperature of the liquid refrigerant R flowing into the expansion valve 13 and a make-up water line L2, and is connected to a second heat dissipation heat. Distribution amount of the second bypass line L12 that bypasses the make-up water W2 to the exchanger 12B, the make-up water W2 that is sent to the second heat dissipation heat exchanger 12B, and the make-up water W2 that is sent to the second bypass line L12.
  • the control means 100 controls the second distribution valve 32 so that the detection temperature of the temperature sensor 16 becomes the target temperature while the compressor 11 is being driven.
  • the bypass amount of the make-up water W2 with respect to the second heat dissipation heat exchanger 12B is adjusted. Therefore, the amount of cooling of the refrigerant R in the second heat exchanger 12B for heat dissipation is suppressed. As a result, even when the water source temperature of the make-up water W2 is low, the temperature of the liquid refrigerant R flowing into the expansion valve 13 can be maintained at a constant temperature that does not cause a high supercooling state.
  • the refrigerant temperature adjusting means 50 of the hot water supply system 1 of the present embodiment detects the pressure of the temperature sensor 16 that detects the temperature of the liquid refrigerant R flowing into the expansion valve 13 and the pressure of the liquid refrigerant R flowing into the expansion valve 13.
  • the pressure sensor 17 and the second bypass line L12 which are connected to the make-up water line L2 and bypass the make-up water W2 to the second heat radiating heat exchanger 12B, and the second heat radiating heat exchanger 12B are supplied.
  • a second distribution valve 32 for adjusting the distribution amount of the make-up water W2 and the make-up water W2 to be supplied to the make-up water W2 and the second bypass line L12 is provided.
  • the condensation temperature of the gas refrigerant R is obtained from, and the overcooling degree of the liquid refrigerant R is calculated by subtracting the detection temperature of the temperature sensor 16 from the condensation temperature so that the calculated overcooling degree becomes the target overcooling degree.
  • the second distribution valve 32 is controlled. In this way, by controlling the second distribution valve 32 so that the calculated supercooling degree of the refrigerant R flowing into the expansion valve 13 becomes the target supercooling degree, the make-up water W2 for the second heat dissipation heat exchanger 12B The bypass amount is adjusted, and the cooling amount of the refrigerant R in the second heat dissipation heat exchanger 12B is suppressed. As a result, even when the water source temperature of the make-up water W2 is low, the temperature of the liquid refrigerant R flowing into the expansion valve 13 can be maintained at a constant temperature that does not cause a high supercooling state.
  • FIG. 5 is a diagram schematically showing the configuration of the hot water supply system 1 in the present embodiment.
  • the same components as those in the first embodiment may be designated by the same reference numerals and the description thereof may be omitted.
  • the heat pump circuit 10 of the present embodiment does not include the first bypass line L11 and the first distribution valve 31. Instead, a third bypass line L13 and a third distribution valve 33 are provided.
  • the refrigerant temperature sensor 16, the third bypass line L13, and the third distribution valve 33 constitute the refrigerant temperature adjusting means 50.
  • the third bypass line L13 is a line for bypassing the refrigerant R with respect to the first heat dissipation heat exchanger 12A.
  • the third distribution valve 33 is a valve that adjusts the distribution amount of the refrigerant R to be supplied to the first heat dissipation heat exchanger 12A and the refrigerant R to be supplied to the third bypass line L13.
  • the third distribution valve 33 of the present embodiment is controlled by the distribution valve control unit 130 of the control unit 100.
  • the distribution valve control unit 130 of the present embodiment acquires the detection temperature of the refrigerant temperature sensor 16, and according to the detected temperature, the valve opening degree of the third distribution valve 33 constituting the refrigerant temperature adjusting means 50 of the present embodiment. Control to adjust. Specifically, the distribution valve control unit 130 controls the third distribution valve 33 so that the detection temperature of the refrigerant temperature sensor 16 reaches the target temperature while the compressor 11 is being driven. As a more specific control, for example, the refrigerant temperature detected in real time by the refrigerant temperature sensor 16 is used as a feedback value, and the valve opening degree of the third distribution valve 33 is adjusted so that the refrigerant temperature converges to the target temperature. It is preferable to adopt feedback control.
  • the feedback control in addition to the proportional control (P control), an operation amount calculation algorithm that combines the integral control (I control) and / or the differential control (D control) can be adopted.
  • P control proportional control
  • D control differential control
  • the bypass amount of the refrigerant R with respect to the first heat dissipation heat exchanger 12A is adjusted, and the cooling amount of the refrigerant R in the first heat dissipation heat exchanger 12A is suppressed.
  • the refrigerant R that has not been condensed and liquefied in the first heat exchanger 12A is condensed and liquefied in the second heat exchanger 12B.
  • the temperature of the liquid refrigerant R flowing into the expansion valve 13 can be maintained at a constant temperature that does not cause a high supercooling state. Therefore, it is avoided that the liquid refrigerant R in the highly supercooled state is supplied to the endothermic heat exchanger 14, and the compressor 11 does not have an obstacle to suck the refrigerant R in the wet vapor state. This makes it possible to optimally operate the refrigeration cycle while preventing damage to the compressor 11.
  • FIG. 6 is a diagram schematically showing a configuration of a hot water supply system according to a modified example of the third embodiment.
  • the heat pump circuit 10 of this modified example includes a refrigerant pressure sensor 17 that detects the pressure of the liquid refrigerant R flowing into the expansion valve 13, as in the modified example of the first embodiment.
  • the control unit 100 of this modification includes a supercooling degree calculation unit 140 as in the modification of the first embodiment.
  • the refrigerant pressure sensor 17, the refrigerant temperature sensor 16, the third bypass line L13, and the third distribution valve 33 constitute the refrigerant temperature adjusting means 50.
  • the distribution valve control unit 130 of the present embodiment controls the third distribution valve 33 based on the detection temperature of the refrigerant temperature sensor 16 and the detection pressure of the refrigerant pressure sensor 17. Specifically, the distribution valve control unit 130 of this modification controls the third distribution valve 33 so that the calculated supercooling degree calculated by the supercooling degree calculation unit 140 becomes the target supercooling degree, and the expansion valve 13 The degree of supercooling of the liquid refrigerant R flowing into the water is adjusted. Also in this case, the calculated supercooling degree calculated in real time by the supercooling degree calculation unit 140 is used as a feedback value, and the valve opening degree of the third distribution valve 33 is set so as to converge this calculated supercooling degree to the target supercooling degree. It is preferable to adopt a feedback control that adjusts.
  • the supercooling degree calculation unit 140 accurately calculates the supercooling degree of the liquid refrigerant R flowing into the expansion valve 13, and the distribution valve control unit 130 further calculates the calculated supercooling degree to be the target supercooling degree.
  • the third distribution valve 33 By controlling the third distribution valve 33, the bypass amount of the refrigerant R with respect to the first heat dissipation heat exchanger 12A is adjusted, and the cooling amount of the refrigerant R in the first heat dissipation heat exchanger 12A is suppressed.
  • the temperature of the liquid refrigerant R flowing into the expansion valve 13 can be maintained at a constant temperature that does not result in a high supercooling state.
  • the third distribution valve 33 is not limited to the mode provided in the third bypass line L13.
  • the third distribution valve 33 may be a three-way valve provided at a branch portion where the third bypass line L13 branches from the refrigerant circulation line L9.
  • the refrigerant temperature adjusting means 50 of the hot water supply system 1 of the present embodiment is connected to a temperature sensor 16 for detecting the temperature of the liquid refrigerant R flowing into the expansion valve 13 and a refrigerant circulation line L9, and is connected to the first heat dissipation heat. Adjust the distribution amount of the third bypass line L13 for bypassing the refrigerant R to the exchanger 12A, the refrigerant R to be supplied to the first heat dissipation heat exchanger 12A, and the refrigerant R to be supplied to the third bypass line L13.
  • a third distribution valve 33 is provided, and the control means 100 controls the third distribution valve 33 so that the detection temperature of the temperature sensor 16 reaches the target temperature while the compressor 11 is being driven.
  • the third distribution valve 33 by controlling the third distribution valve 33 so that the detection temperature of the refrigerant R flowing into the expansion valve 13 becomes the target temperature, the bypass amount of the refrigerant R with respect to the first heat dissipation heat exchanger 12A is adjusted. , The amount of cooling of the refrigerant R in the first heat exchanger 12A for heat dissipation is suppressed. As a result, even when the hot water storage temperature is set to a low temperature, the temperature of the liquid refrigerant R flowing into the expansion valve 13 can be maintained at a constant temperature that does not result in a high supercooling state.
  • the refrigerant temperature adjusting means 50 of the hot water supply system 1 of the present embodiment detects the pressure of the liquid refrigerant R flowing into the expansion valve 13 and the temperature sensor 16 for detecting the temperature of the liquid refrigerant R flowing into the expansion valve 13.
  • the pressure sensor 17, the third bypass line L13 which is connected to the refrigerant circulation line L9 and bypasses the refrigerant R to the first heat dissipation heat exchanger 12A, and the refrigerant supplied to the first heat dissipation heat exchanger 12A.
  • a third distribution valve 33 for adjusting the distribution amount of the refrigerant R to be supplied to the R and the third bypass line L13 is provided, and the control means 100 is a gas refrigerant from the detection pressure of the pressure sensor 17 while the compressor 11 is being driven.
  • the condensation temperature of R is obtained, and the overcooling degree of the liquid refrigerant R is calculated by subtracting the detection temperature of the temperature sensor 16 from the condensation temperature, and the third distribution is performed so that the calculated overcooling degree becomes the target overcooling degree. Controls the valve 33.
  • the third distribution valve 33 controls the third distribution valve 33 so that the calculated supercooling degree of the refrigerant R flowing into the expansion valve 13 becomes the target supercooling degree, the refrigerant R is bypassed to the first heat dissipation heat exchanger 12A.
  • the amount is adjusted, and the cooling amount of the refrigerant R in the first heat dissipation heat exchanger 12A is suppressed.
  • the temperature of the liquid refrigerant R flowing into the expansion valve 13 can be maintained at a constant temperature that does not cause a high supercooling state.
  • FIG. 7 is a diagram schematically showing the configuration of the hot water supply system 1 in the present embodiment.
  • the same components as those in the first embodiment may be designated by the same reference numerals and the description thereof may be omitted.
  • the heat pump circuit 10 of the present embodiment does not include the first bypass line L11 and the first distribution valve 31. Instead, it is provided with a fourth bypass line L14 and a fourth distribution valve 34.
  • the refrigerant temperature sensor 16, the fourth bypass line L14, and the fourth distribution valve 34 constitute the refrigerant temperature adjusting means 50.
  • the fourth bypass line L14 is a line that bypasses the circulating water W1 to the first heat exchanger 12A for heat dissipation.
  • the fourth distribution valve 34 is a valve that adjusts the distribution amount of the circulating water W1 supplied to the first heat dissipation heat exchanger 12A and the circulating water W1 supplied to the fourth bypass line L14.
  • the fourth distribution valve 34 of the present embodiment is controlled by the distribution valve control unit 130 of the control unit 100.
  • the distribution valve control unit 130 of the present embodiment acquires the detected temperature of the refrigerant temperature sensor 16, and according to the detected temperature, the valve opening degree of the fourth distribution valve 34 constituting the refrigerant temperature adjusting means 50 of the present embodiment. Control to adjust. Specifically, the distribution valve control unit 130 controls the fourth distribution valve 34 so that the detection temperature of the refrigerant temperature sensor 16 reaches the target temperature while the compressor 11 is being driven. As a more specific control, for example, the refrigerant temperature detected in real time by the refrigerant temperature sensor 16 is used as a feedback value, and the valve opening degree of the fourth distribution valve 34 is adjusted so that the refrigerant temperature converges to the target temperature. It is preferable to adopt feedback control.
  • the feedback control in addition to the proportional control (P control), an operation amount calculation algorithm that combines the integral control (I control) and / or the differential control (D control) can be adopted.
  • P control proportional control
  • D control differential control
  • the bypass amount of the circulating water W1 with respect to the first heat dissipation heat exchanger 12A is adjusted, and the temperature of the liquid refrigerant R flowing into the expansion valve 13 is adjusted.
  • the refrigerant R that has not been condensed and liquefied in the first heat exchanger 12A is condensed and liquefied in the second heat exchanger 12B.
  • FIG. 8 is a diagram schematically showing a configuration of a hot water supply system according to a modified example of the fourth embodiment.
  • the heat pump circuit 10 of this modification includes a refrigerant pressure sensor 17 that detects the pressure of the liquid refrigerant R flowing into the expansion valve 13, as in the modification of the first embodiment.
  • the control unit 100 of this modification includes a supercooling degree calculation unit 140 as in the modification of the first embodiment.
  • the refrigerant pressure sensor 17, the refrigerant temperature sensor 16, the fourth bypass line L14, and the fourth distribution valve 34 constitute the refrigerant temperature adjusting means 50.
  • the distribution valve control unit 130 of the present embodiment controls the fourth distribution valve 34 based on the detection temperature of the refrigerant temperature sensor 16 and the detection pressure of the refrigerant pressure sensor 17. Specifically, the distribution valve control unit 130 of this modification controls the fourth distribution valve 34 so that the calculated supercooling degree calculated by the supercooling degree calculation unit 140 becomes the target supercooling degree, and the expansion valve 13 The degree of supercooling of the liquid refrigerant R flowing into the water is adjusted. Also in this case, the calculated supercooling degree calculated in real time by the supercooling degree calculation unit 140 is used as a feedback value, and the valve opening degree of the fourth distribution valve 34 is set so as to converge this calculated supercooling degree to the target supercooling degree. It is preferable to adopt a feedback control that adjusts.
  • the supercooling degree calculation unit 140 accurately calculates the supercooling degree of the liquid refrigerant R flowing into the expansion valve 13, and the distribution valve control unit 130 further calculates the calculated supercooling degree to be the target supercooling degree.
  • the fourth distribution valve 34 By controlling the fourth distribution valve 34, the bypass amount of the make-up water W2 with respect to the first heat dissipation heat exchanger 12A is adjusted, and the cooling amount of the refrigerant R in the first heat dissipation heat exchanger 12A is suppressed. ..
  • the temperature of the liquid refrigerant R flowing into the expansion valve 13 can be maintained at a constant temperature that does not cause a high supercooling state.
  • the fourth distribution valve 34 is not limited to the mode provided in the fourth bypass line L14.
  • the fourth distribution valve 34 may be a three-way valve provided at a branch portion where the fourth bypass line L14 branches from the water circulation line L1.
  • the refrigerant temperature adjusting means 50 of the hot water supply system 1 of the present embodiment is connected to a temperature sensor 16 for detecting the temperature of the liquid refrigerant R flowing into the expansion valve 13 and a water circulation line L1 to exchange heat for first heat dissipation.
  • a fourth distribution valve 34 for adjusting is provided, and the control means 100 controls the fourth distribution valve 34 so that the detection temperature of the temperature sensor 16 reaches the target temperature while the compressor 11 is being driven.
  • the fourth distribution valve 34 controls the fourth distribution valve 34 so that the detection temperature of the liquid refrigerant R flowing into the expansion valve 13 becomes the target temperature, the bypass amount of the circulating water W1 with respect to the first heat dissipation heat exchanger 12A can be increased. It is adjusted and the cooling amount of the refrigerant R in the first heat dissipation heat exchanger 12A is suppressed. As a result, even when the hot water storage temperature is set to a low temperature, the temperature of the liquid refrigerant R flowing into the expansion valve 13 can be maintained at a constant temperature that does not result in a high supercooling state.
  • the refrigerant temperature adjusting means 50 of the hot water supply system 1 of the present embodiment detects the pressure of the temperature sensor 16 that detects the temperature of the liquid refrigerant R flowing into the expansion valve 13 and the pressure of the liquid refrigerant R flowing into the expansion valve 13. Circulation to supply to the fourth bypass line L14, which is connected to the water circulation line L1 and bypasses the circulating water W1 to the first heat dissipation heat exchanger 12A, and the first heat dissipation heat exchanger 12A.
  • the control means 100 includes a fourth distribution valve 34 for adjusting the distribution amount of the circulating water W1 supplied to the water W1 and the fourth bypass line L14, and the control means 100 is based on the detected pressure of the pressure sensor 17 while the compressor 11 is being driven.
  • the fourth is to obtain the condensation temperature of the gas refrigerant and to calculate the overcooling degree of the liquid refrigerant R by subtracting the detection temperature of the temperature sensor 16 from the condensation temperature so that the calculated overcooling degree becomes the target overcooling degree. Controls the distribution valve 34.
  • the fourth distribution valve 34 controls the fourth distribution valve 34 so that the calculated supercooling degree of the refrigerant R flowing into the expansion valve 13 becomes the target supercooling degree, the circulating water W1 with respect to the first heat dissipation heat exchanger 12A
  • the bypass amount is adjusted, and the cooling amount of the refrigerant R in the first heat dissipation heat exchanger 12A is suppressed.
  • the temperature of the liquid refrigerant R flowing into the expansion valve 13 can be maintained at a constant temperature that does not result in a high supercooling state.
  • the present invention is not limited to the above-described embodiments and can be appropriately modified. It is also possible to combine a plurality of embodiments.
  • Hot water supply system 10 Heat pump circuit 11 Compressor 12A First heat dissipation heat exchanger (condensor) 12B 2nd heat exchanger (supercooler) 13 Expansion valve 14 Endothermic heat exchanger (evaporator) 16 Refrigerant temperature sensor (temperature sensor) 17 Refrigerant pressure sensor (pressure sensor) 21 Water circulation pump 22 1st temperature sensor 25 Replenishment water valve 26 2nd temperature sensor 31 1st distribution valve 32 2nd distribution valve 33 3rd distribution valve 34 4th distribution valve 60 Hot water storage tank 61 Hot water storage temperature sensor 62 Water level sensor 100 Control unit (Control means) 110 Water circulation pump control unit 120 Replenishment water valve control unit 130 Distribution valve control unit 140 Overcooling degree calculation unit L1 Water circulation line L2 Replenishment water line L4 Hot water supply water line L9 Refrigerator circulation line L11 1st bypass line L12 2nd bypass line L13 3rd Bypass line L14 4th bypass line W1 Circulating water W2 Supplementary water W3 Reservoir water W4

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

A hot water supply system (1) comprises: a vapor compression heat pump circuit (10) that is configured by a compressor (11), a first heat-radiating heat exchanger (12A), a second heat-radiating heat exchanger (12B), an expansion valve (13), and a heat-absorbing heat exchanger (14) being connected in an annular shape by a refrigerant circulation line (L9), and extracts heat with the first heat-radiating heat exchanger (12A) and/or the second heat-radiating heat exchanger (12B) by driving the compressor (11); a hot water storage tank (60) for storing make-up water (W2); a water circulation line (L1) for circulating the stored water (W3) in the hot water storage tank (60) to the first heat-radiating heat exchanger (12A); a make-up water line (L2) for supplying the make-up water (W2) to the hot water storage tank (60) while circulating the make-up water (W2) to the second heat-radiating heat exchanger (12B); a refrigerant temperature adjustment means (50) for adjusting the temperature of liquid refrigerant (R) flowing into the expansion valve (13); and a control means (100) for controlling the refrigerant temperature adjustment means (50).

Description

給湯システムHot water supply system
 本願は、2020年8月3日に日本に出願された特願2020-131897号に基づき優先権を主張し、その内容をここに援用する。
 本発明は、給湯システムに関する。
This application claims priority based on Japanese Patent Application No. 2020-131897 filed in Japan on August 3, 2020, the contents of which are incorporated herein by reference.
The present invention relates to a hot water supply system.
 ヒートポンプ式給湯機のエネルギー効率は、周知のようにCOP(成績係数)で示される。このCOPを高めるため、冷凍サイクルに対して様々な改良がなされている。例えば、特許文献1、2には、ヒートポンプ回路の凝縮器の後段に過冷却器を設け、凝縮器に貯湯タンク内の貯留水を循環させて加熱する一方で、過冷却器に貯湯タンクへの補給水を流通させて予備加熱するように構成された給湯システムが記載されている。 As is well known, the energy efficiency of heat pump water heaters is indicated by COP (coefficient of performance). Various improvements have been made to the refrigeration cycle to increase this COP. For example, in Patent Documents 1 and 2, a supercooler is provided after the condenser of the heat pump circuit, and the stored water in the hot water storage tank is circulated and heated in the condenser, while the supercooler is used in the hot water storage tank. A hot water supply system configured to circulate and preheat make-up water is described.
特公平2-27582号公報Special Fair 2-27582 Gazette 実開平3-3665号公報Jitsukaihei No. 3-3665 Gazette
 凝縮器のみで貯湯タンク内の貯留水を循環させて加熱する構成の場合、貯留水の温度上昇に伴って貯留水と熱源空気の温度差が大きくなるため、高いCOPを維持するのが困難である。これに対し、特許文献1、2に記載された給湯システムは、過冷却器で低温の補給水を予備加熱することでシステム全体の加熱能力を強化し、COPを高めるようにしている。
 しかしながら、このような給湯システムにおいては、補給水の水源温度が低い場合等には、膨張弁に流入する液冷媒が凝縮器および過冷却器を順番に通過することによって極度に冷却されてしまうことがある。蒸発器に高過冷却状態の液冷媒が供給される状況では、蒸発器での気化が不十分なまま圧縮機に湿り蒸気が送られるようになる。圧縮機が湿り蒸気を吸入すると、液圧縮によるリキッドハンマー等により、圧縮機を破損させるおそれがある。
In the case of a configuration in which the stored water in the hot water storage tank is circulated and heated only by the condenser, the temperature difference between the stored water and the heat source air increases as the temperature of the stored water rises, so it is difficult to maintain a high COP. be. On the other hand, in the hot water supply system described in Patent Documents 1 and 2, the heating capacity of the entire system is enhanced by preheating the low-temperature make-up water with a supercooler to increase the COP.
However, in such a hot water supply system, when the water source temperature of the make-up water is low, the liquid refrigerant flowing into the expansion valve passes through the condenser and the supercooler in order to be extremely cooled. There is. In a situation where a highly supercooled liquid refrigerant is supplied to the evaporator, moist vapor is sent to the compressor with insufficient vaporization in the evaporator. When the compressor inhales moist vapor, the compressor may be damaged by a liquid hammer or the like due to liquid compression.
 本発明は、上記課題に鑑みてなされたもので、ヒートポンプ回路に貯留水加熱用熱交換器および補給水加熱用熱交換器を設けた構成において、圧縮機の破損を防止することができる給湯システムを提供することを目的とする。 The present invention has been made in view of the above problems, and is a hot water supply system capable of preventing damage to the compressor in a configuration in which a heat exchanger for heating stored water and a heat exchanger for heating make-up water are provided in a heat pump circuit. The purpose is to provide.
 本発明は、圧縮機、第1放熱用熱交換器、第2放熱用熱交換器、膨張弁および吸熱用熱交換器が冷媒循環ラインにより環状に接続され、前記圧縮機の駆動により前記第1放熱用熱交換器および/または前記第2放熱用熱交換器で温熱を取り出す蒸気圧縮式のヒートポンプ回路と、補給水を貯留する貯湯タンクと、前記貯湯タンク内の貯留水を前記第1放熱用熱交換器に循環させる水循環ラインと、補給水を前記第2放熱用熱交換器に流通させつつ、前記貯湯タンクへ送給する補給水ラインと、前記膨張弁に流入する液冷媒の温度を調整する冷媒温度調整手段と、前記冷媒温度調整手段を制御する制御手段と、を備える給湯システムに関する。 In the present invention, the compressor, the first heat exchanger for heat dissipation, the second heat exchanger for heat dissipation, the expansion valve and the heat exchanger for heat absorption are connected in an annular shape by a refrigerant circulation line, and the first is driven by the compressor. A steam compression type heat pump circuit that takes out heat from the heat exchanger for heat dissipation and / or the second heat exchanger for heat dissipation, a hot water storage tank that stores make-up water, and the water stored in the hot water storage tank for the first heat dissipation. Adjust the temperature of the water circulation line that circulates in the heat exchanger, the make-up water line that sends make-up water to the hot water storage tank while circulating make-up water to the second heat exchanger, and the liquid refrigerant flowing into the expansion valve. The present invention relates to a hot water supply system including a refrigerant temperature adjusting means for controlling the heat and a control means for controlling the refrigerant temperature adjusting means.
 また、給湯システムの前記冷媒温度調整手段は、前記膨張弁に流入する液冷媒の温度を検知する温度センサと、前記冷媒循環ラインに接続され、前記第2放熱用熱交換器に対して冷媒をバイパスさせる第1バイパスラインと、前記第2放熱用熱交換器に送給する冷媒および前記第1バイパスラインに送給する冷媒の分配量を調整する第1分配バルブと、を備え、前記制御手段は、前記圧縮機の駆動中、前記温度センサの検知温度が目標温度になるように、前記第1分配バルブを制御することが好ましい。 Further, the refrigerant temperature adjusting means of the hot water supply system is connected to a temperature sensor that detects the temperature of the liquid refrigerant flowing into the expansion valve and the refrigerant circulation line, and supplies the refrigerant to the second heat dissipation heat exchanger. The control means includes a first bypass line to be bypassed, a first distribution valve for adjusting the distribution amount of the refrigerant to be supplied to the second heat dissipation heat exchanger and the refrigerant to be supplied to the first bypass line. It is preferable to control the first distribution valve so that the detection temperature of the temperature sensor reaches the target temperature while the compressor is being driven.
 また、給湯システムの前記冷媒温度調整手段は、前記膨張弁に流入する液冷媒の温度を検知する温度センサと、前記膨張弁に流入する液冷媒の圧力を検知する圧力センサと、前記冷媒循環ラインに接続され、前記第2放熱用熱交換器に対して冷媒をバイパスさせる第1バイパスラインと、前記第2放熱用熱交換器に送給する冷媒および前記第1バイパスラインに送給する冷媒の分配量を調整する第1分配バルブと、を備え、前記制御手段は、前記圧縮機の駆動中、前記圧力センサの検知圧力からガス冷媒の凝縮温度を求めると共に、当該凝縮温度から前記温度センサの検知温度を差し引いて液冷媒の過冷却度を算出し、当該算出過冷却度が目標過冷却度になるように、前記第1分配バルブを制御することが好ましい。 Further, the refrigerant temperature adjusting means of the hot water supply system includes a temperature sensor that detects the temperature of the liquid refrigerant flowing into the expansion valve, a pressure sensor that detects the pressure of the liquid refrigerant flowing into the expansion valve, and the refrigerant circulation line. A first bypass line that is connected to and bypasses the refrigerant to the second heat dissipation heat exchanger, and a refrigerant that is supplied to the second heat dissipation heat exchanger and a refrigerant that is supplied to the first bypass line. A first distribution valve for adjusting the distribution amount is provided, and the control means obtains the condensation temperature of the gas refrigerant from the detection pressure of the pressure sensor while the compressor is being driven, and obtains the condensation temperature of the gas refrigerant from the condensation temperature of the temperature sensor. It is preferable to calculate the degree of overcooling of the liquid refrigerant by subtracting the detected temperature, and control the first distribution valve so that the calculated degree of overcooling becomes the target degree of overcooling.
 また、給湯システムの前記冷媒温度調整手段は、前記膨張弁に流入する液冷媒の温度を検知する温度センサと、前記補給水ラインに接続され、前記第2放熱用熱交換器に対して補給水をバイパスさせる第2バイパスラインと、前記第2放熱用熱交換器に送給する補給水および前記第2バイパスラインに送給する補給水の分配量を調整する第2分配バルブと、を備え、前記制御手段は、前記圧縮機の駆動中、前記温度センサの検知温度が目標温度になるように、前記第2分配バルブを制御することが好ましい。 Further, the refrigerant temperature adjusting means of the hot water supply system is connected to a temperature sensor that detects the temperature of the liquid refrigerant flowing into the expansion valve and the make-up water line, and makes up water for the second heat dissipation heat exchanger. A second bypass line for bypassing the above, and a second distribution valve for adjusting the distribution amount of the make-up water supplied to the second heat dissipation heat exchanger and the make-up water supplied to the second bypass line are provided. It is preferable that the control means controls the second distribution valve so that the detection temperature of the temperature sensor reaches the target temperature while the compressor is being driven.
 また、給湯システムの前記冷媒温度調整手段は、前記膨張弁に流入する液冷媒の温度を検知する温度センサと、前記膨張弁に流入する液冷媒の圧力を検知する圧力センサと、前記補給水ラインに接続され、前記第2放熱用熱交換器に対して補給水をバイパスさせる第2バイパスラインと、前記第2放熱用熱交換器に送給する補給水および前記第2バイパスラインに送給する補給水の分配量を調整する第2分配バルブと、を備え、前記制御手段は、前記圧縮機の駆動中、前記圧力センサの検知圧力からガス冷媒の凝縮温度を求めると共に、当該凝縮温度から前記温度センサの検知温度を差し引いて液冷媒の過冷却度を算出し、当該算出過冷却度が目標過冷却度になるように、前記第2分配バルブを制御することが好ましい。 Further, the refrigerant temperature adjusting means of the hot water supply system includes a temperature sensor that detects the temperature of the liquid refrigerant flowing into the expansion valve, a pressure sensor that detects the pressure of the liquid refrigerant flowing into the expansion valve, and the make-up water line. A second bypass line that is connected to the second heat dissipation heat exchanger to bypass the make-up water, and the make-up water to be supplied to the second heat dissipation heat exchanger and the second bypass line. A second distribution valve for adjusting the distribution amount of make-up water is provided, and the control means obtains the condensation temperature of the gas refrigerant from the detection pressure of the pressure sensor while the compressor is being driven, and the condensation temperature is used to obtain the condensation temperature. It is preferable to calculate the degree of supercooling of the liquid refrigerant by subtracting the detected temperature of the temperature sensor, and control the second distribution valve so that the calculated degree of supercooling becomes the target degree of supercooling.
 また、給湯システムの前記冷媒温度調整手段は、前記膨張弁に流入する液冷媒の温度を検知する温度センサと、前記冷媒循環ラインに接続され、前記第1放熱用熱交換器に対して冷媒をバイパスさせる第3バイパスラインと、前記第1放熱用熱交換器に送給する冷媒および前記第3バイパスラインに送給する冷媒の分配量を調整する第3分配バルブと、を備え、前記制御手段は、前記圧縮機の駆動中、前記温度センサの検知温度が目標温度になるように、前記第3分配バルブを制御することが好ましい。 Further, the refrigerant temperature adjusting means of the hot water supply system is connected to a temperature sensor that detects the temperature of the liquid refrigerant flowing into the expansion valve and the refrigerant circulation line, and supplies the refrigerant to the first heat dissipation heat exchanger. The control means includes a third bypass line to be bypassed, a third distribution valve for adjusting the distribution amount of the refrigerant to be supplied to the first heat dissipation heat exchanger and the refrigerant to be supplied to the third bypass line. It is preferable to control the third distribution valve so that the detection temperature of the temperature sensor reaches the target temperature while the compressor is being driven.
 また、給湯システムの前記冷媒温度調整手段は、前記膨張弁に流入する液冷媒の温度を検知する温度センサと、前記膨張弁に流入する液冷媒の圧力を検知する圧力センサと、前記冷媒循環ラインに接続され、前記第1放熱用熱交換器に対して冷媒をバイパスさせる第3バイパスラインと、前記第1放熱用熱交換器に送給する冷媒および前記第3バイパスラインに送給する冷媒の分配量を調整する第3分配バルブと、を備え、前記制御手段は、前記圧縮機の駆動中、前記圧力センサの検知圧力からガス冷媒の凝縮温度を求めると共に、当該凝縮温度から前記温度センサの検知温度を差し引いて液冷媒の過冷却度を算出し、当該算出過冷却度が目標過冷却度になるように、前記第3分配バルブを制御することが好ましい。 Further, the refrigerant temperature adjusting means of the hot water supply system includes a temperature sensor that detects the temperature of the liquid refrigerant flowing into the expansion valve, a pressure sensor that detects the pressure of the liquid refrigerant flowing into the expansion valve, and the refrigerant circulation line. A third bypass line that is connected to the first heat dissipation heat exchanger and bypasses the refrigerant, and a refrigerant that is supplied to the first heat dissipation heat exchanger and a refrigerant that is supplied to the third bypass line. A third distribution valve for adjusting the distribution amount is provided, and the control means obtains the condensation temperature of the gas refrigerant from the detection pressure of the pressure sensor while the compressor is being driven, and obtains the condensation temperature of the gas refrigerant from the condensation temperature of the temperature sensor. It is preferable to calculate the degree of overcooling of the liquid refrigerant by subtracting the detected temperature, and control the third distribution valve so that the calculated degree of overcooling becomes the target degree of overcooling.
 また、給湯システムの前記冷媒温度調整手段は、前記膨張弁に流入する液冷媒の温度を検知する温度センサと、前記水循環ラインに接続され、前記第1放熱用熱交換器に対して循環水をバイパスさせる第4バイパスラインと、前記第1放熱用熱交換器に送給する循環水および前記第4バイパスラインに送給する循環水の分配量を調整する第4分配バルブと、を備え、前記制御手段は、前記圧縮機の駆動中、前記温度センサの検知温度が目標温度になるように、前記第4分配バルブを制御することが好ましい。 Further, the refrigerant temperature adjusting means of the hot water supply system is connected to a temperature sensor that detects the temperature of the liquid refrigerant flowing into the expansion valve and the water circulation line, and supplies circulating water to the first heat dissipation heat exchanger. A fourth bypass line for bypassing, and a fourth distribution valve for adjusting the distribution amount of the circulating water supplied to the first heat dissipation heat exchanger and the circulating water supplied to the fourth bypass line are provided. It is preferable that the control means controls the fourth distribution valve so that the detection temperature of the temperature sensor reaches the target temperature while the compressor is being driven.
 また、給湯システムの前記冷媒温度調整手段は、前記膨張弁に流入する液冷媒の温度を検知する温度センサと、前記膨張弁に流入する液冷媒の圧力を検知する圧力センサと、前記水循環ラインに接続され、前記第1放熱用熱交換器に対して循環水をバイパスさせる第4バイパスラインと、前記第1放熱用熱交換器に送給する循環水および前記第4バイパスラインに送給する循環水の分配量を調整する第4分配バルブと、を備え、前記制御手段は、前記圧縮機の駆動中、前記圧力センサの検知圧力からガス冷媒の凝縮温度を求めると共に、当該凝縮温度から前記温度センサの検知温度を差し引いて液冷媒の過冷却度を算出し、当該算出過冷却度が目標過冷却度になるように、前記第4分配バルブを制御することが好ましい。 Further, the refrigerant temperature adjusting means of the hot water supply system includes a temperature sensor that detects the temperature of the liquid refrigerant flowing into the expansion valve, a pressure sensor that detects the pressure of the liquid refrigerant flowing into the expansion valve, and the water circulation line. A fourth bypass line that is connected and bypasses the circulating water to the first heat dissipation heat exchanger, circulating water to be supplied to the first heat dissipation heat exchanger, and circulation to be supplied to the fourth bypass line. A fourth distribution valve for adjusting the distribution amount of water is provided, and the control means obtains the condensation temperature of the gas refrigerant from the detection pressure of the pressure sensor while the compressor is being driven, and the temperature is derived from the condensation temperature. It is preferable to calculate the degree of supercooling of the liquid refrigerant by subtracting the detection temperature of the sensor, and control the fourth distribution valve so that the calculated degree of supercooling becomes the target degree of supercooling.
 本発明によれば、ヒートポンプ回路に貯留水加熱用熱交換器および補給水加熱用熱交換器を設けた構成において、圧縮機の破損を防止することが可能な給湯システムを提供することができる。 According to the present invention, it is possible to provide a hot water supply system capable of preventing damage to the compressor in a configuration in which a heat exchanger for heating stored water and a heat exchanger for heating make-up water are provided in a heat pump circuit.
本発明の第1実施形態に係る給湯システムの構成を模式的に示す図である。It is a figure which shows typically the structure of the hot water supply system which concerns on 1st Embodiment of this invention. 上記実施形態の変形例に係る給湯システムの構成を模式的に示す図である。It is a figure which shows typically the structure of the hot water supply system which concerns on the modification of the said embodiment. 本発明の第2実施形態に係る給湯システムの構成を模式的に示す図である。It is a figure which shows typically the structure of the hot water supply system which concerns on 2nd Embodiment of this invention. 上記実施形態の変形例に係る給湯システムの構成を模式的に示す図である。It is a figure which shows typically the structure of the hot water supply system which concerns on the modification of the said embodiment. 本発明の第3実施形態に係る給湯システムの構成を模式的に示す図である。It is a figure which shows typically the structure of the hot water supply system which concerns on 3rd Embodiment of this invention. 上記実施形態の変形例に係る給湯システムの構成を模式的に示す図である。It is a figure which shows typically the structure of the hot water supply system which concerns on the modification of the said embodiment. 本発明の第4実施形態に係る給湯システムの構成を模式的に示す図である。It is a figure which shows typically the structure of the hot water supply system which concerns on 4th Embodiment of this invention. 上記実施形態の変形例に係る給湯システムの構成を模式的に示す図である。It is a figure which shows typically the structure of the hot water supply system which concerns on the modification of the said embodiment.
<第1実施形態>
 以下、本発明の給湯システム1の第1実施形態について、図面を参照しながら説明する。なお、本明細書における「ライン」とは、流路、経路、管路等の流体の流通が可能なラインの総称である。
<First Embodiment>
Hereinafter, the first embodiment of the hot water supply system 1 of the present invention will be described with reference to the drawings. The term "line" as used herein is a general term for lines capable of flowing fluids such as flow paths, routes, and pipelines.
 図1は、本実施形態に係る給湯システム1の構成を模式的に示す図である。図1に示すように、本実施形態の給湯システム1は、ヒートポンプ回路10と、貯湯タンク60と、貯湯タンク60内の貯留水W3を循環水W1として循環させる水循環ラインL1と、補給水W2を貯湯タンク60へ送給する補給水ラインL2と、制御部100と、を備える。
 この給湯システム1は、ヒートポンプ回路10で加温した貯湯タンク60内の貯留水W3を、給湯水W4として温水需要箇所または温熱需要箇所に供給するシステムである。
FIG. 1 is a diagram schematically showing a configuration of a hot water supply system 1 according to the present embodiment. As shown in FIG. 1, the hot water supply system 1 of the present embodiment includes a heat pump circuit 10, a hot water storage tank 60, a water circulation line L1 that circulates the stored water W3 in the hot water storage tank 60 as circulating water W1, and make-up water W2. A make-up water line L2 for supplying to the hot water storage tank 60 and a control unit 100 are provided.
The hot water supply system 1 is a system that supplies the stored water W3 in the hot water storage tank 60 heated by the heat pump circuit 10 as hot water supply water W4 to a hot water demand point or a hot water demand place.
 ヒートポンプ回路10は、圧縮機11、第1放熱用熱交換器12A(凝縮器12A)、第2放熱用熱交換器12B(過冷却器12B)、膨張弁13および吸熱用熱交換器14(蒸発器14)が冷媒循環ラインL9により環状に接続され、圧縮機11の駆動により吸熱用熱交換器14で吸熱しつつ第1放熱用熱交換器12Aおよび/または第2放熱用熱交換器12Bで温熱を取り出す蒸気圧縮式のヒートポンプ回路である。この冷媒循環ラインL9には冷媒Rが流れる。 The heat pump circuit 10 includes a compressor 11, a first heat heat exchanger 12A (condenser 12A), a second heat exchanger 12B (supercooler 12B), an expansion valve 13, and a heat absorption heat exchanger 14 (evaporation). The vessel 14) is annularly connected by the refrigerant circulation line L9, and is absorbed by the heat absorption heat exchanger 14 by the drive of the compressor 11 and is absorbed by the first heat dissipation heat exchanger 12A and / or the second heat dissipation heat exchanger 12B. It is a steam compression type heat pump circuit that takes out heat. Refrigerant R flows through the refrigerant circulation line L9.
 圧縮機11は、駆動源としての電気モータ15を有しており、フロンガス等のガス状の冷媒R(ガス冷媒R)を圧縮して高温高圧の冷媒Rにする。第1放熱用熱交換器12Aは、水循環ラインL1を通じて送られてくる循環水W1へ放熱して、圧縮機11からの冷媒Rを凝縮液化する凝縮器である。第2放熱用熱交換器12Bは、補給水ラインL2を通じて送られてくる補給水W2へ放熱して、第1放熱用熱交換器12Aを通過した冷媒R(液冷媒R)を過冷却する過冷却器である。膨張弁13は、第2放熱用熱交換器12Bから送られた冷媒Rを通過させることで、冷媒Rの圧力と温度とを低下させる。吸熱用熱交換器14は、熱源流体から吸熱して、膨張弁13から送られる冷媒Rを蒸発させる蒸発器である。この熱源流体としては、熱源空気や熱源水など各種の流体を用いることができる。 The compressor 11 has an electric motor 15 as a drive source, and compresses a gaseous refrigerant R (gas refrigerant R) such as Freon gas into a high-temperature and high-pressure refrigerant R. The first heat exchanger 12A is a condenser that dissipates heat to the circulating water W1 sent through the water circulation line L1 and condenses the refrigerant R from the compressor 11. The second heat exchanger 12B dissipates heat to the make-up water W2 sent through the make-up water line L2, and supercools the refrigerant R (liquid refrigerant R) that has passed through the first heat exchanger 12A. It is a cooler. The expansion valve 13 reduces the pressure and temperature of the refrigerant R by passing the refrigerant R sent from the second heat dissipation heat exchanger 12B. The endothermic heat exchanger 14 is an evaporator that absorbs heat from the heat source fluid and evaporates the refrigerant R sent from the expansion valve 13. As the heat source fluid, various fluids such as heat source air and heat source water can be used.
 貯留水加熱用の第1放熱用熱交換器12Aは、循環水W1と冷媒Rとを間接熱交換させ、冷媒Rの潜熱および顕熱の放熱を行う。第1放熱用熱交換器12Aは、循環水W1を用いて冷媒Rの凝縮液化を行うと共に、冷媒Rを用いて循環水W1を加温する。
 補給水加熱用の第2放熱用熱交換器12Bは、補給水W2と冷媒Rとを間接熱交換させ、冷媒Rの顕熱の放熱を行う。第2放熱用熱交換器12Bは、補給水W2を用いて冷媒Rの過冷却を行うと共に、冷媒Rを用いて補給水W2を加温する。
 このように、冷媒Rの凝縮用と過冷却用とで熱交換器を分けることで、熱交換器の設計が容易となり、コスト削減を図ることができる。また、汎用の熱交換器の利用も可能となる。
 なお、運転条件等により、第1放熱用熱交換器12Aでガス冷媒Rの凝縮液化が部分的な相変化に止まった場合は、第2放熱用熱交換器12Bにおいて、残りのガス冷媒Rの凝縮液化が行われる。
The first heat radiating heat exchanger 12A for heating the stored water indirectly exchanges heat between the circulating water W1 and the refrigerant R, and dissipates the latent heat and sensible heat of the refrigerant R. The first heat exchanger 12A condenses and liquefies the refrigerant R using the circulating water W1 and heats the circulating water W1 using the refrigerant R.
The second heat radiating heat exchanger 12B for heating the make-up water indirectly exchanges heat between the make-up water W2 and the refrigerant R, and dissipates the apparent heat of the refrigerant R. The second heat exchanger 12B supercools the refrigerant R using the make-up water W2 and heats the make-up water W2 using the refrigerant R.
As described above, by separating the heat exchanger for the condensation and the supercooling of the refrigerant R, the design of the heat exchanger can be facilitated and the cost can be reduced. In addition, a general-purpose heat exchanger can be used.
If the condensed liquefaction of the gas refrigerant R in the first heat exchanger 12A stops at a partial phase change due to operating conditions or the like, the remaining gas refrigerant R in the second heat exchanger 12B Condensation is performed.
 膨張弁13は、比例制御式のニードル弁として構成され、駆動用ステッピングモータの回転数制御によりニードル弁のストロークを変え、弁開度を調節することで、冷媒循環ラインL9を流れる冷媒Rの流量を調整することができる。 The expansion valve 13 is configured as a proportionally controlled needle valve, and the stroke of the needle valve is changed by controlling the rotation speed of the drive stepping motor to adjust the valve opening degree, thereby adjusting the flow rate of the refrigerant R flowing through the refrigerant circulation line L9. Can be adjusted.
 以上のように、ヒートポンプ回路10は、吸熱用熱交換器14において、冷媒Rが外部から熱を奪って気化する一方、第1放熱用熱交換器12Aおよび第2放熱用熱交換器12Bにおいて、冷媒Rが外部へ放熱して凝縮液化し、過冷却される。このような原理を利用して、ヒートポンプ回路10は、吸熱用熱交換器14で熱源流体から熱をくみ上げ、第1放熱用熱交換器12Aで循環水W1を加温し、第2放熱用熱交換器12Bで補給水W2を加温する。 As described above, in the heat absorption heat exchanger 14, the refrigerant R takes heat from the outside and vaporizes, while in the first heat dissipation heat exchanger 12A and the second heat dissipation heat exchanger 12B, the heat pump circuit 10 takes heat from the outside and vaporizes it. The refrigerant R dissipates heat to the outside, condenses and liquefies, and is overcooled. Using such a principle, the heat pump circuit 10 draws heat from the heat source fluid by the endothermic heat exchanger 14, heats the circulating water W1 by the first heat exchanger 12A, and heats the second heat dissipation. The make-up water W2 is heated by the exchanger 12B.
 本実施形態のヒートポンプ回路10はさらに、膨張弁13に流入する液冷媒Rの温度を検知する温度センサとしての冷媒温度センサ16と、冷媒循環ラインL9に接続され、第2放熱用熱交換器12Bに対して液冷媒Rをバイパスさせる第1バイパスラインL11と、第2放熱用熱交換器12Bに送給する液冷媒Rおよび第1バイパスラインL11に送給する液冷媒Rの分配量を調整する第1分配バルブ31と、備える。 The heat pump circuit 10 of the present embodiment is further connected to a refrigerant temperature sensor 16 as a temperature sensor for detecting the temperature of the liquid refrigerant R flowing into the expansion valve 13 and a refrigerant circulation line L9, and is connected to a second heat exchanger 12B for heat dissipation. The distribution amount of the first bypass line L11 for bypassing the liquid refrigerant R, the liquid refrigerant R to be supplied to the second heat exchanger 12B, and the liquid refrigerant R to be supplied to the first bypass line L11 is adjusted. A first distribution valve 31 is provided.
 第1バイパスラインL11は、第2放熱用熱交換器12Bの上流側(第1放熱用熱交換器12Aと第2放熱用熱交換器12Bの間)において、冷媒循環ラインL9から分岐し、第2放熱用熱交換器12Bの下流側(第2放熱用熱交換器12Bと膨張弁13の間)において、冷媒循環ラインL9と合流している。 The first bypass line L11 branches from the refrigerant circulation line L9 on the upstream side of the second heat dissipation heat exchanger 12B (between the first heat dissipation heat exchanger 12A and the second heat dissipation heat exchanger 12B), and is the second. 2 On the downstream side of the heat exchanger 12B for heat dissipation (between the second heat exchanger 12B for heat dissipation and the expansion valve 13), the heat exchanger 12B merges with the refrigerant circulation line L9.
 冷媒温度センサ16は、冷媒循環ラインL9および第1バイパスラインL11の合流部の下流側であって、膨張弁13の上流側に配置されている。より好ましくは、冷媒温度センサ16は、膨張弁13に流入する直前の冷媒Rの温度を測定するために、膨張弁13の上流側であって、膨張弁13の近傍に配置される。 The refrigerant temperature sensor 16 is located on the downstream side of the confluence of the refrigerant circulation line L9 and the first bypass line L11, and is arranged on the upstream side of the expansion valve 13. More preferably, the refrigerant temperature sensor 16 is arranged on the upstream side of the expansion valve 13 and in the vicinity of the expansion valve 13 in order to measure the temperature of the refrigerant R immediately before flowing into the expansion valve 13.
 第1分配バルブ31は、第1バイパスラインL11に設けられている。第1分配バルブ31は、弁開度が調整可能に構成されている。第1分配バルブ31の弁開度を調整することにより、第2放熱用熱交換器12Bに送給する液冷媒Rおよび第1バイパスラインL11に送給する液冷媒Rの分配量を調整することができる。
 ここで、第1分配バルブ31の開放時においては、冷媒循環ラインL9を流れる冷媒Rのうち、第1バイパスラインL11を流れる第1の分流は、第1分配バルブ31を通過する過程で比較的小さな摩擦損失を弁室内で受けるだけで済む。一方、第2放熱用熱交換器12Bが配置されている冷媒循環ラインL9を流れる第2の分流は、第2放熱用熱交換器12Bを通過する過程で比較的大きな摩擦損失を第2放熱用熱交換器12B内で受けることになる。そのため、冷媒Rの流量比は「第1の分流>第2の分流」となって、大部分の冷媒Rが第1バイパスラインL11側を流れることなる。よって、このような簡単な構成によっても、第1分配バルブ31の弁開度を調整することによって、第2放熱用熱交換器12Bに送給する液冷媒Rおよび第1バイパスラインL11に送給する液冷媒Rの分配量を調整することができる。
The first distribution valve 31 is provided on the first bypass line L11. The first distribution valve 31 is configured so that the valve opening degree can be adjusted. By adjusting the valve opening degree of the first distribution valve 31, the distribution amount of the liquid refrigerant R supplied to the second heat exchanger 12B for heat dissipation and the liquid refrigerant R supplied to the first bypass line L11 is adjusted. Can be done.
Here, when the first distribution valve 31 is opened, of the refrigerant R flowing through the refrigerant circulation line L9, the first diversion flow flowing through the first bypass line L11 is relatively in the process of passing through the first distribution valve 31. Only a small friction loss is received in the valve chamber. On the other hand, the second diversion flow flowing through the refrigerant circulation line L9 in which the second heat exchanger 12B for heat dissipation is arranged causes a relatively large friction loss in the process of passing through the second heat exchanger 12B for heat dissipation for the second heat dissipation. It will be received in the heat exchanger 12B. Therefore, the flow rate ratio of the refrigerant R is "first diversion> second diversion", and most of the refrigerant R flows on the first bypass line L11 side. Therefore, even with such a simple configuration, by adjusting the valve opening degree of the first distribution valve 31, the liquid refrigerant R and the first bypass line L11 to be supplied to the second heat exchanger 12B for heat dissipation are supplied. The amount of liquid refrigerant R to be distributed can be adjusted.
 これらの冷媒温度センサ16と、第1バイパスラインL11と、第1分配バルブ31は、本実施形態における冷媒温度調整手段50を構成する。冷媒温度調整手段50は、後述の制御部100によって制御され、膨張弁13に流入する液冷媒Rの温度を調整する。 These refrigerant temperature sensors 16, the first bypass line L11, and the first distribution valve 31 constitute the refrigerant temperature adjusting means 50 in the present embodiment. The refrigerant temperature adjusting means 50 is controlled by a control unit 100 described later, and adjusts the temperature of the liquid refrigerant R flowing into the expansion valve 13.
 貯湯タンク60は、ヒートポンプ回路10で加温された循環水W1および補給水W2を貯留水W3として貯留するタンクである。貯湯タンク60内の貯留水W3は、給湯水W4として、給湯水ラインL4を通じて温水需要箇所または温熱需要箇所に供給される。 The hot water storage tank 60 is a tank that stores the circulating water W1 and the make-up water W2 heated by the heat pump circuit 10 as the stored water W3. The stored water W3 in the hot water storage tank 60 is supplied as hot water supply water W4 to a hot water demand point or a hot water demand point through a hot water supply water line L4.
 貯湯タンク60は、貯湯タンク60内の貯留水W3の温度を検知する貯湯温度センサ61を備える。貯湯温度センサ61は、給湯水W4として温水需要箇所または温熱需要箇所に供給されることとなる貯留水W3の温度をモニタリングする。 The hot water storage tank 60 includes a hot water storage temperature sensor 61 that detects the temperature of the stored water W3 in the hot water storage tank 60. The hot water storage temperature sensor 61 monitors the temperature of the stored water W3 that will be supplied to the hot water demand point or the hot water demand point as the hot water supply water W4.
 貯湯タンク60は、貯湯タンク60内の水位を検知する水位センサ62を備える。本実施形態においては、水位センサ62は、複数の電極棒を備える電極式水位検出器により構成されている。具体的には、長さの異なる複数の電極棒が、その下端部の高さ位置を互いに異ならせて差し込まれて保持されている。各電極棒は、その下端部が水に浸かるか否かにより、下端部における水位の有無を検出する。これにより、水位センサ62は、貯湯タンク60内の貯留水W3の水位を検知する。 The hot water storage tank 60 includes a water level sensor 62 that detects the water level in the hot water storage tank 60. In the present embodiment, the water level sensor 62 is composed of an electrode type water level detector including a plurality of electrode rods. Specifically, a plurality of electrode rods having different lengths are inserted and held at different height positions of the lower end portions thereof. Each electrode rod detects the presence or absence of a water level at the lower end portion depending on whether or not the lower end portion thereof is immersed in water. As a result, the water level sensor 62 detects the water level of the stored water W3 in the hot water storage tank 60.
 水循環ラインL1は、その上流側が貯湯タンク60に接続されており、かつ下流側も貯湯タンク60に接続されている。水循環ラインL1は、貯湯タンク60内の貯留水W3を循環水W1として循環させる循環路を形成する。貯湯タンク60内の貯留水W3は、水循環ラインL1を通じて第1放熱用熱交換器12Aを通過して加温され、貯湯タンク60内に戻る。水循環ラインL1には、上流側から、水循環ポンプ21、第1放熱用熱交換器12A、第1温度センサ22が順次配置されている。 The upstream side of the water circulation line L1 is connected to the hot water storage tank 60, and the downstream side is also connected to the hot water storage tank 60. The water circulation line L1 forms a circulation path for circulating the stored water W3 in the hot water storage tank 60 as the circulating water W1. The stored water W3 in the hot water storage tank 60 passes through the first heat dissipation heat exchanger 12A through the water circulation line L1 to be heated, and returns to the hot water storage tank 60. In the water circulation line L1, the water circulation pump 21, the first heat exchanger 12A for heat dissipation, and the first temperature sensor 22 are sequentially arranged from the upstream side.
 水循環ポンプ21は、インバータにより回転数を制御可能とされる。水循環ポンプ21の回転数を変更することで、水循環ラインL1を循環する循環水W1の流量を調整することができる。 The rotation speed of the water circulation pump 21 can be controlled by an inverter. By changing the rotation speed of the water circulation pump 21, the flow rate of the circulating water W1 circulating in the water circulation line L1 can be adjusted.
 第1温度センサ22は、第1放熱用熱交換器12Aの下流側に配置されており、第1放熱用熱交換器12Aから流出する循環水W1の温度を検知する。 The first temperature sensor 22 is arranged on the downstream side of the first heat radiating heat exchanger 12A, and detects the temperature of the circulating water W1 flowing out of the first heat radiating heat exchanger 12A.
 補給水ラインL2は、その上流側が補給水タンク(不図示)等の補給水源に接続され、その下流側が貯湯タンク60に接続されている。補給水ラインL2は、補給水W2を第2放熱用熱交換器12Bに流通させつつ、貯湯タンク60へ送給するラインである。補給水ラインL2には、上流側から、補給水弁25、第2放熱用熱交換器12B、第2温度センサ26が順次配置されている。 The upstream side of the make-up water line L2 is connected to a make-up water source such as a make-up water tank (not shown), and the downstream side thereof is connected to the hot water storage tank 60. The make-up water line L2 is a line that supplies the make-up water W2 to the hot water storage tank 60 while circulating the make-up water W2 to the second heat exchanger 12B. In the make-up water line L2, a make-up water valve 25, a second heat exchanger 12B for heat dissipation, and a second temperature sensor 26 are sequentially arranged from the upstream side.
 補給水弁25は、弁開度が調整可能に構成されている。補給水弁25の弁開度を調整することにより、補給水ラインL2を流れる補給水W2の流量を調整することができる。 The make-up water valve 25 is configured so that the valve opening can be adjusted. By adjusting the valve opening degree of the make-up water valve 25, the flow rate of the make-up water W2 flowing through the make-up water line L2 can be adjusted.
 第2温度センサ26は、第2放熱用熱交換器12Bの下流側に配置されており、第2放熱用熱交換器12Bから流出する補給水W2の温度を検知する。 The second temperature sensor 26 is arranged on the downstream side of the second heat exchanger 12B for heat dissipation, and detects the temperature of the make-up water W2 flowing out from the second heat exchanger 12B for heat dissipation.
 補給水ラインL2は、補給水バイパスラインとしての第2バイパスラインL12を備える。第2バイパスラインL12は、第2放熱用熱交換器12Bに対して補給水W2をバイパスさせるバイパスラインである。第2バイパスラインL12には、補給水分配バルブとしての第2分配バルブ32が配置されている。 The make-up water line L2 includes a second bypass line L12 as a make-up water bypass line. The second bypass line L12 is a bypass line that bypasses the make-up water W2 to the second heat dissipation heat exchanger 12B. A second distribution valve 32 as a make-up water distribution valve is arranged on the second bypass line L12.
 第2分配バルブ32は、第2放熱用熱交換器12Bに送給する補給水W2および第2バイパスラインL12に送給する補給水W2の分配量を調整する。第2分配バルブ32は、自動または手動入力により弁開度が調整されてもよい。例えば、貯湯タンク60の貯留水W3の水位が急激に低下したことが検知されたときに、自動または手動入力により第2分配バルブ32が開放されてもよい。これにより、第2放熱用熱交換器12Bによって加温されていない補給水W2が、貯湯タンク60内に急速に補給され、貯湯タンク60が渇水状態となることを防ぐ。 The second distribution valve 32 adjusts the distribution amount of the make-up water W2 to be sent to the second heat exchanger 12B and the make-up water W2 to be sent to the second bypass line L12. The valve opening degree of the second distribution valve 32 may be adjusted by automatic or manual input. For example, when it is detected that the water level of the stored water W3 in the hot water storage tank 60 has dropped sharply, the second distribution valve 32 may be opened by automatic or manual input. As a result, the make-up water W2 that has not been heated by the second heat radiating heat exchanger 12B is rapidly replenished in the hot water storage tank 60, and the hot water storage tank 60 is prevented from becoming drought.
 水循環ラインL1および補給水ラインL2を通過することによって加温された貯湯タンク60内の貯留水W3は、給湯水W4として、給湯水ラインL4を通じて温水需要箇所または温熱需要箇所に供給される。 The stored water W3 in the hot water storage tank 60 heated by passing through the water circulation line L1 and the make-up water line L2 is supplied as hot water supply water W4 to the hot water demand point or the hot water demand point through the hot water supply water line L4.
 温水需要箇所とは、給湯水W4を流体利用することにより貯留水W3を消費する工場内の各種生産設備等をいう。温水需要箇所の例としては、食品・飲料・薬品用の容器洗浄設備(リンサー)、瓶詰・缶詰・袋詰製品の加熱殺菌設備(パストライザー)等を挙げることができる。
 一方、温熱需要箇所とは、給湯水W4の熱エネルギーのみを利用し、貯留水W3を消費しない生産設備等をいう。熱エネルギーの利用は、種々の熱交換器を介して行われ、熱エネルギーの取り出しによって温度降下した給湯水W4は、図示しない返湯水ラインを通じて貯湯タンク60に返送される。温熱需要箇所の例としては、金属加工品の塗装設備における脱脂槽や化成槽、空調設備におけるエアハンドリングユニット等を挙げることができる。
The hot water demand point refers to various production facilities in the factory that consume the stored water W3 by using the hot water supply water W4 as a fluid. Examples of hot water demand locations include container cleaning equipment (rincers) for food, beverages, and chemicals, and heat sterilization equipment (pastorizers) for bottled, canned, and bagged products.
On the other hand, the thermal demand location refers to a production facility or the like that uses only the thermal energy of the hot water supply water W4 and does not consume the stored water W3. The use of heat energy is performed via various heat exchangers, and the hot water supply water W4 whose temperature has dropped due to the extraction of heat energy is returned to the hot water storage tank 60 through a hot water return water line (not shown). Examples of hot demand points include degreasing tanks and chemical conversion tanks in coating equipment for metal processed products, air handling units in air conditioning equipment, and the like.
 次に、本実施形態の給湯システム1の制御部100(制御手段100)について説明する。制御部100は、CPUおよびメモリを含むマイクロプロセッサにより構成される。制御部100は、機能ブロックとして、循環水流量制御部としての水循環ポンプ制御部110と、補給水流量制御部としての補給水弁制御部120と、冷媒温度制御部としての分配バルブ制御部130と、を備える。
 ここで、図1における破線は、本実施形態における主要な電気的な接続の経路を示している。なお、これらの電気的な接続は、実際には制御部100を経由するが、その点は省略している。
Next, the control unit 100 (control means 100) of the hot water supply system 1 of the present embodiment will be described. The control unit 100 is composed of a microprocessor including a CPU and a memory. The control unit 100 includes a water circulation pump control unit 110 as a circulating water flow rate control unit, a make-up water valve control unit 120 as a make-up water flow rate control unit, and a distribution valve control unit 130 as a refrigerant temperature control unit as functional blocks. , Equipped with.
Here, the broken line in FIG. 1 shows the main electrical connection path in the present embodiment. Although these electrical connections actually go through the control unit 100, that point is omitted.
 水循環ポンプ制御部110は、第1温度センサ22の検知温度を取得し、この検知温度に応じて、循環水流量調整手段を構成する水循環ポンプ21の駆動周波数を制御する。具体的には、水循環ポンプ制御部110は、第1温度センサ22の検知温度が目標出湯温度になるように、水循環ポンプ21の駆動周波数を制御し、循環水W1の流量を調整する。より具体的な制御としては、例えば、第1温度センサ22によりリアルタイムに検知される出湯温度をフィードバック値として、この出湯温度を目標出湯温度に収束させるように水循環ポンプの駆動周波数を調整するフィードバック制御を採用するのが好ましい。フィードバック制御は、比例制御(P制御)のほか、これに積分制御(I制御)および/または微分制御(D制御)を組み合わせた操作量の演算アルゴリズムを採用することができる。 The water circulation pump control unit 110 acquires the detected temperature of the first temperature sensor 22, and controls the drive frequency of the water circulation pump 21 constituting the circulating water flow rate adjusting means according to the detected temperature. Specifically, the water circulation pump control unit 110 controls the drive frequency of the water circulation pump 21 so that the detected temperature of the first temperature sensor 22 becomes the target hot water discharge temperature, and adjusts the flow rate of the circulating water W1. As a more specific control, for example, the feedback control that adjusts the drive frequency of the water circulation pump so that the outlet temperature is converged to the target outlet temperature by using the outlet temperature detected in real time by the first temperature sensor 22 as a feedback value. It is preferable to adopt. As the feedback control, in addition to the proportional control (P control), an operation amount calculation algorithm that combines the integral control (I control) and / or the differential control (D control) can be adopted.
 これにより、貯湯タンク60から第1放熱用熱交換器12Aに送給された循環水W1は第1放熱用熱交換器12Aで目標出湯温度(例えば60℃)まで加熱された後、貯湯タンク60に一定温度で還流される。よって、吸熱用熱交換器14に供給する熱源流体(例えば熱源空気)の温度に季節変動がある場合や、第2放熱用熱交換器12Bで加熱後の補給水W2の温度に変動がある場合でも、貯湯タンク60に所要温度(例えば温水需要箇所または温熱需要箇所で要求される給湯温度)の温水を高速に蓄えることができる。 As a result, the circulating water W1 supplied from the hot water storage tank 60 to the first heat dissipation heat exchanger 12A is heated to the target hot water discharge temperature (for example, 60 ° C.) by the first heat dissipation heat exchanger 12A, and then the hot water storage tank 60. Is refluxed at a constant temperature. Therefore, when the temperature of the heat source fluid (for example, heat source air) supplied to the heat absorption heat exchanger 14 fluctuates seasonally, or when the temperature of the make-up water W2 after heating by the second heat dissipation heat exchanger 12B fluctuates. However, hot water having a required temperature (for example, a hot water supply temperature required at a hot water demanding place or a hot water demanding place) can be stored at high speed in the hot water storage tank 60.
 補給水弁制御部120は、水位センサ62が検知した貯湯タンク60内の貯留水W3の水位情報を取得し、この水位情報に応じて、補給水流量調整手段を構成する補給水弁25の弁開度を調整する制御を行う。具体的には、補給水弁制御部120は、水位センサ62の検知水位が高くなるほど補給水弁25の開度を減少させて補給水流量を減少させる一方、水位センサ62の検知水位が低くなるほど補給水弁25の弁開度を増大させて補給水流量を増大させる制御を行う。例えば、満水水位となったときは、補給水弁25の弁開度を0%(全閉)とし、渇水直前の水位となったときは、補給水弁25の弁開度を100%(全開)とし、その中間の水位のときは、補給水弁25の弁開度を5%~95%とする。 The make-up water valve control unit 120 acquires the water level information of the stored water W3 in the hot water storage tank 60 detected by the water level sensor 62, and the valve of the make-up water valve 25 constituting the make-up water flow rate adjusting means according to the water level information. Control to adjust the opening. Specifically, the make-up water valve control unit 120 reduces the opening degree of the make-up water valve 25 to reduce the make-up water flow rate as the detected water level of the water level sensor 62 becomes higher, while the lower the detected water level of the water level sensor 62 becomes. Control is performed to increase the valve opening degree of the make-up water valve 25 to increase the make-up water flow rate. For example, when the water level is full, the valve opening of the make-up water valve 25 is set to 0% (fully closed), and when the water level is just before the drought, the valve opening of the make-up water valve 25 is set to 100% (fully open). ), And when the water level is in the middle, the valve opening of the make-up water valve 25 is set to 5% to 95%.
 このように、水位センサ62の検知水位が高くなるほど補給水弁25の弁開度を減少させる一方、水位センサ62の検知水位が低くなるほど補給水弁25の弁開度を増大させるように構成しているので、温水需要量の増減に応答して補給水流量が増減される。すなわち、温水需要量がゼロにならない限り補給水弁25が閉鎖されることはなく、第2放熱用熱交換器12Bに補給水W2が流れ続ける。これにより、温水需要量が少ない場合であっても液冷媒Rの過冷却を継続し、COPを高めることできる。 In this way, the valve opening of the make-up water valve 25 is decreased as the detected water level of the water level sensor 62 is higher, while the valve opening of the make-up water valve 25 is increased as the detected water level of the water level sensor 62 is lower. Therefore, the make-up water flow rate is increased or decreased in response to the increase or decrease in the hot water demand. That is, the make-up water valve 25 is not closed unless the hot water demand becomes zero, and the make-up water W2 continues to flow in the second heat dissipation heat exchanger 12B. As a result, even when the demand for hot water is small, the supercooling of the liquid refrigerant R can be continued and the COP can be increased.
 なお、補給水弁制御部120は、水位センサ62の検知水位に加えて、第2放熱用熱交換器12Bから流出する補給水W2の温度を検知する第2温度センサ26の検知温度に基づいて、補給水弁25の弁開度を制御してもよい。この場合は、補給水弁制御部120は、水位センサ62が検知した水位情報に応じて、補給水流量調整手段を構成する補給水弁25の弁開度を調整しつつ、第2温度センサ26の検知温度が、第1放熱用熱交換器12Aの目標出湯温度(例えば60℃)を超えてしまう状況にある場合は、第2温度センサ26の検知温度がこの目標出湯温度(例えば60℃)を超えない範囲となるように、補給水弁25の弁開度を制御する。これにより、液冷媒Rの過冷却を継続しつつ、貯湯タンク60に所要温度(例えば温水需要箇所または温熱需要箇所で要求される給湯温度)を超えない温水を高速に補給することができる。 The make-up water valve control unit 120 is based on the detection temperature of the second temperature sensor 26 that detects the temperature of the make-up water W2 flowing out from the second heat dissipation heat exchanger 12B in addition to the detected water level of the water level sensor 62. , The valve opening degree of the make-up water valve 25 may be controlled. In this case, the make-up water valve control unit 120 adjusts the valve opening degree of the make-up water valve 25 constituting the make-up water flow rate adjusting means according to the water level information detected by the water level sensor 62, and the second temperature sensor 26. If the detected temperature of the second temperature sensor 26 exceeds the target hot water discharge temperature (for example, 60 ° C.) of the first heat dissipation heat exchanger 12A, the detected temperature of the second temperature sensor 26 is the target hot water discharge temperature (for example, 60 ° C.). The valve opening degree of the make-up water valve 25 is controlled so as not to exceed the range. As a result, while continuing supercooling of the liquid refrigerant R, hot water that does not exceed the required temperature (for example, the hot water supply temperature required at the hot water demand location or the hot water demand location) can be supplied to the hot water storage tank 60 at high speed.
 分配バルブ制御部130は、冷媒温度センサ16の検知温度を取得し、この検知温度に応じて、冷媒温度調整手段50を構成する第1分配バルブ31の弁開度を調整する制御を行う。具体的には、分配バルブ制御部130は、圧縮機11の駆動中、冷媒温度センサ16の検知温度が目標温度になるように、第1分配バルブ31を制御する。より具体的な制御としては、例えば、冷媒温度センサ16によりリアルタイムに検知される冷媒温度をフィードバック値として、この冷媒温度を目標温度に収束させるように第1分配バルブ31の弁開度を調整するフィードバック制御を採用するのが好ましい。フィードバック制御は、比例制御(P制御)のほか、これに積分制御(I制御)および/または微分制御(D制御)を組み合わせた操作量の演算アルゴリズムを採用することができる。
 ここで、目標温度は、手動により、または装置状態等に応じて自動で設定される。
 これにより、第2放熱用熱交換器12Bに対する液冷媒Rのバイパス量が調整され、第2放熱用熱交換器12Bでの液冷媒Rの冷却量が抑制される。
The distribution valve control unit 130 acquires the detection temperature of the refrigerant temperature sensor 16 and controls to adjust the valve opening degree of the first distribution valve 31 constituting the refrigerant temperature adjusting means 50 according to the detected temperature. Specifically, the distribution valve control unit 130 controls the first distribution valve 31 so that the detection temperature of the refrigerant temperature sensor 16 reaches the target temperature while the compressor 11 is being driven. As a more specific control, for example, the refrigerant temperature detected in real time by the refrigerant temperature sensor 16 is used as a feedback value, and the valve opening degree of the first distribution valve 31 is adjusted so that the refrigerant temperature converges to the target temperature. It is preferable to adopt feedback control. As the feedback control, in addition to the proportional control (P control), an operation amount calculation algorithm that combines the integral control (I control) and / or the differential control (D control) can be adopted.
Here, the target temperature is set manually or automatically according to the state of the device or the like.
As a result, the bypass amount of the liquid refrigerant R with respect to the second heat radiating heat exchanger 12B is adjusted, and the cooling amount of the liquid refrigerant R in the second heat radiating heat exchanger 12B is suppressed.
 以上の構成により、補給水の水源温度が低い場合であっても、膨張弁に流入する液冷媒Rの温度を高過冷却状態とならない一定の温度に保つことができる。よって、吸熱用熱交換器14に高過冷却状態の液冷媒Rが供給されることが回避され、圧縮機11が湿り蒸気状態の冷媒Rを吸入する障害が起こらない。これにより、圧縮機11の破損を防止しつつ、冷凍サイクルを最適作動させることができる。 With the above configuration, even when the water source temperature of the make-up water is low, the temperature of the liquid refrigerant R flowing into the expansion valve can be maintained at a constant temperature that does not cause a high supercooling state. Therefore, it is avoided that the liquid refrigerant R in the highly supercooled state is supplied to the endothermic heat exchanger 14, and the compressor 11 does not have an obstacle to suck the refrigerant R in the wet vapor state. This makes it possible to optimally operate the refrigeration cycle while preventing damage to the compressor 11.
 続けて、第1実施形態の変形例について図面を参照しながら説明する。図2は、第1実施形態の変形例に係る給湯システムの構成を模式的に示す図である。本変形例においては、膨張弁13に流入する液冷媒Rの圧力を検知する冷媒圧力センサ17をさらに備え、分配バルブ制御部130は、冷媒温度センサ16の検知温度および冷媒圧力センサ17の検知圧力に基づいて、第1分配バルブ31を制御する。 Subsequently, a modified example of the first embodiment will be described with reference to the drawings. FIG. 2 is a diagram schematically showing a configuration of a hot water supply system according to a modified example of the first embodiment. In this modification, a refrigerant pressure sensor 17 for detecting the pressure of the liquid refrigerant R flowing into the expansion valve 13 is further provided, and the distribution valve control unit 130 includes the detection temperature of the refrigerant temperature sensor 16 and the detection pressure of the refrigerant pressure sensor 17. The first distribution valve 31 is controlled based on the above.
 図2に示すように、本変形例のヒートポンプ回路10は、膨張弁13に流入する液冷媒Rの圧力を検知する冷媒圧力センサ17を備える。また、本変形例の制御部100は、膨張弁13に流入する液冷媒Rの過冷却度を算出する過冷却度算出部140を備える。 As shown in FIG. 2, the heat pump circuit 10 of this modification includes a refrigerant pressure sensor 17 that detects the pressure of the liquid refrigerant R flowing into the expansion valve 13. Further, the control unit 100 of this modification includes a supercooling degree calculation unit 140 that calculates the supercooling degree of the liquid refrigerant R flowing into the expansion valve 13.
 冷媒圧力センサ17は、冷媒温度センサ16と同様、冷媒循環ラインL9および第1バイパスラインL11の合流部の下流側であって、膨張弁13の上流側に配置されている。より好ましくは、冷媒圧力センサ17は、膨張弁13に流入する直前の冷媒Rの圧力を測定するために、膨張弁13の上流側であって、膨張弁13の近傍に配置される。 Like the refrigerant temperature sensor 16, the refrigerant pressure sensor 17 is located on the downstream side of the confluence of the refrigerant circulation line L9 and the first bypass line L11, and is arranged on the upstream side of the expansion valve 13. More preferably, the refrigerant pressure sensor 17 is arranged on the upstream side of the expansion valve 13 and in the vicinity of the expansion valve 13 in order to measure the pressure of the refrigerant R immediately before flowing into the expansion valve 13.
 本変形例においては、冷媒圧力センサ17、冷媒温度センサ16、第1バイパスラインL11および第1分配バルブ31が、冷媒温度調整手段50を構成する。 In this modification, the refrigerant pressure sensor 17, the refrigerant temperature sensor 16, the first bypass line L11, and the first distribution valve 31 constitute the refrigerant temperature adjusting means 50.
 過冷却度算出部140は、膨張弁13に流入する液冷媒Rの過冷却度を算出する。具体的には、過冷却度算出部140は、冷媒圧力センサ17の検知圧力からガス冷媒Rの凝縮温度を求めると共に、この凝縮温度から冷媒温度センサ16の検知温度を差し引いて液冷媒Rの過冷却度を算出する。 The supercooling degree calculation unit 140 calculates the supercooling degree of the liquid refrigerant R flowing into the expansion valve 13. Specifically, the supercooling degree calculation unit 140 obtains the condensation temperature of the gas refrigerant R from the detection pressure of the refrigerant pressure sensor 17, and subtracts the detection temperature of the refrigerant temperature sensor 16 from this condensation temperature to obtain the excess of the liquid refrigerant R. Calculate the degree of cooling.
 分配バルブ制御部130は、算出過冷却度(過冷却度算出部140による算出値)が目標過冷却度になるように冷媒温度調整手段50を構成する第1分配バルブ31を制御し、膨張弁13に流入する液冷媒Rの過冷却度を調整する。具体的な制御としては、例えば、過冷却度算出部140によりリアルタイムで算出される算出過冷却度をフィードバック値として、この算出過冷却度を目標過冷却度に収束させるように第1分配バルブ31の弁開度を調整するフィードバック制御を採用するのが好ましい。フィードバック制御は、比例制御(P制御)のほか、これに積分制御(I制御)および/または微分制御(D制御)を組み合わせた操作量の演算アルゴリズムを採用することができる。
 これにより、第2放熱用熱交換器12Bに対する液冷媒Rのバイパス量が調整され、膨張弁13に流入する液冷媒Rの過冷却度が調整される。
 ここで、目標過冷却度は、手動により、または装置状態等に応じて自動で設定される。
The distribution valve control unit 130 controls the first distribution valve 31 constituting the refrigerant temperature adjusting means 50 so that the calculated supercooling degree (value calculated by the supercooling degree calculation unit 140) becomes the target supercooling degree, and is an expansion valve. The degree of supercooling of the liquid refrigerant R flowing into 13 is adjusted. As specific control, for example, the calculated supercooling degree calculated in real time by the supercooling degree calculation unit 140 is used as a feedback value, and the first distribution valve 31 so as to converge this calculated supercooling degree to the target supercooling degree. It is preferable to adopt feedback control that adjusts the valve opening of the valve. As the feedback control, in addition to the proportional control (P control), an operation amount calculation algorithm that combines the integral control (I control) and / or the differential control (D control) can be adopted.
As a result, the bypass amount of the liquid refrigerant R with respect to the second heat dissipation heat exchanger 12B is adjusted, and the degree of supercooling of the liquid refrigerant R flowing into the expansion valve 13 is adjusted.
Here, the target supercooling degree is set manually or automatically according to the state of the device or the like.
 このように、過冷却度算出部140が膨張弁13に流入する液冷媒Rの過冷却度を正確に算出し、さらに分配バルブ制御部130がその算出過冷却度が目標過冷却度になるように第1分配バルブ31を制御することにより、第2放熱用熱交換器12Bに対する液冷媒Rのバイパス量が調整され、第2放熱用熱交換器12Bでの液冷媒Rの冷却量が抑制される。これにより、補給水W2の水源温度が低い場合であっても、膨張弁13に流入する液冷媒Rの温度を高過冷却状態とならない一定の温度に保つことができる。 In this way, the supercooling degree calculation unit 140 accurately calculates the supercooling degree of the liquid refrigerant R flowing into the expansion valve 13, and the distribution valve control unit 130 further calculates the calculated supercooling degree to be the target supercooling degree. By controlling the first distribution valve 31, the amount of bypass of the liquid refrigerant R to the second heat exchanger 12B is adjusted, and the cooling amount of the liquid refrigerant R in the second heat exchanger 12B is suppressed. To. As a result, even when the water source temperature of the make-up water W2 is low, the temperature of the liquid refrigerant R flowing into the expansion valve 13 can be maintained at a constant temperature that does not cause a high supercooling state.
 なお、本実施形態においては、第1分配バルブ31は、第1バイパスラインL11に設けられているが、これに限らない。第1分配バルブ31は、第2放熱用熱交換器12Bに送給する液冷媒Rおよび第1バイパスラインL11に送給する液冷媒Rの分配量を調整する機能を有しているものであればよく、例えば、冷媒循環ラインL9から第1バイパスラインL11が分岐する分岐部に設けられた三方弁であってもよい。
 三方弁の場合は、弁開度を調整するアクチュエータ回路に0~100%の弁開度指定信号が入力されることにより、第2放熱用熱交換器12Bに向かう第1出口ポート側の弁開度と、第1バイパスラインL11に向かう第2出口ポート側の弁開度とが調節される。これにより、第2放熱用熱交換器12Bに流れる液冷媒Rの流量と、第1バイパスラインL11に流れる液冷媒Rの流量との流量比が調整される。但し、第1出口ポート側および第2出口ポート側の流量比の合計は常に100%である。なお、三方弁の弁開度は、第1出口ポート側の弁開度が基準となっており、第1出口ポート側の弁開度が、0%→25%→50%→75%→100%となる場合、第2出口ポート側の弁開度は、100%→75%→50%→25%→0%となる。このような三方弁を用いる場合についても、例えば、冷媒温度センサ16によりリアルタイムに検知される冷媒温度や、過冷却度算出部140によりリアルタイムで算出される算出過冷却度をフィードバック値として、これらの冷媒温度や算出過冷却度を目標値に収束させるように三方弁の弁開度を調整するフィードバック制御を採用することが好ましい。
In the present embodiment, the first distribution valve 31 is provided on the first bypass line L11, but the present invention is not limited to this. The first distribution valve 31 may have a function of adjusting the distribution amount of the liquid refrigerant R supplied to the second heat exchanger 12B and the liquid refrigerant R supplied to the first bypass line L11. For example, it may be a three-way valve provided at a branch portion where the first bypass line L11 branches from the refrigerant circulation line L9.
In the case of a three-way valve, the valve opening on the first outlet port side toward the second heat exchanger 12B is opened by inputting a valve opening designation signal of 0 to 100% to the actuator circuit that adjusts the valve opening. The degree and the valve opening degree on the second outlet port side toward the first bypass line L11 are adjusted. As a result, the flow rate ratio between the flow rate of the liquid refrigerant R flowing through the second heat exchanger 12B and the flow rate of the liquid refrigerant R flowing through the first bypass line L11 is adjusted. However, the total flow rate ratio on the first outlet port side and the second outlet port side is always 100%. The valve opening of the three-way valve is based on the valve opening on the first outlet port side, and the valve opening on the first outlet port side is 0% → 25% → 50% → 75% → 100. When it becomes%, the valve opening degree on the second outlet port side becomes 100% → 75% → 50% → 25% → 0%. Also in the case of using such a three-way valve, for example, the refrigerant temperature detected in real time by the refrigerant temperature sensor 16 and the calculated supercooling degree calculated in real time by the supercooling degree calculation unit 140 are used as feedback values. It is preferable to adopt feedback control that adjusts the valve opening of the three-way valve so that the refrigerant temperature and the calculated supercooling degree converge to the target value.
 以上説明した第1実施形態の給湯システム1によれば、以下の(1)~(3)に示されるような効果を奏する。 According to the hot water supply system 1 of the first embodiment described above, the effects shown in the following (1) to (3) are obtained.
 (1)本実施形態の給湯システム1は、圧縮機11、第1放熱用熱交換器12A、第2放熱用熱交換器12B、膨張弁13および吸熱用熱交換器14が冷媒循環ラインL9により環状に接続され、圧縮機11の駆動により第1放熱用熱交換器12Aおよび/または第2放熱用熱交換器12Bで温熱を取り出す蒸気圧縮式のヒートポンプ回路10と、補給水W2を貯留する貯湯タンク60と、貯湯タンク60内の貯留水W3を第1放熱用熱交換器12Aに循環させる水循環ラインL1と、補給水W2を第2放熱用熱交換器12Bに流通させつつ、貯湯タンク60へ送給する補給水ラインL2と、膨張弁13に流入する液冷媒Rの温度を調整する冷媒温度調整手段50と、冷媒温度調整手段50を制御する制御手段100と、を備える。
 このように、膨張弁13に流入する液冷媒Rの温度を調整する冷媒温度調整手段50と、この冷媒温度調整手段50を制御する制御手段100とを備えているので、吸熱用熱交換器14(蒸発器14)に高過冷却状態の冷媒Rが供給されることが回避され、圧縮機11が湿り蒸気を吸入する障害が起こらない。これにより、圧縮機11の破損を防止しつつ、冷凍サイクルを最適作動させることができる。
(1) In the hot water supply system 1 of the present embodiment, the compressor 11, the first heat heat exchanger 12A, the second heat exchanger 12B, the expansion valve 13, and the heat absorption heat exchanger 14 are provided by the refrigerant circulation line L9. A steam compression type heat pump circuit 10 that is connected in an annular shape and takes out heat by the first heat exchanger 12A and / or the second heat exchanger 12B by driving the compressor 11, and hot water storage for storing the make-up water W2. The tank 60, the water circulation line L1 that circulates the stored water W3 in the hot water storage tank 60 to the first heat exchanger 12A, and the make-up water W2 to the hot water storage tank 60 while circulating the make-up water W2 to the second heat exchanger 12B. A make-up water line L2 to be supplied, a refrigerant temperature adjusting means 50 for adjusting the temperature of the liquid refrigerant R flowing into the expansion valve 13, and a control means 100 for controlling the refrigerant temperature adjusting means 50 are provided.
As described above, since the refrigerant temperature adjusting means 50 for adjusting the temperature of the liquid refrigerant R flowing into the expansion valve 13 and the control means 100 for controlling the refrigerant temperature adjusting means 50 are provided, the heat absorption heat exchanger 14 is provided. It is avoided that the refrigerant R in the highly overcooled state is supplied to the (evaporator 14), and the compressor 11 does not have an obstacle to suck the moist steam. This makes it possible to optimally operate the refrigeration cycle while preventing damage to the compressor 11.
 (2)本実施形態の給湯システム1の冷媒温度調整手段50は、膨張弁13に流入する液冷媒Rの温度を検知する温度センサ16と、冷媒循環ラインL9に接続され、第2放熱用熱交換器12Bに対して冷媒Rをバイパスさせる第1バイパスラインL11と、第2放熱用熱交換器12Bに送給する冷媒Rおよび第1バイパスラインL11に送給する冷媒Rの分配量を調整する第1分配バルブ31と、を備え、制御手段100は、圧縮機11の駆動中、温度センサ16の検知温度が目標温度になるように、第1分配バルブ31を制御する。
 このように、膨張弁13に流入する冷媒Rの検知温度が目標温度になるように第1分配バルブ31を制御することにより、第2放熱用熱交換器12Bに対する冷媒Rのバイパス量が調整され、第2放熱用熱交換器12Bでの冷媒Rの冷却量が抑制される。これにより、補給水W2の水源温度が低い場合であっても、膨張弁13に流入する液冷媒Rの温度を高過冷却状態とならない一定の温度に保つことができる。
(2) The refrigerant temperature adjusting means 50 of the hot water supply system 1 of the present embodiment is connected to a temperature sensor 16 for detecting the temperature of the liquid refrigerant R flowing into the expansion valve 13 and a refrigerant circulation line L9, and is connected to a second heat dissipation heat. Adjust the distribution amount of the first bypass line L11 for bypassing the refrigerant R to the exchanger 12B, the refrigerant R to be fed to the second heat dissipation heat exchanger 12B, and the refrigerant R to be fed to the first bypass line L11. The control means 100 includes the first distribution valve 31 and controls the first distribution valve 31 so that the detection temperature of the temperature sensor 16 reaches the target temperature while the compressor 11 is being driven.
In this way, by controlling the first distribution valve 31 so that the detection temperature of the refrigerant R flowing into the expansion valve 13 becomes the target temperature, the bypass amount of the refrigerant R with respect to the second heat dissipation heat exchanger 12B is adjusted. , The amount of cooling of the refrigerant R in the second heat exchanger 12B for heat dissipation is suppressed. As a result, even when the water source temperature of the make-up water W2 is low, the temperature of the liquid refrigerant R flowing into the expansion valve 13 can be maintained at a constant temperature that does not cause a high supercooling state.
 (3)本実施形態の給湯システム1の冷媒温度調整手段50は、膨張弁13に流入する液冷媒Rの温度を検知する温度センサ16と、膨張弁13に流入する液冷媒Rの圧力を検知する圧力センサ17と、冷媒循環ラインL9に接続され、第2放熱用熱交換器12Bに対して冷媒Rをバイパスさせる第1バイパスラインL11と、第2放熱用熱交換器12Bに送給する冷媒Rおよび第1バイパスラインL11に送給する冷媒Rの分配量を調整する第1分配バルブ31と、を備え、制御手段100は、圧縮機11の駆動中、圧力センサ17の検知圧力からガス冷媒の凝縮温度を求めると共に、当該凝縮温度から温度センサ16の検知温度を差し引いて液冷媒Rの過冷却度を算出し、当該算出過冷却度が目標過冷却度になるように、第1分配バルブ31を制御する。
 このように、膨張弁13に流入する冷媒Rの算出過冷却度が目標過冷却度になるように第1分配バルブ31を制御することにより、第2放熱用熱交換器12Bに対する冷媒Rのバイパス量が調整され、第2放熱用熱交換器12Bでの冷媒Rの冷却量が抑制される。これにより、補給水W2の水源温度が低い場合であっても、膨張弁13に流入する液冷媒Rの温度を高過冷却状態とならない一定の温度に保つことができる。
(3) The refrigerant temperature adjusting means 50 of the hot water supply system 1 of the present embodiment detects the pressure of the liquid refrigerant R flowing into the expansion valve 13 and the temperature sensor 16 for detecting the temperature of the liquid refrigerant R flowing into the expansion valve 13. The refrigerant to be supplied to the first bypass line L11, which is connected to the refrigerant circulation line L9 and bypasses the refrigerant R to the second heat dissipation heat exchanger 12B, and the second heat dissipation heat exchanger 12B. A first distribution valve 31 for adjusting the distribution amount of the refrigerant R to be supplied to the R and the first bypass line L11 is provided, and the control means 100 is a gas refrigerant from the detection pressure of the pressure sensor 17 while the compressor 11 is being driven. The first distribution valve is calculated by subtracting the detection temperature of the temperature sensor 16 from the condensation temperature to calculate the overcooling degree of the liquid refrigerant R so that the calculated overcooling degree becomes the target overcooling degree. 31 is controlled.
In this way, by controlling the first distribution valve 31 so that the calculated supercooling degree of the refrigerant R flowing into the expansion valve 13 becomes the target supercooling degree, the refrigerant R is bypassed with respect to the second heat dissipation heat exchanger 12B. The amount is adjusted, and the cooling amount of the refrigerant R in the second heat dissipation heat exchanger 12B is suppressed. As a result, even when the water source temperature of the make-up water W2 is low, the temperature of the liquid refrigerant R flowing into the expansion valve 13 can be maintained at a constant temperature that does not cause a high supercooling state.
<第2実施形態>
 次に、第2実施形態について、図面を参照しながら説明する。図3は、本実施形態における給湯システム1の構成を模式的に示す図である。なお、本実施形態において、第1実施形態と同様の構成については同じ符号を付してその説明を省略することがある。
<Second Embodiment>
Next, the second embodiment will be described with reference to the drawings. FIG. 3 is a diagram schematically showing the configuration of the hot water supply system 1 in the present embodiment. In the present embodiment, the same components as those in the first embodiment may be designated by the same reference numerals and the description thereof may be omitted.
 図3に示すように、本実施形態のヒートポンプ回路10は、第1バイパスラインL11および第1分配バルブ31を備えていない。
 本実施形態においては、冷媒温度センサ16、第2バイパスラインL12および第2分配バルブ32が、冷媒温度調整手段50を構成する。
As shown in FIG. 3, the heat pump circuit 10 of the present embodiment does not include the first bypass line L11 and the first distribution valve 31.
In the present embodiment, the refrigerant temperature sensor 16, the second bypass line L12, and the second distribution valve 32 constitute the refrigerant temperature adjusting means 50.
 前述のとおり、第2バイパスラインL12は、第2放熱用熱交換器12Bに対して補給水W2をバイパスさせるラインである。
 そして、第2分配バルブ32は、第2放熱用熱交換器12Bに送給する補給水W2および第2バイパスラインL12に送給する補給水W2の分配量を調整するバルブである。本実施形態の第2分配バルブ32は、制御部100の分配バルブ制御部130によって制御される。
As described above, the second bypass line L12 is a line that bypasses the make-up water W2 to the second heat dissipation heat exchanger 12B.
The second distribution valve 32 is a valve that adjusts the distribution amount of the make-up water W2 to be supplied to the second heat dissipation heat exchanger 12B and the make-up water W2 to be supplied to the second bypass line L12. The second distribution valve 32 of the present embodiment is controlled by the distribution valve control unit 130 of the control unit 100.
 本実施形態の分配バルブ制御部130は、冷媒温度センサ16の検知温度を取得し、この検知温度に応じて、本実施形態の冷媒温度調整手段50を構成する第2分配バルブ32の弁開度を調整する制御を行う。具体的には、分配バルブ制御部130は、圧縮機11の駆動中、冷媒温度センサ16の検知温度が目標温度になるように、第2分配バルブ32を制御する。より具体的な制御としては、例えば、冷媒温度センサ16によりリアルタイムに検知される冷媒温度をフィードバック値として、この冷媒温度を目標温度に収束させるように第2分配バルブ32の弁開度を調整するフィードバック制御を採用するのが好ましい。フィードバック制御は、比例制御(P制御)のほか、これに積分制御(I制御)および/または微分制御(D制御)を組み合わせた操作量の演算アルゴリズムを採用することができる。
 これにより、第2放熱用熱交換器12Bに対する補給水W2のバイパス量が調整され、膨張弁13に流入する液冷媒Rの温度が調整される。
The distribution valve control unit 130 of the present embodiment acquires the detection temperature of the refrigerant temperature sensor 16, and according to the detected temperature, the valve opening degree of the second distribution valve 32 constituting the refrigerant temperature adjusting means 50 of the present embodiment. Control to adjust. Specifically, the distribution valve control unit 130 controls the second distribution valve 32 so that the detection temperature of the refrigerant temperature sensor 16 reaches the target temperature while the compressor 11 is being driven. As a more specific control, for example, the refrigerant temperature detected in real time by the refrigerant temperature sensor 16 is used as a feedback value, and the valve opening degree of the second distribution valve 32 is adjusted so that the refrigerant temperature converges to the target temperature. It is preferable to adopt feedback control. As the feedback control, in addition to the proportional control (P control), an operation amount calculation algorithm that combines the integral control (I control) and / or the differential control (D control) can be adopted.
As a result, the bypass amount of the make-up water W2 with respect to the second heat dissipation heat exchanger 12B is adjusted, and the temperature of the liquid refrigerant R flowing into the expansion valve 13 is adjusted.
 以上の構成により、補給水の水源温度が低い場合であっても、膨張弁に流入する液冷媒Rの温度を高過冷却状態とならない一定の温度に保つことができる。よって、吸熱用熱交換器14に高過冷却状態の液冷媒Rが供給されることが回避され、圧縮機11が湿り蒸気状態の冷媒Rを吸入する障害が起こらない。これにより、圧縮機11の破損を防止しつつ、冷凍サイクルを最適作動させることができる。 With the above configuration, even when the water source temperature of the make-up water is low, the temperature of the liquid refrigerant R flowing into the expansion valve can be maintained at a constant temperature that does not cause a high supercooling state. Therefore, it is avoided that the liquid refrigerant R in the highly supercooled state is supplied to the endothermic heat exchanger 14, and the compressor 11 does not have an obstacle to suck the refrigerant R in the wet vapor state. This makes it possible to optimally operate the refrigeration cycle while preventing damage to the compressor 11.
 続けて、第2実施形態の変形例について図面を参照しながら説明する。図4は、第2実施形態の変形例に係る給湯システムの構成を模式的に示す図である。 Subsequently, a modified example of the second embodiment will be described with reference to the drawings. FIG. 4 is a diagram schematically showing a configuration of a hot water supply system according to a modified example of the second embodiment.
 図4に示すように、本変形例のヒートポンプ回路10は、第1実施形態の変形例と同様、膨張弁13に流入する液冷媒Rの圧力を検知する冷媒圧力センサ17を備える。また、本変形例の制御部100は、第1実施形態の変形例と同様、過冷却度算出部140を備える。 As shown in FIG. 4, the heat pump circuit 10 of this modified example includes a refrigerant pressure sensor 17 that detects the pressure of the liquid refrigerant R flowing into the expansion valve 13, as in the modified example of the first embodiment. Further, the control unit 100 of this modification includes a supercooling degree calculation unit 140 as in the modification of the first embodiment.
 本変形例においては、冷媒圧力センサ17、冷媒温度センサ16、第2バイパスラインL12および第2分配バルブ32が、冷媒温度調整手段50を構成する。 In this modification, the refrigerant pressure sensor 17, the refrigerant temperature sensor 16, the second bypass line L12, and the second distribution valve 32 constitute the refrigerant temperature adjusting means 50.
 本実施形態の分配バルブ制御部130は、冷媒温度センサ16の検知温度および冷媒圧力センサ17の検知圧力に基づいて、第2分配バルブ32を制御する。具体的には、本変形例の分配バルブ制御部130は、過冷却度算出部140が算出した算出過冷却度が目標過冷却度になるように第2分配バルブ32を制御し、膨張弁13に流入する液冷媒Rの過冷却度を調整する。この場合においても、過冷却度算出部140によりリアルタイムで算出される算出過冷却度をフィードバック値として、この算出過冷却度を目標過冷却度に収束させるように第2分配バルブ32の弁開度を調整するフィードバック制御を採用するのが好ましい。 The distribution valve control unit 130 of the present embodiment controls the second distribution valve 32 based on the detection temperature of the refrigerant temperature sensor 16 and the detection pressure of the refrigerant pressure sensor 17. Specifically, the distribution valve control unit 130 of this modification controls the second distribution valve 32 so that the calculated supercooling degree calculated by the supercooling degree calculation unit 140 becomes the target supercooling degree, and the expansion valve 13 The degree of supercooling of the liquid refrigerant R flowing into the water is adjusted. Also in this case, the calculated supercooling degree calculated in real time by the supercooling degree calculation unit 140 is used as a feedback value, and the valve opening degree of the second distribution valve 32 is set so as to converge this calculated supercooling degree to the target supercooling degree. It is preferable to adopt a feedback control that adjusts.
 このように、過冷却度算出部140が膨張弁13に流入する液冷媒Rの過冷却度を正確に算出し、さらに分配バルブ制御部130がその算出過冷却度が目標過冷却度になるように第2分配バルブ32を制御することにより、第2放熱用熱交換器12Bに対する補給水W2のバイパス量が調整され、第2放熱用熱交換器12Bでの液冷媒Rの冷却量が抑制される。これにより、補給水W2の水源温度が低い場合であっても、膨張弁13に流入する液冷媒Rの温度を高過冷却状態とならない一定の温度に保つことができる。 In this way, the supercooling degree calculation unit 140 accurately calculates the supercooling degree of the liquid refrigerant R flowing into the expansion valve 13, and the distribution valve control unit 130 further calculates the calculated supercooling degree to be the target supercooling degree. By controlling the second distribution valve 32, the amount of bypass of the make-up water W2 with respect to the second heat exchanger 12B is adjusted, and the cooling amount of the liquid refrigerant R in the second heat exchanger 12B is suppressed. To. As a result, even when the water source temperature of the make-up water W2 is low, the temperature of the liquid refrigerant R flowing into the expansion valve 13 can be maintained at a constant temperature that does not cause a high supercooling state.
 なお、本実施形態においても、第2分配バルブ32は、第2バイパスラインL12に設けられている態様に限らない。例えば、第2分配バルブ32は、補給水ラインL2から第2バイパスラインL12が分岐する分岐部に設けられた三方弁であってもよい。 Also in this embodiment, the second distribution valve 32 is not limited to the mode provided in the second bypass line L12. For example, the second distribution valve 32 may be a three-way valve provided at a branch portion where the second bypass line L12 branches from the make-up water line L2.
 以上説明した第2実施形態の給湯システム1によれば、(1)に加えて、以下のような効果を奏する。 According to the hot water supply system 1 of the second embodiment described above, in addition to (1), the following effects are obtained.
 (4)本実施形態の給湯システム1の冷媒温度調整手段50は、膨張弁13に流入する液冷媒Rの温度を検知する温度センサ16と、補給水ラインL2に接続され、第2放熱用熱交換器12Bに対して補給水W2をバイパスさせる第2バイパスラインL12と、第2放熱用熱交換器12Bに送給する補給水W2および第2バイパスラインL12に送給する補給水W2の分配量を調整する第2分配バルブ32と、を備え、制御手段100は、圧縮機11の駆動中、温度センサ16の検知温度が目標温度になるように、第2分配バルブ32を制御する。
 このように、膨張弁13に流入する冷媒Rの検知温度が目標温度になるように第2分配バルブ32を制御することにより、第2放熱用熱交換器12Bに対する補給水W2のバイパス量が調整され、第2放熱用熱交換器12Bでの冷媒Rの冷却量が抑制される。これにより、補給水W2の水源温度が低い場合であっても、膨張弁13に流入する液冷媒Rの温度を高過冷却状態とならない一定の温度に保つことができる。
(4) The refrigerant temperature adjusting means 50 of the hot water supply system 1 of the present embodiment is connected to a temperature sensor 16 for detecting the temperature of the liquid refrigerant R flowing into the expansion valve 13 and a make-up water line L2, and is connected to a second heat dissipation heat. Distribution amount of the second bypass line L12 that bypasses the make-up water W2 to the exchanger 12B, the make-up water W2 that is sent to the second heat dissipation heat exchanger 12B, and the make-up water W2 that is sent to the second bypass line L12. The control means 100 controls the second distribution valve 32 so that the detection temperature of the temperature sensor 16 becomes the target temperature while the compressor 11 is being driven.
In this way, by controlling the second distribution valve 32 so that the detection temperature of the refrigerant R flowing into the expansion valve 13 becomes the target temperature, the bypass amount of the make-up water W2 with respect to the second heat dissipation heat exchanger 12B is adjusted. Therefore, the amount of cooling of the refrigerant R in the second heat exchanger 12B for heat dissipation is suppressed. As a result, even when the water source temperature of the make-up water W2 is low, the temperature of the liquid refrigerant R flowing into the expansion valve 13 can be maintained at a constant temperature that does not cause a high supercooling state.
 (5)本実施形態の給湯システム1の冷媒温度調整手段50は、膨張弁13に流入する液冷媒Rの温度を検知する温度センサ16と、膨張弁13に流入する液冷媒Rの圧力を検知する圧力センサ17と、補給水ラインL2に接続され、第2放熱用熱交換器12Bに対して補給水W2をバイパスさせる第2バイパスラインL12と、第2放熱用熱交換器12Bに送給する補給水W2および第2バイパスラインL12に送給する補給水W2の分配量を調整する第2分配バルブ32と、を備え、制御手段100は、圧縮機11の駆動中、圧力センサ17の検知圧力からガス冷媒Rの凝縮温度を求めると共に、当該凝縮温度から温度センサ16の検知温度を差し引いて液冷媒Rの過冷却度を算出し、当該算出過冷却度が目標過冷却度になるように、第2分配バルブ32を制御する。
 このように、膨張弁13に流入する冷媒Rの算出過冷却度が目標過冷却度になるように第2分配バルブ32を制御することにより、第2放熱用熱交換器12Bに対する補給水W2のバイパス量が調整され、第2放熱用熱交換器12Bでの冷媒Rの冷却量が抑制される。これにより、補給水W2の水源温度が低い場合であっても、膨張弁13に流入する液冷媒Rの温度を高過冷却状態とならない一定の温度に保つことができる。
(5) The refrigerant temperature adjusting means 50 of the hot water supply system 1 of the present embodiment detects the pressure of the temperature sensor 16 that detects the temperature of the liquid refrigerant R flowing into the expansion valve 13 and the pressure of the liquid refrigerant R flowing into the expansion valve 13. The pressure sensor 17 and the second bypass line L12, which are connected to the make-up water line L2 and bypass the make-up water W2 to the second heat radiating heat exchanger 12B, and the second heat radiating heat exchanger 12B are supplied. A second distribution valve 32 for adjusting the distribution amount of the make-up water W2 and the make-up water W2 to be supplied to the make-up water W2 and the second bypass line L12 is provided. The condensation temperature of the gas refrigerant R is obtained from, and the overcooling degree of the liquid refrigerant R is calculated by subtracting the detection temperature of the temperature sensor 16 from the condensation temperature so that the calculated overcooling degree becomes the target overcooling degree. The second distribution valve 32 is controlled.
In this way, by controlling the second distribution valve 32 so that the calculated supercooling degree of the refrigerant R flowing into the expansion valve 13 becomes the target supercooling degree, the make-up water W2 for the second heat dissipation heat exchanger 12B The bypass amount is adjusted, and the cooling amount of the refrigerant R in the second heat dissipation heat exchanger 12B is suppressed. As a result, even when the water source temperature of the make-up water W2 is low, the temperature of the liquid refrigerant R flowing into the expansion valve 13 can be maintained at a constant temperature that does not cause a high supercooling state.
<第3実施形態>
 次に、第3実施形態について、図面を参照しながら説明する。図5は、本実施形態における給湯システム1の構成を模式的に示す図である。なお、本実施形態において、第1実施形態と同様の構成については同じ符号を付してその説明を省略することがある。
<Third Embodiment>
Next, the third embodiment will be described with reference to the drawings. FIG. 5 is a diagram schematically showing the configuration of the hot water supply system 1 in the present embodiment. In the present embodiment, the same components as those in the first embodiment may be designated by the same reference numerals and the description thereof may be omitted.
 図5に示すように、本実施形態のヒートポンプ回路10は、第1バイパスラインL11および第1分配バルブ31を備えていない。その代わりに、第3バイパスラインL13と、第3分配バルブ33を備える。
 本実施形態においては、冷媒温度センサ16、第3バイパスラインL13および第3分配バルブ33が、冷媒温度調整手段50を構成する。
As shown in FIG. 5, the heat pump circuit 10 of the present embodiment does not include the first bypass line L11 and the first distribution valve 31. Instead, a third bypass line L13 and a third distribution valve 33 are provided.
In the present embodiment, the refrigerant temperature sensor 16, the third bypass line L13, and the third distribution valve 33 constitute the refrigerant temperature adjusting means 50.
 第3バイパスラインL13は、第1放熱用熱交換器12Aに対して冷媒Rをバイパスさせるラインである。
 そして、第3分配バルブ33は、第1放熱用熱交換器12Aに送給する冷媒Rおよび第3バイパスラインL13に送給する冷媒Rの分配量を調整するバルブである。本実施形態の第3分配バルブ33は、制御部100の分配バルブ制御部130によって制御される。
The third bypass line L13 is a line for bypassing the refrigerant R with respect to the first heat dissipation heat exchanger 12A.
The third distribution valve 33 is a valve that adjusts the distribution amount of the refrigerant R to be supplied to the first heat dissipation heat exchanger 12A and the refrigerant R to be supplied to the third bypass line L13. The third distribution valve 33 of the present embodiment is controlled by the distribution valve control unit 130 of the control unit 100.
 本実施形態の分配バルブ制御部130は、冷媒温度センサ16の検知温度を取得し、この検知温度に応じて、本実施形態の冷媒温度調整手段50を構成する第3分配バルブ33の弁開度を調整する制御を行う。具体的には、分配バルブ制御部130は、圧縮機11の駆動中、冷媒温度センサ16の検知温度が目標温度になるように、第3分配バルブ33を制御する。より具体的な制御としては、例えば、冷媒温度センサ16によりリアルタイムに検知される冷媒温度をフィードバック値として、この冷媒温度を目標温度に収束させるように第3分配バルブ33の弁開度を調整するフィードバック制御を採用するのが好ましい。フィードバック制御は、比例制御(P制御)のほか、これに積分制御(I制御)および/または微分制御(D制御)を組み合わせた操作量の演算アルゴリズムを採用することができる。
 これにより、第1放熱用熱交換器12Aに対する冷媒Rのバイパス量が調整され、第1放熱用熱交換器12Aでの冷媒Rの冷却量が抑制される。
 なお、バイパスされた結果、第1放熱用熱交換器12Aで凝縮液化しなかった冷媒Rは、第2放熱用熱交換器12Bにおいて凝縮液化する。
The distribution valve control unit 130 of the present embodiment acquires the detection temperature of the refrigerant temperature sensor 16, and according to the detected temperature, the valve opening degree of the third distribution valve 33 constituting the refrigerant temperature adjusting means 50 of the present embodiment. Control to adjust. Specifically, the distribution valve control unit 130 controls the third distribution valve 33 so that the detection temperature of the refrigerant temperature sensor 16 reaches the target temperature while the compressor 11 is being driven. As a more specific control, for example, the refrigerant temperature detected in real time by the refrigerant temperature sensor 16 is used as a feedback value, and the valve opening degree of the third distribution valve 33 is adjusted so that the refrigerant temperature converges to the target temperature. It is preferable to adopt feedback control. As the feedback control, in addition to the proportional control (P control), an operation amount calculation algorithm that combines the integral control (I control) and / or the differential control (D control) can be adopted.
As a result, the bypass amount of the refrigerant R with respect to the first heat dissipation heat exchanger 12A is adjusted, and the cooling amount of the refrigerant R in the first heat dissipation heat exchanger 12A is suppressed.
As a result of being bypassed, the refrigerant R that has not been condensed and liquefied in the first heat exchanger 12A is condensed and liquefied in the second heat exchanger 12B.
 以上の構成により、貯湯温度が低温設定の場合であっても、膨張弁13に流入する液冷媒Rの温度を高過冷却状態とならない一定の温度に保つことができる。よって、吸熱用熱交換器14に高過冷却状態の液冷媒Rが供給されることが回避され、圧縮機11が湿り蒸気状態の冷媒Rを吸入する障害が起こらない。これにより、圧縮機11の破損を防止しつつ、冷凍サイクルを最適作動させることができる。 With the above configuration, even when the hot water storage temperature is set to a low temperature, the temperature of the liquid refrigerant R flowing into the expansion valve 13 can be maintained at a constant temperature that does not cause a high supercooling state. Therefore, it is avoided that the liquid refrigerant R in the highly supercooled state is supplied to the endothermic heat exchanger 14, and the compressor 11 does not have an obstacle to suck the refrigerant R in the wet vapor state. This makes it possible to optimally operate the refrigeration cycle while preventing damage to the compressor 11.
 続けて、第3実施形態の変形例について図面を参照しながら説明する。図6は、第3実施形態の変形例に係る給湯システムの構成を模式的に示す図である。 Subsequently, a modified example of the third embodiment will be described with reference to the drawings. FIG. 6 is a diagram schematically showing a configuration of a hot water supply system according to a modified example of the third embodiment.
 図6に示すように、本変形例のヒートポンプ回路10は、第1実施形態の変形例と同様、膨張弁13に流入する液冷媒Rの圧力を検知する冷媒圧力センサ17を備える。また、本変形例の制御部100は、第1実施形態の変形例と同様、過冷却度算出部140を備える。 As shown in FIG. 6, the heat pump circuit 10 of this modified example includes a refrigerant pressure sensor 17 that detects the pressure of the liquid refrigerant R flowing into the expansion valve 13, as in the modified example of the first embodiment. Further, the control unit 100 of this modification includes a supercooling degree calculation unit 140 as in the modification of the first embodiment.
 本変形例においては、冷媒圧力センサ17、冷媒温度センサ16、第3バイパスラインL13および第3分配バルブ33が、冷媒温度調整手段50を構成する。 In this modification, the refrigerant pressure sensor 17, the refrigerant temperature sensor 16, the third bypass line L13, and the third distribution valve 33 constitute the refrigerant temperature adjusting means 50.
 本実施形態の分配バルブ制御部130は、冷媒温度センサ16の検知温度および冷媒圧力センサ17の検知圧力に基づいて、第3分配バルブ33を制御する。具体的には、本変形例の分配バルブ制御部130は、過冷却度算出部140が算出した算出過冷却度が目標過冷却度になるように第3分配バルブ33を制御し、膨張弁13に流入する液冷媒Rの過冷却度を調整する。この場合においても、過冷却度算出部140によりリアルタイムで算出される算出過冷却度をフィードバック値として、この算出過冷却度を目標過冷却度に収束させるように第3分配バルブ33の弁開度を調整するフィードバック制御を採用するのが好ましい。 The distribution valve control unit 130 of the present embodiment controls the third distribution valve 33 based on the detection temperature of the refrigerant temperature sensor 16 and the detection pressure of the refrigerant pressure sensor 17. Specifically, the distribution valve control unit 130 of this modification controls the third distribution valve 33 so that the calculated supercooling degree calculated by the supercooling degree calculation unit 140 becomes the target supercooling degree, and the expansion valve 13 The degree of supercooling of the liquid refrigerant R flowing into the water is adjusted. Also in this case, the calculated supercooling degree calculated in real time by the supercooling degree calculation unit 140 is used as a feedback value, and the valve opening degree of the third distribution valve 33 is set so as to converge this calculated supercooling degree to the target supercooling degree. It is preferable to adopt a feedback control that adjusts.
 このように、過冷却度算出部140が膨張弁13に流入する液冷媒Rの過冷却度を正確に算出し、さらに分配バルブ制御部130がその算出過冷却度が目標過冷却度になるように第3分配バルブ33を制御することにより、第1放熱用熱交換器12Aに対する冷媒Rのバイパス量が調整され、第1放熱用熱交換器12Aでの冷媒Rの冷却量が抑制される。これにより、貯湯温度が低温設定の場合であっても、膨張弁13に流入する液冷媒Rの温度を高過冷却状態とならない一定の温度に保つことができる。 In this way, the supercooling degree calculation unit 140 accurately calculates the supercooling degree of the liquid refrigerant R flowing into the expansion valve 13, and the distribution valve control unit 130 further calculates the calculated supercooling degree to be the target supercooling degree. By controlling the third distribution valve 33, the bypass amount of the refrigerant R with respect to the first heat dissipation heat exchanger 12A is adjusted, and the cooling amount of the refrigerant R in the first heat dissipation heat exchanger 12A is suppressed. As a result, even when the hot water storage temperature is set to a low temperature, the temperature of the liquid refrigerant R flowing into the expansion valve 13 can be maintained at a constant temperature that does not result in a high supercooling state.
 なお、本実施形態においても、第3分配バルブ33は、第3バイパスラインL13に設けられている態様に限らない。例えば、第3分配バルブ33は、冷媒循環ラインL9から第3バイパスラインL13が分岐する分岐部に設けられた三方弁であってもよい。 Also in this embodiment, the third distribution valve 33 is not limited to the mode provided in the third bypass line L13. For example, the third distribution valve 33 may be a three-way valve provided at a branch portion where the third bypass line L13 branches from the refrigerant circulation line L9.
 以上説明した第3実施形態の給湯システム1によれば、(1)に加えて、以下のような効果を奏する。 According to the hot water supply system 1 of the third embodiment described above, in addition to (1), the following effects are obtained.
 (6)本実施形態の給湯システム1の冷媒温度調整手段50は、膨張弁13に流入する液冷媒Rの温度を検知する温度センサ16と、冷媒循環ラインL9に接続され、第1放熱用熱交換器12Aに対して冷媒Rをバイパスさせる第3バイパスラインL13と、第1放熱用熱交換器12Aに送給する冷媒Rおよび第3バイパスラインL13に送給する冷媒Rの分配量を調整する第3分配バルブ33と、を備え、制御手段100は、圧縮機11の駆動中、温度センサ16の検知温度が目標温度になるように、第3分配バルブ33を制御する。
 このように、膨張弁13に流入する冷媒Rの検知温度が目標温度になるように第3分配バルブ33を制御することにより、第1放熱用熱交換器12Aに対する冷媒Rのバイパス量が調整され、第1放熱用熱交換器12Aでの冷媒Rの冷却量が抑制される。これにより、貯湯温度が低温設定の場合であっても、膨張弁13に流入する液冷媒Rの温度を高過冷却状態とならない一定の温度に保つことができる。
(6) The refrigerant temperature adjusting means 50 of the hot water supply system 1 of the present embodiment is connected to a temperature sensor 16 for detecting the temperature of the liquid refrigerant R flowing into the expansion valve 13 and a refrigerant circulation line L9, and is connected to the first heat dissipation heat. Adjust the distribution amount of the third bypass line L13 for bypassing the refrigerant R to the exchanger 12A, the refrigerant R to be supplied to the first heat dissipation heat exchanger 12A, and the refrigerant R to be supplied to the third bypass line L13. A third distribution valve 33 is provided, and the control means 100 controls the third distribution valve 33 so that the detection temperature of the temperature sensor 16 reaches the target temperature while the compressor 11 is being driven.
In this way, by controlling the third distribution valve 33 so that the detection temperature of the refrigerant R flowing into the expansion valve 13 becomes the target temperature, the bypass amount of the refrigerant R with respect to the first heat dissipation heat exchanger 12A is adjusted. , The amount of cooling of the refrigerant R in the first heat exchanger 12A for heat dissipation is suppressed. As a result, even when the hot water storage temperature is set to a low temperature, the temperature of the liquid refrigerant R flowing into the expansion valve 13 can be maintained at a constant temperature that does not result in a high supercooling state.
 (7)本実施形態の給湯システム1の冷媒温度調整手段50は、膨張弁13に流入する液冷媒Rの温度を検知する温度センサ16と、膨張弁13に流入する液冷媒Rの圧力を検知する圧力センサ17と、冷媒循環ラインL9に接続され、第1放熱用熱交換器12Aに対して冷媒Rをバイパスさせる第3バイパスラインL13と、第1放熱用熱交換器12Aに送給する冷媒Rおよび第3バイパスラインL13に送給する冷媒Rの分配量を調整する第3分配バルブ33と、を備え、制御手段100は、圧縮機11の駆動中、圧力センサ17の検知圧力からガス冷媒Rの凝縮温度を求めると共に、当該凝縮温度から温度センサ16の検知温度を差し引いて液冷媒Rの過冷却度を算出し、当該算出過冷却度が目標過冷却度になるように、第3分配バルブ33を制御する。
 このように、膨張弁13に流入する冷媒Rの算出過冷却度が目標過冷却度になるように第3分配バルブ33を制御することにより、第1放熱用熱交換器12Aに対する冷媒Rのバイパス量が調整され、第1放熱用熱交換器12Aでの冷媒Rの冷却量が抑制される。これにより、貯湯温度が低温設定の場合であっても、膨張弁13に流入する液冷媒Rの温度を高過冷却状態とならない一定の温度に保つことができる。
(7) The refrigerant temperature adjusting means 50 of the hot water supply system 1 of the present embodiment detects the pressure of the liquid refrigerant R flowing into the expansion valve 13 and the temperature sensor 16 for detecting the temperature of the liquid refrigerant R flowing into the expansion valve 13. The pressure sensor 17, the third bypass line L13, which is connected to the refrigerant circulation line L9 and bypasses the refrigerant R to the first heat dissipation heat exchanger 12A, and the refrigerant supplied to the first heat dissipation heat exchanger 12A. A third distribution valve 33 for adjusting the distribution amount of the refrigerant R to be supplied to the R and the third bypass line L13 is provided, and the control means 100 is a gas refrigerant from the detection pressure of the pressure sensor 17 while the compressor 11 is being driven. The condensation temperature of R is obtained, and the overcooling degree of the liquid refrigerant R is calculated by subtracting the detection temperature of the temperature sensor 16 from the condensation temperature, and the third distribution is performed so that the calculated overcooling degree becomes the target overcooling degree. Controls the valve 33.
In this way, by controlling the third distribution valve 33 so that the calculated supercooling degree of the refrigerant R flowing into the expansion valve 13 becomes the target supercooling degree, the refrigerant R is bypassed to the first heat dissipation heat exchanger 12A. The amount is adjusted, and the cooling amount of the refrigerant R in the first heat dissipation heat exchanger 12A is suppressed. As a result, even when the hot water storage temperature is set to a low temperature, the temperature of the liquid refrigerant R flowing into the expansion valve 13 can be maintained at a constant temperature that does not cause a high supercooling state.
<第4実施形態>
 次に、第4実施形態について、図面を参照しながら説明する。図7は、本実施形態における給湯システム1の構成を模式的に示す図である。なお、本実施形態において、第1実施形態と同様の構成については同じ符号を付してその説明を省略することがある。
<Fourth Embodiment>
Next, the fourth embodiment will be described with reference to the drawings. FIG. 7 is a diagram schematically showing the configuration of the hot water supply system 1 in the present embodiment. In the present embodiment, the same components as those in the first embodiment may be designated by the same reference numerals and the description thereof may be omitted.
 図7に示すように、本実施形態のヒートポンプ回路10は、第1バイパスラインL11および第1分配バルブ31を備えていない。その代わりに、第4バイパスラインL14と、第4分配バルブ34を備える。
 本実施形態においては、冷媒温度センサ16、第4バイパスラインL14および第4分配バルブ34が、冷媒温度調整手段50を構成する。
As shown in FIG. 7, the heat pump circuit 10 of the present embodiment does not include the first bypass line L11 and the first distribution valve 31. Instead, it is provided with a fourth bypass line L14 and a fourth distribution valve 34.
In the present embodiment, the refrigerant temperature sensor 16, the fourth bypass line L14, and the fourth distribution valve 34 constitute the refrigerant temperature adjusting means 50.
 第4バイパスラインL14は、第1放熱用熱交換器12Aに対して循環水W1をバイパスさせるラインである。
 そして、第4分配バルブ34は、第1放熱用熱交換器12Aに送給する循環水W1および第4バイパスラインL14に送給する循環水W1の分配量を調整するバルブである。本実施形態の第4分配バルブ34は、制御部100の分配バルブ制御部130によって制御される。
The fourth bypass line L14 is a line that bypasses the circulating water W1 to the first heat exchanger 12A for heat dissipation.
The fourth distribution valve 34 is a valve that adjusts the distribution amount of the circulating water W1 supplied to the first heat dissipation heat exchanger 12A and the circulating water W1 supplied to the fourth bypass line L14. The fourth distribution valve 34 of the present embodiment is controlled by the distribution valve control unit 130 of the control unit 100.
 本実施形態の分配バルブ制御部130は、冷媒温度センサ16の検知温度を取得し、この検知温度に応じて、本実施形態の冷媒温度調整手段50を構成する第4分配バルブ34の弁開度を調整する制御を行う。具体的には、分配バルブ制御部130は、圧縮機11の駆動中、冷媒温度センサ16の検知温度が目標温度になるように、第4分配バルブ34を制御する。より具体的な制御としては、例えば、冷媒温度センサ16によりリアルタイムに検知される冷媒温度をフィードバック値として、この冷媒温度を目標温度に収束させるように第4分配バルブ34の弁開度を調整するフィードバック制御を採用するのが好ましい。フィードバック制御は、比例制御(P制御)のほか、これに積分制御(I制御)および/または微分制御(D制御)を組み合わせた操作量の演算アルゴリズムを採用することができる。
 これにより、第1放熱用熱交換器12Aに対する循環水W1のバイパス量が調整され、膨張弁13に流入する液冷媒Rの温度が調整される。
 なお、バイパスされた結果、第1放熱用熱交換器12Aで凝縮液化しなかった冷媒Rは、第2放熱用熱交換器12Bにおいて凝縮液化する。
The distribution valve control unit 130 of the present embodiment acquires the detected temperature of the refrigerant temperature sensor 16, and according to the detected temperature, the valve opening degree of the fourth distribution valve 34 constituting the refrigerant temperature adjusting means 50 of the present embodiment. Control to adjust. Specifically, the distribution valve control unit 130 controls the fourth distribution valve 34 so that the detection temperature of the refrigerant temperature sensor 16 reaches the target temperature while the compressor 11 is being driven. As a more specific control, for example, the refrigerant temperature detected in real time by the refrigerant temperature sensor 16 is used as a feedback value, and the valve opening degree of the fourth distribution valve 34 is adjusted so that the refrigerant temperature converges to the target temperature. It is preferable to adopt feedback control. As the feedback control, in addition to the proportional control (P control), an operation amount calculation algorithm that combines the integral control (I control) and / or the differential control (D control) can be adopted.
As a result, the bypass amount of the circulating water W1 with respect to the first heat dissipation heat exchanger 12A is adjusted, and the temperature of the liquid refrigerant R flowing into the expansion valve 13 is adjusted.
As a result of being bypassed, the refrigerant R that has not been condensed and liquefied in the first heat exchanger 12A is condensed and liquefied in the second heat exchanger 12B.
 以上の構成により、補給水の水源温度が低い場合であっても、膨張弁13に流入する液冷媒Rの温度を高過冷却状態とならない一定の温度に保つことができる。よって、吸熱用熱交換器14に高過冷却状態の液冷媒Rが供給されることが回避され、圧縮機11が湿り蒸気状態の冷媒Rを吸入する障害が起こらない。これにより、圧縮機11の破損を防止しつつ、冷凍サイクルを最適作動させることができる。 With the above configuration, even when the water source temperature of the make-up water is low, the temperature of the liquid refrigerant R flowing into the expansion valve 13 can be maintained at a constant temperature that does not cause a high supercooling state. Therefore, it is avoided that the liquid refrigerant R in the highly supercooled state is supplied to the endothermic heat exchanger 14, and the compressor 11 does not have an obstacle to suck the refrigerant R in the wet vapor state. This makes it possible to optimally operate the refrigeration cycle while preventing damage to the compressor 11.
 続けて、第4実施形態の変形例について図面を参照しながら説明する。図8は、第4実施形態の変形例に係る給湯システムの構成を模式的に示す図である。 Subsequently, a modified example of the fourth embodiment will be described with reference to the drawings. FIG. 8 is a diagram schematically showing a configuration of a hot water supply system according to a modified example of the fourth embodiment.
 図8に示すように、本変形例のヒートポンプ回路10は、第1実施形態の変形例と同様、膨張弁13に流入する液冷媒Rの圧力を検知する冷媒圧力センサ17を備える。また、本変形例の制御部100は、第1実施形態の変形例と同様、過冷却度算出部140を備える。 As shown in FIG. 8, the heat pump circuit 10 of this modification includes a refrigerant pressure sensor 17 that detects the pressure of the liquid refrigerant R flowing into the expansion valve 13, as in the modification of the first embodiment. Further, the control unit 100 of this modification includes a supercooling degree calculation unit 140 as in the modification of the first embodiment.
 本変形例においては、冷媒圧力センサ17、冷媒温度センサ16、第4バイパスラインL14および第4分配バルブ34が、冷媒温度調整手段50を構成する。 In this modification, the refrigerant pressure sensor 17, the refrigerant temperature sensor 16, the fourth bypass line L14, and the fourth distribution valve 34 constitute the refrigerant temperature adjusting means 50.
 本実施形態の分配バルブ制御部130は、冷媒温度センサ16の検知温度および冷媒圧力センサ17の検知圧力に基づいて、第4分配バルブ34を制御する。具体的には、本変形例の分配バルブ制御部130は、過冷却度算出部140が算出した算出過冷却度が目標過冷却度になるように第4分配バルブ34を制御し、膨張弁13に流入する液冷媒Rの過冷却度を調整する。この場合においても、過冷却度算出部140によりリアルタイムで算出される算出過冷却度をフィードバック値として、この算出過冷却度を目標過冷却度に収束させるように第4分配バルブ34の弁開度を調整するフィードバック制御を採用するのが好ましい。 The distribution valve control unit 130 of the present embodiment controls the fourth distribution valve 34 based on the detection temperature of the refrigerant temperature sensor 16 and the detection pressure of the refrigerant pressure sensor 17. Specifically, the distribution valve control unit 130 of this modification controls the fourth distribution valve 34 so that the calculated supercooling degree calculated by the supercooling degree calculation unit 140 becomes the target supercooling degree, and the expansion valve 13 The degree of supercooling of the liquid refrigerant R flowing into the water is adjusted. Also in this case, the calculated supercooling degree calculated in real time by the supercooling degree calculation unit 140 is used as a feedback value, and the valve opening degree of the fourth distribution valve 34 is set so as to converge this calculated supercooling degree to the target supercooling degree. It is preferable to adopt a feedback control that adjusts.
 このように、過冷却度算出部140が膨張弁13に流入する液冷媒Rの過冷却度を正確に算出し、さらに分配バルブ制御部130がその算出過冷却度が目標過冷却度になるように第4分配バルブ34を制御することにより、第1放熱用熱交換器12Aに対する補給水W2のバイパス量が調整され、第1放熱用熱交換器12Aでの冷媒Rの冷却量が抑制される。これにより、補給水W2の水源温度が低い場合であっても、膨張弁13に流入する液冷媒Rの温度を高過冷却状態とならない一定の温度に保つことができる。 In this way, the supercooling degree calculation unit 140 accurately calculates the supercooling degree of the liquid refrigerant R flowing into the expansion valve 13, and the distribution valve control unit 130 further calculates the calculated supercooling degree to be the target supercooling degree. By controlling the fourth distribution valve 34, the bypass amount of the make-up water W2 with respect to the first heat dissipation heat exchanger 12A is adjusted, and the cooling amount of the refrigerant R in the first heat dissipation heat exchanger 12A is suppressed. .. As a result, even when the water source temperature of the make-up water W2 is low, the temperature of the liquid refrigerant R flowing into the expansion valve 13 can be maintained at a constant temperature that does not cause a high supercooling state.
 なお、本実施形態においても、第4分配バルブ34は、第4バイパスラインL14に設けられている態様に限らない。例えば、第4分配バルブ34は、水循環ラインL1から第4バイパスラインL14が分岐する分岐部に設けられた三方弁であってもよい。 Also in this embodiment, the fourth distribution valve 34 is not limited to the mode provided in the fourth bypass line L14. For example, the fourth distribution valve 34 may be a three-way valve provided at a branch portion where the fourth bypass line L14 branches from the water circulation line L1.
 以上説明した第4実施形態の給湯システム1によれば、(1)に加えて、以下のような効果を奏する。 According to the hot water supply system 1 of the fourth embodiment described above, in addition to (1), the following effects are obtained.
 (8)本実施形態の給湯システム1の冷媒温度調整手段50は、膨張弁13に流入する液冷媒Rの温度を検知する温度センサ16と、水循環ラインL1に接続され、第1放熱用熱交換器12Aに対して循環水W1をバイパスさせる第4バイパスラインL14と、第1放熱用熱交換器12Aに送給する循環水W1および第4バイパスラインL14に送給する循環水W1の分配量を調整する第4分配バルブ34と、を備え、制御手段100は、圧縮機11の駆動中、温度センサ16の検知温度が目標温度になるように、第4分配バルブ34を制御する。
 このように、膨張弁13に流入する液冷媒Rの検知温度が目標温度になるように第4分配バルブ34を制御することにより、第1放熱用熱交換器12Aに対する循環水W1のバイパス量が調整され、第1放熱用熱交換器12Aでの冷媒Rの冷却量が抑制される。これにより、貯湯温度が低温設定の場合であっても、膨張弁13に流入する液冷媒Rの温度を高過冷却状態とならない一定の温度に保つことができる。
(8) The refrigerant temperature adjusting means 50 of the hot water supply system 1 of the present embodiment is connected to a temperature sensor 16 for detecting the temperature of the liquid refrigerant R flowing into the expansion valve 13 and a water circulation line L1 to exchange heat for first heat dissipation. The distribution amount of the fourth bypass line L14 for bypassing the circulating water W1 to the vessel 12A, the circulating water W1 to be fed to the first heat dissipation heat exchanger 12A, and the circulating water W1 to be fed to the fourth bypass line L14. A fourth distribution valve 34 for adjusting is provided, and the control means 100 controls the fourth distribution valve 34 so that the detection temperature of the temperature sensor 16 reaches the target temperature while the compressor 11 is being driven.
In this way, by controlling the fourth distribution valve 34 so that the detection temperature of the liquid refrigerant R flowing into the expansion valve 13 becomes the target temperature, the bypass amount of the circulating water W1 with respect to the first heat dissipation heat exchanger 12A can be increased. It is adjusted and the cooling amount of the refrigerant R in the first heat dissipation heat exchanger 12A is suppressed. As a result, even when the hot water storage temperature is set to a low temperature, the temperature of the liquid refrigerant R flowing into the expansion valve 13 can be maintained at a constant temperature that does not result in a high supercooling state.
 (9)本実施形態の給湯システム1の冷媒温度調整手段50は、膨張弁13に流入する液冷媒Rの温度を検知する温度センサ16と、膨張弁13に流入する液冷媒Rの圧力を検知する圧力センサ17と、水循環ラインL1に接続され、第1放熱用熱交換器12Aに対して循環水W1をバイパスさせる第4バイパスラインL14と、第1放熱用熱交換器12Aに送給する循環水W1および第4バイパスラインL14に送給する循環水W1の分配量を調整する第4分配バルブ34と、を備え、制御手段100は、圧縮機11の駆動中、圧力センサ17の検知圧力からガス冷媒の凝縮温度を求めると共に、当該凝縮温度から温度センサ16の検知温度を差し引いて液冷媒Rの過冷却度を算出し、当該算出過冷却度が目標過冷却度になるように、第4分配バルブ34を制御する。
 このように、膨張弁13に流入する冷媒Rの算出過冷却度が目標過冷却度になるように第4分配バルブ34を制御することにより、第1放熱用熱交換器12Aに対する循環水W1のバイパス量が調整され、第1放熱用熱交換器12Aでの冷媒Rの冷却量が抑制される。これにより、貯湯温度が低温設定の場合であっても、膨張弁13に流入する液冷媒Rの温度を高過冷却状態とならない一定の温度に保つことができる。
(9) The refrigerant temperature adjusting means 50 of the hot water supply system 1 of the present embodiment detects the pressure of the temperature sensor 16 that detects the temperature of the liquid refrigerant R flowing into the expansion valve 13 and the pressure of the liquid refrigerant R flowing into the expansion valve 13. Circulation to supply to the fourth bypass line L14, which is connected to the water circulation line L1 and bypasses the circulating water W1 to the first heat dissipation heat exchanger 12A, and the first heat dissipation heat exchanger 12A. The control means 100 includes a fourth distribution valve 34 for adjusting the distribution amount of the circulating water W1 supplied to the water W1 and the fourth bypass line L14, and the control means 100 is based on the detected pressure of the pressure sensor 17 while the compressor 11 is being driven. The fourth is to obtain the condensation temperature of the gas refrigerant and to calculate the overcooling degree of the liquid refrigerant R by subtracting the detection temperature of the temperature sensor 16 from the condensation temperature so that the calculated overcooling degree becomes the target overcooling degree. Controls the distribution valve 34.
In this way, by controlling the fourth distribution valve 34 so that the calculated supercooling degree of the refrigerant R flowing into the expansion valve 13 becomes the target supercooling degree, the circulating water W1 with respect to the first heat dissipation heat exchanger 12A The bypass amount is adjusted, and the cooling amount of the refrigerant R in the first heat dissipation heat exchanger 12A is suppressed. As a result, even when the hot water storage temperature is set to a low temperature, the temperature of the liquid refrigerant R flowing into the expansion valve 13 can be maintained at a constant temperature that does not result in a high supercooling state.
 以上、本発明の給湯システムの好ましい各実施形態について説明したが、本発明は、上述の実施形態に制限されるものではなく、適宜変更が可能である。また、複数の実施形態を組み合わせることも可能である。 Although the preferred embodiments of the hot water supply system of the present invention have been described above, the present invention is not limited to the above-described embodiments and can be appropriately modified. It is also possible to combine a plurality of embodiments.
 1 給湯システム
 10 ヒートポンプ回路
 11 圧縮機
 12A 第1放熱用熱交換器(凝縮器)
 12B 第2放熱用熱交換器(過冷却器)
 13 膨張弁
 14 吸熱用熱交換器(蒸発器)
 16 冷媒温度センサ(温度センサ)
 17 冷媒圧力センサ(圧力センサ)
 21 水循環ポンプ
 22 第1温度センサ
 25 補給水弁
 26 第2温度センサ
 31 第1分配バルブ
 32 第2分配バルブ
 33 第3分配バルブ
 34 第4分配バルブ
 60 貯湯タンク
 61 貯湯温度センサ
 62 水位センサ
 100 制御部(制御手段)
 110 水循環ポンプ制御部
 120 補給水弁制御部
 130 分配バルブ制御部
 140 過冷却度算出部
 L1 水循環ライン
 L2 補給水ライン
 L4 給湯水ライン
 L9 冷媒循環ライン
 L11 第1バイパスライン
 L12 第2バイパスライン
 L13 第3バイパスライン
 L14 第4バイパスライン
 W1 循環水
 W2 補給水
 W3 貯留水
 W4 給湯水
 R 冷媒(ガス冷媒、液冷媒)
1 Hot water supply system 10 Heat pump circuit 11 Compressor 12A First heat dissipation heat exchanger (condensor)
12B 2nd heat exchanger (supercooler)
13 Expansion valve 14 Endothermic heat exchanger (evaporator)
16 Refrigerant temperature sensor (temperature sensor)
17 Refrigerant pressure sensor (pressure sensor)
21 Water circulation pump 22 1st temperature sensor 25 Replenishment water valve 26 2nd temperature sensor 31 1st distribution valve 32 2nd distribution valve 33 3rd distribution valve 34 4th distribution valve 60 Hot water storage tank 61 Hot water storage temperature sensor 62 Water level sensor 100 Control unit (Control means)
110 Water circulation pump control unit 120 Replenishment water valve control unit 130 Distribution valve control unit 140 Overcooling degree calculation unit L1 Water circulation line L2 Replenishment water line L4 Hot water supply water line L9 Refrigerator circulation line L11 1st bypass line L12 2nd bypass line L13 3rd Bypass line L14 4th bypass line W1 Circulating water W2 Supplementary water W3 Reservoir water W4 Hot water supply water R Refrigerator (gas refrigerant, liquid refrigerant)

Claims (9)

  1.  圧縮機、第1放熱用熱交換器、第2放熱用熱交換器、膨張弁および吸熱用熱交換器が冷媒循環ラインにより環状に接続され、前記圧縮機の駆動により前記第1放熱用熱交換器および/または前記第2放熱用熱交換器で温熱を取り出す蒸気圧縮式のヒートポンプ回路と、
     補給水を貯留する貯湯タンクと、
     前記貯湯タンク内の貯留水を前記第1放熱用熱交換器に循環させる水循環ラインと、
     補給水を前記第2放熱用熱交換器に流通させつつ、前記貯湯タンクへ送給する補給水ラインと、
     前記膨張弁に流入する液冷媒の温度を調整する冷媒温度調整手段と、
     前記冷媒温度調整手段を制御する制御手段と、を備える給湯システム。
    The compressor, the first heat exchanger for heat dissipation, the second heat exchanger for heat dissipation, the expansion valve and the heat exchanger for heat absorption are connected in an annular shape by the refrigerant circulation line, and the heat exchange for the first heat dissipation is driven by the drive of the compressor. A steam compression type heat pump circuit that takes out heat from the device and / or the second heat exchanger for heat dissipation.
    A hot water storage tank that stores make-up water and
    A water circulation line that circulates the stored water in the hot water storage tank to the first heat exchanger for heat dissipation.
    A make-up water line that sends make-up water to the hot water storage tank while circulating make-up water to the second heat exchanger.
    A refrigerant temperature adjusting means for adjusting the temperature of the liquid refrigerant flowing into the expansion valve, and
    A hot water supply system including a control means for controlling the refrigerant temperature adjusting means.
  2.  前記冷媒温度調整手段は、
     前記膨張弁に流入する液冷媒の温度を検知する温度センサと、
     前記冷媒循環ラインに接続され、前記第2放熱用熱交換器に対して冷媒をバイパスさせる第1バイパスラインと、
     前記第2放熱用熱交換器に送給する冷媒および前記第1バイパスラインに送給する冷媒の分配量を調整する第1分配バルブと、を備え、
     前記制御手段は、前記圧縮機の駆動中、前記温度センサの検知温度が目標温度になるように、前記第1分配バルブを制御する、請求項1に記載の給湯システム。
    The refrigerant temperature adjusting means is
    A temperature sensor that detects the temperature of the liquid refrigerant flowing into the expansion valve, and
    A first bypass line connected to the refrigerant circulation line and bypassing the refrigerant to the second heat exchanger for heat dissipation.
    A first distribution valve for adjusting the distribution amount of the refrigerant supplied to the second heat exchanger and the refrigerant supplied to the first bypass line is provided.
    The hot water supply system according to claim 1, wherein the control means controls the first distribution valve so that the temperature detected by the temperature sensor reaches a target temperature while the compressor is being driven.
  3.  前記冷媒温度調整手段は、
     前記膨張弁に流入する液冷媒の温度を検知する温度センサと、
     前記膨張弁に流入する液冷媒の圧力を検知する圧力センサと、
     前記冷媒循環ラインに接続され、前記第2放熱用熱交換器に対して冷媒をバイパスさせる第1バイパスラインと、
     前記第2放熱用熱交換器に送給する冷媒および前記第1バイパスラインに送給する冷媒の分配量を調整する第1分配バルブと、を備え、
     前記制御手段は、前記圧縮機の駆動中、前記圧力センサの検知圧力からガス冷媒の凝縮温度を求めると共に、当該凝縮温度から前記温度センサの検知温度を差し引いて液冷媒の過冷却度を算出し、当該算出過冷却度が目標過冷却度になるように、前記第1分配バルブを制御する、請求項1に記載の給湯システム。
    The refrigerant temperature adjusting means is
    A temperature sensor that detects the temperature of the liquid refrigerant flowing into the expansion valve, and
    A pressure sensor that detects the pressure of the liquid refrigerant flowing into the expansion valve,
    A first bypass line connected to the refrigerant circulation line and bypassing the refrigerant to the second heat exchanger for heat dissipation.
    A first distribution valve for adjusting the distribution amount of the refrigerant supplied to the second heat exchanger and the refrigerant supplied to the first bypass line is provided.
    While the compressor is being driven, the control means obtains the condensation temperature of the gas refrigerant from the detection pressure of the pressure sensor, and subtracts the detection temperature of the temperature sensor from the condensation temperature to calculate the degree of supercooling of the liquid refrigerant. The hot water supply system according to claim 1, wherein the first distribution valve is controlled so that the calculated supercooling degree becomes the target supercooling degree.
  4.  前記冷媒温度調整手段は、
     前記膨張弁に流入する液冷媒の温度を検知する温度センサと、
     前記補給水ラインに接続され、前記第2放熱用熱交換器に対して補給水をバイパスさせる第2バイパスラインと、
     前記第2放熱用熱交換器に送給する補給水および前記第2バイパスラインに送給する補給水の分配量を調整する第2分配バルブと、を備え、
     前記制御手段は、前記圧縮機の駆動中、前記温度センサの検知温度が目標温度になるように、前記第2分配バルブを制御する、請求項1に記載の給湯システム。
    The refrigerant temperature adjusting means is
    A temperature sensor that detects the temperature of the liquid refrigerant flowing into the expansion valve, and
    A second bypass line connected to the make-up water line and bypassing the make-up water to the second heat exchanger for heat dissipation.
    A second distribution valve for adjusting the distribution amount of the make-up water to be supplied to the second heat dissipation heat exchanger and the make-up water to be supplied to the second bypass line is provided.
    The hot water supply system according to claim 1, wherein the control means controls the second distribution valve so that the temperature detected by the temperature sensor reaches a target temperature while the compressor is being driven.
  5.  前記冷媒温度調整手段は、
     前記膨張弁に流入する液冷媒の温度を検知する温度センサと、
     前記膨張弁に流入する液冷媒の圧力を検知する圧力センサと、
     前記補給水ラインに接続され、前記第2放熱用熱交換器に対して補給水をバイパスさせる第2バイパスラインと、
     前記第2放熱用熱交換器に送給する補給水および前記第2バイパスラインに送給する補給水の分配量を調整する第2分配バルブと、を備え、
     前記制御手段は、前記圧縮機の駆動中、前記圧力センサの検知圧力からガス冷媒の凝縮温度を求めると共に、当該凝縮温度から前記温度センサの検知温度を差し引いて液冷媒の過冷却度を算出し、当該算出過冷却度が目標過冷却度になるように、前記第2分配バルブを制御する、請求項1に記載の給湯システム。
    The refrigerant temperature adjusting means is
    A temperature sensor that detects the temperature of the liquid refrigerant flowing into the expansion valve, and
    A pressure sensor that detects the pressure of the liquid refrigerant flowing into the expansion valve,
    A second bypass line connected to the make-up water line and bypassing the make-up water to the second heat exchanger for heat dissipation.
    A second distribution valve for adjusting the distribution amount of the make-up water to be supplied to the second heat dissipation heat exchanger and the make-up water to be supplied to the second bypass line is provided.
    While the compressor is being driven, the control means obtains the condensation temperature of the gas refrigerant from the detection pressure of the pressure sensor, and subtracts the detection temperature of the temperature sensor from the condensation temperature to calculate the degree of supercooling of the liquid refrigerant. The hot water supply system according to claim 1, wherein the second distribution valve is controlled so that the calculated supercooling degree becomes the target supercooling degree.
  6.  前記冷媒温度調整手段は、
     前記膨張弁に流入する液冷媒の温度を検知する温度センサと、
     前記冷媒循環ラインに接続され、前記第1放熱用熱交換器に対して冷媒をバイパスさせる第3バイパスラインと、
     前記第1放熱用熱交換器に送給する冷媒および前記第3バイパスラインに送給する冷媒の分配量を調整する第3分配バルブと、を備え、
     前記制御手段は、前記圧縮機の駆動中、前記温度センサの検知温度が目標温度になるように、前記第3分配バルブを制御する、請求項1に記載の給湯システム。
    The refrigerant temperature adjusting means is
    A temperature sensor that detects the temperature of the liquid refrigerant flowing into the expansion valve, and
    A third bypass line connected to the refrigerant circulation line and bypassing the refrigerant to the first heat exchanger for heat dissipation.
    A third distribution valve for adjusting the distribution amount of the refrigerant supplied to the first heat exchanger and the refrigerant supplied to the third bypass line is provided.
    The hot water supply system according to claim 1, wherein the control means controls the third distribution valve so that the temperature detected by the temperature sensor reaches a target temperature while the compressor is being driven.
  7.  前記冷媒温度調整手段は、
     前記膨張弁に流入する液冷媒の温度を検知する温度センサと、
     前記膨張弁に流入する液冷媒の圧力を検知する圧力センサと、
     前記冷媒循環ラインに接続され、前記第1放熱用熱交換器に対して冷媒をバイパスさせる第3バイパスラインと、
     前記第1放熱用熱交換器に送給する冷媒および前記第3バイパスラインに送給する冷媒の分配量を調整する第3分配バルブと、を備え、
     前記制御手段は、前記圧縮機の駆動中、前記圧力センサの検知圧力からガス冷媒の凝縮温度を求めると共に、当該凝縮温度から前記温度センサの検知温度を差し引いて液冷媒の過冷却度を算出し、当該算出過冷却度が目標過冷却度になるように、前記第3分配バルブを制御する、請求項1に記載の給湯システム。
    The refrigerant temperature adjusting means is
    A temperature sensor that detects the temperature of the liquid refrigerant flowing into the expansion valve, and
    A pressure sensor that detects the pressure of the liquid refrigerant flowing into the expansion valve,
    A third bypass line connected to the refrigerant circulation line and bypassing the refrigerant to the first heat exchanger for heat dissipation.
    A third distribution valve for adjusting the distribution amount of the refrigerant supplied to the first heat exchanger and the refrigerant supplied to the third bypass line is provided.
    While the compressor is being driven, the control means obtains the condensation temperature of the gas refrigerant from the detection pressure of the pressure sensor, and subtracts the detection temperature of the temperature sensor from the condensation temperature to calculate the degree of supercooling of the liquid refrigerant. The hot water supply system according to claim 1, wherein the third distribution valve is controlled so that the calculated supercooling degree becomes the target supercooling degree.
  8.  前記冷媒温度調整手段は、
     前記膨張弁に流入する液冷媒の温度を検知する温度センサと、
     前記水循環ラインに接続され、前記第1放熱用熱交換器に対して循環水をバイパスさせる第4バイパスラインと、
     前記第1放熱用熱交換器に送給する循環水および前記第4バイパスラインに送給する循環水の分配量を調整する第4分配バルブと、を備え、
     前記制御手段は、前記圧縮機の駆動中、前記温度センサの検知温度が目標温度になるように、前記第4分配バルブを制御する、請求項1に記載の給湯システム。
    The refrigerant temperature adjusting means is
    A temperature sensor that detects the temperature of the liquid refrigerant flowing into the expansion valve, and
    A fourth bypass line connected to the water circulation line and bypassing the circulating water to the first heat exchanger for heat dissipation.
    A fourth distribution valve for adjusting the distribution amount of the circulating water supplied to the first heat dissipation heat exchanger and the circulating water supplied to the fourth bypass line is provided.
    The hot water supply system according to claim 1, wherein the control means controls the fourth distribution valve so that the temperature detected by the temperature sensor reaches a target temperature while the compressor is being driven.
  9.  前記冷媒温度調整手段は、
     前記膨張弁に流入する液冷媒の温度を検知する温度センサと、
     前記膨張弁に流入する液冷媒の圧力を検知する圧力センサと、
     前記水循環ラインに接続され、前記第1放熱用熱交換器に対して循環水をバイパスさせる第4バイパスラインと、
     前記第1放熱用熱交換器に送給する循環水および前記第4バイパスラインに送給する循環水の分配量を調整する第4分配バルブと、を備え、
     前記制御手段は、前記圧縮機の駆動中、前記圧力センサの検知圧力からガス冷媒の凝縮温度を求めると共に、当該凝縮温度から前記温度センサの検知温度を差し引いて液冷媒の過冷却度を算出し、当該算出過冷却度が目標過冷却度になるように、前記第4分配バルブを制御する、請求項1に記載の給湯システム。
    The refrigerant temperature adjusting means is
    A temperature sensor that detects the temperature of the liquid refrigerant flowing into the expansion valve, and
    A pressure sensor that detects the pressure of the liquid refrigerant flowing into the expansion valve,
    A fourth bypass line connected to the water circulation line and bypassing the circulating water to the first heat exchanger for heat dissipation.
    A fourth distribution valve for adjusting the distribution amount of the circulating water supplied to the first heat dissipation heat exchanger and the circulating water supplied to the fourth bypass line is provided.
    While the compressor is being driven, the control means obtains the condensation temperature of the gas refrigerant from the detection pressure of the pressure sensor, and subtracts the detection temperature of the temperature sensor from the condensation temperature to calculate the degree of supercooling of the liquid refrigerant. The hot water supply system according to claim 1, wherein the fourth distribution valve is controlled so that the calculated supercooling degree becomes the target supercooling degree.
PCT/JP2021/022165 2020-08-03 2021-06-10 Hot water supply system WO2022030103A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180041842.XA CN115943276A (en) 2020-08-03 2021-06-10 Hot water supply system
KR1020227041008A KR20230047326A (en) 2020-08-03 2021-06-10 hot water system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-131897 2020-08-03
JP2020131897A JP7508933B2 (en) 2020-08-03 Hot water system

Publications (1)

Publication Number Publication Date
WO2022030103A1 true WO2022030103A1 (en) 2022-02-10

Family

ID=80117834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022165 WO2022030103A1 (en) 2020-08-03 2021-06-10 Hot water supply system

Country Status (3)

Country Link
KR (1) KR20230047326A (en)
CN (1) CN115943276A (en)
WO (1) WO2022030103A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149758A (en) * 1984-12-21 1986-07-08 Mitsubishi Electric Corp Heat pump type hot water supply apparatus
JPH07280362A (en) * 1994-04-01 1995-10-27 Nippondenso Co Ltd Refrigerating cycle
JPH08219572A (en) * 1995-02-14 1996-08-30 Matsushita Refrig Co Ltd Air conditioner
JP2015210033A (en) * 2014-04-28 2015-11-24 富士電機株式会社 Steam generation heat pump

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0227582A (en) 1988-07-15 1990-01-30 Oki Electric Ind Co Ltd Digital audio level meter device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149758A (en) * 1984-12-21 1986-07-08 Mitsubishi Electric Corp Heat pump type hot water supply apparatus
JPH07280362A (en) * 1994-04-01 1995-10-27 Nippondenso Co Ltd Refrigerating cycle
JPH08219572A (en) * 1995-02-14 1996-08-30 Matsushita Refrig Co Ltd Air conditioner
JP2015210033A (en) * 2014-04-28 2015-11-24 富士電機株式会社 Steam generation heat pump

Also Published As

Publication number Publication date
CN115943276A (en) 2023-04-07
JP2022028474A (en) 2022-02-16
KR20230047326A (en) 2023-04-07

Similar Documents

Publication Publication Date Title
US10203140B2 (en) Refrigerant control system for a flash tank
JP5263421B1 (en) Water heating system
US8991204B2 (en) Refrigerating apparatus
JP2024083505A (en) Water heating system
JP2013089209A (en) Automatic vending machine
JP2012123786A (en) Automatic vending machine
JP2004003825A (en) Heat pump system, and heat pump type hot water supplying machine
WO2022030102A1 (en) Hot water supply system
WO2022030103A1 (en) Hot water supply system
JP2021134935A (en) Feedwater heating system
JP7508933B2 (en) Hot water system
JP2007163085A (en) Air-conditioning system
JP2022028475A (en) Hot water supply system
JP2005188813A (en) Thermo-siphon type cooling device
JP2940839B2 (en) Air conditioning
JP7243300B2 (en) heat pump system
JP6491465B2 (en) Cooling system
JP6083508B2 (en) Water heating system
JPH10259959A (en) Heating device using refrigeration cycle
WO2023223373A1 (en) Heat pump device
JP2940838B2 (en) Air conditioning
JP2021134934A (en) Feedwater heating system
JPH09170824A (en) Heat conveying device
JP2021134937A (en) Hot water manufacturing device and hot water manufacturing system
JP3434284B2 (en) Absorption refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21854044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21854044

Country of ref document: EP

Kind code of ref document: A1