JPH08219572A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH08219572A
JPH08219572A JP2531395A JP2531395A JPH08219572A JP H08219572 A JPH08219572 A JP H08219572A JP 2531395 A JP2531395 A JP 2531395A JP 2531395 A JP2531395 A JP 2531395A JP H08219572 A JPH08219572 A JP H08219572A
Authority
JP
Japan
Prior art keywords
expansion valve
detection sensor
composition ratio
pressure side
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2531395A
Other languages
Japanese (ja)
Inventor
Takashi Kaneko
孝 金子
Masao Kurachi
正夫 蔵地
Kazuhiko Marumoto
一彦 丸本
Michiyoshi Kusaka
道美 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP2531395A priority Critical patent/JPH08219572A/en
Publication of JPH08219572A publication Critical patent/JPH08219572A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To avoid danger of breaking a compressor due to a liquid compression by improving computing accuracy of the degree of overcooling at an inlet of an outdoor side expansion valve to control the opening of the outdoor side expansion valve to a proper value during the heating operation in an air conditioning equipment using a non-azeotropic mixed refrigerant. CONSTITUTION: A circulated refrigerant composition ratio forecasting means 19 is provided to forecast a composition ratio of a circulated refrigerant based on the height of a liquid surface in an accumulator 6 as detected by a liquid surface height detecting sensor 18. In the heating operation, a degree of overcooling computing means 25 computes the degree of overcooling at an inlet of the outdoor side expansion valve based on a high pressure side pressure as detected by a high pressure side pressure detection sensor 12, the temperature of a liquid piping as detected by a liquid piping temperature detection sensor 13 and a composition ratio of the circulated refrigerant forecast by the circulated refrigerant composition ratio forecast means 19. Then, based on the results of the computation, an outdoor side expansion valve control means 17 controls the opening of an outdoor side expansion valve 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非共沸混合冷媒を用い
た空気調和機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner using a non-azeotropic mixed refrigerant.

【0002】[0002]

【従来の技術】従来、この種の空気調和機として、例え
ば、特開平1−212870号公報に示されているよう
な空気調和機がある。
2. Description of the Related Art Conventionally, as this type of air conditioner, for example, there is an air conditioner disclosed in Japanese Patent Laid-Open No. 1-212870.

【0003】以下、図面を参照しながら上述した空気調
和機について説明する。図16において、空気調和機の
室外機1は、圧縮機2、四方弁3、室外側熱交換器4、
室外側膨張弁5、アキュームレータ6から構成されてい
る。また、室内機7は、室内側膨張弁8、室内側熱交換
器9から構成されている。さらに、室外機1と室内機7
は、液管10、及び、ガス管11によって環状に接続さ
れ、冷媒回路が構成されている。
The above-mentioned air conditioner will be described below with reference to the drawings. In FIG. 16, the outdoor unit 1 of the air conditioner includes a compressor 2, a four-way valve 3, an outdoor heat exchanger 4,
It is composed of an outdoor expansion valve 5 and an accumulator 6. In addition, the indoor unit 7 includes an indoor expansion valve 8 and an indoor heat exchanger 9. Further, the outdoor unit 1 and the indoor unit 7
Are annularly connected by the liquid pipe 10 and the gas pipe 11 to form a refrigerant circuit.

【0004】また、高圧側圧力を検知する高圧側圧力検
知センサー12と、室内側膨張弁8と室外側膨張弁5の
間に取り付けられ温度を検知する液配管温度検知センサ
ー13を備え、高圧側圧力検知センサー12によって検
知した高圧側圧力と、液配管温度検知センサー13によ
って検知した液配管温度に基づき過冷却度を演算する過
冷却度演算手段15と、過冷却度演算手段15によって
演算した過冷却度に基づき室外側膨張弁5を制御する室
外側膨張弁制御手段17を有している。尚、室内機6は
本従来例では3台接続されており、区別する場合は添字
a,b,cを付けることにする。
Further, a high pressure side pressure detection sensor 12 for detecting the high pressure side pressure and a liquid pipe temperature detection sensor 13 mounted between the indoor expansion valve 8 and the outdoor expansion valve 5 for detecting the temperature are provided. The supercooling degree calculating means 15 for calculating the supercooling degree based on the high pressure side pressure detected by the pressure detecting sensor 12 and the liquid pipe temperature detected by the liquid pipe temperature detecting sensor 13, and the supercooling degree calculating means 15 for calculating the supercooling degree. It has an outdoor expansion valve control means 17 for controlling the outdoor expansion valve 5 based on the degree of cooling. It should be noted that three indoor units 6 are connected in this conventional example, and the subscripts a, b, and c are added to distinguish them.

【0005】次に、上記構成の空気調和機の動作につい
て、非共沸混合冷媒を使用した場合に、アキュームレー
タ6内の液冷媒溜まり込みにより、循環冷媒の組成比率
の変化が発生する、暖房運転時についてのみ説明する。
Next, regarding the operation of the air conditioner having the above-mentioned configuration, when a non-azeotropic mixed refrigerant is used, the liquid refrigerant pool in the accumulator 6 causes a change in the composition ratio of the circulating refrigerant, and a heating operation. Only time will be explained.

【0006】暖房運転の場合、圧縮機2により吐出され
た高温高圧ガスは、四方弁3を通って各室内側熱交換器
9に導かれ、ここで凝縮液化して室内側膨張弁8を通っ
て液管10に流入し、室外側膨張弁5で低圧二相状態ま
で減圧され、室外側熱交換器4に入り蒸発気化して、四
方弁3を介し、アキュームレータ6を通って圧縮機2に
戻り、暖房運転を行う。
In the heating operation, the high-temperature high-pressure gas discharged from the compressor 2 is guided to each indoor heat exchanger 9 through the four-way valve 3, where it is condensed and liquefied and then passes through the indoor expansion valve 8. Flow into the liquid pipe 10, the pressure is reduced to a low pressure two-phase state by the outdoor expansion valve 5, enters the outdoor heat exchanger 4, evaporates and vaporizes, and passes through the four-way valve 3 and the accumulator 6 to the compressor 2. Return and perform heating operation.

【0007】この時、過冷却度演算手段15は、室外側
膨張弁入口過冷却度を、高圧側圧力検知センサー12で
検知した高圧側圧力より演算した液飽和温度と、液配管
温度検知センサー13で検知した温度の差として算出
し、室外側膨張弁制御手段17により、室外側膨張弁5
を、演算した過冷却度が所定値より小さくなると開度を
減少させ、また、過冷却度が所定値より大きくなると開
度を増加させることにより、室外側膨張弁5を適正開度
に制御している。
At this time, the subcooling degree calculating means 15 calculates the degree of subcooling of the outdoor expansion valve inlet from the high pressure side pressure detected by the high pressure side pressure detection sensor 12, and the liquid pipe temperature detection sensor 13. Calculated as the temperature difference detected by the outdoor expansion valve control means 17 and the outdoor expansion valve 5
When the calculated supercooling degree becomes smaller than a predetermined value, the opening degree is decreased, and when the supercooling degree becomes larger than the predetermined value, the opening degree is increased to control the outdoor expansion valve 5 to an appropriate opening degree. ing.

【0008】[0008]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、非共沸混合冷媒(例えば高沸点冷媒であ
るR134aと低沸点冷媒であるR32の2種の混合冷
媒)を使用した場合に、アキュームレータ6内で、非共
沸混合冷媒が気液平衡状態となると、液側は高沸点冷媒
の組成比率が高くなり、ガス側は低沸点冷媒の組成比率
が高くなる。従って、圧縮機2はアキュームレータ6内
の低沸点冷媒に富んだガス冷媒を吸い込むため、低沸点
冷媒の組成比率が高い冷媒がサイクル内を循環する。
However, in the above structure, when a non-azeotropic mixed refrigerant (for example, two kinds of mixed refrigerants of R134a which is a high boiling point refrigerant and R32 which is a low boiling point refrigerant) is used, When the non-azeotropic mixed refrigerant is in a gas-liquid equilibrium state in the accumulator 6, the liquid side has a high composition ratio of the high boiling point refrigerant and the gas side has a high composition ratio of the low boiling point refrigerant. Therefore, the compressor 2 sucks the gas refrigerant rich in the low boiling point refrigerant in the accumulator 6, so that the refrigerant having a high composition ratio of the low boiling point refrigerant circulates in the cycle.

【0009】よって、同一圧力では、循環冷媒の液飽和
温度が低下してしまい、過冷却度演算手段15により演
算した過冷却度が、循環冷媒の過冷却度より大きくな
り、室外側膨張弁制御手段17により制御される室外側
膨張弁5の開度が適正開度より大きくなってしまう。こ
のため、冷媒循環量が増加し、室外側熱交換器4出口の
冷媒が完全に蒸発されず湿り状態となり、その結果、圧
縮機2への液戻りによる液圧縮が発生し、圧縮機2を破
損する危険性が高いという欠点があった。
Therefore, at the same pressure, the liquid saturation temperature of the circulating refrigerant is lowered, and the degree of supercooling calculated by the supercooling degree calculating means 15 becomes larger than the degree of supercooling of the circulating refrigerant, so that the outdoor expansion valve control is performed. The opening degree of the outdoor expansion valve 5 controlled by the means 17 becomes larger than the appropriate opening degree. For this reason, the refrigerant circulation amount increases, the refrigerant at the outlet of the outdoor heat exchanger 4 is not completely evaporated, and is in a wet state. As a result, liquid compression due to liquid return to the compressor 2 occurs, and the compressor 2 There was a drawback that the risk of breakage was high.

【0010】本発明は従来の課題を解決するもので、非
共沸混合冷媒を使用した場合の暖房運転時に、循環冷媒
組成比率を予測し、精度良く液飽和温度を演算すること
により、室外側膨張弁入口過冷却度の演算精度を向上さ
せ、室外側膨張弁の開度を適正開度に制御することによ
り、圧縮機への液戻りにより液圧縮が発生し、その結
果、圧縮機が破損する危険を回避することができる空気
調和機を提供することを目的とする。
The present invention solves the conventional problems. In the heating operation when a non-azeotropic mixed refrigerant is used, the composition ratio of the circulating refrigerant is predicted and the liquid saturation temperature is accurately calculated, so that the outdoor side. By improving the calculation accuracy of the degree of supercooling at the inlet of the expansion valve and controlling the opening of the outdoor expansion valve to an appropriate opening, liquid return to the compressor causes liquid compression, resulting in damage to the compressor. An object is to provide an air conditioner capable of avoiding the risk of

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に本発明は、非共沸混合冷媒を使用し、圧縮機、四方
弁、室外側熱交換器、室外側膨張弁、アキュームレータ
から成る室外機と、室内側膨張弁、室内側熱交換器から
成る室内機とを接続して環状の冷媒回路を構成し、前記
アキュームレータ内の液面の高さを検知する液面高さ検
知センサーと、前記液面高さ検知センサーによって検知
したアキュームレータ内の液面高さから、循環冷媒の組
成比率を予測する循環冷媒組成比率予測手段と、高圧側
圧力を検知する高圧側圧力検知センサーと、液配管温度
を検知する液配管温度検知センサーと、暖房運転時に、
前記循環冷媒組成比率予測手段によって予測した循環冷
媒の組成比率と、前記高圧側圧力検知センサーにより検
知した高圧側圧力と、前記液配管温度検知センサーによ
り検知した液配管温度とにより、室外側膨張弁入口過冷
却度を演算する過冷却度演算手段と、前記過冷却度演算
手段で演算された過冷却度に応じて前記室外側膨張弁の
開度の制御を行う室外側膨張弁制御手段を備えた構成と
なっている。
In order to solve the above problems, the present invention uses an non-azeotropic mixed refrigerant and is an outdoor unit including a compressor, a four-way valve, an outdoor heat exchanger, an outdoor expansion valve, and an accumulator. Machine, an indoor expansion valve, an indoor unit consisting of an indoor heat exchanger to form an annular refrigerant circuit, a liquid level height detection sensor for detecting the height of the liquid level in the accumulator, From the liquid level in the accumulator detected by the liquid level detection sensor, a circulating refrigerant composition ratio predicting means for predicting a composition ratio of the circulating refrigerant, a high pressure side pressure detecting sensor for detecting a high pressure side pressure, and a liquid pipe Liquid pipe temperature detection sensor to detect temperature, and during heating operation,
The composition ratio of the circulating refrigerant predicted by the circulating refrigerant composition ratio predicting unit, the high pressure side pressure detected by the high pressure side pressure detection sensor, and the liquid pipe temperature detected by the liquid pipe temperature detection sensor The subcooling degree calculating means for calculating the inlet supercooling degree and the outdoor expansion valve control means for controlling the opening degree of the outdoor expansion valve according to the supercooling degree calculated by the supercooling degree calculating means are provided. It has been configured.

【0012】また、非共沸混合冷媒を使用し、圧縮機、
四方弁、室外側熱交換器、室外側膨張弁、アキュームレ
ータから成る室外機と、室内側膨張弁、室内側熱交換器
から成る室内機とを接続して環状の冷媒回路を構成し、
高圧側圧力を検知する高圧側圧力検知センサーと、外気
温度を検知する外気温度検知センサーと、室内負荷を検
出する室内負荷検出手段と、前記室内負荷検出手段によ
って検出した室内負荷と、前記外気温度検知センサーに
よって検知した外気温度と、前記高圧側圧力検知センサ
ーによって検知した高圧側圧力から、循環冷媒の組成比
率を予測する循環冷媒組成比率予測手段と、液配管温度
を検知する液配管温度検知センサーと、暖房運転時に、
前記循環冷媒組成比率予測手段によって予測した循環冷
媒の組成比率と、前記高圧側圧力検知センサーにより検
知した高圧側圧力と、前記液配管温度検知センサーによ
り検知した液配管温度とにより、室外側膨張弁入口過冷
却度を演算する過冷却度演算手段と、前記過冷却度演算
手段で演算された過冷却度に応じて前記室外側膨張弁の
開度の制御を行う室外側膨張弁制御手段を備えた構成と
なっている。
Further, a non-azeotropic mixed refrigerant is used, a compressor,
A four-way valve, an outdoor heat exchanger, an outdoor expansion valve, an outdoor unit consisting of an accumulator and an indoor expansion valve, an indoor unit consisting of an indoor heat exchanger to form an annular refrigerant circuit,
High pressure side pressure detection sensor for detecting high pressure side pressure, outside air temperature detection sensor for detecting outside air temperature, indoor load detection means for detecting indoor load, indoor load detected by the indoor load detection means, and the outside air temperature Circulating refrigerant composition ratio prediction means for predicting the composition ratio of the circulating refrigerant from the outside air temperature detected by the detection sensor and the high pressure side pressure detected by the high pressure side pressure detection sensor, and a liquid pipe temperature detection sensor for detecting the liquid pipe temperature And during heating operation,
The composition ratio of the circulating refrigerant predicted by the circulating refrigerant composition ratio predicting unit, the high pressure side pressure detected by the high pressure side pressure detection sensor, and the liquid pipe temperature detected by the liquid pipe temperature detection sensor The subcooling degree calculating means for calculating the inlet supercooling degree and the outdoor expansion valve control means for controlling the opening degree of the outdoor expansion valve according to the supercooling degree calculated by the supercooling degree calculating means are provided. It has been configured.

【0013】また、非共沸混合冷媒を使用し、圧縮機、
四方弁、室外側熱交換器、室外側膨張弁、アキュームレ
ータから成る室外機と、室内側膨張弁、室内側熱交換器
から成る室内機とを接続して環状の冷媒回路を構成し、
高圧側圧力を検知する高圧側圧力検知センサーと、外気
温度を検知する外気温度検知センサーと、前記高圧側圧
力検知センサーによって検知された高圧側圧力により前
記圧縮機の運転周波数を制御する圧縮機運転周波数制手
段と、室内負荷を検出する室内負荷検出手段と、前記室
内負荷検出手段によって検出した室内負荷と、前記外気
温度検知センサーによって検知した外気温度と、前記圧
縮機の運転周波数から、循環冷媒の組成比率を予測する
循環冷媒組成比率予測手段と、液配管温度を検知する液
配管温度検知センサーと、暖房運転時に、前記循環冷媒
組成比率予測手段によって予測した循環冷媒の組成比率
と、前記高圧側圧力検知センサーにより検知した高圧側
圧力と、前記液配管温度検知センサーにより検知した液
配管温度とにより、室外側膨張弁入口過冷却度を演算す
る過冷却度演算手段と、前記過冷却度演算手段で演算さ
れた過冷却度に応じて室外側膨張弁の開度の制御を行う
室外側膨張弁制御手段を備えた構成となっている。
Further, a non-azeotropic mixed refrigerant is used, a compressor,
A four-way valve, an outdoor heat exchanger, an outdoor expansion valve, an outdoor unit consisting of an accumulator and an indoor expansion valve, an indoor unit consisting of an indoor heat exchanger to form an annular refrigerant circuit,
High pressure side pressure detection sensor for detecting high pressure side pressure, outside air temperature detection sensor for detecting outside air temperature, and compressor operation for controlling the operating frequency of the compressor by the high pressure side pressure detected by the high pressure side pressure detection sensor Frequency control means, indoor load detection means for detecting indoor load, indoor load detected by the indoor load detection means, outdoor air temperature detected by the outdoor air temperature detection sensor, and operating frequency of the compressor, circulating refrigerant Circulating refrigerant composition ratio predicting means for predicting the composition ratio of, the liquid pipe temperature detection sensor for detecting the liquid pipe temperature, during heating operation, the composition ratio of the circulating refrigerant predicted by the circulating refrigerant composition ratio predicting means, and the high pressure By the high pressure side pressure detected by the side pressure detection sensor and the liquid pipe temperature detected by the liquid pipe temperature detection sensor Supercooling degree calculating means for calculating the degree of supercooling at the inlet of the outdoor expansion valve, and outdoor expansion valve control for controlling the degree of opening of the outdoor expansion valve according to the degree of supercooling calculated by the degree of supercooling calculation means It is configured to include means.

【0014】また、非共沸混合冷媒を使用し、圧縮機、
四方弁、室外側熱交換器、室外側膨張弁、アキュームレ
ータから成る室外機と、室内側膨張弁、室内側熱交換器
から成る室内機とを接続して環状の冷媒回路を構成し、
高圧側圧力を検知する高圧側圧力検知センサーと、前記
圧縮機の吐出温度を検知する吐出温度検知センサーと、
外気温度を検知する外気温度検知センサーと、前記外気
温度検知センサーによって検知した外気温度と、前記高
圧側圧力検知センサーによって検知した高圧側圧力と、
前記吐出温度検知センサーによって検知した前記圧縮機
の吐出温度から、循環冷媒の組成比率を予測する循環冷
媒組成比率予測手段と、液配管温度を検知する液配管温
度検知センサーと、暖房運転時に、前記循環冷媒組成比
率予測手段によって予測した循環冷媒の組成比率と、前
記高圧側圧力検知センサーにより検知した高圧側圧力
と、前記液配管温度検知センサーにより検知した液配管
温度とにより、室外側膨張弁入口過冷却度を演算する過
冷却度演算手段と、前記過冷却度演算手段で演算された
過冷却度に応じて室外側膨張弁の開度の制御を行う室外
側膨張弁制御手段を備えた構成となっている。
Further, a non-azeotropic mixed refrigerant is used, a compressor,
A four-way valve, an outdoor heat exchanger, an outdoor expansion valve, an outdoor unit consisting of an accumulator and an indoor expansion valve, an indoor unit consisting of an indoor heat exchanger to form an annular refrigerant circuit,
A high pressure side pressure detection sensor for detecting the high pressure side pressure, a discharge temperature detection sensor for detecting the discharge temperature of the compressor,
An outside air temperature detection sensor for detecting the outside air temperature, an outside air temperature detected by the outside air temperature detection sensor, and a high pressure side pressure detected by the high pressure side pressure detection sensor,
From the discharge temperature of the compressor detected by the discharge temperature detection sensor, a circulating refrigerant composition ratio prediction means for predicting a composition ratio of the circulating refrigerant, a liquid pipe temperature detection sensor for detecting a liquid pipe temperature, and during heating operation, The composition ratio of the circulating refrigerant predicted by the circulating refrigerant composition ratio predicting means, the high pressure side pressure detected by the high pressure side pressure detection sensor, and the liquid pipe temperature detected by the liquid pipe temperature detection sensor Constitution comprising supercooling degree calculating means for calculating the degree of subcooling and outdoor side expansion valve control means for controlling the degree of opening of the outdoor side expansion valve according to the degree of supercooling calculated by the degree of supercooling calculation means Has become.

【0015】[0015]

【作用】本発明は上記のような構成により、非共沸混合
冷媒(例えば高沸点冷媒であるR134aと低沸点冷媒
であるR32の2種の混合冷媒)を使用した場合の暖房
運転時に、アキュームレータ内で、非共沸混合冷媒が気
液平衡状態となると、液側は高沸点冷媒の組成比率が高
くなり、ガス側は低沸点冷媒の組成比率が高くなる。従
って、圧縮機はアキュームレータ内の低沸点冷媒に富ん
だガス冷媒を吸い込むため、アキュームレータ内の液量
が増加し液面高さが上昇すると、循環冷媒の低沸点冷媒
組成比率が高くなる。また、アキュームレータ内の液量
が減少し液面高さが低下すると、循環冷媒の低沸点冷媒
の組成比率が低くなる。よって、アキュームレータ内の
液面の高さから循環冷媒の組成比率を予測できる。そし
て、予測した循環冷媒の組成比率より、液飽和温度が精
度良く演算でき、室外側膨張弁入口過冷却度の演算精度
を向上でき、室外側膨張弁の開度を適正開度に制御でき
る。そのため、圧縮機への液戻りのための液圧縮によ
る、圧縮機の破損の危険を回避することができる。
According to the present invention, the accumulator having the above-described structure is used during heating operation when a non-azeotropic mixed refrigerant (for example, two kinds of mixed refrigerant of R134a which is a high boiling point refrigerant and R32 which is a low boiling point refrigerant) is used. When the non-azeotropic mixed refrigerant is in a gas-liquid equilibrium state, the composition ratio of the high boiling point refrigerant is high on the liquid side and the composition ratio of the low boiling point refrigerant is high on the gas side. Therefore, since the compressor sucks the gas refrigerant rich in the low boiling point refrigerant in the accumulator, when the liquid amount in the accumulator increases and the liquid level rises, the low boiling point refrigerant composition ratio of the circulating refrigerant increases. Further, when the amount of liquid in the accumulator decreases and the height of the liquid surface decreases, the composition ratio of the low boiling point refrigerant of the circulating refrigerant becomes low. Therefore, the composition ratio of the circulating refrigerant can be predicted from the height of the liquid level in the accumulator. The liquid saturation temperature can be accurately calculated from the predicted composition ratio of the circulating refrigerant, the calculation accuracy of the outdoor expansion valve inlet supercooling degree can be improved, and the opening degree of the outdoor expansion valve can be controlled to an appropriate opening degree. Therefore, the risk of damage to the compressor due to liquid compression for returning the liquid to the compressor can be avoided.

【0016】また、室内側の負荷、及び、外気温度が同
一である場合は、循環冷媒の低沸点冷媒組成比率が高く
なると高圧側圧力が所定値より上昇する。また、循環冷
媒の低沸点冷媒組成比率が低くなると、高圧側圧力が所
定値より低下する。よって、室内負荷と、外気温度か
ら、高圧側圧力の所定値を求め、その所定値と、高圧側
圧力検知センサーによって検知された高圧側圧力との差
により、循環冷媒の組成比率を予測できる。そして、予
測した循環冷媒の組成比率より、液飽和温度が精度良く
演算でき、室外側膨張弁入口過冷却度の演算精度を向上
でき、室外側膨張弁の開度を適正開度に制御できる。そ
のため、圧縮機への液戻りのための液圧縮による、圧縮
機の破損の危険を回避することができる。
When the load on the indoor side and the outside air temperature are the same, the high-pressure side pressure rises above a predetermined value as the low-boiling point refrigerant composition ratio of the circulating refrigerant increases. Further, when the low boiling point refrigerant composition ratio of the circulating refrigerant becomes low, the high-pressure side pressure becomes lower than a predetermined value. Therefore, a predetermined value of the high-pressure side pressure is obtained from the indoor load and the outside air temperature, and the composition ratio of the circulating refrigerant can be predicted from the difference between the predetermined value and the high-pressure side pressure detected by the high-pressure side pressure detection sensor. The liquid saturation temperature can be accurately calculated from the predicted composition ratio of the circulating refrigerant, the calculation accuracy of the outdoor expansion valve inlet supercooling degree can be improved, and the opening degree of the outdoor expansion valve can be controlled to an appropriate opening degree. Therefore, the risk of damage to the compressor due to liquid compression for returning the liquid to the compressor can be avoided.

【0017】また、室内側の負荷、及び、外気温度が同
一である場合は、循環冷媒の低沸点冷媒組成比率が高く
なると、高圧側力が上昇し、高圧側圧力により制御され
る圧縮機の運転周波数が所定値より低下する。また、循
環冷媒の低沸点冷媒組成比率が低くなると、高圧側圧力
が低下し、高圧側圧力により制御される圧縮機の運転周
波数が所定値より上昇する。よって、室内負荷と、外気
温度から、圧縮機の運転周波数の所定値を求め、その所
定値と、実際の圧縮機の運転周波数との差により、循環
冷媒の組成比率を予測できる。そして、予測した循環冷
媒の組成比率より、液飽和温度が精度良く演算でき、室
外側膨張弁入口過冷却度の演算精度を向上でき、室外側
膨張弁の開度を適正開度に制御できる。そのため、圧縮
機への液戻りのための液圧縮による、圧縮機の破損の危
険を回避することができる。
Further, when the load on the indoor side and the outside air temperature are the same, when the low boiling point refrigerant composition ratio of the circulating refrigerant becomes high, the high pressure side force rises, and the compressor controlled by the high pressure side pressure increases. The operating frequency drops below a predetermined value. Further, when the low-boiling-point refrigerant composition ratio of the circulating refrigerant decreases, the high-pressure side pressure decreases, and the operating frequency of the compressor controlled by the high-pressure side pressure rises above a predetermined value. Therefore, the predetermined value of the operating frequency of the compressor is obtained from the indoor load and the outside air temperature, and the composition ratio of the circulating refrigerant can be predicted from the difference between the predetermined value and the actual operating frequency of the compressor. The liquid saturation temperature can be accurately calculated from the predicted composition ratio of the circulating refrigerant, the calculation accuracy of the outdoor expansion valve inlet supercooling degree can be improved, and the opening degree of the outdoor expansion valve can be controlled to an appropriate opening degree. Therefore, the risk of damage to the compressor due to liquid compression for returning the liquid to the compressor can be avoided.

【0018】また、外気温度、及び、高圧側圧力が同一
である場合は、循環冷媒の低沸点冷媒組成比率が高くな
ると、ガス飽和温度が低下し、吐出温度が所定値より低
下する。また、循環冷媒の低沸点冷媒組成比率が低くな
ると、ガス飽和温度が上昇し、吐出温度が所定値より上
昇する。よって、外気温度と、高圧側圧力から、圧縮機
の吐出温度の所定値を求め、その所定値と、吐出温度検
知センサーによって検知された圧縮機の吐出温度との差
により、循環冷媒の組成比率を予測できる。そして、予
測した循環冷媒の組成比率より、液飽和温度が精度良く
演算でき、室外側膨張弁入口過冷却度の演算精度を向上
でき、室外側膨張弁の開度を適正開度に制御できる。そ
のため、圧縮機への液戻りのための液圧縮による、圧縮
機の破損の危険を回避することができる。
Further, when the outside air temperature and the pressure on the high pressure side are the same, when the low boiling point refrigerant composition ratio of the circulating refrigerant becomes high, the gas saturation temperature becomes low and the discharge temperature becomes lower than a predetermined value. Further, when the low boiling point refrigerant composition ratio of the circulating refrigerant becomes low, the gas saturation temperature rises and the discharge temperature rises above a predetermined value. Therefore, the predetermined value of the discharge temperature of the compressor is obtained from the outside air temperature and the pressure on the high pressure side, and the composition ratio of the circulating refrigerant is determined by the difference between the predetermined value and the discharge temperature of the compressor detected by the discharge temperature detection sensor. Can be predicted. The liquid saturation temperature can be accurately calculated from the predicted composition ratio of the circulating refrigerant, the calculation accuracy of the outdoor expansion valve inlet supercooling degree can be improved, and the opening degree of the outdoor expansion valve can be controlled to an appropriate opening degree. Therefore, the risk of damage to the compressor due to liquid compression for returning the liquid to the compressor can be avoided.

【0019】[0019]

【実施例】以下本発明の実施例について図面を参照しな
がら説明する。尚、従来と同一部分については同一符号
を付しその詳細な説明を省略する。
Embodiments of the present invention will be described below with reference to the drawings. The same parts as those of the prior art are designated by the same reference numerals, and detailed description thereof will be omitted.

【0020】まず本発明の第1の実施例について図1〜
図3を用いて説明する。図1において、18はアキュー
ムレータ6内の液面の位置を検知する液面高さ検知セン
サー(例えば、複数のフロートスイッチ)である。ま
た、19は液面高さ検知センサー18によって検知した
アキュームレータ6内の液面の高さから循環冷媒の組成
比率を予測する循環冷媒組成比率予測手段である。
First, the first embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to FIG. In FIG. 1, 18 is a liquid level detection sensor (for example, a plurality of float switches) that detects the position of the liquid level in the accumulator 6. Further, 19 is a circulating refrigerant composition ratio predicting means for predicting the composition ratio of the circulating refrigerant from the height of the liquid surface in the accumulator 6 detected by the liquid surface height detection sensor 18.

【0021】ここで、過冷却度演算手段25は、この冷
媒組成比率予測手段19によって予測した循環冷媒の組
成比率と、暖房運転時に高圧側圧力検知センサー12に
より検知した高圧側圧力と、液配管温度検知センサー1
3により検知した液配管温度とにより、室外側膨張弁入
口過冷却度を演算し、そして、室外側膨張弁制御手段1
7は、過冷却度演算手段25で演算された過冷却度に応
じて室外側膨張弁5の開度の制御を行う。
Here, the supercooling degree calculating means 25, the composition ratio of the circulating refrigerant predicted by the refrigerant composition ratio predicting means 19, the high pressure side pressure detected by the high pressure side pressure detecting sensor 12 during the heating operation, and the liquid piping Temperature sensor 1
The outdoor expansion valve inlet supercooling degree is calculated based on the liquid pipe temperature detected by 3, and the outdoor expansion valve control means 1
Reference numeral 7 controls the opening degree of the outdoor expansion valve 5 according to the degree of supercooling calculated by the degree of supercooling calculating means 25.

【0022】次に、このように構成された空気調和機
の、問題となっている暖房運転時の動作について説明す
る。尚、従来例と同一構成については同一符号を付し、
その詳細な説明は省略する。
Next, the operation of the air conditioner thus constructed during the heating operation, which is a problem, will be described. The same components as those of the conventional example are designated by the same reference numerals,
Detailed description thereof will be omitted.

【0023】まず、図2は本発明の第1の実施例におけ
る空気調和機のフローチャートであり、図3は本発明の
第1の実施例におけるアキュームレータの液面高さと循
環冷媒の低沸点冷媒組成比率の関係を示す特性図であ
る。
First, FIG. 2 is a flow chart of the air conditioner in the first embodiment of the present invention, and FIG. 3 is a liquid level height of the accumulator and the low boiling point refrigerant composition of the circulating refrigerant in the first embodiment of the present invention. It is a characteristic view which shows the relationship of a ratio.

【0024】図2より、まず、ステップ1では、液面高
さ検知センサー18がアキュームレータ6内の液面高さ
Hを検知する。ステップ2では、アキュームレータ6内
の液面高さHを、アキュームレータ6内で、非共沸混合
冷媒が気液平衡状態となると、液側は高沸点冷媒の組成
比率が高くなり、ガス側は低沸点冷媒の組成比率が高く
なり、圧縮機2はアキュームレータ6内の低沸点冷媒に
富んだガス冷媒を吸い込むため、アキュームレータ6内
の液量が増加し液面高さが上昇すると、循環冷媒の低沸
点冷媒組成比率が高くなり、また、アキュームレータ6
内の液量が減少し液面高さが低下すると、循環冷媒の低
沸点冷媒の組成比率が低くなることより求められる、図
3に示すアキュームレータ液面高さと循環冷媒の低沸点
冷媒組成比率の関係を示す特性図を用いて、循環冷媒の
低沸点冷媒組成比率Xに換算する。ステップ3では、高
圧側圧力検知センサー12が高圧側圧力Paを検知す
る。ステップ4では、液配管温度検知センサー13が液
配管温度Taを検知する。
As shown in FIG. 2, first, in step 1, the liquid level height sensor 18 detects the liquid level height H in the accumulator 6. In step 2, when the liquid level height H in the accumulator 6 is changed to a gas-liquid equilibrium state in the accumulator 6, the composition ratio of the high boiling point refrigerant is high on the liquid side and low on the gas side. Since the composition ratio of the boiling point refrigerant becomes high and the compressor 2 sucks the gas refrigerant rich in the low boiling point refrigerant in the accumulator 6, when the liquid amount in the accumulator 6 increases and the liquid level rises, the circulating refrigerant becomes low. The boiling point refrigerant composition ratio becomes high, and the accumulator 6
When the amount of liquid in the inside decreases and the liquid level decreases, the composition ratio of the low boiling point refrigerant of the circulating refrigerant becomes low, and thus the accumulator liquid level height and the low boiling point refrigerant composition ratio of the circulating refrigerant shown in FIG. It is converted into the low boiling point refrigerant composition ratio X of the circulating refrigerant using the characteristic diagram showing the relationship. In step 3, the high side pressure detecting sensor 12 detects the high-pressure side pressure P a. In step 4, the liquid pipe temperature detection sensor 13 detects the liquid pipe temperature T a.

【0025】そして、ステップ5では、過冷却度演算手
段25が、循環冷媒の低沸点冷媒組成比率Xと高圧側圧
力Paより換算した液飽和温度Tbと、液配管温度Ta
差を、過冷却度SCとして算出する。ステップ6では、
室外側膨張弁制御手段17が、室外側膨張弁5を、演算
された過冷却度SCに応じた開度に制御する。
In step 5, the supercooling degree calculating means 25 calculates the difference between the liquid boiling temperature T a and the liquid saturation temperature T b converted from the low boiling point refrigerant composition ratio X of the circulating refrigerant and the high pressure side pressure P a. , And the supercooling degree SC is calculated. In step 6,
The outdoor expansion valve control means 17 controls the outdoor expansion valve 5 to an opening degree corresponding to the calculated supercooling degree SC.

【0026】この第1の実施例によれば、非共沸混合冷
媒(例えば高沸点冷媒であるR134aと低沸点冷媒で
あるR32の2種の混合冷媒)を使用した場合の暖房運
転時に、循環冷媒の組成比率を予測し、精度良く液飽和
温度を演算することにより、室外側膨張弁5入口過冷却
度の演算精度を向上させ、室外側膨張弁5の開度を適正
開度に制御することができる。従って、圧縮機2への液
戻りのための液圧縮による、圧縮機2の破損の危険を回
避することができる。
According to the first embodiment, the circulation is performed during the heating operation when the non-azeotropic mixed refrigerant (for example, two kinds of mixed refrigerant of R134a which is a high boiling point refrigerant and R32 which is a low boiling point refrigerant) is used. By predicting the composition ratio of the refrigerant and accurately calculating the liquid saturation temperature, the calculation accuracy of the inlet supercooling degree of the outdoor expansion valve 5 is improved and the opening degree of the outdoor expansion valve 5 is controlled to an appropriate opening degree. be able to. Therefore, the risk of damage to the compressor 2 due to the liquid compression for returning the liquid to the compressor 2 can be avoided.

【0027】次に本発明の第2の実施例について図4〜
図7を用いて説明する。図4において、14は外気温度
を検知する外気温度検知センサーである。また、16は
室内負荷を検出する室内負荷検出手段であり、本実施例
では、室内機7の運転容量と室内側膨張弁8の開度より
室内負荷の検出を行っている。また、20は室内負荷検
出手段16によって検出した室内負荷と、外気温度検知
センサー14によって検出した外気温度と、高圧側圧力
検知センサー12によって検知した高圧側圧力から、循
環冷媒の組成比率を予測する循環冷媒組成比率予測手段
である。
Next, a second embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to FIG. In FIG. 4, reference numeral 14 denotes an outside air temperature detection sensor that detects the outside air temperature. Reference numeral 16 denotes an indoor load detecting means for detecting an indoor load. In this embodiment, the indoor load is detected from the operating capacity of the indoor unit 7 and the opening degree of the indoor expansion valve 8. Further, reference numeral 20 predicts the composition ratio of the circulating refrigerant from the indoor load detected by the indoor load detection means 16, the outside air temperature detected by the outside air temperature detection sensor 14, and the high pressure side pressure detected by the high pressure side pressure detection sensor 12. It is a circulating refrigerant composition ratio predicting means.

【0028】ここで、過冷却度演算手段25は、暖房運
転時に、この冷媒組成比率予測手段20によって予測し
た循環冷媒の組成比率と、高圧側圧力検知センサー12
により検知した高圧側圧力と、液配管温度検知センサー
13により検知した液配管温度とにより、室外側膨張弁
入口過冷却度を演算し、そして、室外側膨張弁制御手段
17は、過冷却度演算手段25で演算された過冷却度に
応じて室外側膨張弁5の開度の制御を行う。
Here, the supercooling degree calculating means 25 and the composition ratio of the circulating refrigerant predicted by the refrigerant composition ratio predicting means 20 and the high pressure side pressure detecting sensor 12 during the heating operation.
The high-pressure side pressure detected by the liquid pipe temperature detection sensor 13 and the liquid pipe temperature detected by the liquid pipe temperature detection sensor 13 calculate the outdoor expansion valve inlet supercooling degree, and the outdoor expansion valve control means 17 calculates the supercooling degree. The opening degree of the outdoor expansion valve 5 is controlled according to the degree of supercooling calculated by the means 25.

【0029】次に、このように構成された空気調和機
の、問題となっている暖房運転時の動作について説明す
る。尚、従来例と同一構成については同一符号を付し、
その詳細な説明は省略する。
Next, the operation of the air conditioner thus constructed during the heating operation, which is a problem, will be described. The same components as those of the conventional example are designated by the same reference numerals,
Detailed description thereof will be omitted.

【0030】まず、図5は本発明の第2の実施例におけ
る空気調和機のフローチャートであり、図6は本発明の
第2の実施例における室内負荷と外気温度と高圧側圧力
の所定値の関係を示す特性図であり、図7は本発明の第
2の実施例における高圧側圧力の検知値と所定値の差
と、循環冷媒の低沸点冷媒組成比率の関係を示す特性図
である。
First, FIG. 5 is a flow chart of the air conditioner in the second embodiment of the present invention, and FIG. 6 shows predetermined values of the indoor load, the outside air temperature and the high pressure side in the second embodiment of the present invention. FIG. 7 is a characteristic diagram showing the relationship, and FIG. 7 is a characteristic diagram showing the relationship between the difference between the detected value of the high pressure side pressure and the predetermined value and the low boiling point refrigerant composition ratio of the circulating refrigerant in the second embodiment of the present invention.

【0031】図5より、まず、ステップ11では、高圧
側圧力検知センサー12が高圧側圧力Paを検知する。
ステップ12では、室内負荷検出手段16が、室内の温
度が低下する、或いは、室内側ファンが強運転と設定さ
れることなどにより、室内側の負荷が増加した場合は、
室内側膨張弁8の開度が増加し、また、室内の温度が上
昇する、或いは、室内側ファンが弱運転と設定されるこ
となどにより、室内側の負荷が低下した場合は、室内側
膨張弁8の開度が減少することを利用し、室内機7の運
転容量と室内側膨張弁8の開度から室内負荷Aを検出す
る。ステップ13では、外気温度検知センサー14が外
気温度Tcを検知する。
From FIG. 5, first, in step 11, the high pressure side pressure detection sensor 12 detects the high pressure side pressure P a .
In step 12, if the indoor load detection means 16 increases the indoor load due to a decrease in the indoor temperature or the indoor fan is set to strong operation,
If the load on the indoor side decreases due to an increase in the opening degree of the indoor expansion valve 8 and an increase in the indoor temperature, or the indoor fan is set to a weak operation, the indoor expansion is performed. By utilizing the fact that the opening degree of the valve 8 decreases, the indoor load A is detected from the operating capacity of the indoor unit 7 and the opening degree of the indoor expansion valve 8. In step 13, the outside air temperature detection sensor 14 detects the outside air temperature T c .

【0032】次に、ステップ14では、循環冷媒組成比
率予測手段20が、室内負荷検出手段16が検出した室
内負荷Aと、外気温度検知センサー14が検知した外気
温度Tcを、図6に示す室内負荷と外気温度と高圧側圧
力の所定値の関係を示す特性図を用いて、高圧側圧力の
所定値Pbに換算する。そして、室内側の負荷、及び、
外気温度が同一である場合は、循環冷媒の低沸点冷媒組
成比率が高くなると高圧側圧力が所定値より上昇し、ま
た、循環冷媒の低沸点冷媒組成比率が低くなると、高圧
側圧力が所定値より低下することより求められる、図7
に示す高圧側圧力の検知値と所定値の差と、循環冷媒の
低沸点冷媒組成比率の関係を示す特性図を用いて、高圧
側センサー12が検知した高圧側圧力Paと高圧側圧力
の所定値Pbの差を、循環冷媒の低沸点冷媒組成比率X
に演算する。ステップ15では、液配管温度検知センサ
ー13が液配管温度Taを検知する。
Next, in step 14, the circulating refrigerant composition ratio predicting means 20 shows the indoor load A detected by the indoor load detecting means 16 and the outside air temperature T c detected by the outside air temperature detecting sensor 14 in FIG. using a characteristic diagram showing the relationship between the indoor load and the outside air temperature and a predetermined value of the high side pressure, it is converted to a predetermined value P b of the high-pressure side pressure. And the load on the indoor side, and
When the outside air temperature is the same, when the low boiling point refrigerant composition ratio of the circulating refrigerant becomes high, the high pressure side pressure rises above a predetermined value, and when the low boiling point refrigerant composition ratio of the circulating refrigerant becomes low, the high pressure side pressure becomes a predetermined value. Figure 7
To the difference between the detected value and a predetermined value of the high-pressure side pressure indicated, using a characteristic diagram showing the relationship of the low boiling point refrigerant composition ratio of the circulating refrigerant, the high-pressure side pressure P a and the high-pressure side pressure high pressure side sensor 12 has detected The difference between the predetermined values P b is calculated by the low boiling point refrigerant composition ratio X of the circulating refrigerant.
Calculate to. In step 15, the liquid pipe temperature detection sensor 13 detects the liquid pipe temperature T a.

【0033】そして、ステップ16では、過冷却度演算
手段25が、循環冷媒組成比率予測手段20が予測した
循環冷媒の低沸点冷媒組成比率Xと高圧側センサー12
が検知した高圧側圧力Paより演算した液飽和温度T
bと、液配管温度Taの差を、過冷却度SCとして算出す
る。ステップ17では、室外側膨張弁制御手段17が、
室外側膨張弁5を、演算された過冷却度SCに応じた開
度に制御する。
Then, in step 16, the supercooling degree computing means 25 causes the circulating refrigerant composition ratio predicting means 20 to predict the low boiling point refrigerant composition ratio X of the circulating refrigerant and the high pressure side sensor 12.
Liquid saturation temperature T but which is calculated from the high side pressure P a of detecting
and b, and the difference between the liquid pipe temperature T a, is calculated as a degree of supercooling SC. In step 17, the outdoor expansion valve control means 17
The outdoor expansion valve 5 is controlled to an opening degree according to the calculated supercooling degree SC.

【0034】この第2の実施例によれば、非共沸混合冷
媒(例えば高沸点冷媒であるR134aと低沸点冷媒で
あるR32の2種の混合冷媒)を使用した場合の暖房運
転時に、アキュームレータへの液面高さセンサー取り付
けによる生産工程の複雑化を発生させずに、循環冷媒の
組成比率を予測し、精度良く液飽和温度を演算すること
により、室外側膨張弁入口過冷却度の演算精度を向上さ
せ、室外側膨張弁5の開度を適正開度に制御することが
できる。従って、圧縮機2への液戻りのための液圧縮に
よる、圧縮機2の破損の危険を回避することができる。
According to the second embodiment, the accumulator is used during the heating operation when the non-azeotropic mixed refrigerant (for example, two kinds of mixed refrigerant of R134a which is a high boiling point refrigerant and R32 which is a low boiling point refrigerant) is used. Calculating the composition ratio of the circulating refrigerant and calculating the liquid saturation temperature with high accuracy without complicating the production process by mounting the liquid level sensor on the The accuracy can be improved and the opening degree of the outdoor expansion valve 5 can be controlled to an appropriate opening degree. Therefore, the risk of damage to the compressor 2 due to the liquid compression for returning the liquid to the compressor 2 can be avoided.

【0035】次に本発明の第3の実施例について図8〜
図11を用いて説明する。図8において、14は外気温
度を検知する外気温度検知センサーである。また、16
は室内負荷を検出する室内負荷検出手段であり、本実施
例では室内機7の運転容量と室内側膨張弁8の開度から
室内負荷の検出を行っている。また、22は圧縮機2の
運転周波数を制御する圧縮機運転周波数制手段である。
また、21は室内負荷検出手段16が検出した室内負荷
と、外気温度検知センサー14が検知した外気温度と、
圧縮機2の運転周波数から、循環冷媒の組成比率を予測
する循環冷媒組成比率予測手段である。
Next, a third embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to FIG. In FIG. 8, reference numeral 14 is an outside air temperature detection sensor that detects the outside air temperature. Also, 16
Is an indoor load detecting means for detecting an indoor load, and in this embodiment, the indoor load is detected from the operating capacity of the indoor unit 7 and the opening degree of the indoor expansion valve 8. Reference numeral 22 is a compressor operating frequency control means for controlling the operating frequency of the compressor 2.
Reference numeral 21 denotes the indoor load detected by the indoor load detection means 16 and the outside air temperature detected by the outside air temperature detection sensor 14,
It is a circulating refrigerant composition ratio predicting means for predicting the composition ratio of the circulating refrigerant from the operating frequency of the compressor 2.

【0036】ここで、過冷却度演算手段25は、この冷
媒組成比率予測手段21によって予測した循環冷媒の組
成比率と、暖房運転時に高圧側圧力検知センサー12に
より検知した高圧側圧力と、液配管温度検知センサー1
3により検知した液配管温度とにより、室外側膨張弁入
口過冷却度を演算し、そして、室外側膨張弁制御手段1
7は、過冷却度演算手段25で演算された過冷却度に応
じて室外側膨張弁5の開度の制御を行う。
Here, the supercooling degree calculating means 25, the composition ratio of the circulating refrigerant predicted by the refrigerant composition ratio predicting means 21, the high pressure side pressure detected by the high pressure side pressure detecting sensor 12 during the heating operation, and the liquid piping Temperature sensor 1
The outdoor expansion valve inlet supercooling degree is calculated based on the liquid pipe temperature detected by 3, and the outdoor expansion valve control means 1
Reference numeral 7 controls the opening degree of the outdoor expansion valve 5 according to the degree of supercooling calculated by the degree of supercooling calculating means 25.

【0037】次に、このように構成された空気調和機
の、問題となっている暖房運転時の動作について説明す
る。尚、従来例と同一構成については同一符号を付し、
その詳細な説明は省略する。
Next, the operation of the air conditioner thus constructed during the heating operation, which is a problem, will be described. The same components as those of the conventional example are designated by the same reference numerals,
Detailed description thereof will be omitted.

【0038】まず、図9は本発明の第3の実施例におけ
る空気調和機のフローチャートであり、図10は本発明
の第3の実施例における室内負荷と外気温度と圧縮機運
転周波数の所定値の関係を示す特性を示す関係を示す特
性図であり、図11は本発明の第3の実施例における圧
縮機運転周波数の所定値との差と、循環冷媒の低沸点冷
媒組成比率の関係を示す特性を示す関係を示す特性図で
ある。
First, FIG. 9 is a flow chart of an air conditioner in a third embodiment of the present invention, and FIG. 10 is a predetermined value of indoor load, outside air temperature and compressor operating frequency in the third embodiment of the present invention. FIG. 11 is a characteristic diagram showing the relationship showing the characteristic of FIG. 11, and FIG. 11 shows the relationship between the difference between the predetermined value of the compressor operating frequency and the low boiling point refrigerant composition ratio of the circulating refrigerant in the third embodiment of the present invention. It is a characteristic view which shows the relationship which shows the characteristic shown.

【0039】図9より、まず、ステップ21では、高圧
側圧力検知センサー12が高圧側圧力Paを検知する。
ステップ22では、室内負荷検出手段16が、室内の温
度が低下する、或いは、室内側ファンが強運転と設定さ
れることなどにより、室内側の負荷が増加した場合は、
室内側膨張弁8の開度が増加し、また、室内の温度が上
昇する、或いは、室内側ファンが弱運転と設定されるこ
となどにより、室内側の負荷が低下した場合は、室内側
膨張弁8の開度が減少することを利用し、室内機7の運
転容量と室内側膨張弁8の開度から室内負荷Aを検出す
る。
From FIG. 9, first, in step 21, the high pressure side pressure detection sensor 12 detects the high pressure side pressure P a .
In step 22, if the indoor load detection means 16 increases the indoor load due to a decrease in the indoor temperature or the indoor fan is set to strong operation,
If the load on the indoor side decreases due to an increase in the opening degree of the indoor expansion valve 8 and an increase in the indoor temperature, or the indoor fan is set to a weak operation, the indoor expansion is performed. By utilizing the fact that the opening degree of the valve 8 decreases, the indoor load A is detected from the operating capacity of the indoor unit 7 and the opening degree of the indoor expansion valve 8.

【0040】次に、ステップ23では、外気温度検知セ
ンサー14が外気温度Tcを検知する。ステップ24で
は、循環冷媒組成比率予測手段21が、室内負荷検出手
段16が検知した室内負荷Aと、外気温度検知センサー
14が検知した外気温度Tcを、図10に示す室内負荷
と外気温度と圧縮機運転周波数の所定値の関係を示す特
性図を用いて、圧縮機周波数の所定値Fbに換算する。
そして、室内側の負荷、及び、外気温度が同一である場
合は、循環冷媒の低沸点冷媒組成比率が高くなると高圧
側圧力が上昇し、圧縮機2の運転周波数が所定値より低
下し、また、循環冷媒の低沸点冷媒組成比率が低くなる
と、高圧側圧力が低下し、圧縮機2の運転周波数が所定
値より上昇することより求められる、図11に示す圧縮
機運転周波数の所定値との差と、循環冷媒の低沸点冷媒
組成比率の関係を示す特性図を用いて、圧縮機運転周波
数Faと圧縮機運転周波数の所定値Fbの差を、循環冷媒
の低沸点冷媒組成比率Xに演算する。ステップ25で
は、液配管温度検知センサー13が液配管温度Taを検
知する。
Next, at step 23, the outside air temperature detection sensor 14 detects the outside air temperature T c . In step 24, the circulating refrigerant composition ratio prediction means 21 sets the indoor load A detected by the indoor load detection means 16 and the outside air temperature T c detected by the outside air temperature detection sensor 14 as the indoor load and the outside air temperature shown in FIG. It is converted into a predetermined value F b of the compressor frequency using a characteristic diagram showing the relationship between the predetermined values of the compressor operating frequency.
Then, when the indoor load and the outside air temperature are the same, the high-pressure side pressure rises as the low-boiling-point refrigerant composition ratio of the circulating refrigerant increases, and the operating frequency of the compressor 2 falls below a predetermined value, and When the low-boiling-point refrigerant composition ratio of the circulating refrigerant becomes low, the high-pressure side pressure decreases, and the operating frequency of the compressor 2 is determined to be higher than a predetermined value. by using the difference, a characteristic diagram showing the relationship of the low boiling point refrigerant composition ratio of the circulating refrigerant, the difference between the predetermined value F b of the compressor operation frequency and the compressor operation frequency F a, a low boiling point refrigerant composition ratio X of the circulated refrigerant Calculate to. In step 25, the liquid pipe temperature detection sensor 13 detects the liquid pipe temperature T a.

【0041】そして、ステップ26では、過冷却度演算
手段25が、循環冷媒組成比率予測手段21が予測した
循環冷媒の低沸点冷媒組成比率Xと高圧側センサー12
が検知した高圧側圧力Paより演算した液飽和温度T
bと、液配管温度Taの差を、過冷却度SCとして算出す
る。ステップ27では、室外側膨張弁制御手段17が、
室外側膨張弁5を、演算された過冷却度SCに応じた開
度に制御する。
Then, in step 26, the supercooling degree calculating means 25 causes the circulating refrigerant composition ratio predicting means 21 to predict the low boiling point refrigerant composition ratio X of the circulating refrigerant and the high pressure side sensor 12.
Liquid saturation temperature T but which is calculated from the high side pressure P a of detecting
and b, and the difference between the liquid pipe temperature T a, is calculated as a degree of supercooling SC. In step 27, the outdoor expansion valve control means 17
The outdoor expansion valve 5 is controlled to an opening degree according to the calculated supercooling degree SC.

【0042】この第3の実施例によれば、非共沸混合冷
媒(例えば高沸点冷媒であるR134aと低沸点冷媒で
あるR32の2種の混合冷媒)を使用した場合の暖房運
転時に、アキュームレータへの液面高さセンサー取り付
けによる生産工程の複雑化を発生させずに、また、圧縮
機の運転周波数を変化させ高圧側圧力を一定値に制御す
る構成となっており、循環冷媒の組成比率の変化が高圧
側圧力の変化となって現れない空気調和機においても、
循環冷媒の組成比率を予測し、精度良く液飽和温度を演
算することにより、室外側膨張弁入口過冷却度の演算精
度を向上させ、室外側膨張弁5の開度を適正開度に制御
することができる。従って、圧縮機2への液戻りのため
の液圧縮による、圧縮機2の破損の危険を回避すること
ができる。
According to the third embodiment, the accumulator is used during the heating operation when a non-azeotropic mixed refrigerant (for example, two kinds of mixed refrigerant of R134a which is a high boiling point refrigerant and R32 which is a low boiling point refrigerant) is used. The composition of the circulating refrigerant composition is such that the high pressure side pressure is controlled to a constant value by changing the operating frequency of the compressor without complicating the production process by mounting the liquid level sensor on the Even in an air conditioner in which changes in pressure do not appear as changes in high-pressure side pressure,
By predicting the composition ratio of the circulating refrigerant and accurately calculating the liquid saturation temperature, the calculation accuracy of the degree of supercooling of the outdoor expansion valve inlet is improved, and the opening degree of the outdoor expansion valve 5 is controlled to an appropriate opening degree. be able to. Therefore, the risk of damage to the compressor 2 due to the liquid compression for returning the liquid to the compressor 2 can be avoided.

【0043】次に本発明の第4の実施例について図12
〜図15を用いて説明する。図12において、14は外
気温度を検知する外気温度検知センサーである。また、
24は圧縮機2の吐出温度を検知する吐出温度検知セン
サーである。また、また、23は外気温度検知センサー
14が検知した外気温度と、高圧側圧力検知センサー1
2が検知した高圧側圧力と、吐出温度検知センサー24
が検知した圧縮機2の吐出温度から、循環冷媒の組成比
率を予測する循環冷媒組成比率予測手段である。
Next, a fourth embodiment of the present invention will be described with reference to FIG.
~ It demonstrates using FIG. In FIG. 12, reference numeral 14 is an outside air temperature detection sensor that detects the outside air temperature. Also,
A discharge temperature detection sensor 24 detects the discharge temperature of the compressor 2. Further, 23 is the outside air temperature detected by the outside air temperature detection sensor 14, and the high pressure side pressure detection sensor 1
High-side pressure detected by 2 and discharge temperature detection sensor 24
Is a circulating refrigerant composition ratio predicting means for predicting the composition ratio of the circulating refrigerant from the discharge temperature of the compressor 2 detected by.

【0044】ここで、過冷却度演算手段25は、この冷
媒組成比率予測手段23によって予測した循環冷媒の組
成比率と、暖房運転時に高圧側圧力検知センサー12に
より検知した高圧側圧力と、液配管温度検知センサー1
3により検知した液配管温度とにより、室外側膨張弁入
口過冷却度を演算し、そして、室外側膨張弁制御手段1
7は、過冷却度演算手段25で演算された過冷却度に応
じて室外側膨張弁5の開度の制御を行う。
Here, the supercooling degree calculation means 25, the composition ratio of the circulating refrigerant predicted by the refrigerant composition ratio prediction means 23, the high pressure side pressure detected by the high pressure side pressure detection sensor 12 during the heating operation, and the liquid piping Temperature sensor 1
The outdoor expansion valve inlet supercooling degree is calculated based on the liquid pipe temperature detected by 3, and the outdoor expansion valve control means 1
Reference numeral 7 controls the opening degree of the outdoor expansion valve 5 according to the degree of supercooling calculated by the degree of supercooling calculating means 25.

【0045】次に、このように構成された空気調和機
の、問題となっている暖房運転時の動作について説明す
る。尚、従来例と同一構成については同一符号を付し、
その詳細な説明は省略する。
Next, the operation of the air conditioner thus configured during the heating operation, which is a problem, will be described. The same components as those of the conventional example are designated by the same reference numerals,
Detailed description thereof will be omitted.

【0046】まず、図13は本発明の第4の実施例にお
ける空気調和機のフローチャートであり、図14は本発
明の第4の実施例における外気温度と高圧側圧力と圧縮
機吐出温度の所定値の関係を示す特性図であり、図15
は本発明の第4の実施例における圧縮機吐出温度の検知
値と所定値の差と、循環冷媒の低沸点冷媒組成比率の関
係を示す特性図である。
First, FIG. 13 is a flow chart of an air conditioner according to the fourth embodiment of the present invention, and FIG. 14 is a graph showing predetermined outside air temperature, high-pressure side pressure and compressor discharge temperature in the fourth embodiment of the present invention. FIG. 16 is a characteristic diagram showing a relationship between values, and FIG.
FIG. 9 is a characteristic diagram showing a relationship between a difference between a detected value of a compressor discharge temperature and a predetermined value and a low boiling point refrigerant composition ratio of a circulating refrigerant in a fourth example of the present invention.

【0047】図13より、まず、ステップ31では、高
圧側圧力検知センサー12が高圧側圧力Paを検知す
る。ステップ32では、吐出温度検知センサー24が圧
縮機2の吐出温度Tdを検知する。ステップ33では、
外気温度検知センサー14が外気温度Tcを検知する。
From FIG. 13, first, in step 31, the high pressure side pressure detection sensor 12 detects the high pressure side pressure P a . In step 32, the discharge temperature detection sensor 24 detects the discharge temperature T d of the compressor 2. In step 33,
The outside air temperature detection sensor 14 detects the outside air temperature Tc .

【0048】次に、ステップ34では、循環冷媒組成比
率予測手段23が、外気温度検知センサー14が検知し
た外気温度Tcと、高圧側センサー12が検知した高圧
側圧力Paと、圧縮機2の吐出温度Tdを、図14に示す
外気温度と高圧側圧力と圧縮機吐出温度の所定値の関係
を示す特性図を用いて、圧縮機2の吐出温度の所定値T
eに換算する。そして、外気温度、及び、高圧側圧力が
同一である場合は、循環冷媒の低沸点冷媒組成比率が高
くなると、ガス飽和温度が低下し、圧縮機2の吐出温度
が低下する、また、循環冷媒の低沸点冷媒組成比率が低
くなると、ガス飽和温度が上昇し、圧縮機の吐出温度が
上昇することより求められる、図15に示す圧縮機吐出
温度の検知値と所定値の差と、循環冷媒の低沸点冷媒組
成比率の関係を示す特性図を用いて、吐出温度検知セン
サー24が検知した圧縮機吐出温度Tdと圧縮機吐出温
度の所定値Teの差を、循環冷媒の低沸点冷媒組成比率
Xに演算する。ステップ35では、液配管温度検知セン
サー13が液配管温度Taを検知する。
Next, in step 34, the circulating refrigerant composition ratio prediction means 23, and the outside air temperature T c of the outside air temperature detecting sensor 14 has detected, and the high-pressure side pressure P a of the high pressure side sensor 12 has detected, the compressor 2 The discharge temperature T d of the compressor 2 is determined by using the characteristic diagram showing the relationship between the outside air temperature, the high-pressure side pressure, and the predetermined value of the compressor discharge temperature shown in FIG.
Convert to e . Then, when the outside air temperature and the high-pressure side pressure are the same, when the low boiling point refrigerant composition ratio of the circulating refrigerant becomes high, the gas saturation temperature lowers, and the discharge temperature of the compressor 2 lowers. When the low-boiling point refrigerant composition ratio becomes low, the gas saturation temperature rises, and the discharge temperature of the compressor rises. The difference between the detected compressor discharge temperature and the predetermined value shown in FIG. Using the characteristic diagram showing the relationship of the low boiling point refrigerant composition ratio, the difference between the compressor discharge temperature T d detected by the discharge temperature detection sensor 24 and the predetermined value T e of the compressor discharge temperature is calculated as the low boiling point refrigerant of the circulating refrigerant. The composition ratio X is calculated. In step 35, the liquid pipe temperature detection sensor 13 detects the liquid pipe temperature T a.

【0049】そして、ステップ36では、過冷却度演算
手段25が、循環冷媒組成比率予測手段23が予測した
循環冷媒の低沸点冷媒組成比率Xと高圧側センサー12
が検知した高圧側圧力Paより演算した液飽和温度T
bと、液配管温度Taの差を、過冷却度SCとして算出す
る。ステップ37では、室外側膨張弁制御手段17が、
室外側膨張弁5を、演算された過冷却度SCに応じた開
度に制御する。
Then, in step 36, the supercooling degree computing means 25 causes the circulating refrigerant composition ratio predicting means 23 to predict the low boiling point refrigerant composition ratio X of the circulating refrigerant and the high pressure side sensor 12.
Liquid saturation temperature T but which is calculated from the high side pressure P a of detecting
and b, and the difference between the liquid pipe temperature T a, is calculated as a degree of supercooling SC. In step 37, the outdoor expansion valve control means 17
The outdoor expansion valve 5 is controlled to an opening degree according to the calculated supercooling degree SC.

【0050】この第4の実施例によれば、非共沸混合冷
媒(例えば高沸点冷媒であるR134aと低沸点冷媒で
あるR32の2種の混合冷媒)を使用した場合の暖房運
転時に、アキュームレータへの液面高さセンサー取り付
けによる生産工程の複雑化を発生させずに、また、室外
機へ室内負荷を通信する配線設備のための工事工数の増
加を発生させずに、循環冷媒の組成比率を予測し、精度
良く液飽和温度を演算することにより、室外側膨張弁5
入口過冷却度の演算精度を向上させ、室外側膨張弁5の
開度を適正開度に制御することができる。従って、圧縮
機2への液戻りのための液圧縮による、圧縮機2の破損
の危険を回避することができる。
According to the fourth embodiment, the accumulator is used during the heating operation when the non-azeotropic mixed refrigerant (for example, two kinds of mixed refrigerant of R134a which is a high boiling point refrigerant and R32 which is a low boiling point refrigerant) is used. The composition ratio of the circulating refrigerant does not increase the complexity of the production process due to the installation of the liquid level sensor on the inside, and does not increase the construction man-hours for the wiring equipment that communicates the indoor load to the outdoor unit. Of the outdoor expansion valve 5 by predicting the
It is possible to improve the calculation accuracy of the inlet supercooling degree and control the opening degree of the outdoor expansion valve 5 to an appropriate opening degree. Therefore, the risk of damage to the compressor 2 due to the liquid compression for returning the liquid to the compressor 2 can be avoided.

【0051】[0051]

【発明の効果】以上のように本発明は、非共沸混合冷媒
を使用した場合の暖房運転時に、アキュームレータ内の
液面の高さから、循環冷媒の組成比率を予測する循環冷
媒組成比率予測手段と、循環冷媒の組成比率と、高圧側
圧力と、液配管温度とにより、室外側膨張弁入口過冷却
度を演算する過冷却度演算手段と、過冷却度に応じて室
外側膨張弁の開度を制御する室外側膨張弁制御手段を備
えたものである。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, the circulation refrigerant composition ratio prediction for predicting the composition ratio of the circulation refrigerant from the height of the liquid level in the accumulator during the heating operation when the non-azeotropic mixed refrigerant is used Means, the composition ratio of the circulating refrigerant, the high-pressure side pressure, and the liquid pipe temperature, the supercooling degree calculating means for calculating the outdoor expansion valve inlet supercooling degree, and the outdoor expansion valve according to the subcooling degree. The outdoor expansion valve control means for controlling the opening is provided.

【0052】そのため、循環冷媒の組成比率を予測し、
精度良く液飽和温度を演算することにより、室外側膨張
弁入口過冷却度の演算精度を向上させ、室外側膨張弁の
開度を適正開度に制御することにより、圧縮機への液戻
りのための液圧縮による、圧縮機の破損の危険を回避す
ることができる。
Therefore, by predicting the composition ratio of the circulating refrigerant,
By accurately calculating the liquid saturation temperature, the calculation accuracy of the outdoor expansion valve inlet supercooling degree is improved, and by controlling the opening of the outdoor expansion valve to an appropriate opening, the liquid return to the compressor can be controlled. It is possible to avoid the risk of damage to the compressor due to the liquid compression.

【0053】また、非共沸混合冷媒を使用した場合の暖
房運転時に、室内負荷と、外気温度と、高圧側圧力か
ら、循環冷媒の組成比率を予測する循環冷媒組成比率予
測手段と、循環冷媒の組成比率と、高圧側圧力と、液配
管温度とにより、室外側膨張弁入口過冷却度を演算する
過冷却度演算手段と、過冷却度に応じて室外側膨張弁の
開度を制御する室外側膨張弁制御手段を備えたものであ
る。
Further, during the heating operation when the non-azeotropic mixed refrigerant is used, the circulating refrigerant composition ratio predicting means for predicting the composition ratio of the circulating refrigerant from the indoor load, the outside air temperature and the high pressure side pressure, and the circulating refrigerant. The composition ratio, the pressure on the high pressure side, and the liquid pipe temperature, and the supercooling degree calculating means for calculating the degree of supercooling at the inlet of the outdoor expansion valve, and the degree of opening of the outdoor expansion valve according to the degree of supercooling The outdoor expansion valve control means is provided.

【0054】そのため、アキュームレータへの液面高さ
センサー取り付けによる生産工程の複雑化を発生させず
に、循環冷媒の組成比率を予測し、精度良く液飽和温度
を演算することにより、室外側膨張弁入口過冷却度の演
算精度を向上させ、室外側膨張弁の開度を適正開度に制
御することにより、圧縮機への液戻りのための液圧縮に
よる、圧縮機の破損の危険を回避することができる。
Therefore, the composition ratio of the circulating refrigerant is predicted and the liquid saturation temperature is calculated with high accuracy without complicating the production process by mounting the liquid level sensor on the accumulator. By improving the calculation accuracy of the inlet supercooling degree and controlling the opening of the outdoor expansion valve to an appropriate opening, the risk of damaging the compressor due to liquid compression for liquid return to the compressor is avoided. be able to.

【0055】また、非共沸混合冷媒を使用した場合の暖
房運転時に、室内負荷と、外気温度と、高圧側圧力によ
り制御される圧縮機の運転周波数から、循環冷媒の組成
比率を予測する循環冷媒組成比率予測手段と、循環冷媒
の組成比率と、高圧側圧力と、液配管温度とにより、室
外側膨張弁入口過冷却度を演算する過冷却度演算手段
と、過冷却度に応じて室外側膨張弁の開度を制御する室
外側膨張弁制御手段を備えたものである。
Further, during heating operation when a non-azeotropic mixed refrigerant is used, the circulation rate for predicting the composition ratio of the circulating refrigerant is predicted from the indoor load, the outside air temperature, and the operating frequency of the compressor controlled by the high-pressure side pressure. Refrigerant composition ratio predicting means, composition ratio of circulating refrigerant, high-pressure side pressure, and liquid pipe temperature, supercooling degree calculating means for calculating the outdoor expansion valve inlet supercooling degree, and chamber depending on the supercooling degree. The outdoor expansion valve control means for controlling the opening of the outer expansion valve is provided.

【0056】そのため、アキュームレータへの液面高さ
センサー取り付けによる生産工程の複雑化を発生させず
に、また、圧縮機の運転周波数を変化させ高圧側圧力を
一定値に制御する構成となっており、循環冷媒の組成比
率の変化が高圧側圧力の変化となって現れない空気調和
機においても、循環冷媒の組成比率を予測し、精度良く
液飽和温度を演算することにより、室外側膨張弁入口過
冷却度の演算精度を向上させ、室外側膨張弁の開度を適
正開度に制御することにより、圧縮機への液戻りのため
の液圧縮による、圧縮機の破損の危険を回避することが
できる。圧縮機への液戻りにより液圧縮が発生し、その
結果、圧縮機が破損する危険を回避することができる。
Therefore, the construction is such that the production process is not complicated by mounting the liquid level sensor on the accumulator, and the operating frequency of the compressor is changed to control the high pressure side to a constant value. Even in an air conditioner in which the change in the composition ratio of the circulating refrigerant does not appear as a change in the high-pressure side pressure, the composition ratio of the circulating refrigerant is predicted and the liquid saturation temperature is accurately calculated, so that the outside expansion valve inlet Avoiding the risk of damage to the compressor due to liquid compression for liquid return to the compressor by improving the calculation accuracy of the supercooling degree and controlling the opening of the outdoor expansion valve to an appropriate opening. You can It is possible to avoid the risk that liquid compression occurs due to liquid return to the compressor, and as a result, the compressor is damaged.

【0057】また、非共沸混合冷媒を使用した場合の暖
房運転時に、高圧側圧力と、外気温度と、圧縮機の吐出
温度から、循環冷媒の組成比率を予測する循環冷媒組成
比率予測手段と、循環冷媒の組成比率と、高圧側圧力
と、液配管温度とにより、室外側膨張弁入口過冷却度を
演算する過冷却度演算手段と、過冷却度に応じて室外側
膨張弁の開度を制御する室外側膨張弁制御手段を備えた
ものである。
Further, during the heating operation when the non-azeotropic mixed refrigerant is used, a circulating refrigerant composition ratio predicting means for predicting the composition ratio of the circulating refrigerant from the high pressure side pressure, the outside air temperature, and the discharge temperature of the compressor. , A composition ratio of the circulating refrigerant, a pressure on the high pressure side, and a liquid pipe temperature, a supercooling degree calculating means for calculating an inlet supercooling degree of the outdoor expansion valve, and an opening degree of the outdoor expansion valve according to the supercooling degree. The outdoor expansion valve control means for controlling the above is provided.

【0058】そのため、アキュームレータへの液面高さ
センサー取り付けによる生産工程の複雑化を発生させず
に、また、室外機へ室内機負荷を通信する配線設備のた
めの工事工数の増加を発生させずに、循環冷媒の組成比
率を予測し、精度良く液飽和温度を演算することによ
り、室外側膨張弁入口過冷却度の演算精度を向上させ、
室外側膨張弁の開度を適正開度に制御することにより、
圧縮機への液戻りのための液圧縮による、圧縮機の破損
の危険を回避することができる。
Therefore, the production process is not complicated by mounting the liquid level sensor on the accumulator, and the number of construction steps for wiring equipment for communicating the indoor unit load to the outdoor unit is not increased. In addition, by predicting the composition ratio of the circulating refrigerant and accurately calculating the liquid saturation temperature, the calculation accuracy of the outdoor expansion valve inlet supercooling degree is improved,
By controlling the opening of the outdoor expansion valve to an appropriate opening,
The risk of damage to the compressor due to liquid compression for liquid return to the compressor can be avoided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における空気調和機の冷
凍サイクル図
FIG. 1 is a refrigeration cycle diagram of an air conditioner according to a first embodiment of the present invention.

【図2】本発明の第1の実施例における空気調和機のフ
ローチャート
FIG. 2 is a flowchart of the air conditioner according to the first embodiment of the present invention.

【図3】本発明の第1の実施例におけるアキュームレー
タの液面高さと循環冷媒の低沸点冷媒組成比率の関係を
示す特性図
FIG. 3 is a characteristic diagram showing the relationship between the liquid level height of the accumulator and the low boiling point refrigerant composition ratio of the circulating refrigerant in the first embodiment of the present invention.

【図4】本発明の第2の実施例における空気調和機の冷
凍サイクル図
FIG. 4 is a refrigeration cycle diagram of an air conditioner according to a second embodiment of the present invention.

【図5】本発明の第2の実施例における空気調和機のフ
ローチャート
FIG. 5 is a flowchart of the air conditioner according to the second embodiment of the present invention.

【図6】本発明の第2の実施例における室内負荷と外気
温度と高圧側圧力の所定値の関係を示す特性図
FIG. 6 is a characteristic diagram showing the relationship between the indoor load, the outside air temperature, and the predetermined value of the high-pressure side pressure in the second embodiment of the present invention.

【図7】本発明の第2の実施例における高圧側圧力の検
知値と所定値の差と循環冷媒の低沸点冷媒組成比率の関
係を示す特性図
FIG. 7 is a characteristic diagram showing the relationship between the difference between the detected value and the predetermined value of the high pressure side and the low boiling point refrigerant composition ratio of the circulating refrigerant in the second embodiment of the present invention.

【図8】本発明の第3の実施例における空気調和機の冷
凍サイクル図
FIG. 8 is a refrigeration cycle diagram of an air conditioner according to a third embodiment of the present invention.

【図9】本発明の第3の実施例における空気調和機のフ
ローチャート
FIG. 9 is a flowchart of an air conditioner according to a third embodiment of the present invention.

【図10】本発明の第3の実施例における室内負荷と外
気温度と圧縮機運転周波数の所定値の関係を示す特性図
FIG. 10 is a characteristic diagram showing a relationship among a predetermined value of an indoor load, an outside air temperature, and a compressor operating frequency in the third embodiment of the present invention.

【図11】本発明の第3の実施例における圧縮機運転周
波数の所定値との差と循環冷媒の低沸点冷媒組成比率の
関係を示す特性図
FIG. 11 is a characteristic diagram showing the relationship between the difference between the compressor operating frequency and a predetermined value and the low boiling point refrigerant composition ratio of the circulating refrigerant in the third embodiment of the present invention.

【図12】本発明の第4の実施例における空気調和機の
冷凍サイクル図
FIG. 12 is a refrigeration cycle diagram of an air conditioner according to a fourth embodiment of the present invention.

【図13】本発明の第4の実施例における空気調和機の
フローチャート
FIG. 13 is a flowchart of the air conditioner according to the fourth embodiment of the present invention.

【図14】本発明の第4の実施例における高圧側圧力と
圧縮機の吐出温度の所定値の関係を示す特性図
FIG. 14 is a characteristic diagram showing the relationship between the high-pressure side pressure and a predetermined value of the discharge temperature of the compressor in the fourth embodiment of the present invention.

【図15】本発明の第4の実施例における圧縮機吐出温
度の検知値と所定値の差と循環冷媒の低沸点冷媒組成比
率の関係を示す特性図
FIG. 15 is a characteristic diagram showing a relationship between a difference between a detected value of a compressor discharge temperature and a predetermined value and a low boiling point refrigerant composition ratio of a circulating refrigerant in a fourth example of the present invention.

【図16】従来の空気調和機の冷凍サイクル図FIG. 16 is a refrigeration cycle diagram of a conventional air conditioner

【符号の説明】[Explanation of symbols]

1 室外機 2 圧縮機 3 四方弁 4 室外側熱交換器 5 室外側膨張弁 6 アキュームレータ 7 室内機 8 室内側膨張弁 9 室内側熱交換器 12 高圧側圧力検知センサー 13 液配管温度検知センサー 14 外気温度検知センサー 16 室内負荷検出手段 17 室外側膨張弁制御手段 18 液面高さ検知センサー 19 循環冷媒組成比率予測手段 20 循環冷媒組成比率予測手段 21 循環冷媒組成比率予測手段 22 圧縮機運転周波数制御手段 23 循環冷媒組成比率予測手段 24 吐出温度検知センサー 25 過冷却度演算手段 1 Outdoor unit 2 Compressor 3 Four-way valve 4 Outdoor heat exchanger 5 Outdoor expansion valve 6 Accumulator 7 Indoor unit 8 Indoor expansion valve 9 Indoor heat exchanger 12 High pressure side pressure sensor 13 Liquid pipe temperature detection sensor 14 Outdoor air Temperature detection sensor 16 Indoor load detection means 17 Outdoor expansion valve control means 18 Liquid level height detection sensor 19 Circulating refrigerant composition ratio predicting means 20 Circulating refrigerant composition ratio predicting means 21 Circulating refrigerant composition ratio predicting means 22 Compressor operating frequency control means 23 Circulating refrigerant composition ratio prediction means 24 Discharge temperature detection sensor 25 Supercooling degree calculation means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 日下 道美 大阪府東大阪市高井田本通4丁目2番5号 松下冷機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Michi Kusaka Matsushita Refrigerating Machinery Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 非共沸混合冷媒を使用し、圧縮機、四方
弁、室外側熱交換器、室外側膨張弁、アキュームレータ
から成る室外機と、室内側膨張弁、室内側熱交換器から
成る室内機とを接続して環状の冷媒回路を構成し、前記
アキュームレータ内の液面の高さを検知する液面高さ検
知センサーと、前記液面高さ検知センサーによって検知
した前記アキュームレータ内の液面高さから、循環冷媒
の組成比率を予測する循環冷媒組成比率予測手段と、高
圧側圧力を検知する高圧側圧力検知センサーと、液配管
温度を検知する液配管温度検知センサーと、暖房運転時
に、前記循環冷媒組成比率予測手段によって予測した循
環冷媒の組成比率と、前記高圧側圧力検知センサーによ
り検知した高圧側圧力と、前記液配管温度検知センサー
により検知した液配管温度とにより、室外側膨張弁入口
過冷却度を演算する過冷却度演算手段と、前記過冷却度
演算手段で演算された過冷却度に応じて前記室外側膨張
弁の開度の制御を行う室外側膨張弁制御手段を備えた空
気調和機。
1. An outdoor unit including a compressor, a four-way valve, an outdoor heat exchanger, an outdoor expansion valve, and an accumulator using a non-azeotropic mixed refrigerant, and an indoor expansion valve and an indoor heat exchanger. An annular refrigerant circuit is formed by connecting the indoor unit, and a liquid level detection sensor for detecting the height of the liquid level in the accumulator, and the liquid in the accumulator detected by the liquid level detection sensor. Circulating refrigerant composition ratio predicting means for predicting the composition ratio of the circulating refrigerant from the surface height, a high pressure side pressure detecting sensor for detecting the high pressure side pressure, a liquid pipe temperature detecting sensor for detecting the liquid pipe temperature, and a heating operation. The composition ratio of the circulating refrigerant predicted by the circulating refrigerant composition ratio predicting means, the high pressure side pressure detected by the high pressure side pressure detection sensor, and the liquid distribution detected by the liquid pipe temperature detection sensor. A supercooling degree calculating means for calculating an outdoor expansion valve inlet supercooling degree based on a pipe temperature, and a control of the opening degree of the outdoor expansion valve according to the supercooling degree calculated by the supercooling degree calculating means. An air conditioner equipped with an outdoor expansion valve control means.
【請求項2】 非共沸混合冷媒を使用し、圧縮機、四方
弁、室外側熱交換器、室外側膨張弁、アキュームレータ
から成る室外機と、室内側膨張弁、室内側熱交換器から
成る室内機とを接続して環状の冷媒回路を構成し、高圧
側圧力を検知する高圧側圧力検知センサーと、外気温度
を検知する外気温度検知センサーと、室内負荷を検出す
る室内負荷検出手段と、前記室内負荷検出手段によって
検出した室内負荷と、前記外気温度検知センサーによっ
て検知した外気温度と、前記高圧側圧力検知センサーに
よって検知した高圧側圧力から、循環冷媒の組成比率を
予測する循環冷媒組成比率予測手段と、液配管温度を検
知する液配管温度検知センサーと、暖房運転時に、前記
循環冷媒組成比率予測手段によって予測した循環冷媒の
組成比率と、前記高圧側圧力検知センサーにより検知し
た高圧側圧力と、前記液配管温度検知センサーにより検
知した液配管温度とにより、室外側膨張弁入口過冷却度
を演算する過冷却度演算手段と、前記過冷却度演算手段
で演算された過冷却度に応じて前記室外側膨張弁の開度
の制御を行う室外側膨張弁制御手段を備えた空気調和
機。
2. An outdoor unit including a compressor, a four-way valve, an outdoor heat exchanger, an outdoor expansion valve, and an accumulator, which uses a non-azeotropic mixed refrigerant, and an indoor expansion valve and an indoor heat exchanger. An annular refrigerant circuit is formed by connecting the indoor unit, a high pressure side pressure detection sensor that detects the high pressure side pressure, an outside air temperature detection sensor that detects the outside air temperature, and an indoor load detection means that detects the indoor load, An indoor load detected by the indoor load detection means, an outside air temperature detected by the outside air temperature detection sensor, and a high pressure side pressure detected by the high pressure side pressure detection sensor, a circulating refrigerant composition ratio for predicting a composition ratio of the circulating refrigerant. Predicting means, liquid pipe temperature detection sensor for detecting the liquid pipe temperature, during heating operation, the composition ratio of the circulating refrigerant predicted by the circulating refrigerant composition ratio predicting means, the high Supercooling degree calculating means for calculating the outdoor expansion valve inlet supercooling degree by the high pressure side pressure detected by the pressure side pressure detection sensor and the liquid pipe temperature detected by the liquid pipe temperature detection sensor, and the supercooling degree calculation An air conditioner comprising an outdoor expansion valve control means for controlling the opening of the outdoor expansion valve according to the degree of supercooling calculated by the means.
【請求項3】 非共沸混合冷媒を使用し、圧縮機、四方
弁、室外側熱交換器、室外側膨張弁、アキュームレータ
から成る室外機と、室内側膨張弁、室内側熱交換器から
成る室内機とを接続して環状の冷媒回路を構成し、高圧
側圧力を検知する高圧側圧力検知センサーと、外気温度
を検知する外気温度検知センサーと、前記高圧側圧力検
知センサーによって検知された高圧側圧力により前記圧
縮機の運転周波数を制御する圧縮機運転周波数制御手段
と、室内負荷を検出する室内負荷検出手段と、前記室内
負荷検出手段によって検出した室内負荷と、前記外気温
度検知センサーによって検知した外気温度と、前記圧縮
機の運転周波数から、循環冷媒の組成比率を予測する循
環冷媒組成比率予測手段と、液配管温度を検知する液配
管温度検知センサーと、暖房運転時に、前記循環冷媒組
成比率予測手段によって予測した循環冷媒の組成比率
と、前記高圧側圧力検知センサーにより検知した高圧側
圧力と、前記液配管温度検知センサーにより検知した液
配管温度とにより、室外側膨張弁入口過冷却度を演算す
る過冷却度演算手段と、前記過冷却度演算手段で演算さ
れた過冷却度に応じて前記室外側膨張弁の開度の制御を
行う室外側膨張弁制御手段を備えた空気調和機。
3. An outdoor unit including a compressor, a four-way valve, an outdoor heat exchanger, an outdoor expansion valve, and an accumulator, which uses a non-azeotropic mixed refrigerant, and an indoor expansion valve and an indoor heat exchanger. An annular refrigerant circuit is formed by connecting the indoor unit, and a high pressure side pressure detection sensor that detects the high pressure side pressure, an outside air temperature detection sensor that detects the outside air temperature, and a high pressure detected by the high pressure side pressure detection sensor. Compressor operating frequency control means for controlling the operating frequency of the compressor by side pressure, indoor load detecting means for detecting indoor load, indoor load detected by the indoor load detecting means, and detection by the outside air temperature detection sensor Circulating refrigerant composition ratio predicting means for predicting the composition ratio of the circulating refrigerant from the outside air temperature and the operating frequency of the compressor, and a liquid pipe temperature detecting sensor for detecting the liquid pipe temperature. During heating operation, the composition ratio of the circulating refrigerant predicted by the circulating refrigerant composition ratio predicting means, the high pressure side pressure detected by the high pressure side pressure detection sensor, and the liquid pipe temperature detected by the liquid pipe temperature detection sensor. According to the subcooling degree calculating means for calculating the outdoor side expansion valve inlet supercooling degree, and the outdoor side for controlling the opening degree of the outdoor side expansion valve according to the subcooling degree calculated by the subcooling degree calculating means. An air conditioner equipped with expansion valve control means.
【請求項4】 非共沸混合冷媒を使用し、圧縮機、四方
弁、室外側熱交換器、室外側膨張弁、アキュームレータ
から成る室外機と、室内側膨張弁、室内側熱交換器から
成る室内機とを接続して環状の冷媒回路を構成し、高圧
側圧力を検知する高圧側圧力検知センサーと、前記圧縮
機の吐出温度を検知する吐出温度検知センサーと、外気
温度を検知する外気温度検知センサーと、前記外気温度
検知センサーによって検知した外気温度と、前記高圧側
圧力検知センサーによって検知した高圧側圧力と、前記
吐出温度検知センサーによって検知した前記圧縮機の吐
出温度から、循環冷媒の組成比率を予測する循環冷媒組
成比率予測手段と、液配管温度を検知する液配管温度検
知センサーと、暖房運転時に、前記循環冷媒組成比率予
測手段によって予測した循環冷媒の組成比率と、前記高
圧側圧力検知センサーにより検知した高圧側圧力と、前
記液配管温度検知センサーにより検知した液配管温度と
により、室外側膨張弁入口過冷却度を演算する過冷却度
演算手段と、前記過冷却度演算手段で演算された過冷却
度に応じて前記室外側膨張弁の開度の制御を行う室外側
膨張弁制御手段を備えた空気調和機。
4. An outdoor unit including a compressor, a four-way valve, an outdoor heat exchanger, an outdoor expansion valve, and an accumulator, which uses a non-azeotropic mixed refrigerant, and an indoor expansion valve and an indoor heat exchanger. A high pressure side pressure detection sensor that detects the high pressure side pressure, a discharge temperature detection sensor that detects the discharge temperature of the compressor, and an outside air temperature that detects the outside air temperature constitute an annular refrigerant circuit by connecting the indoor unit. From the detection sensor, the outside air temperature detected by the outside air temperature detection sensor, the high pressure side pressure detected by the high pressure side pressure detection sensor, and the discharge temperature of the compressor detected by the discharge temperature detection sensor, the composition of the circulating refrigerant. Circulating refrigerant composition ratio predicting means for predicting ratio, liquid pipe temperature detecting sensor for detecting liquid pipe temperature, and predicting by the circulating refrigerant composition ratio predicting means during heating operation Supercooling that calculates the degree of subcooling of the outdoor expansion valve inlet based on the composition ratio of the circulating refrigerant, the high-pressure side pressure detected by the high-pressure side pressure detection sensor, and the liquid pipe temperature detected by the liquid pipe temperature detection sensor And an outdoor side expansion valve control means for controlling the opening degree of the outdoor side expansion valve according to the degree of supercooling calculated by the degree of supercooling calculation means.
JP2531395A 1995-02-14 1995-02-14 Air conditioner Pending JPH08219572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2531395A JPH08219572A (en) 1995-02-14 1995-02-14 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2531395A JPH08219572A (en) 1995-02-14 1995-02-14 Air conditioner

Publications (1)

Publication Number Publication Date
JPH08219572A true JPH08219572A (en) 1996-08-30

Family

ID=12162518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2531395A Pending JPH08219572A (en) 1995-02-14 1995-02-14 Air conditioner

Country Status (1)

Country Link
JP (1) JPH08219572A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336901A (en) * 2005-05-31 2006-12-14 Mitsubishi Electric Building Techno Service Co Ltd Monitoring device for air conditioner
JP2013250003A (en) * 2012-05-31 2013-12-12 Aisin Seiki Co Ltd Heat pump type air conditioner
WO2022030103A1 (en) * 2020-08-03 2022-02-10 三浦工業株式会社 Hot water supply system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336901A (en) * 2005-05-31 2006-12-14 Mitsubishi Electric Building Techno Service Co Ltd Monitoring device for air conditioner
JP4573701B2 (en) * 2005-05-31 2010-11-04 三菱電機ビルテクノサービス株式会社 Air conditioner monitoring device
JP2013250003A (en) * 2012-05-31 2013-12-12 Aisin Seiki Co Ltd Heat pump type air conditioner
WO2022030103A1 (en) * 2020-08-03 2022-02-10 三浦工業株式会社 Hot water supply system

Similar Documents

Publication Publication Date Title
US7856836B2 (en) Refrigerating air conditioning system
JP2997487B2 (en) Refrigeration apparatus and method for indicating amount of refrigerant in refrigeration apparatus
JP4317878B2 (en) Air conditioner and method for judging refrigerant amount
KR960006364B1 (en) Refrigeration cycle
CN105509257A (en) Air conditioner system and detection method of accumulated liquid failure of four-way valve of air conditioner system
EP3587948B1 (en) Air conditioner
KR20030097179A (en) Heat-Pump Air Conditioner's Operating Method
JP6628911B1 (en) Refrigeration cycle device
CN111486574A (en) Air conditioning system, anti-condensation control method and device thereof, and storage medium
KR100505237B1 (en) Control method of air-conditioner
WO2020070793A1 (en) Refrigeration cycle apparatus
KR20080089967A (en) Air conditioner of controlling method
JP3942680B2 (en) Air conditioner
JPH09280681A (en) Air conditioner
JP6373475B2 (en) Refrigerant amount abnormality detection device and refrigeration device
JP2966786B2 (en) Air conditioner
JPH08219572A (en) Air conditioner
JPH08296908A (en) Air conditioning equipment
JPH08136068A (en) Air conditioner
JP3260681B2 (en) Air conditioner using non-azeotropic mixed refrigerant and operation control method of the air conditioner
JPH0821667A (en) Air-conditioning machine
JP4131509B2 (en) Refrigeration cycle controller
JPH08226732A (en) Air conditioning equipment
KR101181760B1 (en) Operating method for air conditioner
JPH08145482A (en) Multi-chamber split type heater