JPH09170824A - Heat conveying device - Google Patents

Heat conveying device

Info

Publication number
JPH09170824A
JPH09170824A JP32919495A JP32919495A JPH09170824A JP H09170824 A JPH09170824 A JP H09170824A JP 32919495 A JP32919495 A JP 32919495A JP 32919495 A JP32919495 A JP 32919495A JP H09170824 A JPH09170824 A JP H09170824A
Authority
JP
Japan
Prior art keywords
liquid pump
liquid
heat
refrigerant
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32919495A
Other languages
Japanese (ja)
Inventor
Mitsuru Nakamura
満 中村
Makoto Watabe
眞 渡部
Masami Ito
政美 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP32919495A priority Critical patent/JPH09170824A/en
Publication of JPH09170824A publication Critical patent/JPH09170824A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the occurrence of overload operation of a liquid pump due to a fluctuation of the load by a method wherein a closed circuit having a plurality of heat-exchangers on the utilization side are connected together in parallel is sealed with a refrigerant the gas liquid phase of which is changed and a bypass device is provided between the delivery side and the suction side of a liquid pump. SOLUTION: A liquid pump 1, a heat-exchanger 2 on the heat source side, heat-exchangers 4a-4c on the utilization side, flow rate control valves 5a-5c, and a liquid receiver 7 having a radiator 8 are connected together, in the order, through a gas pipe 3 and a liquid pipe 6 to form a closed circuit. The closed circuit is sealed with a refrigerant as a medium for conveying a hot heat. A bypass device 9 comprising a differential pressure valve 9a and a bypass pipe 9b is connected in parallel to the liquid pump 1. The bypass device 9 opens and closes the differential pressure valve 9a according to a differential pressure between the outlet and the inlet of the liquid pump 1. This constitution performs operation in a flow rate of a refrigerant corresponding to a heating load and prevents the occurrence of an overload to the liquid pump.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、空気調和装置等
に供する熱搬送装置、特に媒体として気液相変化する冷
媒を用いたものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer device for use in an air conditioner and the like, and more particularly to a heat transfer device using a refrigerant that changes a gas-liquid phase as a medium.

【0002】[0002]

【従来の技術】温熱源を空気調和装置等の負荷側に供給
するためのものであって、媒体として水に代わり気液相
変化する冷媒を用いた熱搬送装置が知られている。例え
ば、特開平4−236063に記載されたものが知られ
ている。その熱搬送装置は図3に示すようなものであっ
て、液ポンプ101、熱源側熱交換器102、利用側熱
交換器104、受液器105をガス管103及び液管1
06により順次接続して閉回路を構成し、この閉回路内
に温熱を搬送する媒体として冷媒を封入している。 1
00はヒートポンプであって、このヒートポンプ100
は圧縮機90、前記熱源側熱交換器102、膨張弁9
1、外気等から熱を汲み上げる蒸発器92を順次接続し
ている。熱源側熱交換器102はヒートポンプ100の
凝縮器であって、蒸発器92で汲み上げた温熱をここで
熱搬送装置側へ放熱している。
2. Description of the Related Art There is known a heat transfer device for supplying a heat source to a load side of an air conditioner or the like, which uses, as a medium, a refrigerant which changes a gas-liquid phase instead of water. For example, the one described in JP-A-4-236063 is known. The heat transfer device is as shown in FIG. 3, and includes a liquid pump 101, a heat source side heat exchanger 102, a use side heat exchanger 104, a liquid receiver 105, a gas pipe 103 and a liquid pipe 1.
06 are sequentially connected to form a closed circuit, and a refrigerant is sealed in the closed circuit as a medium for transferring heat. 1
00 is a heat pump, and this heat pump 100
Is a compressor 90, the heat source side heat exchanger 102, an expansion valve 9
1. An evaporator 92 for pumping heat from the outside air is sequentially connected. The heat source side heat exchanger 102 is a condenser of the heat pump 100, and radiates the warm heat pumped up by the evaporator 92 to the heat transfer device side.

【0003】上記の熱搬送装置は、液ポンプ101から
吐出された液冷媒が、熱源側熱交換器で加熱気化され、
利用側熱交換器104において水、空気などを加熱して
冷却液化し、受液器105を経てポンプ101に戻る。
このサイクルによって、ヒートポンプで外気等より汲み
上げられた熱が熱源側熱交換器を介し熱搬送装置に与え
られ、利用側熱交換器介し被加熱物に加えられる。
In the above heat transfer device, the liquid refrigerant discharged from the liquid pump 101 is heated and vaporized by the heat source side heat exchanger,
In the use side heat exchanger 104, water, air, etc. are heated to be cooled and liquefied, and then returned to the pump 101 via the liquid receiver 105.
By this cycle, the heat pumped up from the outside air or the like by the heat pump is given to the heat transfer device via the heat source side heat exchanger and added to the object to be heated via the use side heat exchanger.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この様
な装置では、液ポンプ101の負荷検出手段を有さない
ため、利用側熱交換器104の負荷が減少して、熱源側
熱交換器102から利用側熱交換器104へ流れるガス
冷媒量が負荷に比し多くなった場合は、該ガス冷媒はガ
ス状のまま利用側熱交換器104から流出することにな
り、液管106における冷媒の流通抵抗が大となり、液
ポンプ101が過負荷運転を来すという問題を生じる。
特に、利用側熱交換器104が複数接続され、該複数の
利用側熱交換器毎に負荷が相違する場合は、異なる負荷
の変動に応じ利用側熱交換器毎に流量制御する必要があ
り、更に液ポンプに掛かる負荷の変動もより一層顕著に
なるが、斯かる問題については何ら解決されていない。
However, in such a device, since the load detecting means of the liquid pump 101 is not provided, the load of the utilization side heat exchanger 104 is reduced, and the heat source side heat exchanger 102 is removed. When the amount of the gas refrigerant flowing to the usage-side heat exchanger 104 becomes larger than the load, the gas refrigerant flows out of the usage-side heat exchanger 104 in a gaseous state, and the refrigerant flows in the liquid pipe 106. There is a problem that the resistance becomes large and the liquid pump 101 is overloaded.
In particular, when a plurality of use-side heat exchangers 104 are connected and the loads are different for each of the plurality of use-side heat exchangers, it is necessary to control the flow rate for each of the use-side heat exchangers according to changes in different loads. Further, the fluctuation of the load on the liquid pump becomes more remarkable, but such a problem has not been solved at all.

【0005】本発明は、このような従来の問題点に着目
してなされたものであって、その目的とするところは、
冷媒を媒体として温熱源の熱を空気調和機等の負荷側に
搬送させる装置において、負荷の変動により生じる液ポ
ンプの過負荷運転を防止することにある。また、複数の
利用側熱交換器を用いる場合において、各熱交換器に対
し負荷に応じた冷媒流量の分配を可能とするものであ
る。
The present invention has been made by paying attention to such conventional problems, and its purpose is to:
An object of the present invention is to prevent an overload operation of a liquid pump caused by a change in load in a device that transfers heat of a heat source to a load side such as an air conditioner using a refrigerant as a medium. Further, when a plurality of use side heat exchangers are used, it is possible to distribute the refrigerant flow rate to each heat exchanger according to the load.

【0006】[0006]

【課題を解決するための手段】上記の目的達成のため
に、請求項1に記載の発明では、 液ポンプ、熱源側熱
交換器、複数の利用側熱交換器、圧力調整用放熱器を付
設した受液器を順次接続し、且つ、前記複数の利用側熱
交換器が並列に接続されてなる閉回路内に気液相変化す
る冷媒を封入すると共に、前記液ポンプの吐出側と吸入
側との間に吸入側圧力と吐出側圧力との差圧を一定ある
いは所定範囲内に保つ機能を有するバイパス装置を設け
たものである。
To achieve the above object, in the invention described in claim 1, a liquid pump, a heat source side heat exchanger, a plurality of utilization side heat exchangers, and a pressure adjusting radiator are attached. The liquid receivers are sequentially connected, and a refrigerant having a gas-liquid phase change is enclosed in a closed circuit formed by connecting the plurality of utilization side heat exchangers in parallel, and the discharge side and the suction side of the liquid pump. And a bypass device having a function of keeping the differential pressure between the suction side pressure and the discharge side pressure constant or within a predetermined range.

【0007】請求項2に記載の発明では、前記液ポンプ
の吐出側と吸入側との間に、前記差圧を一定あるいは所
定範囲内に保つ差圧弁を設けたことにより前記バイパス
装置を構成したものである。
According to the second aspect of the invention, the bypass device is constituted by providing a differential pressure valve for maintaining the differential pressure constant or within a predetermined range between the discharge side and the suction side of the liquid pump. It is a thing.

【0008】請求項3に記載の発明では 前記液ポンプ
の吐出側と吸入側との間に、前記液ポンプの吸入側圧力
及び吐出側圧力をそれぞれ検出して開度を制御し、前記
差圧を一定あるいは所定範囲内に保つ制御弁を設けたこ
とにより前記バイパス装置を構成したものである。
In the invention according to claim 3, between the discharge side and the suction side of the liquid pump, the suction side pressure and the discharge side pressure of the liquid pump are respectively detected to control the opening degree, and the differential pressure The bypass device is configured by providing a control valve that keeps the temperature constant or within a predetermined range.

【0009】請求項4記載の発明では、前記複数の利用
側熱交換器を接続する各分枝管中に、それぞれの暖房負
荷に対応して流量を制御する流量制御弁を設けたもので
ある。
According to a fourth aspect of the invention, a flow rate control valve for controlling the flow rate corresponding to each heating load is provided in each branch pipe connecting the plurality of utilization side heat exchangers. .

【0010】従って、請求項1記載の熱搬送装置にあっ
ては、加熱負荷が減少して液ポンプの運転負荷が増加し
た場合、液ポンプの吐出側と吸入側との間に吸入側圧力
と吐出側圧力との差圧を一定あるいは所定範囲内に保つ
機能を有するバイパス装置が開放され、液ポンプの差圧
が一定あるいは所定値内に保持されるので、液ポンプの
過負荷運転が防止される。
Therefore, in the heat transfer apparatus according to the first aspect, when the heating load decreases and the operating load of the liquid pump increases, the suction side pressure is increased between the discharge side and the suction side of the liquid pump. The bypass device, which has the function of keeping the pressure difference with the discharge side pressure constant or within a predetermined range, is opened, and the differential pressure of the liquid pump is kept constant or within a predetermined value, preventing overload operation of the liquid pump. It

【0011】また、請求項2の熱搬送装置においては、
液ポンプの吐出側と吸入側との間に差圧弁を設けるだけ
であるので、簡単な構成により上記目的を達成すること
ができる。
Further, in the heat transfer device according to claim 2,
Since only the differential pressure valve is provided between the discharge side and the suction side of the liquid pump, the above object can be achieved with a simple configuration.

【0012】また、請求項3記載の熱搬送装置において
は、吸入側圧力及び吐出側圧力をそれぞれ検出して開度
を制御し、前記差圧を一定あるいは所定範囲内に保つ制
御弁を設けたものであるので、高度な制御に適した電子
技術の応用が可能となる。
Further, in the heat transfer device according to the third aspect, a control valve is provided for controlling the opening by detecting the suction side pressure and the discharge side pressure, respectively, and keeping the differential pressure constant or within a predetermined range. Therefore, it is possible to apply electronic technology suitable for high-level control.

【0013】また、請求項4記載の発明においては、流
量制御弁の作用により各利用側熱交換器の冷媒循環量を
加熱負荷に見合うように制御されるため、冷媒流量の分
配が適正に行われる。
Further, in the invention of claim 4, since the refrigerant circulation amount of each utilization side heat exchanger is controlled to correspond to the heating load by the action of the flow control valve, the refrigerant flow amount is appropriately distributed. Be seen.

【0014】[0014]

【発明の実施の形態】以下、この発明の第1の実施形態
を図1に基づき説明する。図1に示すように、液ポンプ
1、熱源側熱交換器2、複数の利用側熱交換器4a、4
b、4c、複数の流量制御弁5a、5b、5c、放熱器
8を付設した受液器7がガス管3、液管6により順次接
続され閉回路に構成される。上記閉回路において、利用
側熱交換器4a、4b、4c及び流量制御弁5a、5
b、5cは、液管3を分枝した並列の分枝管に各一対接
続されている。また、上記閉回路には温熱搬送用の媒体
として冷媒が封入されている。
DETAILED DESCRIPTION OF THE INVENTION A first embodiment of the present invention will be described below with reference to FIG. As shown in FIG. 1, the liquid pump 1, the heat source side heat exchanger 2, the plurality of utilization side heat exchangers 4 a, 4
b, 4c, a plurality of flow rate control valves 5a, 5b, 5c, and a liquid receiver 7 provided with a radiator 8 are sequentially connected by a gas pipe 3 and a liquid pipe 6 to form a closed circuit. In the above closed circuit, the use side heat exchangers 4a, 4b, 4c and the flow control valves 5a, 5
Each of b and 5c is connected to a pair of parallel branch pipes branching the liquid pipe 3. Further, a refrigerant is enclosed in the closed circuit as a medium for carrying heat.

【0015】上記サイクルにおいて、受液器7内の圧力
及び利用側熱交換器内の圧力は夫々の温度に対応する飽
和温度となる。また、冷媒をスムーズに循環させるに
は、受液器7内の圧力を、利用側熱交換器4a、4b、
4c内の液冷媒の圧力に対し、受液器7と利用側熱交換
器4a、4b、4cとの高さの違いによるヘッド差、両
機器間を流れる液冷媒の流通抵抗分だけ低くなければな
らない。受液器7に付設された放熱器8はこの圧力差を
付けるために設けられているもので、受液器7内の液冷
媒を外気等の冷却媒体で冷却し圧力を低下せしめてい
る。
In the above cycle, the pressure inside the liquid receiver 7 and the pressure inside the utilization side heat exchanger become saturation temperatures corresponding to the respective temperatures. Further, in order to smoothly circulate the refrigerant, the pressure inside the liquid receiver 7 is set to the use side heat exchangers 4a, 4b,
The pressure of the liquid refrigerant in 4c must be lower than the head difference due to the difference in height between the liquid receiver 7 and the use side heat exchangers 4a, 4b, 4c, and the flow resistance of the liquid refrigerant flowing between the two devices. I won't. The radiator 8 attached to the liquid receiver 7 is provided to make this pressure difference, and cools the liquid refrigerant in the liquid receiver 7 with a cooling medium such as outside air to reduce the pressure.

【0016】また、9はバイパス装置であって、差圧弁
9aとバイパス管9bとから構成されており、液ポンプ
1と並列に接続されている。このバイパス装置9は、液
ポンプ1の出入口の差圧に応じて差圧弁9aを開閉す
る。即ち、液ポンプ1の差圧が小さくなったときはバイ
パス装置9の差圧弁9aの開度を小さくし、また差圧が
大きくなったときはその開度を大きくすることにより、
液ポンプ1の吐出と吸入の差圧を一定あるいは所定の範
囲に保持する。
A bypass device 9 is composed of a differential pressure valve 9a and a bypass pipe 9b and is connected to the liquid pump 1 in parallel. The bypass device 9 opens and closes the differential pressure valve 9a according to the differential pressure at the inlet and outlet of the liquid pump 1. That is, when the differential pressure of the liquid pump 1 is reduced, the opening of the differential pressure valve 9a of the bypass device 9 is decreased, and when the differential pressure is increased, the opening is increased.
The differential pressure between the discharge and suction of the liquid pump 1 is kept constant or within a predetermined range.

【0017】また、流量制御弁5a、5b、5cは利用
側熱交換器4a、4b、4cの加熱負荷に応じ各利用側
熱交換器4a、4b、4cへの流れる冷媒流量を制御す
る。加熱負荷の検知方法としては、例えば、利用側熱交
換器が空気を加熱する場合は、被加熱側の空気温度と設
定温度との差から加熱負荷を勘案する方法など通常のも
のを用いる。
The flow rate control valves 5a, 5b and 5c control the flow rates of the refrigerant flowing to the use side heat exchangers 4a, 4b and 4c according to the heating loads of the use side heat exchangers 4a, 4b and 4c. As a method for detecting the heating load, for example, when the use-side heat exchanger heats air, a normal method such as a method of considering the heating load from the difference between the air temperature on the heated side and the set temperature is used.

【0018】次に、この様に構成された熱搬送装置の動
作について説明する。液ポンプ1より吐出された液冷媒
は、熱源側熱交換器2に入り、ここで高温の熱源、例え
ば温水、バーナ、ヒートポンプの凝縮廃熱等から吸熱し
蒸発気化してガス冷媒となる。このガス冷媒はガス管3
を通って利用側熱交換器4a、4b,4cに入り、ここ
で低温の加熱対象物、例えば室内空気に放熱することに
よって凝縮液化する。この液冷媒は液管6を経て受液器
7に入り、受液器7内の下方に貯留される。受液器内の
液冷媒は液管6を通って液ポンプ1に戻り循環サイクル
を繰り返す。
Next, the operation of the heat transfer device thus constructed will be described. The liquid refrigerant discharged from the liquid pump 1 enters the heat source side heat exchanger 2, where it absorbs heat from a high-temperature heat source, such as hot water, a burner, the waste heat of condensation of the heat pump, and evaporates to become a gas refrigerant. This gas refrigerant is the gas pipe 3
The heat exchanger 4a, 4b, 4c enters the heat exchangers 4a, 4b, 4c through which the heat is radiated to a low-temperature object to be heated, for example, room air, to be condensed and liquefied. The liquid refrigerant enters the liquid receiver 7 through the liquid pipe 6 and is stored in the liquid receiver 7 below. The liquid refrigerant in the liquid receiver passes through the liquid pipe 6 and returns to the liquid pump 1 to repeat the circulation cycle.

【0019】ここで、各利用側熱交換器4a、4b、4
cの加熱対象物の温度が全て上昇して加熱負荷全体が減
少すると、利用側熱交換器4a、4b、4c出口の冷媒
はガス状となり液ポンプ1の吸入、吐出の圧力差が大き
くなるが、この時、バイパス装置9の差圧弁9aが作動
し、バイパス装置9を解放するので、液ポンプ1吸入側
の圧力が上昇され、各利用側熱交換器4a、4b、4c
に流れる冷媒量も負荷に対応するように調整される。
Here, the utilization side heat exchangers 4a, 4b, 4
When the temperature of the object to be heated in c all rises and the entire heating load decreases, the refrigerant at the outlets of the heat exchangers 4a, 4b, 4c on the use side becomes gaseous and the pressure difference between the suction and discharge of the liquid pump 1 increases. At this time, since the differential pressure valve 9a of the bypass device 9 is activated and the bypass device 9 is released, the pressure on the suction side of the liquid pump 1 is increased, and the use side heat exchangers 4a, 4b, 4c.
The amount of refrigerant flowing through is also adjusted to correspond to the load.

【0020】また、一部の利用側熱交換器4a、4bま
たは4cの加熱負荷が減少した場合は、加熱負荷の減少
に対応し、当該液管の分枝管に接続された冷媒流量制御
弁5a、5bまたは5cが、その開度を減少し、加熱負
荷に見合う冷媒ガス量を利用側熱交換器4a、4b、4
cへ流すように制御する。このため、熱搬送装置の加熱
負荷に対し液ポンプ1の吐出冷媒量が多くなり、回路を
循環する冷媒流通抵抗が多くなるが、この例では差圧弁
9aが液ポンプ1の吸入、吐出間の抵抗が一定になるよ
うに開度を調節し、吐出側のガス冷媒を吸入側にバイパ
スし、液ポンプ1の運転負荷が過大になることを防止し
ている。
When the heating load of some of the use side heat exchangers 4a, 4b or 4c is reduced, the refrigerant flow rate control valve connected to the branch pipe of the liquid pipe corresponds to the reduction of the heating load. 5a, 5b or 5c reduces its opening degree and changes the amount of refrigerant gas commensurate with the heating load to the utilization side heat exchangers 4a, 4b, 4
It is controlled to flow to c. For this reason, the amount of refrigerant discharged from the liquid pump 1 increases with respect to the heating load of the heat transfer device, and the refrigerant flow resistance circulating in the circuit increases. In this example, however, the differential pressure valve 9a is used between the suction and discharge of the liquid pump 1. The opening is adjusted so that the resistance is constant, the gas refrigerant on the discharge side is bypassed to the suction side, and the operating load of the liquid pump 1 is prevented from becoming excessive.

【0021】一部の利用側熱交換器4a、4bまたは4
cの加熱が不要になった場合、冷媒流量制御弁5a、5
bまたは5cを完全に閉じても良いが、この場合は利用
側熱交換器4a、4bまたは4cの出口側が閉じ切りと
なり、当該熱交換器の周囲が徐々に冷却される場合は、
この熱交換器内に液冷媒が徐々に溜まり込み、循環冷媒
量が不足する危険がある。これを防止するには、冷媒流
量制御弁5a、5b、5cの全閉状態において僅かの流
量が生ずる様微小に開放しておくのが好ましい。
Part of the use side heat exchangers 4a, 4b or 4
When the heating of c becomes unnecessary, the refrigerant flow control valves 5a, 5
b or 5c may be completely closed, but in this case, when the outlet side of the use side heat exchanger 4a, 4b or 4c is completely closed and the surroundings of the heat exchanger are gradually cooled,
There is a risk that the liquid refrigerant gradually accumulates in the heat exchanger, and the amount of circulating refrigerant becomes insufficient. In order to prevent this, it is preferable that the refrigerant flow rate control valves 5a, 5b, 5c be opened minutely so that a slight flow rate occurs in the fully closed state.

【0022】次に、この発明の第2の実施形態を図2に
従って説明する。この第2の実施形態においては、バイ
パス装置19は、液ポンプ1の吐出側から吸入側にバイ
パス管19bを接続し、その管19bの中間に流量制御
弁19aを接続し,吐出圧力センサ19cで検出した吐
出圧力と、吸入圧力センサ19dで検出した吸入圧力と
の差圧を圧力検知器19eで検出し所定の差圧になるよ
うに流量制御弁19aの開度を調節するごとく構成して
いる。この例においても前記実施形態と同様に液ポンプ
の吐出、吸入圧力差が一定に保たれ液ポンプ1の過負荷
運転が防止される。
Next, a second embodiment of the present invention will be described with reference to FIG. In the second embodiment, the bypass device 19 connects the bypass pipe 19b from the discharge side to the suction side of the liquid pump 1, connects the flow control valve 19a in the middle of the pipe 19b, and uses the discharge pressure sensor 19c. The pressure detector 19e detects a pressure difference between the detected discharge pressure and the suction pressure detected by the suction pressure sensor 19d, and adjusts the opening of the flow control valve 19a so that the pressure difference becomes a predetermined pressure difference. . Also in this example, the discharge and suction pressure differences of the liquid pump are kept constant and the overload operation of the liquid pump 1 is prevented as in the above-described embodiment.

【0023】なお、この発明は、次の様に変更して具体
化することができる。 (1)液ポンプ1を可逆ポンプとし、熱源側熱交換器2
に冷熱源を供給し、液ポンプ1を逆転させ、液冷媒を逆
方向に流し冷熱の搬送を可能とすること。 (2)利用側熱交換器4a、4b、4c入口側の流量制
御弁を比例制御弁でなく開閉弁とすること。 (3)第2の実施形態において、吐出圧力センサ19c
及び吸入圧力センサ19dに代わり差圧センサを用いる
こと。 (4)流量制御弁5a,5b,5cは全閉状態で微小に
開放する様に構成していたが、これに代え、流量制御弁
5a,5b,5cを微小開放なしの完全全閉するものと
し、この流量制御弁5a,5b,5cと並列に微小流量
の冷媒を流すキャピラリーチューブを並列接続するこ
と。
The present invention can be modified and embodied as follows. (1) The liquid pump 1 is a reversible pump, and the heat source side heat exchanger 2
A cold heat source is supplied to the tank, the liquid pump 1 is rotated in the reverse direction, and the liquid refrigerant is allowed to flow in the opposite direction to enable the transfer of cold heat. (2) Use-side heat exchangers 4a, 4b, 4c The inlet side flow control valve should be an on-off valve instead of a proportional control valve. (3) In the second embodiment, the discharge pressure sensor 19c
And use a differential pressure sensor instead of the suction pressure sensor 19d. (4) The flow rate control valves 5a, 5b, 5c are configured to be slightly opened in the fully closed state, but instead of this, the flow rate control valves 5a, 5b, 5c are completely fully closed without a minute opening. And, the flow rate control valves 5a, 5b, and 5c should be connected in parallel with the capillary tubes through which a small amount of refrigerant flows.

【0024】[0024]

【発明の効果】この発明は、以上の様に構成されている
ため、次のような効果を奏する。請求項1乃至3に記載
の発明によれば、液ポンプの吐出圧力と吸入圧力との差
圧が一定に保たれ、加熱負荷に対応した冷媒流量の運転
が可能となり、液ポンプのオーバロードが防止できる。
Since the present invention is configured as described above, it has the following effects. According to the invention described in claims 1 to 3, the differential pressure between the discharge pressure and the suction pressure of the liquid pump is kept constant, the operation of the refrigerant flow rate corresponding to the heating load becomes possible, and the overload of the liquid pump is prevented. It can be prevented.

【0025】請求項4に記載の発明によれば、各々の利
用側熱交換器に対し負荷に見合う冷媒流量の分配がなさ
れ、安定した運転ができる。
According to the fourth aspect of the present invention, the flow rate of the refrigerant corresponding to the load is distributed to each of the utilization side heat exchangers, and stable operation can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施形態を示す熱搬送装置の冷媒回路
図。
FIG. 1 is a refrigerant circuit diagram of a heat transfer device according to a first embodiment.

【図2】第2の実施形態を示す熱搬送装置の冷媒回路図FIG. 2 is a refrigerant circuit diagram of the heat transfer device according to the second embodiment.

【図3】従来の熱搬送装置の冷媒回路図FIG. 3 is a refrigerant circuit diagram of a conventional heat transfer device.

【符号の説明】[Explanation of symbols]

1 液ポンプ 2 熱源側熱交換器 3 ガス管 4a、4b、4c 利用側熱交換器 5a、5b、5c 流量制御弁 6 液管 7 受液器 8 放熱器 9 バイパス装置 9a 差圧弁 9b バイパス管 19 バイパス装置 1 Liquid Pump 2 Heat Source Side Heat Exchanger 3 Gas Pipe 4a, 4b, 4c Utilization Side Heat Exchanger 5a, 5b, 5c Flow Control Valve 6 Liquid Pipe 7 Liquid Receiver 8 Radiator 9 Bypass Device 9a Differential Pressure Valve 9b Bypass Pipe 19 Bypass device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 液ポンプ、熱源側熱交換器、複数の利用
側熱交換器、放熱器を付設した受液器を順次配管接続
し、且つ、前記複数の利用側熱交換器が互いに並列に接
続されてなる閉回路内に、気液相変化する冷媒を封入す
ると共に、前記液ポンプの吐出側と吸入側との間に吸入
側圧力と吐出側圧力との差圧を一定あるいは所定範囲内
に保つ機能を有するバイパス装置を設けてなることを特
徴とする熱搬送装置。
1. A liquid pump, a heat source side heat exchanger, a plurality of use side heat exchangers, and a liquid receiver provided with a radiator are sequentially connected by piping, and the plurality of use side heat exchangers are parallel to each other. A connected closed circuit is filled with a refrigerant that changes in gas-liquid phase, and the pressure difference between the suction side pressure and the discharge side pressure is constant or within a predetermined range between the discharge side and the suction side of the liquid pump. A heat transfer device comprising a bypass device having a function of keeping the heat transfer function.
【請求項2】 前記液ポンプの吐出側と吸入側との間
に、前記差圧を一定あるいは所定範囲内に保つ差圧弁を
設けたことにより前記バイパス装置を構成してなること
を特徴とする請求項1記載の熱搬送装置。
2. The bypass device is constituted by providing a differential pressure valve for maintaining the differential pressure constant or within a predetermined range between the discharge side and the suction side of the liquid pump. The heat transfer device according to claim 1.
【請求項3】 前記液ポンプの吐出側と吸入側との間
に、前記液ポンプの吸入側圧力及び吐出側圧力をそれぞ
れ検出して開度を制御し、前記差圧を一定あるいは所定
範囲内に保つ制御弁を設けたことにより前記バイパス装
置を構成してなることを特徴とする請求項1記載の熱搬
送装置。
3. The pressure difference between a discharge side and a suction side of the liquid pump is controlled by detecting a suction side pressure and a discharge side pressure of the liquid pump, and the differential pressure is kept constant or within a predetermined range. The heat transfer device according to claim 1, wherein the bypass device is configured by providing a control valve that keeps the bypass valve.
【請求項4】 前記複数の利用側熱交換器を接続する各
分枝管中に、それぞれの暖房負荷に対応して流量を制御
する流量制御弁を設けたことを特徴とする請求項1記載
の熱搬送装置。
4. The flow control valve for controlling the flow rate according to each heating load is provided in each branch pipe connecting the plurality of utilization side heat exchangers. Heat transfer device.
JP32919495A 1995-12-18 1995-12-18 Heat conveying device Withdrawn JPH09170824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32919495A JPH09170824A (en) 1995-12-18 1995-12-18 Heat conveying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32919495A JPH09170824A (en) 1995-12-18 1995-12-18 Heat conveying device

Publications (1)

Publication Number Publication Date
JPH09170824A true JPH09170824A (en) 1997-06-30

Family

ID=18218711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32919495A Withdrawn JPH09170824A (en) 1995-12-18 1995-12-18 Heat conveying device

Country Status (1)

Country Link
JP (1) JPH09170824A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105571181A (en) * 2016-01-12 2016-05-11 珠海格力电器股份有限公司 Variable-frequency centrifugal type water chilling unit and control regulation method thereof
CN107024013A (en) * 2016-02-01 2017-08-08 珠海格力电器股份有限公司 Air conditioner and its control method
CN113959126A (en) * 2021-09-16 2022-01-21 青岛海尔空调电子有限公司 Control method, device and equipment for refrigeration equipment and storage medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105571181A (en) * 2016-01-12 2016-05-11 珠海格力电器股份有限公司 Variable-frequency centrifugal type water chilling unit and control regulation method thereof
CN105571181B (en) * 2016-01-12 2017-11-28 珠海格力电器股份有限公司 A kind of variable speed centrifugal chiller plants and its control and regulation method
CN107024013A (en) * 2016-02-01 2017-08-08 珠海格力电器股份有限公司 Air conditioner and its control method
CN107024013B (en) * 2016-02-01 2019-07-23 珠海格力电器股份有限公司 Air conditioner and its control method
CN113959126A (en) * 2021-09-16 2022-01-21 青岛海尔空调电子有限公司 Control method, device and equipment for refrigeration equipment and storage medium

Similar Documents

Publication Publication Date Title
US7913501B2 (en) Water-cooled air conditioning system using condenser water regeneration for precise air reheat in dehumidifying mode
US20080016890A1 (en) Chiller system with low capacity controller and method of operating same
US20060107683A1 (en) Air conditioning system and method for controlling the same
JPH04263758A (en) Heat pump hot-water supplier
US4454725A (en) Method and apparatus for integrating a supplemental heat source with staged compressors in a heat pump
US20210025627A1 (en) Air-conditioning apparatus
JP4258241B2 (en) Heat pump system, heat pump water heater
JPH04254156A (en) Heat pump type hot water supply device
KR20110136244A (en) Heat pump system having cascade heat exchange
JP4093821B2 (en) Linked hot / cold water system
JPH09170824A (en) Heat conveying device
JP4097405B2 (en) Engine cooling method and apparatus and refrigeration apparatus
JP4631365B2 (en) Heat pump heating device
JP7243300B2 (en) heat pump system
JP3644016B2 (en) Hot water supply system consisting of refrigeration cycle
WO2022030103A1 (en) Hot water supply system
JP3051429B2 (en) Cooling device
JP2940839B2 (en) Air conditioning
JP2854688B2 (en) Air conditioning
JP2940838B2 (en) Air conditioning
JP3276529B2 (en) Heat transfer device
JP3606906B2 (en) Thermal storage air conditioner
JPS60240934A (en) Hot water supply/space heating device
JP2022046850A (en) Cold and hot temperature simultaneous adjustment device
JP2898370B2 (en) Air conditioning

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030304