JP2931668B2 - High side pressure regulation method in supercritical vapor compression circuit - Google Patents

High side pressure regulation method in supercritical vapor compression circuit

Info

Publication number
JP2931668B2
JP2931668B2 JP3515570A JP51557091A JP2931668B2 JP 2931668 B2 JP2931668 B2 JP 2931668B2 JP 3515570 A JP3515570 A JP 3515570A JP 51557091 A JP51557091 A JP 51557091A JP 2931668 B2 JP2931668 B2 JP 2931668B2
Authority
JP
Japan
Prior art keywords
circuit
gas cooler
throttle valve
vapor compression
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3515570A
Other languages
Japanese (ja)
Other versions
JPH06510111A (en
Inventor
ローレンツェン、グスタフ
ペテルセン、ヨステイン
バング、ロアル・レクトルリ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINUENTO AS
Original Assignee
SHINUENTO AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINUENTO AS filed Critical SHINUENTO AS
Publication of JPH06510111A publication Critical patent/JPH06510111A/en
Application granted granted Critical
Publication of JP2931668B2 publication Critical patent/JP2931668B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser

Abstract

A vapor compression cycle device operating at supercritical pressure in the high-side of a circuit comprising compressor (10), gas cooler (11), internal heat exchanger (12), throttling valve (13), evaporator (14), low pressure refrigerant receiver is additionally provided with means (5) for detection of at least one operating condition of the circuit, preferentially detection of a parameter representing the refrigerant temperature adjacent to the outlet of the gas cooler (11).

Description

【発明の詳細な説明】 発明の技術分野 この発明は、超臨界条件で操作される冷凍、空調およ
びヒートポンプのような蒸気圧縮回路に関し、より詳し
くは、エネルギ消費に関して最適の操作を維持する高サ
イド圧力調節方法に関するものである。
Description: FIELD OF THE INVENTION The present invention relates to vapor compression circuits such as refrigeration, air conditioning and heat pumps operated at supercritical conditions, and more particularly to high side to maintain optimal operation with respect to energy consumption. It relates to a pressure adjusting method.

発明の背景技術 出願中であるPCT出願の刊行物WO 90/07683号には、
超臨界蒸気圧縮回路と超臨界高サイド圧力の調整に基づ
いてその回路の冷凍能力を調節する方法が開示されてい
る。この回路は、コンプレッサと、気体クーラ(凝縮
器)と、内部熱交換器と、蒸発器と、そしてレシーバ
(受液器)とからなっている。能力管理は、蒸発器とコ
ンプレッサの中間に置かれた低圧冷媒レシーバの液体残
量を変化させることによって達成され、ここでは内部熱
交換器の高圧出口と蒸発器入口との間の絞り弁が操作手
段として使用されている。
BACKGROUND OF THE INVENTION The pending PCT application publication WO 90/07683 includes:
A supercritical vapor compression circuit and a method of adjusting the refrigeration capacity of the circuit based on adjustment of the supercritical high side pressure are disclosed. This circuit consists of a compressor, a gas cooler (condenser), an internal heat exchanger, an evaporator, and a receiver (liquid receiver). Capacity management is achieved by varying the liquid balance of a low-pressure refrigerant receiver located between the evaporator and the compressor, where the throttle valve between the high-pressure outlet of the internal heat exchanger and the evaporator inlet is operated. Used as a means.

超蒸気圧縮回路の生産用原型で最近行われている多く
のテストから、この発明の特殊な適用、例えば、変動す
る荷重と条件で働く乗用車の空調ユニットにおいては、
所定の能力要求において最小のエネルギ消費とするため
に、全能力より少ない能力で、高サイド圧力はユニット
の実際の操作条件(荷重)に従って調節されねばならな
いことが判明している。実際の操作条件は、冷却温度や
圧力、外部温度あるいは必要な冷凍能力によって決定さ
れる。如何なる利用可能な技術状態の能力管理装置、例
えば、オン/オフ式、可変容量コンプレッサあるいは可
変速度制御などが、別々にあるいは独立に、冷却能力や
加熱能力の調節のために開示されている回路の絞り弁の
操作に使用することができる。したがって、既に開示さ
れている蒸気圧縮回路のエネルギ消費に関する最適の操
作を得るためには、新しい絞り弁制御方法を開発するこ
とが必要であった。
From many recent tests on production prototypes of super-steam compression circuits, special applications of the invention, for example in passenger car air-conditioning units working with varying loads and conditions,
It has been found that the high side pressure must be adjusted according to the actual operating conditions (load) of the unit, with less than full capacity, for minimum energy consumption at a given capacity requirement. The actual operating conditions are determined by the cooling temperature, pressure, external temperature or required refrigeration capacity. Any available state of the art capacity management device, such as an on / off, variable capacity compressor or variable speed control, may be used separately or independently to adjust the cooling or heating capacity of the disclosed circuit. It can be used to operate a throttle valve. Therefore, it was necessary to develop a new throttle valve control method in order to obtain the optimal operation regarding the energy consumption of the vapor compression circuit already disclosed.

発明の目的 したがって、この発明の目的は、超臨界蒸気圧縮回路
において、システムの最適操作とエネルギ消費を最小と
するするために高サイド圧力を調節する新しい簡単な方
法と装置とを提供することである。
OBJECTS OF THE INVENTION Accordingly, it is an object of the present invention to provide a new and simple method and apparatus for adjusting high side pressure in a supercritical vapor compression circuit to optimize system operation and minimize energy consumption. is there.

発明の要約 この発明の上述の目的およびその他の目的は、超臨界
蒸気圧縮回路において、検出される実際の回路の操作条
件と対応する最適の高サイド圧力の予定数値の適用に基
づく、絞り弁の操作方法を提供することによって達成さ
れる。この発明の好適な実施例において、操作状態の検
出は気体クーラ(凝縮器)の出口またはその近くにおけ
る温度の測定によってなされ、絞り弁の開度は予定され
た設定圧力に対して調整される。
SUMMARY OF THE INVENTION The above and other objects of the present invention are directed to a throttle valve in a supercritical vapor compression circuit based on the application of a predetermined value of the optimal high side pressure corresponding to the actual circuit operating conditions detected. This is achieved by providing a method of operation. In a preferred embodiment of the invention, the detection of the operating state is made by measuring the temperature at or near the outlet of the gas cooler (condenser), the opening of the throttle valve being adjusted to a predetermined set pressure.

図面の簡単な説明 この発明は、好適な実施例と図面を参照してより詳細
に説明される。
BRIEF DESCRIPTION OF THE DRAWINGS The present invention will be described in more detail with reference to preferred embodiments and drawings.

図1は、一定の蒸発温度と気体クーラ(凝縮器)出口
の冷媒温度において、超臨界蒸気圧縮回路の高サイド圧
力を変化させる際の、冷却能力(Q0)と、コンプレッサ
の出力(P)と、そしてそれらの比(COP)との間の論
理的な関係を示すグラフである。
FIG. 1 shows the cooling capacity (Q 0 ) and the output (P) of the compressor when changing the high side pressure of the supercritical vapor compression circuit at a constant evaporation temperature and a refrigerant temperature at the outlet of the gas cooler (condenser). FIG. 4 is a graph showing the logical relationship between and and their ratio (COP).

図2は、冷却能力とコンプレッサの出力との間の最大
割合を提供する最適高サイド圧力と、3つの異なる蒸発
温度における気体クーラ(凝縮器)の出口の冷媒温度と
の間の論理的な関係を示すグラフである。
FIG. 2 shows the logical relationship between the optimal high side pressure, which provides the maximum ratio between the cooling capacity and the compressor output, and the refrigerant temperature at the outlet of the gas cooler (condenser) at three different evaporation temperatures. FIG.

図3は、この発明の好適な実施例に従って構成された
超臨界蒸気圧縮回路を概略的に表したものである。
FIG. 3 schematically illustrates a supercritical vapor compression circuit constructed in accordance with a preferred embodiment of the present invention.

発明の詳細な説明 超臨界回路(高サイドで臨界圧力にまで圧縮された冷
媒で操作される。)のよく知られた特性は、冷凍能力と
使用されるコンプレッサの出力との比として定義される
性能係数COPを、気体クーラ(凝縮器)出口の冷媒温度
が大体一定に保たれる時に、高サイド圧力を増加させる
ことによって上昇させられることである。しかしなが
ら、COPは、ある水準にまでだけ高サイド圧力の増加に
対して上昇させられるが、特別の冷凍効果が特別の圧縮
作用をもはや充分に補償しなくなると、衰退し始めるも
のである。
DETAILED DESCRIPTION OF THE INVENTION A well-known property of a supercritical circuit (operated with refrigerant compressed to a critical pressure on the high side) is defined as the ratio of refrigeration capacity to the power of the compressor used. The coefficient of performance COP is to be increased by increasing the high side pressure when the refrigerant temperature at the gas cooler (condenser) outlet is kept approximately constant. However, the COP is only raised to a certain level for high side pressure increases, but begins to decay when the special refrigeration effect no longer fully compensates for the special compression action.

かくして、例えば、蒸発温度や気体クーラ(凝縮器)
の出口における冷媒温度よって特定される実際の操作状
態のそれぞれのセットに対し、高サイド圧力の関数とし
ての冷却能力(Q0)、コンプレッサ出力(P)およびそ
れらの比(COP)を示すグラフを提供することができ
る。図1には、論理的な回路計算に基づく、一定の蒸発
温度および気体クーラ(凝縮器)の出口温度において、
CO2冷媒に生じるような線図が示されている。図1の
p′に相当するある高サイド圧力において、比(COP)
は示されるように最大に達する。
Thus, for example, the evaporation temperature and the gas cooler (condenser)
Is a graph showing the cooling capacity (Q 0 ), compressor power (P) and their ratio (COP) as a function of high side pressure for each set of actual operating conditions specified by the refrigerant temperature at the outlet of Can be provided. FIG. 1 shows that at a constant evaporation temperature and a gas cooler (condenser) outlet temperature based on a logical circuit calculation,
A diagram such as occurs for a CO 2 refrigerant is shown. At some high side pressure corresponding to p 'in FIG. 1, the ratio (COP)
Reaches a maximum as shown.

このような結果を組み合わせることによって、すなわ
ち、操作状態が変化する際に、最大のCOP(p′)を提
供する、気体クーラ(凝縮器)出口の冷媒温度、蒸発温
度および高サイド圧力の新しいデータのセットが、図2
に示されるように提供され、これらは絞り弁の操作方法
に適用されることができる。この線図にしたがって高サ
イド圧力を調節することによって、冷凍能力とコンプレ
ッサ出力との間の最大比が常に維持されるであろう。
By combining these results, i.e., when operating conditions change, new data on refrigerant temperature, evaporating temperature and high side pressure at the gas cooler (condenser) outlet providing the maximum COP (p ') Set of Figure 2
And these can be applied to the method of operating the throttle valve. By adjusting the high side pressure according to this diagram, the maximum ratio between refrigeration capacity and compressor output will always be maintained.

最大の荷重状態の下で、必要とされるコンプレッサ容
積を制限し、それによって資本コスト全体のエネルギ消
費を制限するために、ある短い時間最大COPに相当する
レベル以上の排出圧力でシステムを操作することが便宜
的に行われる。しかしながら、低い荷重状態において
は、所定の最適水準に対する高サイド圧力の減少と分離
制御システムによって行われる能力調整は最小のエネル
ギ消費を提供するだろう。
Under maximum load conditions, operate the system at a discharge pressure above the level corresponding to the maximum COP for a short period of time to limit the required compressor volume and thereby the energy consumption of the overall capital cost This is done for convenience. However, at low load conditions, the reduction of high side pressure to a predetermined optimal level and the capacity adjustments made by the isolation control system will provide the least energy consumption.

変化する蒸発温度は気体クーラ(凝縮器)の出口の冷
媒温度においてのみお顕著な影響を有するので、この影
響は実行上では無視することができる。かくして、気体
クーラ(凝縮器)の出口で検出される冷媒温度や、ある
他の温度やこれに相当するパラメータ(例えば、冷却用
水入口温度、周囲の空気温度、冷却用または加熱用荷
重)は、絞り弁の入力としてのたった一つの顕著な操作
パラメータである。
This effect can be neglected in practice, since the changing evaporation temperature only has a significant effect on the refrigerant temperature at the outlet of the gas cooler (condenser). Thus, the refrigerant temperature detected at the outlet of the gas cooler (condenser) and certain other temperatures and corresponding parameters (eg, cooling water inlet temperature, ambient air temperature, cooling or heating load) There is only one significant operating parameter as input to the throttle valve.

絞り弁としての背圧制御器の使用は、冷媒質量流れや
密度の変化に対する内部補償においてある利益を与える
だろう。背圧制御を有する絞り弁は、冷媒質量の流れや
入口冷媒温度にかかわらず、入口圧力、すなわち設定点
における高サイド圧力に保たれるだろう。背圧制御器の
設定点は、上記に示した所定の制御計画に従ってアクチ
ュエータの操作によって調節される。
The use of a back pressure controller as a throttle will provide certain benefits in internal compensation for changes in refrigerant mass flow and density. A throttle valve with back pressure control will be maintained at the inlet pressure, ie, the high side pressure at the set point, regardless of the flow of the refrigerant mass or the inlet refrigerant temperature. The set point of the back pressure controller is adjusted by operating the actuator in accordance with the predetermined control scheme set forth above.

例1 図3は超臨界冷凍回路の好適な実施例を示しており、
気体クーラ(凝縮器)11に直列に接続されているコンプ
レッサ10と、内部向流熱交換器12および絞り弁13からな
っている。蒸発器14および低圧液体レシーバ16は絞り弁
とコンプレッサの中間に接続されている。気体クーラ
(凝縮器)の出口の温度センサ5は、回路の操作状態に
関する情報を制御システム7すなわちマイクロプロセッ
サに提供する。絞り弁13はアクチュエータ9に備えら
れ、その弁の位置は制御システムによって特徴とされる
所定の設定点圧力に従って自動的に調節される。
Example 1 FIG. 3 shows a preferred embodiment of the supercritical refrigeration circuit,
It comprises a compressor 10 connected in series to a gas cooler (condenser) 11, an internal countercurrent heat exchanger 12 and a throttle valve 13. The evaporator 14 and the low-pressure liquid receiver 16 are connected between the throttle valve and the compressor. A temperature sensor 5 at the outlet of the gas cooler (condenser) provides information on the operating state of the circuit to the control system 7 or microprocessor. The throttle valve 13 is provided on the actuator 9 and its position is automatically adjusted according to a predetermined set point pressure characterized by the control system.

例2 図3を参照するに、回路には、例1に示されるような
絞り弁に対するマイククロプロセッサや電子的制御機器
の使用を排除した、簡単な機械的背圧力制御器による絞
り弁13が設けられている。調節器には、気体クーラの冷
媒出口またはその近くの位置に温度センサ5としてのバ
ルブが備えられている。
EXAMPLE 2 Referring to FIG. 3, the circuit includes a simple mechanical back pressure controller throttle valve 13 which eliminates the use of a microprocessor or electronic control for the throttle valve as shown in Example 1. Is provided. The controller is provided with a valve as a temperature sensor 5 at or near the refrigerant outlet of the gas cooler.

薄膜の装置を通して、温度センサであるバルブからの
もたらされる圧力は、気体クーラ(凝縮器)出口の冷媒
温度に従って背圧制御器の設定点を機械的に調節する。
スプリング力と温度センサ5の出力を調整することによ
って、実際の調節範囲における温度と圧力の間の適切な
関係を得ることができる。
Through the membrane device, the pressure provided by the temperature sensor valve mechanically adjusts the back pressure controller set point according to the refrigerant temperature at the gas cooler (condenser) outlet.
By adjusting the spring force and the output of the temperature sensor 5, an appropriate relationship between temperature and pressure in the actual adjustment range can be obtained.

例3 回路は例1または例2に記載された絞り弁制御の概念
の一つに基づくが、温度センサや温度センサ用バルブを
気体クーラ(凝縮器)の冷媒出口に配置する代わりに、
センサや温度センサ用バルブは熱が排除されている冷却
剤の入口温度を測定するものである。向流熱交換器によ
って気体クーラ(凝縮器)の冷媒出口温度と冷却剤の入
口温度との間には関係があり、冷媒出口の温度は冷却剤
入口温度に密接に従っている。
Example 3 The circuit is based on one of the throttle valve concepts described in Example 1 or Example 2, but instead of arranging a temperature sensor or a temperature sensor valve at the refrigerant outlet of the gas cooler (condenser),
Sensors and temperature sensor valves measure the inlet temperature of the coolant from which heat has been removed. Due to the countercurrent heat exchanger, there is a relationship between the refrigerant outlet temperature of the gas cooler (condenser) and the coolant inlet temperature, the temperature of the coolant outlet closely following the coolant inlet temperature.

この発明は、図面による例示や説明そして好適な実施
例の条件での前述の説明でなされてきたが、交換や変更
は添付の請求の範囲に記載されるような発明の精神ある
いは範囲を離れることなくその中でなし得ることが明ら
かである。かくして、例えば、例1および2で説明され
た概念において、温度センサあるいはバルブはシステム
の所望の冷却容量や加熱容量の信号表示によって置き換
えられることができる。周囲の温度と荷重との間の対応
によって、この信号は調節用絞り弁の設定圧力のための
基礎として役立てることができる。
While this invention has been illustrated and described with reference to the drawings and the foregoing description with reference to preferred embodiments, changes and modifications may depart from the spirit or scope of the invention as set forth in the appended claims. It is clear what can be done in it. Thus, for example, in the concepts described in Examples 1 and 2, the temperature sensor or valve could be replaced by a signal indication of the desired cooling or heating capacity of the system. Due to the correspondence between ambient temperature and load, this signal can serve as a basis for the set pressure of the regulating throttle.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−120056(JP,A) 特表 平3−503206(JP,A) 米国特許3638446(US,A) (58)調査した分野(Int.Cl.6,DB名) F25B 1/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-58-120056 (JP, A) JP-A-3-503206 (JP, A) US Patent 3,638,446 (US, A) (58) Fields investigated (Int) .Cl. 6 , DB name) F25B 1/00

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】回路を構成するように直列に接続された、
コンプレッサと、ガスクーラと、内部熱交換器と、膨張
手段と、蒸発器および低圧冷媒レシーバとからなり、超
臨界高サイド圧力で操作する超臨界蒸気圧縮回路におけ
る高サイド圧力調節方法において、回路の実際の操作状
態の少なくとも一つを検出し、所定の能力要求において
装置のエネルギ消費を最小とするために、予定の設定値
に従って超臨界高サイド圧力を調整する段階からなる高
サイド圧力調節方法。
1. A circuit connected in series to form a circuit,
In a high-side pressure regulation method in a supercritical vapor compression circuit comprising a compressor, a gas cooler, an internal heat exchanger, an expansion means, an evaporator and a low-pressure refrigerant receiver and operating at a supercritical high side pressure, the actual circuit Detecting the at least one of the operating conditions of the above and adjusting the supercritical high side pressure according to a predetermined set value in order to minimize the energy consumption of the device at a predetermined capacity requirement.
【請求項2】前記超臨界高サイド圧力の調整が絞り弁の
開度の調整によって行われることを特徴とする請求項1
記載の方法。
2. The supercritical high side pressure is adjusted by adjusting an opening of a throttle valve.
The described method.
【請求項3】回路を構成するように直列に接続された、
コンプレッサと、ガスクーラと、内部熱交換器と、膨張
手段と、蒸発器および低圧冷媒レシーバとからなり、超
臨界高サイド圧力で操作する超臨界蒸気圧縮回路におけ
る高サイド圧力調節方法において、回路の実際の操作状
態の少なくとも一つを検出し、所定の能力要求において
装置のエネルギ消費を最小とするために、予定の設定値
に従って絞り弁の開度を調整する段階からなる高サイド
圧力調節方法。
3. The method of claim 2, wherein the circuits are connected in series to form a circuit.
In a high-side pressure regulation method in a supercritical vapor compression circuit comprising a compressor, a gas cooler, an internal heat exchanger, an expansion means, an evaporator and a low-pressure refrigerant receiver and operating at a supercritical high side pressure, the actual circuit And adjusting the opening of the throttle valve according to a predetermined set value in order to detect at least one of the operating states of the above and to minimize the energy consumption of the apparatus at a predetermined capacity requirement.
【請求項4】前記操作状態の検出が、ガスクーラの出口
の近くの冷媒温度の測定によって行われることを特徴と
する請求項1から3のいずれか1項に記載の方法。
4. The method according to claim 1, wherein the detection of the operating state is performed by measuring a refrigerant temperature near an outlet of the gas cooler.
【請求項5】冷媒として二酸化炭素を使用することを特
徴とする請求項1から4のいずれか1項に記載の方法。
5. The method according to claim 1, wherein carbon dioxide is used as the refrigerant.
【請求項6】回路を構成するように直列に接続された、
コンプレッサ(10)と、ガスクーラ(11)と、内部熱交
換器(12)と、絞り弁(13)と、蒸発器(14)および低
圧冷媒レシーバ(16)とからなり、高サイドにおいて超
臨界圧力で操作される蒸気圧縮回路において、さらに、
回路の少なくとも一つの操作状態を検出する検出手段
(5)と、予定の高圧の設定値に従って、検出される操
作条件の関数として絞り弁の開度を制御することによっ
て超臨界高サイドの圧力を調節するために、前記検出手
段(5)と絞り弁とに接続された制御手段(9)とから
なることを特徴とする蒸気圧縮回路。
6. A circuit connected in series to form a circuit.
It consists of a compressor (10), a gas cooler (11), an internal heat exchanger (12), a throttle valve (13), an evaporator (14) and a low-pressure refrigerant receiver (16). In the vapor compression circuit operated by
Detecting means (5) for detecting at least one operating state of the circuit, and controlling the opening of the throttle valve as a function of the operating conditions to be detected, in accordance with a predetermined high pressure setpoint, thereby controlling the pressure on the supercritical high side. A vapor compression circuit, characterized by comprising control means (9) connected to said detection means (5) and a throttle valve for adjusting.
【請求項7】前記検出手段(5)がガスクーラの出口近
くの冷媒温度を表すパラメータを測定する測定手段から
なることを特徴とする請求項6記載の蒸気圧縮回路。
7. The vapor compression circuit according to claim 6, wherein said detecting means comprises measuring means for measuring a parameter representing a refrigerant temperature near an outlet of the gas cooler.
【請求項8】前記絞り弁(13)が、マイクロプロセッサ
(7)によって電気的に制御された可変設定値を有する
背圧制御装置であるところの請求項6または7のいずれ
かに記載の蒸気圧縮回路。
8. Steam according to claim 6, wherein said throttle valve (13) is a back pressure control device having a variable set value electrically controlled by a microprocessor (7). Compression circuit.
【請求項9】前記絞り弁(13)が、ガスクーラの冷媒出
口またはその近くに置かれるか、または、回路の操作状
態を表す温度を有する別の場所に置かれた温度検出用バ
ルブと、その温度検出用バルブの温度に対して所望の関
係にある背圧制御装置の設定値を調節する薄膜装置とか
らなる可変設定値を有する背圧制御装置であるところの
請求項6記載の蒸気圧縮回路。
9. A temperature sensing valve, wherein the throttle valve (13) is located at or near the refrigerant outlet of the gas cooler or at another location having a temperature representative of the operating condition of the circuit. 7. The vapor compression circuit according to claim 6, wherein the back pressure control device has a variable set value comprising a thin film device for adjusting a set value of the back pressure control device having a desired relationship with the temperature of the temperature detection valve. .
JP3515570A 1991-09-16 1991-09-16 High side pressure regulation method in supercritical vapor compression circuit Expired - Fee Related JP2931668B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/NO1991/000119 WO1993006423A1 (en) 1991-09-16 1991-09-16 Method of high-side pressure regulation in transcritical vapor compression cycle device

Publications (2)

Publication Number Publication Date
JPH06510111A JPH06510111A (en) 1994-11-10
JP2931668B2 true JP2931668B2 (en) 1999-08-09

Family

ID=19907665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3515570A Expired - Fee Related JP2931668B2 (en) 1991-09-16 1991-09-16 High side pressure regulation method in supercritical vapor compression circuit

Country Status (13)

Country Link
EP (1) EP0604417B1 (en)
JP (1) JP2931668B2 (en)
KR (1) KR100245958B1 (en)
AT (1) ATE137009T1 (en)
AU (1) AU669473B2 (en)
BR (1) BR9107318A (en)
CA (1) CA2119015C (en)
DE (1) DE69118924T2 (en)
DK (1) DK0604417T3 (en)
ES (1) ES2088502T3 (en)
NO (1) NO180603C (en)
RU (1) RU2088865C1 (en)
WO (1) WO1993006423A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6895769B2 (en) 2003-02-03 2005-05-24 Calsonic Kansei Corporation Air conditioning apparatus using supercritical refrigerant for vehicle
US7302807B2 (en) 2002-03-28 2007-12-04 Matsushita Electric Industrial Co., Ltd. Refrigerating cycle device
JP2013124802A (en) * 2011-12-14 2013-06-24 Panasonic Corp Refrigeration cycle apparatus

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO175830C (en) * 1992-12-11 1994-12-14 Sinvent As Kompresjonskjölesystem
DE4432272C2 (en) * 1994-09-09 1997-05-15 Daimler Benz Ag Method for operating a refrigeration system for air conditioning vehicles and a refrigeration system for performing the same
NO970066D0 (en) * 1997-01-08 1997-01-08 Norild As Cooling system with closed circulation circuit
JPH1163694A (en) * 1997-08-21 1999-03-05 Zexel Corp Refrigeration cycle
JP3365273B2 (en) * 1997-09-25 2003-01-08 株式会社デンソー Refrigeration cycle
US6206652B1 (en) 1998-08-25 2001-03-27 Copeland Corporation Compressor capacity modulation
US6105386A (en) * 1997-11-06 2000-08-22 Denso Corporation Supercritical refrigerating apparatus
JP4196450B2 (en) * 1997-11-06 2008-12-17 株式会社デンソー Supercritical refrigeration cycle
JPH11211250A (en) * 1998-01-21 1999-08-06 Denso Corp Supercritical freezing cycle
JP3900669B2 (en) 1998-04-16 2007-04-04 株式会社豊田自動織機 Control valve and variable displacement compressor
JP4075129B2 (en) 1998-04-16 2008-04-16 株式会社豊田自動織機 Control method of cooling device
JP3861451B2 (en) 1998-04-20 2006-12-20 株式会社デンソー Supercritical refrigeration cycle
FR2779216B1 (en) 1998-05-28 2000-08-04 Valeo Climatisation VEHICLE AIR CONDITIONING DEVICE USING A SUPERCRITICAL REFRIGERANT FLUID
FR2779215B1 (en) 1998-05-28 2000-08-04 Valeo Climatisation AIR CONDITIONING CIRCUIT USING A SUPERCRITICAL REFRIGERANT FLUID, PARTICULARLY FOR VEHICLE
DE19829335C2 (en) * 1998-07-01 2000-06-08 Kki Klima-, Kaelte- Und Industrieanlagen Schmitt Kg Refrigeration system
DE19832480A1 (en) * 1998-07-20 2000-01-27 Behr Gmbh & Co Vehicle air conditioning system with carbon dioxide working fluid is designed for limited variation in efficiency over a given range of high pressure deviation, avoiding need for controls on high pressure side
JP4207340B2 (en) * 1999-03-15 2009-01-14 株式会社デンソー Refrigeration cycle
JP2000320910A (en) * 1999-05-11 2000-11-24 Bosch Automotive Systems Corp Control method for freezing cycle and freezing cycle using this method
JP2000346472A (en) 1999-06-08 2000-12-15 Mitsubishi Heavy Ind Ltd Supercritical steam compression cycle
WO2001006183A1 (en) * 1999-07-16 2001-01-25 Zexel Valeo Climate Control Corporation Refrigerating cycle
JP2001033115A (en) * 1999-07-16 2001-02-09 Zexel Valeo Climate Control Corp Refrigeration cycle
FR2796595B1 (en) * 1999-07-22 2001-09-28 Valeo Climatisation REGULATOR DEVICE FOR AIR CONDITIONING CIRCUIT, PARTICULARLY A MOTOR VEHICLE
JP2001174076A (en) * 1999-10-08 2001-06-29 Zexel Valeo Climate Control Corp Refrigeration cycle
JP3838008B2 (en) * 2000-09-06 2006-10-25 松下電器産業株式会社 Refrigeration cycle equipment
US6523365B2 (en) * 2000-12-29 2003-02-25 Visteon Global Technologies, Inc. Accumulator with internal heat exchanger
NO20014258D0 (en) * 2001-09-03 2001-09-03 Sinvent As Cooling and heating system
US6568199B1 (en) 2002-01-22 2003-05-27 Carrier Corporation Method for optimizing coefficient of performance in a transcritical vapor compression system
JP2003294338A (en) * 2002-03-29 2003-10-15 Japan Climate Systems Corp Heat exchanger
DE10337136A1 (en) * 2003-08-11 2005-03-24 Behr Gmbh & Co. Kg Air conditioning and method for controlling the heating power of the same
US6923011B2 (en) 2003-09-02 2005-08-02 Tecumseh Products Company Multi-stage vapor compression system with intermediate pressure vessel
US6959557B2 (en) 2003-09-02 2005-11-01 Tecumseh Products Company Apparatus for the storage and controlled delivery of fluids
US7096679B2 (en) 2003-12-23 2006-08-29 Tecumseh Products Company Transcritical vapor compression system and method of operating including refrigerant storage tank and non-variable expansion device
DE102004015297A1 (en) * 2004-03-29 2005-11-03 Andreas Bangheri Apparatus and method for cyclic vapor compression
JP4179231B2 (en) 2004-06-09 2008-11-12 株式会社デンソー Pressure control valve and vapor compression refrigeration cycle
JP4613526B2 (en) * 2004-06-23 2011-01-19 株式会社デンソー Supercritical heat pump cycle equipment
JP2008530501A (en) 2005-02-18 2008-08-07 キャリア コーポレイション A method for controlling high pressure in a cooling circuit operating intermittently in supercriticality.
DE102005044029B3 (en) * 2005-09-14 2007-03-22 Stiebel Eltron Gmbh & Co. Kg Heat pump for heating water for heating purposes comprises a coolant circuit operated in the supercritical region and having a de-super heater, a vaporizer, a compressor and a throttle valve and a control unit
JP2007139342A (en) * 2005-11-21 2007-06-07 Mitsubishi Heavy Ind Ltd Air conditioner and pressure control valve for the same
JP2008064439A (en) * 2006-09-11 2008-03-21 Daikin Ind Ltd Air conditioner
US8157538B2 (en) 2007-07-23 2012-04-17 Emerson Climate Technologies, Inc. Capacity modulation system for compressor and method
CA2749562C (en) 2009-01-27 2014-06-10 Emerson Climate Technologies, Inc. Unloader system and method for a compressor
US10378533B2 (en) 2011-12-06 2019-08-13 Bitzer Us, Inc. Control for compressor unloading system
EP2951512B1 (en) * 2013-01-31 2022-03-30 Carrier Corporation Multi-compartment transport refrigeration system with economizer
CN112432376B (en) * 2020-11-24 2021-09-03 同济大学 Carbon dioxide refrigerating and freezing system and intelligent switching-mixing control method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1591302A (en) * 1925-06-09 1926-07-06 William S Franklin Automatic expansion valve for refrigerating systems
US3413815A (en) * 1966-05-02 1968-12-03 American Gas Ass Heat-actuated regenerative compressor for refrigerating systems
US3400555A (en) * 1966-05-02 1968-09-10 American Gas Ass Refrigeration system employing heat actuated compressor
US3638446A (en) * 1969-06-27 1972-02-01 Robert T Palmer Low ambient control of subcooling control valve
GB1544804A (en) * 1977-05-02 1979-04-25 Commercial Refrigeration Ltd Apparatus for and methods of transferring heat between bodies of fluid or other substance
SE463533B (en) * 1987-04-13 1990-12-03 Handelsbolaget Heliovent Arrangement for temperature-based refrigerant control in a heat pump
NO890076D0 (en) * 1989-01-09 1989-01-09 Sinvent As AIR CONDITIONING.
US5042262A (en) * 1990-05-08 1991-08-27 Liquid Carbonic Corporation Food freezer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7302807B2 (en) 2002-03-28 2007-12-04 Matsushita Electric Industrial Co., Ltd. Refrigerating cycle device
US6895769B2 (en) 2003-02-03 2005-05-24 Calsonic Kansei Corporation Air conditioning apparatus using supercritical refrigerant for vehicle
JP2013124802A (en) * 2011-12-14 2013-06-24 Panasonic Corp Refrigeration cycle apparatus

Also Published As

Publication number Publication date
DE69118924T2 (en) 1996-11-21
CA2119015A1 (en) 1993-04-01
BR9107318A (en) 1995-11-07
KR100245958B1 (en) 2000-04-01
NO180603B (en) 1997-02-03
NO940936L (en) 1994-03-16
CA2119015C (en) 2002-07-09
RU94030805A (en) 1997-04-20
RU2088865C1 (en) 1997-08-27
NO180603C (en) 1997-05-14
DE69118924D1 (en) 1996-05-23
EP0604417A1 (en) 1994-07-06
WO1993006423A1 (en) 1993-04-01
JPH06510111A (en) 1994-11-10
DK0604417T3 (en) 1996-08-26
AU8530191A (en) 1993-04-27
AU669473B2 (en) 1996-06-13
EP0604417B1 (en) 1996-04-17
NO940936D0 (en) 1994-03-16
ATE137009T1 (en) 1996-05-15
ES2088502T3 (en) 1996-08-16

Similar Documents

Publication Publication Date Title
JP2931668B2 (en) High side pressure regulation method in supercritical vapor compression circuit
US8096141B2 (en) Superheat control by pressure ratio
KR100405986B1 (en) Air conditioning system and method
KR100755160B1 (en) Control of refrigeration system
US6829903B2 (en) Air conditioner and method for operating air conditioner in cooling mode
JP3492849B2 (en) Vehicle air conditioner
JP4758705B2 (en) Air conditioner for vehicles
US6843066B2 (en) Air conditioning system and method for controlling the same
JP2007100699A (en) Method of controlling variable capacity compressor of air conditioner
EP1329677B1 (en) Transcritical vapor compression system
US20060230773A1 (en) Method for determining optimal coefficient of performance in a transcritical vapor compression system
CN108224823A (en) Full load air-conditioning device and its control method
KR20080089967A (en) Air conditioner of controlling method
US11959676B2 (en) Method for controlling a vapour compression system at a reduced suction pressure
JPWO2003036184A1 (en) Variable displacement compressor control device and refrigeration cycle variable displacement control device
JP3021987B2 (en) Refrigeration equipment
Keir et al. Improving energy efficiency in automotive vapor compression cycles through advanced control design
JP2646917B2 (en) Refrigeration equipment
JP2922925B2 (en) Refrigeration equipment
KR100965983B1 (en) Air conditioning device
JP2769423B2 (en) Refrigeration device temperature control method and device
KR100676257B1 (en) Method of controlling a cooling apparatus
CN115981389A (en) Control method and device of temperature regulating system and environmental test chamber
JPH07305901A (en) Freezer
KR20080059911A (en) Air conditioner and the controlling method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S202 Request for registration of non-exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R315201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees