DE69412019T2 - Verfahren zur Herstellung von Kohlenmonoxid und Wasserstoff - Google Patents
Verfahren zur Herstellung von Kohlenmonoxid und WasserstoffInfo
- Publication number
- DE69412019T2 DE69412019T2 DE69412019T DE69412019T DE69412019T2 DE 69412019 T2 DE69412019 T2 DE 69412019T2 DE 69412019 T DE69412019 T DE 69412019T DE 69412019 T DE69412019 T DE 69412019T DE 69412019 T2 DE69412019 T2 DE 69412019T2
- Authority
- DE
- Germany
- Prior art keywords
- catalyst
- process according
- feedstock
- oxygen
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 69
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 title claims abstract description 23
- 229910002091 carbon monoxide Inorganic materials 0.000 title claims abstract description 23
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 23
- 239000001257 hydrogen Substances 0.000 title claims abstract description 23
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 title description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 100
- 239000003054 catalyst Substances 0.000 claims abstract description 55
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 50
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 49
- 239000007789 gas Substances 0.000 claims abstract description 47
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 39
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 39
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 29
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000001301 oxygen Substances 0.000 claims abstract description 25
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 25
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 20
- 230000003647 oxidation Effects 0.000 claims abstract description 18
- 229910052751 metal Inorganic materials 0.000 claims abstract description 14
- 239000002184 metal Substances 0.000 claims abstract description 14
- 230000000737 periodic effect Effects 0.000 claims abstract description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 56
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 14
- 229910052703 rhodium Inorganic materials 0.000 claims description 12
- 239000010948 rhodium Substances 0.000 claims description 12
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 12
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- 229910052741 iridium Inorganic materials 0.000 claims description 8
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 8
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 7
- 229910052707 ruthenium Inorganic materials 0.000 claims description 7
- 239000006260 foam Substances 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- 239000003345 natural gas Substances 0.000 claims description 5
- 229910052763 palladium Inorganic materials 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 5
- 239000000919 ceramic Substances 0.000 claims description 4
- 229910052762 osmium Inorganic materials 0.000 claims description 3
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 description 32
- 239000000203 mixture Substances 0.000 description 25
- 230000015572 biosynthetic process Effects 0.000 description 11
- 238000002474 experimental method Methods 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 5
- 239000000376 reactant Substances 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000002407 reforming Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000006057 reforming reaction Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229910052770 Uranium Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- SONJTKJMTWTJCT-UHFFFAOYSA-K rhodium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Rh+3] SONJTKJMTWTJCT-UHFFFAOYSA-K 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910052716 thallium Inorganic materials 0.000 description 2
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 2
- DNYWZCXLKNTFFI-UHFFFAOYSA-N uranium Chemical compound [U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U] DNYWZCXLKNTFFI-UHFFFAOYSA-N 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 238000004616 Pyrometry Methods 0.000 description 1
- 229910021604 Rhodium(III) chloride Inorganic materials 0.000 description 1
- 101100311330 Schizosaccharomyces pombe (strain 972 / ATCC 24843) uap56 gene Proteins 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 101150018444 sub2 gene Proteins 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/36—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/386—Catalytic partial combustion
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/40—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/025—Processes for making hydrogen or synthesis gas containing a partial oxidation step
- C01B2203/0261—Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/06—Integration with other chemical processes
- C01B2203/061—Methanol production
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/06—Integration with other chemical processes
- C01B2203/062—Hydrocarbon production, e.g. Fischer-Tropsch process
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1005—Arrangement or shape of catalyst
- C01B2203/1011—Packed bed of catalytic structures, e.g. particles, packing elements
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1005—Arrangement or shape of catalyst
- C01B2203/1029—Catalysts in the form of a foam
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
- C01B2203/1064—Platinum group metal catalysts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1082—Composition of support materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1205—Composition of the feed
- C01B2203/1211—Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
- C01B2203/1235—Hydrocarbons
- C01B2203/1241—Natural gas or methane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Carbon And Carbon Compounds (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
- Die vorliegende Erfindung bezieht sich auf ein Verfahren zur Herstellung von Kohlenmonoxid und Wasserstoff durch partielle Oxidation eines Kohlenwasserstoffeinsatzmaterials, insbesondere eines Kohlenwasserstoffeinsatzmaterials mit einem Gehalt an Kohlendioxid.
- Die partielle Oxidation von Kohlenwasserstoffen, beispielsweise Methan oder Erdgas, in Anwesenheit eines Katalysators ist ein attraktiver Weg zur Herstellung von Gemischen aus Kohlenmonoxid und Wasserstoff, in der Technik bekannt als Synthesegas. Die partielle Oxidation eines Kohlenwasserstoffes ist eine stark exotherme Reaktion und läuft im Falle von Methan als Kohlenwasserstoff nach der folgenden Reaktion ab:
- 2CH&sub4; + O&sub2; → 2CO + 4H2
- Verfahren zur katalytischen partiellen Oxidation von Kohlenwasserstoffen, wie Methan, sind bekannt und in der Technik beschrieben. Beispielsweise haben D. A. Hickman und L. D. Schmidt ("Synthesis Gas Formation by Direct Oxidation of Methane over Pt Monoliths", Journal of Catalysis 138, 1992, S. 267 bis 282) Versuche mit der partiellen Oxidation von Methan in Gegenwart von Katalysatoren mit einem Gehalt an Platin oder Rhodium durchgeführt. Die verwendeten Katalysatoren lagen in Form einer polykristallinen Platinfolie oder als Rhodium oder Platin, aufgebracht auf einen keramischen Schaumträger, vor. Die partiellen Oxidationsreaktionen wurden bei im wesentlichen Atmosphärendruck, bei Temperaturen im Bereich von 600 bis 1500 K (337 bis 1237ºC) und unter Anwendung eines Bereichs von Gasströmungsgeschwindigkeiten durchgeführt. Die Versuche verwendeten ein aus Methan und Sauerstoff oder Luft bestehendes Gemisch als Einsatzmaterial. Die Versuche erzielten eine typische Methanumwandlung von 80% mit typischen Selektivitäten auf Kohlenmonoxid und Wasserstoff von 90% bzw. 50%.
- Weiters beschreiben P. D. F. Vernon et al ("Partial Oxidation of Methane to Synthesis Gas, and Carbon Dioxide as an Oxidising Agent for Methane Conversion", Catalysis Today, 13 (1992) 417 = 426) die partielle Oxidation von Methan durch Sauerstoff, um unter Verwendung der auf inerten Oxiden aufgebrachten Übergangsmetalle Nickel, Ruthenium, Rhodium, Palladium, Platin und Iridium Synthesegas zu ergeben.
- Geeignete Einsatzmaterialien zur Verwendung in dem katalytischen partiellen Oxidationsverfahren können neben einem Gehalt an Kohlenwasserstoffen wie Methan auch Kohlendioxid enthalten. Tatsächlich enthalten einige natürliche Gasvorkommen in beachtlichen Mengen Kohlendioxid. Demnach besteht ein Bedarf nach einem technischen Verfahren zur Umwandlung der vorstehend erwähnten Kohlenwasserstoffeinsatzmaterialen mit einem Gehalt an Kohlendioxid zu Gemischen aus Kohlenmonoxid und Wasserstoff.
- Das Reformieren von Kohlenwasserstoffen unter Anwendung von Kohlendioxid ist ein gut bekanntes Verfahren. Das Verfahren verläuft endotherm, was im Falle des Reformierens von Methan nach der folgenden Reaktion erfolgt:
- CH&sub4; + CO&sub2; → 2 CO + 2H2
- P.D.F. Vernon et al. beschreiben in der oben erwähnten Literaturstelle eine Reihe von Versuchen, die durchgeführt wurde, um das Reformieren von Methan unter Verwendung von Kohlendioxid in Gegenwart von Katalysatoren zu überprüfen, die auf einen Aluminiumoxidträger aufgebrachtes Nickel, Palladium, Ruthenium, Rhodium und Iridium umfassen.
- Schließlich schlagen P.D.F. Vernon et al in der gleichen Literaturstelle vor, die exotherme partielle Oxidationsreaktion mit der endothermen Kohlendioxidreformierungsreaktion zu kombinieren, um ein thermoneutrales Verfahren zu ergeben. Es werden Versuche beschrieben, worin ein Katalysator mit einem Gehalt an auf Aluminiumoxid aufgebrachtem Iridium verwendet wurde, um Einsatzgemische mit einem Bereich von Zusammensetzungen zu konvertieren. Ein hoher Umwandlungsgrad an Methan wurde in dem Verfahren erreicht, der mit der Ausbildung von sowohl Kohlenmonoxid als auch Wasserstoff in vernünftigen Ausbeuten einherging. Für Einsatzgemische mit einem Gehalt an Kohlendioxid in einer Konzentration von größer als 20% wurde ein hohes Ausmaß an Kohlendioxidumwandlung erzielt. Die in der Literaturstelle angegebebenen Daten zeigen jedoch, daß bei niedrigen Konzentrationen von Kohlendioxid im Einsatzgemisch nur ein sehr geringes Ausmaß an Kohlendioxidumwandlung erreichbar ist. Daraus wurde geschlossen, daß ausgezeichnete Ausbeuten an Synthesegas erzielt werden könnten, wenn Einsatzmaterialen mit einem Gehalt an Methan, Sauerstoff und Kohlendioxid in annähernd stöchiometrischen Mengen verwendet werden. Es werden zu den angewandten Reaktionsbedingungen bei den Versuchen keine Einzelheiten angegeben.
- Die internationale Patentanmeldung Veröffentlichungsnummer 92/11199 (WO 92/11199) beschreibt ein Verfahren zur Umwandlung eines Reaktantengasgemisches aus Kohlendioxid, Sauerstoff und Methan. Das Reaktantantengas wird mit einem Katalysator bei einer Temperatur von 600 bis 1000ºC in Kontakt gebracht, um ein Gemisch aus Kohlenmonoxid und Wasserstoff zu erzielen. Der Katalysator ist ein Feststoff mit der allgemeinen Formel MxM'y0z oder Mx0z oder M'y0z oder M' auf einem geeigneten Träger. M in den Formeln ist wenigstens ein aus Lithium, Natrium, Kalium, Rubidium, Cäsium, Beryllium, Magnesium, Calcium, Strontium, Barium, Bor, Aluminium, Scandium, Yttrium, Gallium, Indium, Thallium, Bismuth, Uran, Thorium, Blei und den Lanthaniden ausgewähltes Metall. M' in den Formeln ist wenigstens ein aus Titan, Vanadium, Chrom, Mangan, Eisen, Kobalt, Nickel, Kupfer, Zink, Gallium, Germanium, Yttrium, Zirkon, Niobium, Molybdän, Ruthenium, Rhodium, Palladium, Gold, Cadmium, Indium, Zinn, Hafnium, Tantal, Wolfram, Rhenium, Osmium, Iridium, Platin, Silber, Quecksilber, Tellur, Blei, Bismuth, Thallium und Uran ausgewähltes Metall.
- In WO 92/11199 wird angegeben, daß eine thermisch neutrale Umsetzung erzielt werden kann, wenn das Verhältnis von Kohlendioxid zu Sauerstoff im Reaktantengas etwa 1 zu 6 beträgt. In einer bevorzugten Ausführungsform wird das Verfahren mit einem Überschuß an Kohlendioxid im Reaktantengas betrieben. Auf diese Weise soll die Ausbildung von Kohlenstoff unterdrückt werden, was die Anwendung von billigeren Katalysatoren ermöglicht. Versuche werden in WO 92/11199 beschrieben, worin eine Reihe von Katalysatoren getestet wird. Die Versuche wurden bei 0,1 MPa (1 bar) und bei Temperaturen von bis zu 1050 K (777ºC) durchgeführt. Die in der Umwandlung von Gemischen aus Methan, Kohlendioxid und Sauerstoff getesteten Katalysatoren erzielten nur sehr geringe Umwandlungsgrade von Kohlendioxid, wenn Einsatzmaterialen mit nur einem kleinen Anteil Kohlendioxid verwendet werden. Außerdem zeigen die in WO 92/11199 geoffenbarten Werte, daß der Grad der Kohlenwasserstoffumwandlung und die Selektivität auf Kohlenmonoxid und Wasserstoff, die im Verfahren er reicht wurden, abnimmt, wenn die Raumgeschwindigkeit der Gasströmung über den Katalysator erhöht wird.
- Um für eine Anwendung im kommerziellen Umfang geeignet zu sein, muß ein Verfahren zur Herstellung von Kohlenmonoxid und Wasserstoff aus einem Einsatzmaterial, das einen Kohlenwasserstoff und Kohlendioxid umfaßt, imstande sein, einen hohen Grad an Kohlendioxidumwandlung zu erzielen. Das Verfahren muß befähigt sein, mit einer kommerziell annehmbaren Gasdurchsatzgeschwindigkeit zu arbeiten. Es scheint sich daher aus den von P.D.F. Vernon et al. und in WO 92/11199 geoffenbarten Angaben und Informationen zu ergeben, daß eine katalytische partielle Oxidation für die Anwendung bei der Herstellung von Kohlenmonoxid und Wasserstoff aus Einsatzmaterialen, die Kohlenwasserstoffe und Kohlendioxid umfassen, in einem kommerziellen Ausmaß höchst ungeeignet ist.
- Überraschenderweise wurde nun gefunden, daß im Gegensatz zur zuvor diskutierten Lehre nach dem Stand der Technik ein Einsatzmaterial aus einem Gemisch aus einem Kohlenwasserstoff, Kohlendioxid und einem sauerstoffhältigen Gas durch die katalytische partielle Oxidation des Kohlenwasserstoffes unter Anwendung von sehr hohen stündlichen Raumgeschwindigkeiten in hoher Ausbeute zu einem Gemisch aus Kohlenmonoxid und Wasserstoff konvertiert werden kann. Völlig überraschend wurde gefunden, daß dieses Verfahren hohe Kohlendioxidumwandlungsgrade erzielen läßt, wenn Kohlendioxid im Einsatzmaterial nur in kleinen Mengen vorhanden ist.
- Demnach schafft die vorliegende Erfindung ein Verfahren zur Herstellung von Kohlenmonoxid und Wasserstoff durch partielle Oxidation eines Kohlenwasserstoffes, welches Verfahren ein Inkontaktbringen eines den Kohlenwasserstoff, Kohlendioxid in einer Konzentration größer als jener von Luft und bis zu 10 Vol.-% des Einsatzes und ein sauerstoffhältiges Gas umfassenden Einsatzmaterials mit einem Katalysator umfaßt, der ein aus der Gruppe VIII des Periodensystems der Elemente ausgewähltes Metall umfaßt, bei einer stündlichen Gasraumgeschwindkeit von mindestens 500.000 Nl/kg/h.
- Es ist ein höchst überraschender Aspekt der vorliegenden Erfindung, daß die zum Umwandeln des Kohlendioxids im Einsatzmaterial erforderlichen Kohlendioxidreformierungsreaktionen in der sehr kurzen Zeit erreicht werden können, in der das Einsatzmaterial mit den in diesem Verfahren herrschenden sehr hohen Raumgeschwindikeiten mit dem Katalysator in Kontakt kommt. Die Anwendung von sehr hohen Raumgeschwindigkeiten im Verfahren der vorliegenden Erfindung führt zu einer Reihe von bedeutentenden Vorteilen. Erstens ist es möglich, Gasgeschwindigkeiten anzuwenden, welche die Geschwindigkeit einer sich durch das Einsatzmaterial fortsetzenden Flamme überschreiten. Das senkt das Risiko von Explosionen, die bei Ausführung des Verfahrens aufgrund der Entzündung des Einsatzgemisches entstehen, und ermöglicht ein Vermischen der verschiedenen Komponenten des Einsatzmaterials vor dem Inkontaktbringen mit dem Katalysator. Zweitens ist bei derart hohen Raumgeschwindigkeiten die Zeit, während welcher das Einsatzmaterial mit dem Katalysator in Kontakt kommt, sehr kurz. Das senkt wiederum das Risiko, daß eine vollständige Oxidation des Kohlenwasserstoffes im Einsatzmaterial erfolgt. Eine vollständige Oxidation würde Kohlendioxid ergeben, welches ein Reformieren mit dem Kohlenwasserstoff erfordern würde, um das gewünschte Kohlenmonoxid und Wasserstoff zu erzielen. Solche Reformierungsreaktionen sind endotherm, wie oben erörtert, und werden vorzugsweise auf einem Minimum gehalten.
- Daher ist im Gegensatz zu den in der Technik geoffenbarten Verfahren das Verfahren der vorliegenden Erfindung besonders für eine Anwendung im technischen Umfang geeignet.
- Das Verfahren der vorliegenden Erfindung kann eingesetzt werden, um ein Gemisch aus Kohlenmonoxid und Wasserstoff aus einem beliebigen gasförmigen Kohlenwasserstoff oder einem Kohlenwasserstoffeinsatzmaterial mit einem niedrigen Siedepunkt herzustellen. Das Verfahren ist besonders geeignet für die partielle Oxidation von Methan, Erdgas, Begleitgas oder anderen Quellen von leichten Kohlenwasserstoffen. Im Hinblick darauf ist der Ausdruck "leichte Kohlenwasserstoffe" ein Hinweis auf Kohlenwasserstoffe mit 1 bis 5 Kohlenstoffatomen. Das Verfahren kann vorteilhaft bei der Umwandlung von Gas aus natürlich vorkommenden Methanvorkommen angewendet werden, welche eine erhebliche Menge Kohlendioxid enthalten.
- Das Einsatzmaterial umfaßt ein sauerstoffhältiges Gas. Luft ist zur Verwendung als sauerstoffhältiges Gas geeignet.
- Die Verwendung von im wesentlichen reinem Sauerstoff als sauerstoffhältiges Gas kann jedoch bevorzugt werden. Auf diese Weise wird die Notwendigkeit einer Handhabung eines großen Volumens Inertgas, beispielsweise Stickstoff bei Verwendung von Luft als sauerstoffhältigem Gas, vermieden.
- Das Einsatzmaterial kann zusätzlich Dampf umfassen.
- Das im Verfahren der vorliegenden Erfindung umzuwandelnde Einsatzmaterial sollte den Kohlenwasserstoff, Kohlendioxid und das sauerstoffhältige Gas in ausreichenden Mengen enthalten, um ein geeignetes Verhältnis Sauerstoff-zu-Kohlenstoff zu ergeben. Für die Zwecke der vorliegenden Beschreibung ist der Ausdruck "Verhältnis Sauerstoff-zu-Kohlenstoff" ein Hinweis auf das Verhältnis von im Einsatzmaterial vorhandenen Sauerstoffatomen zu den im Einsatzmaterial vorhandenen Kohlenstoffatomen. Die zur Bestimmung des Verhältnisses Sauerstoff-zu-Kohlenstoff relevanten Sauerstoffatome sind im Einsatzmaterial in Form von Kohlendioxidmolekülen und als Sauerstoffmoleküle im sauerstoffhältigen Gas vorhanden. Kohlenstoffatome sind im Einsatzmaterial in Form von Kohlenwasserstoffmolekülen und in Form von Kohlendioxidmolekülen vorhanden. Vorzugsweise umfaßt das Einsatzmaterial Kohlenwasserstoff, Kohlendioxid und das sauerstoffhältige Gas in Konzentrationen, die ausreichen, um ein Verhältnis Sauerstoff-zu-Kohlenstoff im Bereich von 0,6 bis 1,6, stärker bevorzugt im Bereich von 0,9 bis 1,5 zu ergeben. Stärker bevorzugt liegt das Verhältnis Sauerstoff-zu-Kohlenstoff im Bereich von 0,9 bis 1,4, wobei die Verhältnisse Sauerstoff-zu-Kohlenstoff in der Nähe des stöchiometrischen Verhältnisses von 1,0, d. h. in einem Bereich von 0,9 bis 1,3, besonders bevorzugt werden.
- Bei vielen Anwendungen ist das Kohlendioxid im Einsatzmaterial ein Begleiter des zu behandelnden Kohlenwasserstoffes. In solchen Fällen wird die Konzentration von Kohlendioxid im Einsatzmaterial zu dem Verfahren durch die Konzentration von Kohlendioxid in der Kohlenwasserstoffquelle bestimmt, beispielsweise Erdgas aus einem Gasvorkommen oder Begleitgas aus einem Ölvorkommen. Die für das Einsatzmaterial zum Verfahren zu verwendende Menge an sauerstoffhältigem Gas wird daher durch die Konzentration von Kohlendioxid, die im Einsatzmaterial vor handen ist, und durch das gewünschte Verhältnis Sauerstoff-zu- Kohlenstoff bestimmt.
- Wenn Dampf im Einsatzmaterial vorhanden ist, liegt das Verhältnis Dampf-zu-Kohlenstoff vorzugsweise im Bereich von über 0,0 bis 3,0, stärker bevorzugt von 0,0 bis 2,0.
- Der Kohlenwasserstoff, das Kohlendioxid, das sauerstoffhältige Gas und der Dampf, falls vorhanden, werden vorzugsweise vor dem Inkontaktbringen mit dem Katalysator gut vermischt. Wie zuvor erörtert, ist es ein Vorteil der vorliegenden Erfindung, daß die zuvor erwähnten Komponenten des Einsatzmaterials vor dem Katalysator ohne das Risiko einer sich ausbreitenden Flamme oder einer Explosion stromauf zum Katalysator oder einer anderen Zündquelle gut vermischt werden können.
- Das Verfahren der vorliegenden Erfindung kann bei jedem geeigneten Druck arbeiten. Das Verfahren wird jedoch vorzugsweise bei erhöhten Drücken betrieben, d. h. bei Drücken, die deutlich über dem Atmosphärendruck liegen. Das Verfahren kann bei Drücken im Bereich von bis zu 150 bara betrieben werden. Stärker bevorzugt wird das Verfahren bei Drücken im Bereich von 2 bis 125 bara, im speziellen von 2 bis 100 bara betrieben.
- Das Verfahren kann bei jeder geeigneten Temperatur betrieben werden. Unter den im Verfahren der vorliegenden Erfindung herrschenden bevorzugten Hochdruckbedingungen wird das Einsatzmaterial jedoch vorzugsweise mit dem Katalysator bei hohen Temperaturen in Kontakt gebracht, um den gewünschten Umwandlungsgrad zu erzielen. Demgemäß wird das Gemisch aus Kohlenwasserstoff, Kohlendioxid und sauerstoffhältigem Gas vorzugsweise mit dem Katalysator bei einer Temperatur über 800ºC, stärker bevorzugt bei einer Temperatur im Bereich von 900 bis 1400ºC, insbesondere von 1000 bis 1300ºC in Kontakt gebracht. Das Einsatzmaterial wird vorzugsweise vor dem Inkontaktbringen mit dem Katalysator vorerhitzt.
- Das Verfahren der vorliegenden Erfindung wird mit einer stündlichen Gasraumgeschwindigkeit (ausgedrückt als Normalliter Gas pro Kilogramm Katalysator pro Stunde) von wenigstens 500.000 l/kg/h (STP) betrieben. STP wird verwendet, um das Volumen bei Standardtemperatur und -druck anzugeben, d. h. 0ºC und 1 bar. Vorzugsweise liegt die stündliche Gasraumgeschwindigkeit (STP) im Bereich von 500.000 bis 50,000.000 l/kg/h, stärker bevorzugt von 750.000 bis 30,000.000 l/kg/h, im speziellen von 1,000.000 l/kg/h bis 20,000.000 l/kg/h.
- Der im Verfahren der vorliegenden Erfindung verwendete Katalysator umfaßt ein aus der Gruppe VIII des Periodensystems der Elemente ausgewähltes Metall. Hinweise in der vorliegenden Beschreibung auf das Periodensystem der Elemente beziehen sich auf die CAS-Version, wie sie im CRC-Handbook of Chemistry and Physics, 68. Ausgabe, veröffentlicht wurde. Bevorzugte Katalysatoren zur Verwendung im Verfahren umfassen ein unter Ruthenium, Rhodium, Palladium, Osmium, Iridium und Platin ausgewähltes Metall. Ruthenium, Rhodium oder Iridium als katalytisch aktives Metall umfassende Katalysatoren werden für die Verwendung im Verfahren besonders bevorzugt.
- Das katalytisch aktive Metall ist höchst zweckmäßig auf einen Träger aufgebracht. Geeignete Trägermaterialien sind in der Technik gut bekannt und umfassen die feuerfesten Oxide wie Siliciumdioxid, Aluminiumoxid, Titanoxid, Zirkonoxid und Gemische hievon. Das katalytisch aktive Metall kann auf dem feuerfesten Oxidträger durch in der Technik gut bekannte Methoden abgelagert werden. Eine höchst zweckmäßige Technik zum Ablagern des Metalls auf dem Träger ist das Imprägnieren, welche Technik in typischer Weise das Inkontaktbringen des Trägermaterials mit einer Lösung einer Verbindung des katalytisch aktiven Metalls, gefolgt vom Trocknen und Calcinieren des gebildeten Materials, umfaßt.
- Jede geeignete Reaktionsführung kann im Verfahren der vorliegenden Erfindung angewendet werden, um die Reaktanten mit dem Katalysator in Kontakt zu bringen. Eine geeignete Reaktionsführung ist ein Fließbett, in welchem der Katalysator in Form von durch einen Gasstrom fluidisierten Teilchen verwendet wird. Eine bevorzugte Reaktionsführung zur Anwendung im Verfahren ist eine Festbettreaktion, in welcher der Katalysator innerhalb der Reaktionszone in einer festen Anordnung gehalten wird. Teilchen des Katalysators können im Festbettbereich verwendet werden und unter Verwendung von in der Technik gut bekannten Festbettreaktionstechniken gehalten werden. In alternativer Weise kann der Katalysator in Form eines Schaums vorliegen, der beispielsweise durch Imprägnieren eines keramischen Schaums des feuerfesten Oxids nach den zuvor beschriebenen Me thoden hergestellt wird. Geeignete Schäume zur Anwendung bei der Herstellung des Katalysators umfassen jene mit 30 bis 150 Poren pro Zoll (12 bis 60 Poren pro Zentimeter). Weiters umfassen alternative Formen für den Katalysator honigwabenförmige feuerfeste Oxide mit monolithischen Strukturen.
- In einer bevorzugt Ausführungsform des Verfahrens der vorliegenden Erfindung wird das Einsatzmaterial mit einem Katalysator in Kontakt gebracht, der in einer festen Anordnung gehalten wird, welche Anordnung eine hohe Tortuosität aufweist. Der Ausdruck "Tortuosität" ist ein allgemeiner Ausdruck in der Technik, der unter Hinweis auf ein festes Katalysatorbett als das Verhältnis von der Länge des Wegs, den ein Gasstrom durch das Bett benötigt, zur Länge der kürzesten geraden Linie durch das Bett definiert. Daher haben die honigwabenförmigen monolithischen Strukturen eine Tortuosität von 1,0. Für die Zwecke der vorliegenden Erfindung ist der Ausdruck "hohe Tortuosität" ein Hinweis auf die Anordnungen, die eine im wesentlichen größere Tortuosität aufweisen als die honigwabenförmigen monolithischen Strukturen, insbesondere eine Tortuosität von mindestens 1,1. Ein Festbett von Katalysatorteilchen hat typischerweise eine Tortuosität von 1,5, während keramische Schäume mit einer Tortuosität im Bereich von 3,0 bis 4,0 oder sogar höher hergestellt werden können. Im allgemeinen liegt die Tortuosität der Festbettanordnung vorzugsweise im Bereich von 1,1 bis 10,0, stärker bevorzugt bis 5,0. Ein höchst zweckmäßiger Tortuositätsbereich liegt bei 1,3 bis 4,0.
- Es wurde gefunden, daß der Einsatz des Katalysators in einer Festbettanordnung mit einer hohen Toruosität die Erzielung der erforderlichen Umwandlung bei einer relativ nur sehr kurzen Kontaktzeit zwischen den Reaktionsgasen und dem Katalysator ermöglicht. Auf diese Weise ist nur ein sehr geringes Katalysatorvolumen erforderlich, welches seinerseits die leichte Erreichung der sehr hohen Gasraumgeschwindigkeiten des vorliegenden Verfahrens im technischen Ausmaß ermöglicht.
- Das Einsatzmaterial wird vorzugsweise mit dem Katalysator unter adiabatischen Bedingungen in Berührung gebracht. Für die Zwecke der vorliegenden Beschreibung ist der Ausdruck "adiabatisch" ein Hinweis auf die Reaktionsbedingungen, unter welchen im wesentlichen der gesamte Wärmeverlust und die Ab strahlung aus der Reaktionszone verhindert wird, mit Ausnahme jener Wärme, die in dem gasförmigen Abstrom aus dem Reaktor austritt.
- In einem weiteren Aspekt bezieht sich die vorliegende Erfindung auf Kohlenmonoxid und/oder Wasserstoff, wann immer sie nach einem wie zuvor beschriebenen Verfahren hergestellt werden.
- Das nach dem Verfahren der vorliegenden Erfindung hergestellte Gemisch aus Kohlenmonoxid und Wasserstoff ist besonders geeignet für den Einsatz in der Synthese von Kohlenwasserstoffen, beispielsweise nach der Fischer-Tropsch-Synthese, oder für die Synthese von Oxygenaten, beispielsweise Methanol. Verfahren zur Umwandlung des Gemisches aus Kohlenmonoxid und Wasserstoff zu solchen Produkten sind in der Technik gut bekannt.
- Das Verfahren der vorliegenden Erfindung wird weiter durch das nachfolgende erläuternde Beispiel beschrieben.
- Eine wäßrige Lösung wurde durch Auflösen von Rhodiumchlorid (RhCl&sub3;, 2,0 g) und Chlorwasserstoffsäure (37%, 1,0 g) in entmineralisertem Wasser (6,83 g) hergestellt, um ein Rhodiumkonzentration von 10 Gew.-% zu ergeben. alpha-Aluminiumoxidextrudate (im Handel erhältlich von der Firma Engelhard, zerkleinert auf eine Maschengröße von 30/80, 10,0 g) wurden in die zuvorgenannte Lösung (5,33 g) eingetaucht. Das gebildete Gemisch wurde zuerst auf einer Rollmühle eine Stunde lang gerührt und danach in einem Rotationstrockner 1 Stunde lang getrocknet. Das gebildete Material wurde in einem Ofen durch Erhitzen während 1 Stunde getrocknet und 5 Stunden lang und auf einer Temperatur von 120ºC gehalten und anschließend durch Erhitzen während 5 Stunden calciniert und während 1 Stunde auf einer Temperatur von 500ºC gehalten. Der gebildete Katalysator enthielt 5,0 Gew.-% Rhodium.
- Ein Reaktor wurde konstruiert, der ein durchsichtiges Saphirrohr umfaßte, das konzentrisch in einem durchsichtigen Polycarbonataußenrohr montiert war. Der rhodiumhältige Katalysator, wie zuvor beschrieben hergestellt, wurde in das Saphirrohr eingefüllt und in Form eines Festbetts von Katalysatorteilchen mit einer Tortuosität von etwa 1,5 gehalten. Methan, Sauerstoff und Kohlendioxid wurden vor dem Einführen in den Reaktor zum Kontakt mit dem Katalysatorfestbett gründlich vermischt. Die Konzentration des Kohlendioxids im Einsatzmaterial wurde variiert, um insgesamt vier verschiedene Einsatzzusammensetzungen zu ergeben, während der Betriebsdruck und die stündliche Gasraumgeschwindigkeit (GHSV) des Versuchs konstant gehalten werden. Die Zusammensetzung des aus dem Reaktor austretenden Gasgemisches wurde für jede der vier Einsatzzusammensetzungen gemessen.
- Die Betriebstemperatur des Katalysatorbetts wurde durch optische Pyrometrie gemessen. Die Zusammensetzung des aus dem Reaktor austretenden Gasgemisches wurde durch Gaschromatographie gemessen. Die Umwandlung und die Selektivität des Verfahrens zu Kohlenmonoxid und Wasserstoff (auf der Basis von umgewandeltem Methan) wurden bestimmt. Die Betriebsbedingungen des Reaktors und die Ergebnisse der Versuche sind in der nachstehenden Tabelle zusammengefaßt.
- Aus den in der Tabelle angeführten Angaben ist ersichtlich, daß das Verfahren der vorliegenden Erfindung eine Umwandlung von Kohlenwasserstoffeinsatzmaterialien, die Kohlendioxid enthalten, in hohen Ausbeuten und mit hohen Selektivitäten sowohl auf Kohlenmonoxid als auch auf Wasserstoff ermöglicht. Es ist ersichtlich, daß ein hoher Grad an Kohlendioxidumwandlung erreicht wird. Das hat wiederum den deutlichen Vorteil, daß im Produktstrom des Verfahrens weniger Kohlendioxid vorhanden ist, welches Kohlendioxid eine unerwünschte inerte Komponente bei der weiteren Umwandlung von Kohlenmonoxid und Wasserstoff in solchen Verfahren wie der Fischer-Tropsch- Synthese wäre. Tabelle
- ¹Selektivität auf Kohlenmonoxid und Wasserstoff, bezogen auf Methanumwandlung.
Claims (12)
1. Verfahren zur Herstellung von Kohlenmonoxid und
Wasserstoff durch partielle Oxidation eines Kohlenwasserstoffes,
welches Verfahren ein Inkontaktbringen eines den
Kohlenwasserstoff, Kohlendioxid in einer Konzentration größer
als jener von Luft und bis zu 10 Vol.-% des Einsatzes und
ein sauerstoffhältiges Gas umfassenden Einsatzmaterials
mit einem Katalysator umfaßt, der ein aus der Gruppe VIII
des Periodensystems der Elemente ausgewähltes Metall
umfaßt, bei einer stündlichen Gasraumgeschwindkeit von
mindestens 500.000 Nl/kg/h (STP)
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der
Kohlenwasserstoff Methan ist oder als Erdgas, Begleitgas
oder als andere Quelle von leichten Kohlenwasserstoffen
vorliegt.
3. Verfahren nach einem der vorstehenden Ansprüche, dadurch
gekennzeichnet, daß das sauerstoffhältige Gas im
wesentlichen reiner Sauerstoff ist.
4. Verfahren nach einem der vorstehenden Ansprüche, dadurch
gekennzeichnet, daß das Einsatzmaterial den
Kohlenwasserstoff, das Kohlendioxid und das sauerstoffhältige Gas in
Konzentrationen umfaßt, die ausreichen, um ein Verhältnis
Sauerstoff zu Kohlenstoff im Bereich von 0,9 bis 1,6,
vorzugsweise von 0,9 bis 1,5, stärker bevorzugt von 0,9 bis
1,4, im speziellen von 0,9 bis 1,3 zu ergeben.
5. Verfahren nach einem der vorstehenden Ansprüche, dadurch
gekennzeichnet, daß das Einsatzmaterial mit dem
Katalysator bei einem Druck bis zu 150 bara, vorzugsweise einem
Druck im Bereich von 2 bis 125 bara, stärker bevorzugt von
2 bis 100 bara in Kontakt gebracht wird.
6. Verfahren nach einem der vorstehenden Ansprüche, dadurch
gekennzeichnet, daß das Einsatzmaterial mit dem
Katalysator bei einer Temperatur größer als 800ºC, vorzugsweise
einer Temperatur im Bereich von 900 bis 1400ºC, stärker
bevorzugt von 1000 bis 1300ºC in Kontakt gebracht wird.
7. Verfahren nach einem der vorstehenden Ansprüche, dadurch
gekennzeichnet, daß das Einsatzmaterial mit dem
Katalysator bei einer stündlichen Gasraumgeschwindigkeit (STP) im
reich von 500.000 bis 50,000.000 l/kg/h, vorzugsweise von
750.000 bis 30,000.000 l/kg/h, stärker bevorzugt von
1,000.000 l/kg/h bis 20,000.000 l/kg/h in Kontakt gebracht
wird.
8. Verfahren nach einem der vorstehenden Ansprüche, dadurch
gekennzeichnet, daß der Katalysator ein aus Ruthenium,
Rhodium, Palladium, Osmium, Iridium und Platin
ausgewähltes Metall, vorzugsweise ein aus Ruthenium, Rhodium oder
Iridium ausgewähltes Metall, umfaßt.
9. Verfahren nach einem der vorstehenden Ansprüche, dadurch
gekennzeichnet, daß der Katalysator in einer starren
Anordnung gehalten wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß der
Katalysator in einer starren Anordnung mit einer hohen
Tortuosität, vorzugsweise im Bereich von 1,1 bis 10,0,
stärker bevorzugt von 1,1 bis 5,0, im speziellen von 1,3
bis 4,0 gehalten wird.
11. Verfahren nach einem der Ansprüche 9 oder 10, dadurch
gekennzeichnet, daß der Katalysator in Form von Teilchen
oder als ein keramischer Schaum vorliegt.
12. Verfahren nach einem der vorstehenden Ansprüche, dadurch
gekennzeichnet, daß das Einsatzmaterial unter
adiabatischen Bedingungen mit dem Katalysator in Kontakt gebracht
wird.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP93202748 | 1993-09-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
DE69412019D1 DE69412019D1 (de) | 1998-09-03 |
DE69412019T2 true DE69412019T2 (de) | 1999-01-21 |
Family
ID=8214115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE69412019T Expired - Fee Related DE69412019T2 (de) | 1993-09-23 | 1994-09-21 | Verfahren zur Herstellung von Kohlenmonoxid und Wasserstoff |
Country Status (18)
Country | Link |
---|---|
EP (1) | EP0645344B1 (de) |
JP (1) | JPH0789701A (de) |
KR (1) | KR950008346A (de) |
CN (1) | CN1040526C (de) |
AT (1) | ATE168969T1 (de) |
AU (1) | AU680286B2 (de) |
BR (1) | BR9403803A (de) |
CA (1) | CA2132586A1 (de) |
CO (1) | CO4180614A1 (de) |
DE (1) | DE69412019T2 (de) |
DZ (1) | DZ1813A1 (de) |
ES (1) | ES2119065T3 (de) |
MY (1) | MY131617A (de) |
NO (1) | NO943512L (de) |
NZ (1) | NZ264499A (de) |
RU (1) | RU2136581C1 (de) |
SG (1) | SG49079A1 (de) |
ZA (1) | ZA947334B (de) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6254807B1 (en) | 1998-01-12 | 2001-07-03 | Regents Of The University Of Minnesota | Control of H2 and CO produced in partial oxidation process |
US6540975B2 (en) * | 1998-07-27 | 2003-04-01 | Battelle Memorial Institute | Method and apparatus for obtaining enhanced production rate of thermal chemical reactions |
EP1156026A1 (de) | 2000-05-19 | 2001-11-21 | Shell Internationale Researchmaatschappij B.V. | Verfahren zur Herstellung von flüssigen Kohlenwasserstoffen |
FR2823192B1 (fr) * | 2001-04-09 | 2004-02-13 | Air Liquide | Procede d'oxydation partielle catalytique d'hydrocarbures pour la production de gaz de synthese a faible rapport h2/co |
US7544342B2 (en) | 2004-08-25 | 2009-06-09 | The Boc Group, Inc. | Hydrogen production process |
JP4496346B2 (ja) * | 2007-10-11 | 2010-07-07 | 石油資源開発株式会社 | 炭化水素リフォーミング用触媒およびこれを用いた合成ガスの製法 |
JP4639247B2 (ja) | 2008-07-23 | 2011-02-23 | 石油資源開発株式会社 | 炭化水素リフォーミング用触媒およびその製造方法ならびにこれを用いた合成ガスの製法 |
US8128902B2 (en) * | 2011-04-12 | 2012-03-06 | Midwest Refrigerants, Llc | Method for the synthesis of anhydrous hydrogen halide and anhydrous carbon dioxide |
KR101903791B1 (ko) * | 2012-06-25 | 2018-10-02 | 에스케이이노베이션 주식회사 | 카본 블랙 촉매를 이용한 이산화탄소 개질 방법 |
RU2603662C2 (ru) * | 2015-04-24 | 2016-11-27 | федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский государственный университет нефти и газа имени И.М. Губкина" | Способ получения синтез-газа высокотемпературным каталитическим окислительным превращением метана |
FI127925B (en) * | 2018-03-13 | 2019-05-31 | Teknologian Tutkimuskeskus Vtt Oy | Method and apparatus for producing carbon monoxide |
JP7327929B2 (ja) * | 2018-12-03 | 2023-08-16 | 古河電気工業株式会社 | 合成ガスの製造装置および合成ガスの製造方法 |
WO2022200532A1 (de) * | 2021-03-26 | 2022-09-29 | Basf Se | Verfahren zur herstellung eines synthesegasgemischs |
CN115716781A (zh) * | 2022-10-27 | 2023-02-28 | 万华化学集团股份有限公司 | 一种丙烷脱氢耦合羰基合成制备丁醛的工艺 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9028034D0 (en) * | 1990-12-24 | 1991-02-13 | Isis Innovation | Improved processes for the conversion of methane to synthesis gas |
ES2127241T3 (es) * | 1992-06-24 | 1999-04-16 | Shell Int Research | Procedimiento para la oxidacion parcial catalitica de hidrocarburos. |
US5411927A (en) * | 1992-08-14 | 1995-05-02 | Council Of Scientific & Industrial Research | Process of preparing composite catalysts for production of synthesis gas by oxidative conversion of methane or natural gas |
-
1994
- 1994-09-21 NO NO943512A patent/NO943512L/no not_active Application Discontinuation
- 1994-09-21 ES ES94202702T patent/ES2119065T3/es not_active Expired - Lifetime
- 1994-09-21 ZA ZA947334A patent/ZA947334B/xx unknown
- 1994-09-21 EP EP94202702A patent/EP0645344B1/de not_active Expired - Lifetime
- 1994-09-21 DE DE69412019T patent/DE69412019T2/de not_active Expired - Fee Related
- 1994-09-21 CA CA002132586A patent/CA2132586A1/en not_active Abandoned
- 1994-09-21 AT AT94202702T patent/ATE168969T1/de not_active IP Right Cessation
- 1994-09-21 CO CO94042826A patent/CO4180614A1/es unknown
- 1994-09-21 SG SG1996005834A patent/SG49079A1/en unknown
- 1994-09-21 NZ NZ264499A patent/NZ264499A/en unknown
- 1994-09-21 MY MYPI94002508A patent/MY131617A/en unknown
- 1994-09-21 BR BR9403803A patent/BR9403803A/pt not_active IP Right Cessation
- 1994-09-21 JP JP6251623A patent/JPH0789701A/ja active Pending
- 1994-09-21 DZ DZ940102A patent/DZ1813A1/fr active
- 1994-09-21 AU AU74142/94A patent/AU680286B2/en not_active Ceased
- 1994-09-22 KR KR1019940023872A patent/KR950008346A/ko not_active Application Discontinuation
- 1994-09-22 RU RU94034103A patent/RU2136581C1/ru active
- 1994-09-23 CN CN94116441A patent/CN1040526C/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
AU680286B2 (en) | 1997-07-24 |
EP0645344A1 (de) | 1995-03-29 |
NO943512L (no) | 1995-03-24 |
KR950008346A (ko) | 1995-04-17 |
MY131617A (en) | 2007-08-30 |
JPH0789701A (ja) | 1995-04-04 |
ZA947334B (en) | 1995-05-10 |
AU7414294A (en) | 1995-04-06 |
ATE168969T1 (de) | 1998-08-15 |
BR9403803A (pt) | 1995-05-23 |
SG49079A1 (en) | 1998-05-18 |
NO943512D0 (no) | 1994-09-21 |
CN1040526C (zh) | 1998-11-04 |
RU2136581C1 (ru) | 1999-09-10 |
NZ264499A (en) | 1995-12-21 |
RU94034103A (ru) | 1996-07-27 |
DZ1813A1 (fr) | 2002-02-17 |
CO4180614A1 (es) | 1995-06-07 |
ES2119065T3 (es) | 1998-10-01 |
CA2132586A1 (en) | 1995-03-24 |
EP0645344B1 (de) | 1998-07-29 |
CN1104173A (zh) | 1995-06-28 |
DE69412019D1 (de) | 1998-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69418213T2 (de) | Verfahren zur katalytischen teiloxidation von kohlenwasserstoffen | |
DE69905467T2 (de) | Katalytische teiloxidation mit einem rhodium-iridium legierungskatalysator | |
DE69412019T2 (de) | Verfahren zur Herstellung von Kohlenmonoxid und Wasserstoff | |
DE69322129T2 (de) | Verfahren zur katalytischen Kohlenwasserstoffteiloxidation | |
DE69425692T2 (de) | Verfahren zur katalytischen Teiloxydation von Kohlenwasserstoff | |
DE69517033T2 (de) | Verfahren zur katalytischen teiloxidation von kohlenwasserstoffen | |
DE60209484T2 (de) | Verfahren zum aktivieren eines getragenen katalysators der eine kobalthaltigen verbindung enthält | |
DE69210508T2 (de) | Verfahren zur Herstellung von Mono-Olefinen | |
DE60011868T2 (de) | Verfahren zur Herstellung von Synthesegas unter Verwendung von aus Hydrotalcit abgeleiteten Nickelkatalisatoren | |
US3222132A (en) | Steam reforming of hydrocarbons | |
DE69711714T2 (de) | Verfahren zur herstellung von kohlenwasserstoffen | |
DE69810805T2 (de) | Verfahren zur herstellung von wasserstoff und kohlenmonoxid | |
DE69825576T2 (de) | Katalysator für die herstellung von synthesegas und verfahren zur herstellung von kohlenmonoxid | |
DE112017005604T5 (de) | Sr-Ce-Yb-O-KATALYSATOREN FÜR DIE OXIDATIVE KOPPLUNG VON METHAN | |
DE2832136A1 (de) | Verfahren zur herstellung von synthesegas durch katalysierte zersetzung von methanol | |
DE3780182T2 (de) | Herstellungsverfahren von synthesegas. | |
DE2518964B2 (de) | Verfahren zur herstellung ungesaettigter kohlenwasserstoffe | |
EP0695279B1 (de) | Verwendung eines katalysators zur herstellung von synthesegas | |
DE69811113T2 (de) | Herstellung eines synthesegases mit niedrigem wasserstoffgehalt unter verwendung von co2 und einem nickelkatalysator | |
DE2420945A1 (de) | Katalysator fuer die umsetzung von dampf mit kohlenwasserstoffen | |
DE69508168T2 (de) | Hydrocarbonylierung von Dimethyläther | |
DE69907141T2 (de) | Katalysator für die herstellung von wasserstoff und kohlenmonoxyd aus einem kohlenwasserstoffhaltigen einsatzstoff | |
DE3035404C2 (de) | Verfahren zur Herstellung ungesättigter Kohlenwasserstoffe | |
DE69414494T2 (de) | Verfahren zur Teiloxidation von Kohlenwasserstoffen | |
DE3688026T2 (de) | Verfahren zur herstellung eines synthesegases aus kohlenwasserstoffhaltigen ausgangsstoffen. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8364 | No opposition during term of opposition | ||
8339 | Ceased/non-payment of the annual fee |