DE69333337T2 - Laserperforator - Google Patents

Laserperforator Download PDF

Info

Publication number
DE69333337T2
DE69333337T2 DE69333337T DE69333337T DE69333337T2 DE 69333337 T2 DE69333337 T2 DE 69333337T2 DE 69333337 T DE69333337 T DE 69333337T DE 69333337 T DE69333337 T DE 69333337T DE 69333337 T2 DE69333337 T2 DE 69333337T2
Authority
DE
Germany
Prior art keywords
laser
perforator according
laser perforator
container
yag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE69333337T
Other languages
English (en)
Other versions
DE69333337D1 (de
Inventor
Milton Little Rock Waner
Stephen T. Edmonton Flock
Charles H. Little Rock Vestal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Transmedica International Inc Australia
Original Assignee
Transmedica International Inc Australia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Transmedica International Inc Australia filed Critical Transmedica International Inc Australia
Publication of DE69333337D1 publication Critical patent/DE69333337D1/de
Application granted granted Critical
Publication of DE69333337T2 publication Critical patent/DE69333337T2/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/411Detecting or monitoring allergy or intolerance reactions to an allergenic agent or substance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150015Source of blood
    • A61B5/150022Source of blood for capillary blood or interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150053Details for enhanced collection of blood or interstitial fluid at the sample site, e.g. by applying compression, heat, vibration, ultrasound, suction or vacuum to tissue; for reduction of pain or discomfort; Skin piercing elements, e.g. blades, needles, lancets or canulas, with adjustable piercing speed
    • A61B5/150061Means for enhancing collection
    • A61B5/150076Means for enhancing collection by heating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150343Collection vessels for collecting blood samples from the skin surface, e.g. test tubes, cuvettes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150755Blood sample preparation for further analysis, e.g. by separating blood components or by mixing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15134Bladeless capillary blood sampling devices, i.e. devices for perforating the skin in order to obtain a blood sample but not using a blade, needle, canula, or lancet, e.g. by laser perforation, suction or pressurized fluids
    • A61B5/15136Bladeless capillary blood sampling devices, i.e. devices for perforating the skin in order to obtain a blood sample but not using a blade, needle, canula, or lancet, e.g. by laser perforation, suction or pressurized fluids by use of radiation, e.g. laser
    • A61B5/15138Bladeless capillary blood sampling devices, i.e. devices for perforating the skin in order to obtain a blood sample but not using a blade, needle, canula, or lancet, e.g. by laser perforation, suction or pressurized fluids by use of radiation, e.g. laser provided with means to ensure the protection of the user, e.g. to avoid laser light entering the eyes of a user
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3476Powered trocars, e.g. electrosurgical cutting, lasers, powered knives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00747Dermatology
    • A61B2017/00765Decreasing the barrier function of skin tissue by radiated energy, e.g. using ultrasound, using laser for skin perforation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/007Aspiration
    • A61B2218/008Aspiration for smoke evacuation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7217Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise originating from a therapeutic or surgical apparatus, e.g. from a pacemaker
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Dermatology (AREA)
  • Optics & Photonics (AREA)
  • Immunology (AREA)
  • Vascular Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Electromagnetism (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Otolaryngology (AREA)
  • Laser Surgery Devices (AREA)
  • Radiation-Therapy Devices (AREA)
  • Lasers (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Control And Other Processes For Unpacking Of Materials (AREA)
  • Laser Beam Processing (AREA)
  • Glass Compositions (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Semiconductor Lasers (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Auxiliary Devices For And Details Of Packaging Control (AREA)

Description

  • Diese Anmeldung ist eine Continuation-in-part der anhängigen US-Seriennummer 07/968,862, welche am 28. Oktober 1992 eingereicht wurde und der WO-A-9409713 entspricht.
  • Gebiet der Erfindung
  • Diese Erfindung betrifft das Gebiet der medizinischen Ausrüstung, insbesondere lasermedizinische Ausrüstung.
  • Hintergrund
  • Das traditionelle Verfahren zum Sammeln kleiner Mengen von Blut von einem Patienten verwendet die mechanische Perforation der Haut mittels eines spitzen Gegenstandes wie beispielsweise eine metallische Lanzette oder Nadel. Dieses Verfahren hat viele Nachteile, wobei zwei davon die mögliche Infektion von Mitarbeitern aus der medizinischen Versorgung oder der breiten Bevölkerung mit einer Vorrichtung, welche zum Perforieren der Haut verwendet wurde, und die kostenintensive Handhabung und Entsorgung von biologisch gefährlichem Abfall, sind.
  • Wenn Haut mit einer spitzen Vorrichtung wie beispielsweise einer metallischen Lanzette oder Nadel perforiert wird, wird biologischer Abfall in der Form der "Spitze" erzeugt, welche mit Blut und/oder Gewebe des Patienten kontaminiert ist. Wenn der Patient mit irgendeinem hämatogenen Krankheitserreger infiziert ist, wie beispielsweise dem AIDS-Virus (HIV), welches das Autoimmun-Erkrankungssyndrom (AIDS) verursacht, dem Hepatitisvirus oder dem ätiologischen Krankheitserreger anderer Krankheiten, kann die kontaminierte Spitze eine ernsthafte Bedrohung für diejenigen darstellen, welche mit diesem in Kontakt kommen könnten. Es gibt viele dokumentierte Fälle von HIV-Infektionen von medizinischen Mitarbeitern, welche zufällig von einer kontaminierten Spitze gestochen wurden.
  • Die Beseitigung von Spitzen ist auch ein großes Problem. Die Entsorgung von kontaminiertem Material lädt dem Endverbraucher, wie beispielsweise der medizinischen Institution, sowohl eine logistische als auch eine finanzielle Bürde auf. In den 80er Jahren traten zahlreiche Fälle von unsachgemäß entsorgten biologischen Abfällen auf, welche an öffentlichen Stränden angespült wurden. Außerdem ist das Potential für andere, wie beispielsweise Nutzer von intravenös eingenommenen Drogen, zum Erhalten von unsachgemäß entsorgten Nadeln problematisch.
  • Es existiert ein weiterer Nachteil des traditionellen Verfahrens zum Gestochenwerden mittels eines spitzen Instruments zum Zwecke des Blutentnehmens. Oftmals muss der Stechvorgang wiederholt werden, bevor genügend Blut erhalten wurde. Dies kann beim Patienten erheblichen Stress und Angst erzeugen.
  • Offensichtlich hat das gegenwärtige Verfahren zum Punktieren von Haut zum Zwecke des Blutentnehmens signifikante inhärente Probleme. Diese Probleme treten auf, da in dem Verfahren ein spitzes Instrument verwendet wird. Deshalb existiert ein Bedarf an einer Technik zum Punktieren von Haut, welches kein spitzes Instrument verwendet. Dieses Verfahren würde der Notwendigkeit einer Entsorgung von kontaminierten Instrumenten vorbeugen und das Risiko einer Kreuzinfektion reduzieren.
  • In den vergangenen Jahren wurden Laser als ein sehr effizientes und präzises Werkzeug in verschiedenen chirurgischen Verfahren verwendet. Unter den möglicherweise neuen Quellen für Laserstrahlung sind die Seltene-Erd-Elemente für die Medizin von größtem Interesse. Das vielversprechendste unter diesen ist ein YAG-(Yttrium-Aluminium-Granat) Kristall, welcher mit Erbium- (Er) Ionen dotiert ist. Bei Verwendung dieses Kristalls ist es möglich, einen Erbium-YAG- (Er:YAG) Laser zu bauen, welcher derart eingerichtet sein kann, dass elektromagnetische Energie bei einer Wellenlänge (2,94 μm) emittiert wird, welche von Wasser stark absorbiert wird. Wenn Gewebe, welches im Wesentlichen aus Wasser besteht, mit Strahlung bei oder nahe dieser Wellenlänge bestrahlt wird, wird dieses schnell erhitzt. Wenn die Intensität der Strahlung ausreichend ist, ist die Erhitzung schnell genug, um eine Verdampfung des Gewebes zu erzeugen. Einige medizinische Anwendungen des Er:YAG-Lasers wurden in den Gesundheitsfürsorge-Disziplinen der Zahnmedizin, Gynäkologie und Ophthalmologie beschrieben. Siehe z. B. Bogdasarov, B. V., et al., "The Effect of YAG:Er Laser Radiation on Solid and Soft Tissues", Preprint 266, Institute of General Physics, Moscow, 1987; Bol'shakov, E. N. et al., "Experimental Grounds for YAG:Er Laser Application to Dentistry", SPIE 1353: 160–169, Lasers and Medicine (1989).
  • Zusammenfassung der Erfindung
  • Die erfindungsgemäße Vorrichtung verwendet einen Laserstrahl zum Perforieren der Haut eines Patienten. Die Perforation wird erzeugt mittels Bestrahlens der Oberfläche der Haut mit einem fokussierten Puls elektromagnetischer Energie, welche von einem Laser emittiert wird. Es ist möglich, mittels einer vernünftigen Auswahl der folgenden Bestrahlungsparameter die Haut bis zu einer wählbaren Tiefe sehr präzise zu perforieren, ohne klinisch relevanten Schaden an gesundem benachbartem Gewebe zu verursachen: Wellenlänge, Energiefluss (bestimmt mittels Dividierens der Pulsenergie durch die bestrahlte Fläche), zeitliche Pulsbreite und Bestrahlungspunktgröße.
  • Es ist eine Vorrichtung bereitgestellt, welche einen gepulsten Laserstrahl emittiert, welcher auf einen kleinen Lichtpunkt zum Zwecke des Perforierens von Gewebe fokussiert ist. Mittels Einstellens der Ausgangsleistung des Lasers können die Tiefe, Breite und Länge der Perforation gesteuert werden, um an den Zweck angepasst zu sein, für den die Perforation benötigt wird. Dieses Verfahren kann dazu verwendet werden, ein kleines, relativ flaches Loch in der Haut zu erzeugen, welches in das Kapillarbett eindringt, wodurch das Entnehmen von Blut für verschiedene Zwecke ermöglicht wird. Optional kann eine Gewebe-Vorheizeinrichtung hinzugefügt sein, um den Blutfluss vor der Laserperforation zu erhöhen. Vorteilhafterweise sind Sicherheitsunterbrecher in der Vorrichtung inkorporiert, um einen gefährlichen Betrieb und versehentliche Laserbestrahlungen zu vermeiden.
  • Diese Vorrichtung enthält des Weiteren einen Behälter. Solch ein Behälter ist hinzugefügt, um: (1) die Effizienz bei der Sammlung von Blut und Serum zu erhöhen; (2) den Lärm zu reduzieren, welcher erzeugt wird, während der Laserstrahl das Gewebe des Patienten perforiert; und (3) das abgetragene Gewebe aufzusammeln. Der Behälter ist optional evakuiert, um das Sammeln von Blut und Serum zu beschleunigen. In einer Ausführungsform sammelt der Behälter lediglich abgetragenes Gewebe. Der Lärm, welcher bei der Interaktion des Laserstrahls mit der Haut des Patienten erzeugt wird, kann möglicherweise Angst bei dem Patienten auslösen. Der optionale Behälter reduziert die Lärmintensität und mildert somit Angst und Stress beim Patienten. Der Behälter minimiert auch das Risiko von Kreuzkontaminierung und garantiert die Sterilität der gesammelten Probe. Das Anordnen des Behälters in der Vorrichtung der vorliegenden Erfindung ist insofern einmalig, als er während der Zeit des Punktierens mittels des Laserstrahls das zu punktierende Gewebe bedeckt, und als er folglich die Blutprobe und/oder abgetragenes Gewebe aufsammeln kann, wenn die Punktierung stattfindet.
  • Diese Erfindung stellt auch eine Einheit zum Punktieren der Haut eines Patienten in einer solchen Weise zur Verfügung, dass keine Blutung resultiert. Die erzeugte Perforation dringt typischerweise durch die Keratinschicht oder sowohl durch die Keratinschicht als auch die Epidermis hindurch. Dies ermöglicht die Verabreichung von Pharmazeutika durch die Haut. Es gibt einige Vorteile beispielsweise für die Verabreichung von Medikamenten in dieser Weise: Medikamente können über eine lange Zeitperiode kontinuierlich auf der Basis eines ambulanten Patienten verabreicht werden und die Geschwindigkeit und/oder Effizienz der Medikamentenzuführung kann für Medikamente erhöht werden, welche entweder langsam sind oder unfähig sind, die Haut zu durchdringen. Zusätzlich ermöglicht dieses Zuführverfahren einen alternativen Zuführweg für Medikamente, welche sonst injiziert werden müssten.
  • Diese Erfindung vermeidet den Gebrauch von Spitzen. Die Abwesenheit von kontaminierten Spitzen eliminiert das Risiko einer versehentlichen Verletzung und die damit verbundenen Risiken für den Mitarbeiter in der medizinischen Versorgung, den Patienten und jedermann, der mit der Spitze in Kontakt kommen könnte, sei es versehentlich oder sei es notgedrungen.
  • Die Abwesenheit von Spitzen vermeidet somit die Notwendigkeit der Entsorgung von biologisch gefährlichem Abfall. Folglich ist ein ökologisch vernünftiges Verfahren zum Perforieren von Haut offenbart.
  • Die erfindungsgemäße Vorrichtung erfordert keine speziellen Kenntnisse über ihre Verwendung. Sie ist klein, hat ein geringes Gewicht, und kann mit wiederaufladbaren Batterien betrieben werden. Diese Transportierbarkeit und Einfachheit in der Verwendung macht den Gebrauch dieser Vorrichtung in verschiedenen Umgebungen möglich, wie beispielsweise Krankenhauszimmern, Kliniken oder zu Hause.
  • Die in diese Vorrichtung inkorporierten Sicherheitsmerkmale erfordern es nicht, dass irgendein spezieller Sicherheits-Augenschutz von dem Betreiber der Vorrichtung, den Patienten oder irgendjemandem sonst in der Umgebung der Vorrichtung getragen werden muss, während die Vorrichtung in Betrieb ist. Dies ist eine deutliche Verbesserung gegenüber Laservorrichtungen aus dem Stand der Technik, welche einen solchen speziellen Schutz erfordern.
  • Kurzbeschreibung der Figuren
  • Unter Bezugnahme auf die beigefügten Zeichnungen kann die vorliegende Erfindung besser verstanden werden und können ihre Vorteile durch die Fachleute gewürdigt werden, wobei
  • 1 eine Laservorrichtung mit seiner Energiequelle, hochspannungs-pulsformendem Netzwerk, Blitzlampe, Laserstab, Spiegel, Gehäuse und Fokussierungslinse zeigt;
  • 2 einen optionalen federunterstützten Stromunterbrecher und einen optionalen Hitzeapplikator zeigt;
  • 3 eine alternative Einheit zum Anregen des Laserstabes unter Verwendung eines Diodenlasers zeigt;
  • 4 einen alternativen Fokussierungsmechanismus zeigt;
  • 5A optionale mehrfache Strahlteiler zum Erzeugen mehrfacher simultaner Perforationen zeigt, wie beispielsweise teilweise versilberte Spiegel, dichroitische Spiegel oder strahlteilende Prismen;
  • 5B einen optionalen akustooptischen Modulator mit modulierter Hochspannung zum Betreiben des Modulators und Ablenken des Strahls zum Erzeugen mehrfacher simultaner Perforationen zeigt;
  • 6 einen Lappen zeigt, welcher zum Sterilisieren der Perforationsstelle verwendet werden kann;
  • 7A einen Lappen zum Sterilisieren und/oder Zuführen von Pharmazeutika zeigt;
  • 7B einen Lappen mit einem optionalen lasertransparenten Material, wie beispielsweise Glimmer, Quarz oder Saphir, welches transparent für den Laserstrahl in der Mitte des Lappens ist, zeigt;
  • 8 einen Behälter zum Sammeln von Blut und abgetragenem Gewebe und zum Reduzieren von Lärm, welcher von der Interaktion zwischen dem Laser und dem Gewebe des Patienten herrührt, zeigt;
  • 9 einen Stöpsel und ein Stöpselperforationszentrum zeigt;
  • 10 einen Behälter zum Sammeln von abgetragenem Gewebe und Reduzieren von Lärm, welcher von der Interaktion zwischen dem Laser und dem Gewebe des Patienten herrührt, zeigt; und
  • 11 eine optionale Version des Sammelbehälters zeigt, welcher insbesondere nützlich ist, wenn der Behälter einen Reaktanten zum Mischen mit der Probe beinhaltet.
  • Detaillierte Beschreibung der bevorzugten Ausführungsformen
  • Diese Erfindung stellt eine Vorrichtung zum Perforieren von Haut für entweder das Sammeln von Blut oder die Verabreichung von Pharmazeutika zur Verfügung. Die Vorrichtung verwendet einen Laserstrahl, insbesondere fokussiert, und Lasertätigkeit bei einer geeigneten Wellenlänge, vorzugsweise zwischen 2 μm und 7 μm, um kleine Löcher in der Haut eines Patienten zu erzeugen. Der Laserstrahl wird mittels einer Linse fokussiert, um auf der Haut einen bestrahlten Lichtfleck mit einer Größe von in etwa 0,1 ... 1 mm Durchmesser und einem Energiefluss im Bereich von 10 ... 100.000 J/cm2 zu erzeugen. Optional kann der Lichtfleck schlitzförmig sein mit einer Breite von 0,05 ... 0,5 mm und einer Länge von bis zu 2,5 mm.
  • Vorrichtung
  • Wie in den Figuren gezeigt, weist die Vorrichtung auf einen Stromanschluss, welcher entweder eine elektrische Standardversorgung 10 oder optional ein wiederaufladbarer Batteriestapel 12 ist, optional mit einem Stromunterbrecherschalter 14 zum Zwecke der Sicherheit; ein hochspannungs-pulsformendes Netzwerk 16; eine Laser-Pump-Kavität 18, beinhaltend einen Laserstab 20, vorzugsweise Er:YAG; eine Einheit zum Anregen des Laserstabes, vorzugsweise eine Blitzlampe 22, angeordnet innerhalb der Laser-Pump-Kavität; einen optischen Resonator, aufweisend einen hochreflektierenden Spiegel 24, welcher hinter dem Laserstab positioniert ist, und einem Auskoppelspiegel 26, welcher vor dem Laserstab positioniert ist; eine Transmissions-Fokussierungslinse 28, positioniert jenseits des Auskoppelspiegels; optional eine zweite fokussierende Zylinderlinse 27, positioniert zwischen dem Auskoppelspiegel und der Transmissions-Fokussierungslinse; einen Applikator 30 zum Positionieren der zu untersuchenden Haut am Fokuspunkt des Laserstrahls, welcher optional geheizt werden kann, beispielsweise mittels eines thermoelektrischen Heizers 32, welcher an dem Lasergehäuse 34 angebracht ist; einen Stromunterbrecher 36, positioniert zwischen dem Applikator und der Energieversorgung; und optional einen Strahlabsorber 38, welcher an den Applikator mit einem Fingerabdruck-Zugangsanschluss 40 angebracht ist.
  • Die 1 und 2 sind diagrammartige Darstellungen eines bevorzugten Ausführungsbeispiels der erfindungsgemäßen Vorrichtung. Die Vorrichtung bezieht die Energie vorzugsweise von einer 110 V- oder 220 V-Standardstromleitung 10 (eine einzige Phase, 50 oder 60 Hz) welche gleichgerichtet wird und dazu benutzt wird, eine in dem hochspannungs-pulsformenden Netzwerk 16 enthaltene Kondensatorbank aufzuladen. Optional kann ein wiederaufladbarer Batteriestapel 12 an Stelle dessen verwendet werden. Die Kondensatorbank erzeugt eine an einer Hochleistungs-Blitzlampe 22 anliegende Gleichstrom-Hochspannung. Optional kann ein Stromunterbrecher 14, wie beispielsweise ein Schlüsselschalter, vorgesehen sein, welcher ein versehentliches Aufladen der Kondensatoren und somit eine versehentliche Laseranregung vermeidet. Ein zusätzlicher Unterbrecher kann in der Vorrichtung bei dem Applikator hinzugeführt sein, wie beispielsweise ein federunterstützter Stromunterbrecher 36, so dass die Entladung der Kondensatoren ein Freigeben beider Unterbrecher erfordert.
  • Durch das Niederdrücken eines Schalters kann ein Spannungspuls der bereits an der Blitzlampe anliegenden Spannung überlagert werden, um eine Zünden der Blitzlampe zu verursachen und, als eine Konsequenz daraus, den Lichtblitz zu initiieren. Das Licht der Blitzlampe befindet sich in der Laserkavität 18, welche eine derartige Form hat, dass das meiste Licht effizient auf den Laserstab 20 gerichtet wird, welcher das Licht absorbiert, und zur Abregung nachfolgend lasert. Die Laser-Kavitätsspiegel mit geringer 26 und hoher 24 Reflektivität, welche kollinear mit der Längsachse des Laserstabes positioniert sind, dienen zur Verstärkung und Ausrichtung des Laserstrahls.
  • Wie in 3 gezeigt, kann optional ein Diodenlaser 42, welcher einen Pumpstrahl kollinear mit der Längsachse des Laserkristalls erzeugt, an Stelle der Blitzlampe zum Anregen des Kristalls verwendet werden. Der Pumpstrahl dieses Lasers wird mit einer Kollimatorlinse 44 parallel ausgerichtet und durch den hochreflektierenden Infrarotspiegel 45 zu dem Primär-Laserstab übertragen. Dieser hochreflektierende Spiegel ermöglicht die Übertragung des diodengepumpten Laserstrahls, während er infrarotes Licht des Primär-Lasers reflektiert.
  • Das Er:YAG-lasende Material ist für den Laserstab das bevorzugte Material, da die Wellenlänge der elektromagnetischen Energie, welche von diesem Laser emittiert wird, 2,94 μm, sehr nahe bei der maximalen Absorptions-Wellenlänge (ungefähr 3 μm) von Wasser ist. Folglich wird diese Wellenlänge sehr stark von Wasser absorbiert. Die schnelle Aufheizung von Wasser verursacht Perforation der Haut.
  • Ein anderes nützliches lasendes Material ist jegliches Material, welches, wenn es zum Lasen angeregt wird, eine Wellenlänge emittiert, welche vom Gewebe stark absorbiert wird, wie beispielsweise durch Absorption von Wasser, Nukleinsäuren oder Proteinen, und folglich die notwendige Perforation der Haut verursacht. Ein Laser kann effektiv Gewebe schneiden, um die gewünschten Perforationen zu erzeugen, wo das Gewebe einen Absorptions-Koeffizienten von 10 ... 10.000 cm–1 aufzeigt. Beispiele von nützlichen lasenden Elementen sind gepulste CO2-Laser, Ho:YAG (Holmium:YAG), Er:YAP, Er/Cr:YSGG (Erbium/Chrom:Yttrium-Skandium-Gallium-Granat; 2,796 μm), Ho:YSGG (Holmium:YSGG, 2,088 μm), Er:GGSG (Erbium:Gadolinium-Gallium-Skandium-Granat), Er:YLF (Erbium:Ytrium-Lithium-Fluorid; 2,8 μm), Tm:YAG (Thulium:YAG; 2,01 μm), Ho:YAG (Holmium:YAG; 2,127 μm), Ho/Nd:YAlO3 (Holmium/Neodym:Yttrium-Aluminat; 2,85 ... 2,92 μm), Kobalt:MgF2 (Kobalt:Magnesiumfluorid; 1,75 ... 2,5 μm), HF-Chemikalie (Hydrogenfluorid; 2,6 ... 3 μm), DF-Chemikalie (Deuteriumfluorid; 3,6 ... 4 μm), Kohlenstoffmonoxid (5 ... 6 μm), Tiefultraviolettlaser und frequenzverdreifachte Nd:YAG (Neodym:YAG, wobei der Laserstrahl durch Kristalle hindurchtritt, welche eine Verdreifachung der Frequenz verursachen).
  • Bei der Verwendung der gegenwärtigen Technologie stellen einige dieser Lasermaterialien den zusätzlichen Vorteil einer kleinen Größe zur Verfügung, wodurch die Laser-Perforationsvorrichtung leicht und portabel gemacht wird. Zusätzlich zu Er:YAG bieten Ho:YAG-Laser diesen Vorteil.
  • Der emittierte Laserstrahl wird mittels Verwendens der Fokussierungslinse 28 auf eine Lichtfleckgröße von einem Millimeter oder weniger als einem Millimeter herunterfokussiert. Die Berücksichtigung von Laser-Sicherheitsbedingungen legen es nahe, dass eine kurzbrennweitige Fokussierungslinse verwendet wird, um sicherzustellen, dass die Energieflussrate (W/cm2) außer am Fokuspunkt der Linse, wo die zu perforierende Gewebeprobe positioniert ist, gering ist. Folglich ist die Gefahr des Laserstrahls minimiert.
  • Der Strahl kann unter Anwendung einer zylindrischen Fokussierungslinse 27 derart fokussiert werden, dass er entlang einer Achse schmaler ist als entlang der anderen, so dass dadurch eine schlitzförmige Perforation erzeugt wird. Diese Linse, welche den Strahl entlang einer Achse fokussiert, ist in Reihe mit der Transmissions-Fokussierungslinse 28 platziert. Wenn die Perforationen schlitzförmig sind, ist der mit der Perforation verbundene Schmerz beträchtlich reduziert.
  • Optional kann der Strahl vor dem Fokussieren durch die Fokussierungslinse 28 verbreitert sein, zum Beispiel durch das Verwenden einer konkaven Zerstreuungslinse 46 (siehe 4). Diese Aufweitung des Strahls resultiert in einem Laserstrahl mit einer entsprechend geringeren Energieflussrate in einem kurzen Abstand hinter dem Fokuspunkt, wodurch der Gefährdungspegel folglich reduziert ist. Ferner reduziert diese optische Anordnung die optischen Aberrationen im Laserlichtpunkt an der Behandlungsposition, wodurch eine wesentlich präzisere Perforation resultiert.
  • Optional kann der Strahl auch mittels Strahlteilern zum Erzeugen mehrerer Strahlen aufgeteilt werden, welche an verschiedenen Stellen gleichzeitig oder nahezu gleichzeitig perforieren können. 5 stellt zwei Variationen von nützlichen Strahlteilern zur Verfügung. Bei einer Version können mehrere Strahlteiler 48, wie beispielsweise teilweise versilberte Spiegel, dichroitische Spiegel oder strahlteilende Prismen, vorgesehen sein, nachdem der Strahl fokussiert wurde. Alternativ kann ein akustooptischer Modulator 52 mit modulierter Hochspannung zum Betreiben des Modulators 52 und Ablenken des Strahls eingesetzt werden. Dieser Modulator befindet sich außerhalb der Laserkavität. Er funktioniert durch sequentielles und schnelles Ablenken des Laserstrahls in verschiedene Winkel, um so die Produktion von mehreren Strahlen zu simulieren.
  • Ein kleines Heizelement, wie beispielsweise ein thermoelektrisches Heizelement 32, ist optional am Ende des Laserapplikators in der Nähe der Stelle der Perforation angeordnet. Das Heizelement erhöht vor der Laserbestrahlung die Temperatur der Haut und der Kapillaren im Gewebe, welches perforiert werden soll. Dies erhöht den Blutfluss, wodurch das Volumen des zu sammelnden Blutes erhöht wird, wenn die Vorrichtung für diesen Zweck verwendet wird. Ein vorgeschlagener Bereich für die Hauttemperatur liegt zwischen 36°C und 45°C, obwohl jegliche andere Temperatur geeignet ist, welche eine Gefäßerweiterung und den daraus resultierenden Anstieg im Blutfluss ohne Veränderung der Blutchemie verursacht.
  • Ein Behälter 68 ist in das Lasergehäuse eingepasst und ist nächstliegend zu der Perforationsstelle positioniert. Der Behälter reduziert die Intensität des Geräuschs, das erzeugt wird, wenn der Laserstrahl das Gewebe des Patienten perforiert, erhöht die Effizienz beim Sammeln des Blutes und sammelt das entfernte Gewebe. Der Behälter ist derart geformt, dass ein einfaches Einsetzen in das Lasergehäuse ermöglicht ist und dass eine Reibpassung innerhalb des Lasergehäuses bereitgestellt wird. 8 zeigt den in das Lasergehäuse eingefügten und über der Perforationsstelle angeordneten Behälter.
  • Die Form und Größe des Behälters sind derart, dass das Einsetzen in den Applikator ermöglicht ist und dass das Sammeln der Blutprobe und/oder des entfernten Gewebes ermöglicht ist. Vorzugsweise ist der Behälter kugelförmig mit einem Volumen von ungefähr 1,5 ml.
  • In der bevorzugten Ausführungsform ist der Behälter aus Glas oder Plastik hergestellt. In einer Ausführungsform ist der Behälter evakuiert. Das optionale Vakuum in dem Behälter bildet einen negativen Druck über der Perforationsstelle, wodurch die Effizienz beim Sammeln des Blutes erhöht wird. Der Behälter ist optional mit Antigerinnungs- und/oder Konservierungschemikalien beschichtet. Beispiele für Konservierungsmittel enthalten Ethylendiamintetraessigsäure (EDTA) oder Natriumbenzoat. Beispiele für Antigerinnungschemikalien sind Natriumheparin und Natriumcitrat.
  • Das hinsichtlich der Perforationsstelle nächstgelegene Ende des Behälters ist optional mit einem Stöpsel 70 luftdicht abgedichtet. Der Stöpsel ist aus einem Material mit geeigneter Flexibilität hergestellt, so dass er sich den Konturen der Perforationsstelle (beispielsweise dem Finger) anpasst. Die gewünschte Perforationsstelle wird fest gegen den Stöpsel gedrückt. Das Stöpselmaterial ist für Gasdurchfluss undurchlässig. Weiterhin ist das Stöpselmaterial dünn genug, um mittels des Lasers die Perforation sowohl des Materials als auch der Haut zu ermöglichen. In der bevorzugten Ausführungsform ist der Stöpsel aus Kautschuk hergestellt.
  • Das Stöpselperforationszentrum 74, wie in 9 gezeigt, ist vorzugsweise aus einem dünnen Kautschukmaterial hergestellt. Die Dicke des Stöpsels ist derart, dass der Stöpsel das Vakuum vor der Perforation aufrechterhalten kann und der Laser sowohl den Stöpsel als auch das dem Stöpsel benachbarte Gewebe perforieren kann. Zur Verwendung mit einem Er:YAG-Laser sollte der Stöpsel im Bereich von ungefähr 100 ... 500 μm dick sein, aber höchstens 1 mm dick.
  • Das Stöpselperforationszentrum 74 ist groß genug um die Perforationsstelle zu bedecken. Optional ist die Perforationsstelle ein rundes Loch mit einem ungefähren Durchmesser von 0,1 ... 1 mm oder schlitzförmig mit einer ungefähren Breite von 0,05 ... 0,5 mm und einer ungefähren Länge von bis zu 2,5 mm. Somit ist das Stöpselperforationszentrum ausreichend groß, um die Perforationsstellen dieser Größen zu bedecken.
  • Die Perforationsstelle wird fest gegen das Kautschukmaterial gepresst. Optional kann ein kreisförmiger Ring aus Klebstoff auf dem Kautschukstöpsel angebracht werden, um eine luftdichte Dichtung zwischen der Perforationsstelle und dem Behälter bereitzustellen. Vorzugsweise wird die Perforationsstelle auf dem Stöpsel gedehnt, wenn das Gewebe gegen den Stöpsel gepresst wird. Dieses Dehnen des Stöpselmaterials verursacht, dass das in dem Stöpsel erzeugte Loch vergrößert wird über die Größe des Lochs, welches in dem Gewebe erzeugt wird. Als Resultat kann das Blut und/oder das Serum ungehindert in den Behälter 68 fließen.
  • Der Behälter 68 enthält ein Fenster 72, das aus einem infrarotdurchlässigen Material hergestellt ist und das in dem Strahlweg des Laserstrahls, am hinsichtlich des Strahls nächstgelegenen Ende des Behälters, positioniert ist. Der Laserstrahl tritt durch das Fenster durch den Behälter hindurch, perforiert das Stöpselperforationszentrum 74 und perforiert das Gewebe des Patienten. In der bevorzugten Ausführungsform ist das infrarotdurchlässige Material Quarz, aber andere Beispiele geeigneten Infrarotmaterials enthalten Steinsalz, Germanium und Polyethylen.
  • In einer zweiten, nicht beanspruchten Ausführungsform des Behälters, wie in 10 gezeigt, enthält der Behälter 68 ein Loch 76, durch welches der Laser hindurchtritt. In dieser zweiten Ausführungsform sammelt der Behälter nur entferntes Gewebe. Wie in der ersten Ausführungsform ist die Perforationsstelle fest gegen den Behälter gedrückt. Der Behälter kann optional nächstgelegen zu der Perforationsstelle einen Stöpsel enthalten, dies ist jedoch nicht wesentlich, da ein Vakuum in der zweiten Ausführungsform nicht aufrechterhalten werden muss. Beide Ausführungsformen des Behälters reduzieren das Geräusch, das auf Grund der Interaktion zwischen dem Laserstrahl und dem Gewebe des Patienten erzeugt wird, und mildern somit Angst und Stress beim Patienten.
  • Optional ist der Behälter ein Einwegartikel, so dass der Behälter und der Stöpsel nach der Nutzung weggeworfen werden können. Zusätzlich kann der Behälter Reagenzien für unterschiedliche auf das gesammelte Blut durchzuführende Tests enthalten. Beispiele solcher Reagenzien sind Natriumheparin und andere Reagenzien, die im Stand der Technik für die Nutzung in chemischen Standardbluttests bekannt sind. Es wird beispielsweise auf D. Garza et al, Phlebotomy Handbook (3rd Edition), Appleton and Lang Pub. Co., Norwalk, CT, 1993, verwiesen. Die Reagenzien sind derart positioniert, dass sie sich nicht in dem Strahlweg des Laserlichts befinden. Die Reagenzien sind vorzugsweise in trockener Form vorhanden, beschichten die inneren Wände des Behälters und sind somit unmittelbar zur Interaktion mit der Blutprobe, so wie sie gesammelt worden ist, verfügbar.
  • Eine bevorzugte Ausgestaltung für den Behälter ist, wenn er ein in 11 gezeigtes Reagenz enthält. In dieser Ausgestaltung weist der Behälter an der Basis eine derartige Einkerbung 78 auf, dass jede beliebige flüssige Reagenz, die in dem Behälter vorhanden ist, nicht in den Strahlweg. des Laserstrahls fällt, wenn der Behälter entweder vertikal oder horizontal gehalten wird. Der Scheitelpunkt des eingekerbten Bereichs ist aus infrarotdurchlässiger Substanz, wie beispielsweise Quarz, hergestellt.
  • Wenn Reagenzien in dem Behälter enthalten sind, bevor die Blutprobe gesammelt wird, so ist es vorteilhaft, den Behälter in irgendeiner Weise dahingehend zu kennzeichnen, welche Reagenzien in dem Behälter enthalten sind oder dahingehend, welcher Test auf die Probe unter Verwendung dieser Reagenzien ausgeführt werden soll. Ein bevorzugtes Verfahren für eine solche Markierung erfolgt unter Verwendung von farbkodierten Stöpseln. Beispielsweise kann ein blauer Stöpsel die Existenz einer Reagenz A anzeigen, wohingegen ein roter Stöpsel die Präsenz von Reagenzien B plus C innerhalb des Behälters anzeigen kann.
  • Um die Haut vor der Perforation zu sterilisieren kann ein steriler alkohol-imprägnierter Lappen oder ein Papier oder anderes dünnes Material optional über der zu perforierenden Stelle platziert werden. Dieses Material kann ferner das Abspringen möglicherweise infizierten Gewebes in der Dampffahne verhindern, die durch die Perforation freigesetzt wird. Das Material muss für den Laserstrahl durchlässig sein. Beispiele solcher Materialien sind eine dünne Schicht aus Quarz, Glimmer oder Saphir. Alternativ kann eine dünne Schicht aus Plastik wie beispielsweise eine Schicht aus Polyvinylchlorid über der Haut platziert werden. Obwohl der Laserstrahl das Plastik perforieren wird, verhindert das Plastik, dass das meiste der Ablösungen wegfliegt und verringert somit jedes mögliche Risiko einer Kontamination durch infiziertes Gewebe. Zusätzlich kann eine Schicht aus einer viskosen sterilen Substanz, wie beispielsweise Vaseline, dem durchlässigen Material oder der Plastikschicht hinzugefügt werden, um die Haftung des Materials oder des Plastiks an der Haut zu erhöhen und ferner die Kontamination der Dampffahne zu verringern. Zusätzlich kann ein solcher Lappen verwendet werden, um Allergene, lokale Anästhetika oder andere Pharmazeutika zuzuführen, wie unten beschrieben wird.
  • Beispiele eines solchen Lappens sind in den 6 und 7 bereitgestellt. In 6 ist ein alkohol-imprägniertes Papier 54 von einem temporär klebenden Streifen 58 umgeben. Seitenansichten von zwei alternativen Lappen sind in den 7a und 7b gezeigt, in denen sterilisierender Alkohol antibiotische Salbe, Allergen oder ein Pharmazeutikum in dem Zentralbereich des Lappens 60 vorhanden ist. Dieses Material wird mittels eines Papiers oder einer Plastikschicht 62 an der Stelle gehalten, optional mit einem laserdurchlässigen Material 64 (gezeigt in 7b), wie beispielsweise Glimmer, Quarz oder Saphir, welches im Zentrum des Lappens für den Laserstrahl durchlässig ist. Der Lappen kann unter Verwendung eines Klebstoffs 66 auf der Haut platziert sein.
  • Beim Definieren des Laserstrahls zu berücksichtigende Faktoren sind Wellenlänge, Energiefluss, zeitliche Pulsbreite und Strahlfleckgröße. Die Wellenlänge ist durch das Lasermaterial bestimmt, wie beispielsweise Er:YAG, welches in der Vorrichtung verwendet wird. Die zeitliche Pulsbreite ist eine Folge der Breite des Pulses, welcher von der Kondensatorbank, der Blitzlampe und dem Laserstabmaterial erzeugt wird. Die Pulsbreite liegt optimal zwischen 1 μs und 1000 μs. Der Laserstrahl ist exakt auf die Haut fokussiert, erzeugt einen schlitzförmigen Fokuspunkt mit einer Breite von 0,05 ... 0,5 mm und einer Länge von bis zu 2,5 mm oder einen ellipsenförmigen Fokuspunkt von 0,2 ... 0,3 mm mal 1 ... 2 mm. Die Energiedichte, welche eine Funktion der Laserausgangsenergie (in Joule) und der Größe des Strahls an dem Fokuspunkt (cm2) ist, sollten in dem Bereich von 10 ... 100.000 J/cm2 liegen. Die Fokuslänge der Linse kann beliebig groß sein, beträgt jedoch in einer Ausführungsform der Vorrichtung 30 mm. Die Energieflussrate liegt vorzugsweise in einem Bereich von 1,3·104 ... 6,4·1010 W/cm2 und gleichzeitig liegt die Energieflussrate vorzugsweise im Bereich von 1,3·101 ... 6,4·107 W/cm2.
  • Die Vorrichtung arbeitet wie folgt: Der Stromunterbrecher wird initiiert, womit das Aufladen der Kondensatoren gestartet wird. Die Vorrichtung wird in einer Weise manipuliert, dass ein Abschnitt der Haut des Patienten an der Stelle des Laserfokus innerhalb des Applikators positioniert wird. Zum Sammeln von Blut ist die Perforationsstelle optimal an einer Stelle, an welcher der Blutfluss hoch ist. Beispiele solcher Bereiche der Haut sind auf einer Fingerspitze, oder die Ferse eines Fußes. Für die Perforation zum Zuführen von Anästhetika oder Pharmazeutika oder zum Immunisieren ist ein Bereich der Haut bevorzugt, der einen geringeren Kontakt mit harten Objekten oder mit Kontaminationsquellen hat. Beispiele sind die Haut auf dem Arm, dem Bein, dem Abdomen oder dem Rücken. Optional wird das Hautheizelement zu dieser Zeit aktiviert.
  • Vorzugsweise wird ein Halteelement mit einem Loch bereitgestellt, welches mit der Fokusebene des optischen Systems zusammenfällt. Optional kann ein federunterstützter Stromunterbrecher 36 an dem Halteelement befestigt sein, so dass für den Fall, dass der Patient eine geringe Menge an Druck auf den Stromunterbrecher ausübt, dieser zu dem Fokuspunkt hinuntergeführt wird, ein Schalter geschlossen wird und der Laser einen Strahlungspuls initiiert. In diesem Aufbau ist der Fokuspunkt des Strahls nicht in einer Linie mit dem Ende des Halteelements solange dieses Ende niedergedrückt wird. In dem extrem unwahrscheinlichen Ereignis einer störungsbedingten Entladung des Lasers vor der korrekten Positionierung des Gewebes an dem Ende des Laserapplikators resultiert diese Situation bei der optischen Anordnung in einer Energieflussrate, die signifikant niedrig ist, womit ein vernachlässigbarer Effekt auf ungewollten Zielen verursacht wird.
  • Für bestimmte Zwecke ist es nützlich, eine Vielzahl von Perforationen auf der Haut gleichzeitig oder in schneller Abfolge zu erzeugen. Um dies zu erreichen ist der Vorrichtung ein Strahlteiler hinzugefügt.
  • Entnahme von Blut oder Serum
  • Die Vorrichtung kann verwendet werden zum Perforieren der Haut bis zu der Kapillarschicht, um das Sammeln von Blut zu ermöglichen. Das Blut kann für eine große Zahl unterschiedlicher Tests verwendet werden, wie beispielsweise zum Bestimmen der Blutchemie (Blutzucker, CBC, Harnstoff, Elektrolyte, Kreatinin, Cholesterin, etc.) und/oder es kann in seine Komponenten aufgeteilt werden, wie beispielsweise in Serum und Zellen für eine Vielzahl unterschiedlicher Zwecke, wie beispielsweise das Bestimmen der Zahl roter Blutkörperchen. Das Blut kann ferner für Zwecke verwendet werden, wie beispielsweise eine genetische Analyse für eine genetische Beratung.
  • Mit der anderen Parametereinstellung bestimmt die Intensität der Laserpumpquelle die Intensität des Laserpulses, welcher wiederum die Tiefe der resultierenden Perforation bestimmt. Deshalb können unterschiedliche Einstellungen der Vorrichtung bereitgestellt werden, um das Durchdringen unterschiedlicher Hautdicken zu ermöglichen.
  • Wie oben beschrieben worden ist kann die Haut vorgeheizt werden, so dass die Kapillaren erweitert werden und der Blutfluss vor der Perforation erhöht wird. Der erhöhte Blutfluss erlaubt das Sammeln eines erhöhten Blutvolumens und vermeidet das Bedürfnis nach einer Vielzahl von Perforationen. Das Vorheizen kann erreicht werden mittels Hinzufügens eines Vorheizelements, wie oben beschrieben, oder mittels anderer Einrichtungen zum Vorheizen der Haut, bevor sie auf dem Laserapplikatorteil der Vorrichtung positioniert wird.
  • Optional wird ein Strahlabsorber in einer solchen Weise positioniert, dass die Verwendung des Lasers zum Punktieren von Fingerspitzen nicht behindert wird. Der Strahlabsorber absorbiert jedwede Streuung elektromagnetischer Strahlung des Strahls, die nicht von dem Gewebe absorbiert wird, wodurch verhindert wird, dass irgendeine Streustrahlung Schaden verursacht. Der Strahlabsorber ist leicht entfernbar für Situationen, in denen die Präsenz des Strahlabsorbers das Platzieren eines Körperteils auf dem Applikator behindern würde.
  • Dieses Verfahren zur Blutentnahme erzeugt eine sehr kleine Zone, in der Gewebe verdampft wird und nur eine extrem kleine Zone thermischer Nekrose. Ein im Wesentlichen rundes Loch kann einen Durchmesser in einem Bereich von 0,1 ... 1 mm aufweisen, wohingegen ein schlitzförmiges Loch eine Breite in einem Bereich von ungefähr 0,05 ... 0,5 mm und eine Länge von bis zu ungefähr 2,5 mm aufweisen kann. Als Ergebnis verläuft die Heilung schneller oder gleich schnell wie die Heilung nach einer Hautpunktierung mit einem spitzen Instrument.
  • Das Blut kann in einem geeigneten Gefäß gesammelt werden, wie beispielsweise einer kleinen Teströhre oder einer Kapillarröhre oder in einem Behälter, der zwischen dem Laser und dem Gewebe, wie oben beschrieben, platziert wird. Der Laser dieser Erfindung ist besonders geeignet zum Sammeln von Blut, da er das Blut nach dem Durchdringen der Haut nicht gerinnen lässt. Ferner ist das Verfahren nicht-kontaktierend und somit werden weder der Patient, das zu entnehmende Blut noch das die Perforation durchführende Instrument kontaminiert.
  • Zuführen von Pharmazeutika
  • Mittels geeigneter Modifikation des Energiepegels und/oder der Fleckgröße des Laserstrahls können Perforationen hergestellt werden, welche die Haut nicht so tief durchdringen wie oben beschrieben. Diese Perforationen können nur durch die oberen Flächen, wie beispielsweise die Keratinschicht oder sowohl die Keratinschicht als auch die Epidermis gemacht werden. Optional kann ein optischer Strahlteiler verwendet werden, so dass entweder einzelne Perforationen oder eine Anzahl von Perforationen innerhalb eines gewünschten Bereichs durchgeführt werden können. Nach der Perforation können die Pharmazeutika der Haut in Form einer Creme, einer Lotion oder eines Lappens zugeführt werden.
  • Immunisierung
  • Wie beim Zuführen der Pharmazeutika können Antigene durch die Haut für Immunisierungszwecke verabreicht werden. Die Perforationen werden entweder einzeln oder in einer Vielzahl durch die äußeren Schichten der Haut gemacht und das Immunogen wird in einer geeigneten Form bereitgestellt. Für Booster-Immunisierungen, wobei das Zuführen über eine Zeitperiode hinweg die Immunantwort erhöht, kann das Immunogen in einer Form bereitgestellt werden, welche die Perforationen langsam durchdringt, jedoch mit einer Rate, die größer ist als es durch unperforierte Haut möglich wäre.
  • Zuführen von Anästhetika
  • Lokalisierte Anästhetika können unter Verwendung des Verfahrens und der Vorrichtung der Erfindung zugeführt werden. Örtlich angewendete Anästhetika müssen die Keratinschicht durchdringen, um zu wirken. Derzeit werden als Medikamententräger fungierende Verbindungen verwendet, um die transdermale Diffusion einiger Medikamente zu ermöglichen. Diese Träger verändern manchmal das Verhalten der Medikamente oder sind selbst toxisch. Der Energiepegel der Vorrichtung kann geeignet eingestellt werden, so dass die Keratinschicht durchdrungen wird, ohne die Kapillarschicht zu durchdringen. Anästhetika können dann den Perforationen zugeführt werden, beispielsweise in einem mit einer Salbe imprägnierten Lappen.
  • Zuführen von Allergenen
  • Diese Vorrichtung und das Verfahren können ferner angewendet werden auf das Zuführen von Allergenen beispielsweise für einen Allergietest. Eine Vielzahl von Perforationen können realisiert werden, welche zwar die äußere Hautschicht durchdringen, jedoch die Kapillarschicht nicht durchdringen. Eine Vielzahl unterschiedlicher Allergene können dann der Haut zugeführt werden, wie bei einem Pflaster-Haut-Test.
  • Die folgenden Beispiele sind Beschreibungen der Verwendung der Vorrichtung dieser Erfindung zum Zwecke der Blutentnahme.
  • Beispiel 1
  • Ein Infrarot-Laserstrahl-Puls wurde gebildet unter Verwendung eines gepulsten Multimode-Festkörper-Er:YAG-Lasers, welcher aus zwei flachen Resonatorspiegeln, einem Er:YAG-Kristall als ein aktives Medium, einer Stromversorgung und einer Einrichtung zum Fokussieren des Laserstrahls besteht. Die Wellenlänge des Laserstrahls betrug 2,94 μm. Die Dauer des Pulses betrug ungefähr 100 ms. Die elliptische Fleckgröße war ungefähr 0,2 ... 0,3 mm mal 1 ... 2 mm. Die verwendete Impulsenergie betrug 0,7 J, 0,9 J oder 2,0 J für jeweils dünne bis dicke Haut. Einzelne Pulse wurden verwendet, in einem Test wurden jedoch 6 Pulse pro Minute verwendet, wobei jeder ein separates Gewebestück bestrahlte.
  • Die Betriebsparameter waren wie folgt: Die Energie pro Puls betrug 2 J, wobei die Größe des Strahls an dem Fokuspunkt 0,2 mm betrug, womit ein Energiefluss von 103 J/cm2 erzeugt wurde. Die zeitliche Pulsbreite betrug 100 μs, womit eine Energieflussrate von 1·107 W/cm2 erzeugt wurde.
  • Jeder Finger des Patienten wurde vor der Perforation mit 96%-igem Ethylalkohol behandelt, um Bakterien zu entfernen. Der Finger wurde an dem Fokuspunkt des Lasers platziert und der Laser wurde entladen. Das Blut wurde von der Perforation mit einer Glaskapillarröhre entnommen. Das Volumen des entnommen Bluts (ohne den Finger zu quetschen) variierte von 0,5 ... 1,0 ml. Dieses Blut unterschied sich in der chemischen Zusammensetzung nicht von vergleichbaren Proben, die mittels einer Lanzettenpunktierung während Kontrolltests erhalten wurden. Der von der Laserperforation ausgelöste Schmerz wurde als ungefähr gleich oder geringer geschätzt verglichen mit dem Schmerz, der durch Stechpunktierung einer Lanzette ausgelöst wurde.
  • Eine morphologische Analyse der Wirkung der Laserperforation auf das Hautgewebe zeigte einen minimalen Bereich thermischer Zerstörung (weniger als 20 ... 40 μm jenseits des Randes der erzeugten Perforation) ohne irgendein Zeichen von Verkohlung. Die Wunden waren konisch geformt. Es wurde festgestellt, dass die Tiefe und Breite der Wunden proportional zu dem Energiefluss waren und annähernd zusammenhingen mit dem Inversen der Dauer des Laserpulses.
  • Beispiel 2
  • Der Laserperforator weist auf eine Blitzlampe (PSC Lamps, Webster, NY), einen Er:YAG-Kristall (Union Carbide Crystal Products, Washagoul, WA), optische Resonatorspiegel (CVI Laser Corp., Albuquerque, NM), eine infrarotdurchlässige Linse (Esco Products Inc., Oak Ridge, NJ), sowie eine Anzahl von elektrischen Standardbauelementen wie beispielsweise Kondensatoren, Widerstände, Induktoren, Transistoren, Dioden, Silizium-gesteuerte Gleichrichter, Sicherungen und Schalter, die von jeder beliebigen Vertriebsfirma zum Vertrieb elektrischer Bauelemente erhalten werden können, wie beispielsweise von Newark Electronics, Little Rock, AR.
  • Beispiel 3
  • Ein Infrarot-Laserstrahl-Puls wurde gebildet unter Verwendung eines gepulsten Multimode-Festkörper-Er:YAG-Lasers, welcher aus zwei flachen Resonatorspiegeln, einem Er:YAG-Kristall als ein aktives Medium, einer Stromversorgung und einer Einrichtung zum Fokussieren des Laserstrahls besteht. Die Wellenlänge des Laserstrahls betrug 2,94 μm. Die Dauer des Pulses betrug ungefähr 100 ms. Die elliptische Fleckgröße betrug ungefähr 0,2 ... 0,3 mm mal 1 ... 2 mm. Die verwendete Impulsenergie betrug 0,7 J, 0,9 J oder 2,0 J jeweils für dünne bis dicke Haut. Einzelne Pulse wurden verwendet, in einem Test wurden jedoch 6 Pulse pro Minute verwendet, wobei jeder ein separates Gewebestück bestrahlte.
  • Die Betriebsparameter waren wie folgt: Die Energie pro Puls betrug 2,0 J, wobei die Größe des Laserstrahls in dem Fokuspunkt 0,2 mm mal 1 mm betrug, wodurch ein Energiefluss von 103 J/cm2 erzeugt wurde. Die zeitliche Pulsbreite betrug 100 μs, womit eine Energieflussrate von 1·107 W/cm2 erzeugt wurde.
  • Jeder Finger des Patienten wurde vor der Perforation mit 96%-igem Ethylalkohol behandelt, um Bakterien zu entfernen. Der Finger wurde an den Fokuspunkt des Lasers platziert und der Laser wurde entladen. Das Blut wurde von der Perforation mit einer Glaskapillarröhre entnommen. Das Volumen des entnommenen Blutes (ohne den Finger zu quetschen) variierte von 0,5 ... 1,0 ml. Dieses Blut unterschied sich in seiner chemischen Zusammensetzung nicht von vergleichbaren Proben, die mittels Lanzettenpunktierung während Kontrolltests erhalten wurden. Der durch die Laserperforation ausgelöste Schmerz wurde als ungefähr gleich geschätzt zu dem Schmerz, der durch die Stechpunktierung einer Lanzette ausgelöst wurde.
  • Eine morphologische Analyse der Wirkung der Laserperforation auf das Hautgewebe zeigte einen minimalen Bereich thermischer Zerstörung (weniger als 20 ... 40 μm jenseits des Randes der erzeugten Perforation) ohne irgendein Zeichen von Verkohlung. Die Wunden waren schlitzförmig. Es wurde festgestellt, dass die Tiefe und die Breite der Wunden proportional zu dem Energiefluss waren, und dass sie annähernd zusammenhingen mit dem Inversen der Dauer des Laserpulses.
  • Beispiel 4
  • Die Perforation wird durchgeführt wie in Beispiel 1 oder 3 mit der Ausnahme, dass die Vorrichtung modifiziert ist, so dass sie eine Blut-Sammelröhre enthält, die fest zwischen das vordere Ende der Laservorrichtung und dem Fokuspunkt des Lasers, durch welchen der Laserstrahl hindurchtritt, eingepasst ist. Die Röhre ist 2,0 cm lang und weist einen Durchmesser von 1,0 cm auf, hat eine Einkerbung in dem Boden, welche den Boden 1,0 cm in das Zentrum der Röhre drückt. Als Ergebnis fällt keine Flüssigkeit oder ein kristallisiertes Additiv, wie beispielsweise das Antigerinnungsmittel Natriumheparin, in den Strahlweg des Laserstrahls, wenn die Röhre entweder vertikal oder horizontal gehalten wird. Der Scheitelpunkt des eingekerbten Bereichs ist aus einer Quarzscheibe hergestellt, welche für den Laserstrahl durchlässig ist.
  • Das ferne Ende der Röhre ist mit einem Kautschukstöpsel bedeckt. Der Stöpsel ist außen mit einem Klebstoff beschichtet, um die Haftung des Stöpsels auf der zu perforierenden Haut zu bewirken. In der Röhre selbst wird vor der Perforation ein inneres Vakuum aufrechterhalten. Die Röhre ist ferner innen mit Natriumheparin beschichtet, um als Antigerinnungsmittel zu fungieren, um ein Blutbild auf die erhaltene Probe zu bilden.
  • Anschließend wird der Laser gezündet, wodurch der Laserstrahl durch die Röhre hindurch geführt wird und nur das ferne Ende (der Stöpsel) der Röhre sowie die Haut perforiert werden.
  • Eine Blutprobe von annähernd 1 cm3 fließt dann in die Röhre und vermischt sich mit dem Natriumheparin. Die gesamte Blutprobe und jedes explodierte/abgetragene Gewebe wird auf diese Weise innerhalb der Röhre aufgenommen, womit eine Kontaminierung und die Verbreitung von Krankheiten verhindert werden.
  • Während Ausführungsformen und Anwendungen dieser Erfindung gezeigt und beschrieben wurden ist es für die Fachleute offensichtlich, dass viel mehr Veränderungen möglich sind.
  • Übersetzung der Figuren Fig. 1
    Figure 00260001
  • Fig. 2
    Figure 00260002

Claims (38)

  1. Laserperforator zum Perforieren von Haut aufweisend: a) ein Laserelement (20), welches einen gepulsten Strahl emittiert, optional ausgewählt aus der Gruppe bestehend aus: Er:YAG, gepulster CO2, Ho:YAG, Er:YAP, Er/Cr:YSGG, Ho:YSGG, Er:GGSG, Er:YLF, Tm:YAG, Ho:YAG, Ho/Nd:YAlO3, Co:MgF2, HF chemisch, DF chemisch, Kohlenmonoxid, tiefe UV-Laser und frequenzverdreifachter Nd:YAG; b) eine Energiequelle (10) oder (12); c) ein mit der Energiequelle verbundenes Hochspannungspulse formendes Netzwerk (16); d) eine Einheit (22) zum Anregen des Laserelements (20), welches mit dem pulsformenden Netzwerk (16) verbunden ist; e) eine Laserkavität (18); f) einen zur Positionierung zwischen dem Laserelement (20) und dem Gewebe eingerichteten Behälter (68) zum Aufsammeln von vom Gewebe gelöstem biologischem oder anderem Material, wobei der Behälter außer am dem Gewebe nächstgelegenen Ende abgeschlossen ist; und g) eine Fokussiereinheit (28), welche den Strahl in einer Entfernung von 10 mm zum Laserelement (20) und als einen geschlossen-konischen Abschnitt fokussiert, welcher am Fokuspunkt des Strahls eine Achse mit weniger als 1 mm hat.
  2. Laserperforator gemäß Anspruch 1, dadurch gekennzeichnet, dass die Laserwellenlänge zwischen 2 μm und 7 μm und insbesondere zwischen 2,9 μm und 3,0 μm beträgt.
  3. Laserperforator gemäß Anspruch 1 oder 2, gekennzeichnet durch einen Applikator (30), welcher entlang des Strahlweges zwischen der Laserkavität und dem zu perforierenden Gewebe angeordnet ist, so dass der Fokuspunkt des Strahls innerhalb oder an einem Ende des Applikators (30) liegt.
  4. Laserperforator gemäß Anspruch 3, dadurch gekennzeichnet, dass der Applikator geheizt wird.
  5. Laserperforator gemäß Anspruch 4, dadurch gekennzeichnet, dass das Heizelement ein thermoelektrisches Heizelement ist.
  6. Laserperforator gemäß Anspruch 3 oder 4 oder 5, gekennzeichnet durch einen Stromunterbrecher (14) zwischen dem Hochspannungspulse formenden Netzwerk (16) und der Energiequelle, wodurch der Laser bis zum Entfernen des Stromunterbrechers nicht entladbar ist.
  7. Laserperforator gemäß Anspruch 6, dadurch gekennzeichnet, dass der Stromunterbrecher optional ein federunterstützter Stromunterbrecher ist, welcher mittels Niederdrückens des Applikators aktiviert wird.
  8. Laserperforator gemäß einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass der Applikator (30) einen Strahlabsorber (38) aufweist.
  9. Laserperforator gemäß einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, dass der Applikator (30) einen Fingerabdruck-Prüfanschluss (40) aufweist.
  10. Laserperforator gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Energiequelle ein Batteriestapel (12) ist.
  11. Laserperforator gemäß Anspruch 10, dadurch gekennzeichnet, dass der Batteriestapel (12) wiederaufladbar ist.
  12. Laserperforator gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Einheit (22) zum Anregen des Lasermaterials (20) aus einer Blitzlampe und einem Diodenlaser ausgewählt wird.
  13. Laserperforator gemäß Anspruch 12, dadurch gekennzeichnet, dass der Diodenlaser (42) vorhergehend zum Lasermaterial (20) ist und der Laserstrahl des Diodenlasers auf das Lasermaterial durch eine Kollimator-Linse (44) hindurch fokussiert wird.
  14. Laserperforator gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Behälter (68) ein Vakuum aufweist.
  15. Laserperforator gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Behälter (68) weiterhin aufweist einen Stöpsel (70), welcher optional aus einem Material gefertigt ist, welches für Gasdurchfluss undurchlässig ist, welcher derart geformt ist, dass der Stöpsel mit den Konturen des Perforationsorts übereinstimmt, und welcher nächstliegend zu dem Perforationsort ist, wobei der Stöpsel optional ein Vakuum in dem Behälter aufrechterhält.
  16. Laserperforator gemäß Anspruch 15, dadurch gekennzeichnet, dass der Stöpsel (70) aus Kautschuk hergestellt ist.
  17. Laserperforator gemäß Anspruch 15 oder 16, dadurch gekennzeichnet, dass der Stöpsel (70) ein Stöpselperforationszentrum (74) aufweist.
  18. Laserperforator gemäß Anspruch 17, dadurch gekennzeichnet, dass das Stöpselperforationszentrum (74) aus Kautschuk mit einer Dicke im Bereich von ca. 100 bis 500 μm hergestellt ist.
  19. Laserperforator gemäß Anspruch 17, dadurch gekennzeichnet, dass der Behälter (68) einen Eingang (72), (76) oder (78) für den Laserstrahl aufweist.
  20. Laserperforator gemäß einem der Ansprüche 15 bis 19, dadurch gekennzeichnet, dass der Eingang (72), (76) oder (78) für den Laserstrahl ein Fenster (72) ist, welches optional ein infrarotdurchlässiges Material aufweist und welches im Weg des Laserstahls angeordnet ist, wobei das Fenster für den Laserstrahl transparent ist, und wobei das Fenster optional aus einem Material hergestellt ist, welches aus der Gruppe wählbar ist, welche besteht aus: Quarz, Steinsalz, Germanium und Polyethylen.
  21. Laserperforator gemäß einem der Ansprüche 15 bis 19, dadurch gekennzeichnet, dass der Eingang für den Laserstrahl ein im Weg des Laserstrahls angeordnetes Loch (76) ist.
  22. Laserperforator gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Behälter (68) mit einer Antigerinnungschemikalie beschichtet ist, welche optional aus Natriumheparin und Natriumcitrat gewählt wird.
  23. Laserperforator gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Behälter (68) mit einem Konservierungsmittel beschichtet ist, welches optional aus Ethylendiamintetraessigsäure und Natriumbenzoat gewählt wird.
  24. Laserperforator gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Fokussiereinheit (28) den Strahl von dem Laserelement in ein eine elliptische oder schlitzähnliche Form mit einer Breite zwischen 0,05 mm und 0,5 mm und einer Länge von gleich oder kleiner 2,5 mm fokussiert.
  25. Laserperforator gemäß Anspruch 24, dadurch gekennzeichnet, dass die Pulsenergie und die zeitliche Pulsbreite derartig sind, dass die Energiedichte zum Erzeugen eines Loches ausreicht, welches mindestens so tief wie die Kapillarschicht der Haut einer Person ist.
  26. Laserperforator gemäß Anspruch 25, dadurch gekennzeichnet, dass die Pulsenergie ca. 2,0 J beträgt, während die Strahlgröße am Fokuspunkt ca. 0,2 mm mal 1 mm beträgt, und die zeitliche Pulsbreite ca. 100 μs beträgt, wodurch eine Energieflussrate von ca. 1107 W/cm2 erzeugt wird.
  27. Laserperforator gemäß Anspruch 2, dadurch gekennzeichnet, dass der Laserstrahl eine Wellenlänge von 2,94 μm hat.
  28. Laserperforator gemäß Anspruch 24, dadurch gekennzeichnet, dass eine Achse des von dem Strahl erzeugten Punkts am Fokuspunkt ca. 0,2 mm misst und die andere Achse ca. 1,0 mm misst.
  29. Laserperforator gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Behälter (68) entfernbar ist.
  30. Laserperforator gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Behälter (68) einen Hauptbehälter aufweist, welcher aufweist: a) einen Kragen, gegen den das Gewebe gepresst wird; b) eine zumindest teilweise transparente Linse (72), durch welche der Strahl hindurchläuft; und c) eine Wand, welche sich von dem äußeren Umfang der Linse zu dem Kragen erstreckt und den Raum zwischen dem Gewebe und der Linse einschließt.
  31. Laserperforator gemäß Anspruch 30, dadurch gekennzeichnet, dass der Behälter (68) weiterhin einen Sockel aufweist.
  32. Laserperforator gemäß Anspruch 31, dadurch gekennzeichnet, dass der Sockel weiterhin eine Einheit zum Aktivieren des Laserperforators aufweist.
  33. Laserperforator gemäß Anspruch 31 oder 32, dadurch gekennzeichnet, dass der Sockel weiterhin eine Einheit zum Auslösen eines Sicherheitsmechanismus auf dem Laserperforator aufweist.
  34. Laserperforator gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Behälter (68) weiterhin ein Gefäß zum Aufsammeln von mittels der Perforation des Gewebes gelöstem flüssigem und/oder korpuskularem Material aufweist.
  35. Laserperforator gemäß. Anspruch 34, dadurch gekennzeichnet, dass das Gefäß ein offenes Ende hat und das Gefäß weiterhin einen Stopfen (70) aufweist, welcher an dem offenen Ende zum Erzeugen einer luftdichten Dichtung angebracht wird.
  36. Laserperforator gemäß Anspruch 35, dadurch gekennzeichnet, dass der Stöpsel ein Vakuum in dem Gefäß aufrechterhält.
  37. Laserperforator gemäß Anspruch 35 oder 36, dadurch gekennzeichnet, dass das Gefäß entfernbar ist.
  38. Laserperforator gemäß einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der geschlossen-konische Abschnitt aus der Gruppe ausgewählt wird, welche besteht aus: einem Kreis, einer Ellipse und einem Schlitz.
DE69333337T 1992-10-28 1993-10-26 Laserperforator Expired - Fee Related DE69333337T2 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US96886292A 1992-10-28 1992-10-28
US968862 1992-10-28
US126241 1993-09-24
US08/126,241 US5643252A (en) 1992-10-28 1993-09-24 Laser perforator

Publications (2)

Publication Number Publication Date
DE69333337D1 DE69333337D1 (de) 2004-01-15
DE69333337T2 true DE69333337T2 (de) 2004-09-23

Family

ID=26824428

Family Applications (4)

Application Number Title Priority Date Filing Date
DE69331663T Expired - Fee Related DE69331663T2 (de) 1992-10-28 1993-10-26 Laserperforator
DE69333337T Expired - Fee Related DE69333337T2 (de) 1992-10-28 1993-10-26 Laserperforator
DE69333733T Expired - Lifetime DE69333733D1 (de) 1992-10-28 1993-10-26 Laserperforator mit Akkumulatoren
DE69333338T Expired - Fee Related DE69333338T2 (de) 1992-10-28 1993-10-26 Laserperforator

Family Applications Before (1)

Application Number Title Priority Date Filing Date
DE69331663T Expired - Fee Related DE69331663T2 (de) 1992-10-28 1993-10-26 Laserperforator

Family Applications After (2)

Application Number Title Priority Date Filing Date
DE69333733T Expired - Lifetime DE69333733D1 (de) 1992-10-28 1993-10-26 Laserperforator mit Akkumulatoren
DE69333338T Expired - Fee Related DE69333338T2 (de) 1992-10-28 1993-10-26 Laserperforator

Country Status (11)

Country Link
US (2) US5643252A (de)
EP (4) EP0666726B1 (de)
JP (2) JPH10501992A (de)
AT (4) ATE255371T1 (de)
AU (1) AU5587694A (de)
CA (1) CA2147358A1 (de)
DE (4) DE69331663T2 (de)
DK (2) DK1133952T3 (de)
ES (3) ES2173909T3 (de)
PT (2) PT1133953E (de)
WO (1) WO1994009713A1 (de)

Families Citing this family (234)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6315772B1 (en) * 1993-09-24 2001-11-13 Transmedica International, Inc. Laser assisted pharmaceutical delivery and fluid removal
US20020169394A1 (en) * 1993-11-15 2002-11-14 Eppstein Jonathan A. Integrated tissue poration, fluid harvesting and analysis device, and method therefor
US5885211A (en) * 1993-11-15 1999-03-23 Spectrix, Inc. Microporation of human skin for monitoring the concentration of an analyte
BR9507960B8 (pt) * 1994-06-09 2014-09-30 Fujirebio Europ N V Processos e kits para deteção de resistência à rifampicina e/ou rifabutina de espécies de mycobacterium.
US5993439A (en) * 1994-08-29 1999-11-30 Cell Robotics, Inc. Lens shield for laser skin perforation
US5554153A (en) * 1994-08-29 1996-09-10 Cell Robotics, Inc. Laser skin perforator
CN1174713C (zh) * 1995-08-29 2004-11-10 光谱股份有限公司 用于输药及检测的人体皮肤微穿孔设备
EP2921111A1 (de) * 1995-08-29 2015-09-23 Nitto Denko Corporation Mikroporation der menschlichen Haut zur Arzneimittelabgabe und Überwachungsanwendungen
US5846080A (en) * 1995-12-20 1998-12-08 W&H Dentalwerk Gmbh Laser dental devices and methods
US6251102B1 (en) 1996-03-04 2001-06-26 Innotech, Usa, Inc. Laser surgical device and method of its use
AU3654097A (en) * 1996-07-26 1998-02-20 Venisect, Inc. Laser with matte crystal element and container unit
US6063039A (en) 1996-12-06 2000-05-16 Abbott Laboratories Method and apparatus for obtaining blood for diagnostic tests
US6093156A (en) 1996-12-06 2000-07-25 Abbott Laboratories Method and apparatus for obtaining blood for diagnostic tests
EP0952850A2 (de) * 1996-12-31 1999-11-03 Altea Technologies, Inc. Mikroporation von gewebe zur bioaktive-mittel-abgabe
US6527716B1 (en) 1997-12-30 2003-03-04 Altea Technologies, Inc. Microporation of tissue for delivery of bioactive agents
US5867324A (en) * 1997-01-28 1999-02-02 Lightwave Electronics Corp. Side-pumped laser with shaped laser beam
AU762824B2 (en) * 1997-01-31 2003-07-03 Transmedica International, Inc. Interstitial fluid monitoring
US6027496A (en) 1997-03-25 2000-02-22 Abbott Laboratories Removal of stratum corneum by means of light
US6155992A (en) * 1997-12-02 2000-12-05 Abbott Laboratories Method and apparatus for obtaining interstitial fluid for diagnostic tests
US6165170A (en) * 1998-01-29 2000-12-26 International Business Machines Corporation Laser dermablator and dermablation
AUPP176898A0 (en) * 1998-02-12 1998-03-05 Moldflow Pty Ltd Automated machine technology for thermoplastic injection molding
EP1056396B1 (de) 1998-02-17 2005-11-09 Abbott Laboratories Gerät zum entnehmen und analysieren von interstitieller flüssigkeit
US6173202B1 (en) 1998-03-06 2001-01-09 Spectrx, Inc. Method and apparatus for enhancing flux rates of a fluid in a microporated biological tissue
US6078600A (en) * 1998-03-20 2000-06-20 The University Of Chicago Generation and use of high power 213 nm and 266 nm laser radiation and tunable 210-400 nm laser radiation with BBO crystal matrix array
US6569157B1 (en) * 1998-05-18 2003-05-27 Abbott Laboratories Removal of stratum corneum by means of light
US6077660A (en) * 1998-06-10 2000-06-20 Abbott Laboratories Diagnostic assay requiring a small sample of biological fluid
US7037277B1 (en) 1998-07-21 2006-05-02 Spectrx, Inc. System and method for fluid management in a continuous fluid collection and sensor device
US7384396B2 (en) 1998-07-21 2008-06-10 Spectrx Inc. System and method for continuous analyte monitoring
FR2781358B1 (fr) * 1998-07-27 2000-10-13 Cird Galderma Dispositif pour l'assemblage des levres d'une plaie, piece de maintien et procede de traitement cosmetique
GB9818179D0 (en) * 1998-08-21 1998-10-14 Univ Manchester Foam control
US6074383A (en) * 1998-09-30 2000-06-13 Becton Dickinson And Company Laser lancet tip
US6059820A (en) 1998-10-16 2000-05-09 Paradigm Medical Corporation Tissue cooling rod for laser surgery
WO2000057951A1 (en) * 1999-03-26 2000-10-05 Flock Stephen T Delivery of pharmaceutical compounds and collection of biomolecules using electromagnetic energy and uses thereof
US6532387B1 (en) * 1999-03-26 2003-03-11 Kevin S. Marchitto Catheter for delivering electromagnetic energy for enhanced permeation of substances
US20070274946A1 (en) * 1999-04-15 2007-11-29 Norwood Immunoloty, Ltd. Tolerance to Graft Prior to Thymic Reactivation
US20040259803A1 (en) * 1999-04-15 2004-12-23 Monash University Disease prevention by reactivation of the thymus
AUPR074500A0 (en) * 2000-10-13 2000-11-09 Monash University Treatment of t cell disorders
US20040241842A1 (en) * 1999-04-15 2004-12-02 Monash University Stimulation of thymus for vaccination development
US20040265285A1 (en) * 1999-04-15 2004-12-30 Monash University Normalization of defective T cell responsiveness through manipulation of thymic regeneration
US20040258672A1 (en) * 1999-04-15 2004-12-23 Monash University Graft acceptance through manipulation of thymic regeneration
US20050020524A1 (en) * 1999-04-15 2005-01-27 Monash University Hematopoietic stem cell gene therapy
EP1182982A1 (de) * 1999-06-09 2002-03-06 Spectrx, Inc. Selbstabnehmbare energieabsorbierende struktur zur thermischen gewebeablation
US6685699B1 (en) 1999-06-09 2004-02-03 Spectrx, Inc. Self-removing energy absorbing structure for thermal tissue ablation
AU5742600A (en) * 1999-06-18 2001-01-09 Altea Therapeutics Corporation Light beam generation and focusing device
US6951411B1 (en) 1999-06-18 2005-10-04 Spectrx, Inc. Light beam generation, and focusing and redirecting device
US6270342B1 (en) * 1999-07-28 2001-08-07 Ceramoptec Industries, Inc. Dental laser treatment hand-piece and system
US20030078499A1 (en) 1999-08-12 2003-04-24 Eppstein Jonathan A. Microporation of tissue for delivery of bioactive agents
US6714564B1 (en) * 1999-08-23 2004-03-30 B. E. Meyers & Co., Inc. Dual function single laser
US6472295B1 (en) 1999-08-27 2002-10-29 Jmar Research, Inc. Method and apparatus for laser ablation of a target material
AU2000224980A1 (en) 2000-01-10 2001-07-24 Transmedica International, Inc. Improved interstitial fluid monitoring
US6506168B1 (en) 2000-05-26 2003-01-14 Abbott Laboratories Apparatus and method for obtaining blood for diagnostic tests
GB0019283D0 (en) * 2000-08-04 2000-09-27 Novartis Ag Organic compounds
US6902734B2 (en) 2000-08-07 2005-06-07 Centocor, Inc. Anti-IL-12 antibodies and compositions thereof
UA81743C2 (uk) 2000-08-07 2008-02-11 Центокор, Инк. МОНОКЛОНАЛЬНЕ АНТИТІЛО ЛЮДИНИ, ЩО СПЕЦИФІЧНО ЗВ'ЯЗУЄТЬСЯ З ФАКТОРОМ НЕКРОЗУ ПУХЛИН АЛЬФА (ФНПα), ФАРМАЦЕВТИЧНА КОМПОЗИЦІЯ, ЩО ЙОГО МІСТИТЬ, ТА СПОСІБ ЛІКУВАННЯ РЕВМАТОЇДНОГО АРТРИТУ
US7288390B2 (en) 2000-08-07 2007-10-30 Centocor, Inc. Anti-dual integrin antibodies, compositions, methods and uses
AUPR044000A0 (en) * 2000-09-28 2000-10-26 Norwood Abbey Ltd Diagnostic device
US20060088512A1 (en) * 2001-10-15 2006-04-27 Monash University Treatment of T cell disorders
US6733493B2 (en) * 2000-11-16 2004-05-11 Innotech Usa, Inc. Laser skin perforator
US6847673B2 (en) * 2001-06-22 2005-01-25 The Regents Of The University Of California Solid state laser disk amplifer architecture: the normal-incidence stack
ES2624547T3 (es) 2001-11-14 2017-07-14 Janssen Biotech, Inc. Anticuerpos anti il 6, composiciones, métodos y usos
US6659966B2 (en) 2001-11-15 2003-12-09 Roche Diagnostics Corporation Fluid sampling apparatus
CN1615165A (zh) * 2001-12-05 2005-05-11 诺伍德·阿比有限公司 使溶液易于输送到表面的涂药器
US20040082940A1 (en) * 2002-10-22 2004-04-29 Michael Black Dermatological apparatus and method
US20030109787A1 (en) * 2001-12-12 2003-06-12 Michael Black Multiple laser diagnostics
US20030109860A1 (en) * 2001-12-12 2003-06-12 Michael Black Multiple laser treatment
GB0203276D0 (en) * 2002-02-12 2002-03-27 Novartis Ag Organic compounds
US9918665B2 (en) 2002-03-11 2018-03-20 Nitto Denko Corporation Transdermal porator and patch system and method for using same
US7392080B2 (en) 2002-03-11 2008-06-24 Altea Therapeutics Corporation Transdermal drug delivery patch system, method of making same and method of using same
EP1363386B1 (de) 2002-05-13 2005-01-05 Luxon Energy Devices Corporation Generator für Hochstrompulse
WO2004002417A2 (en) 2002-06-28 2004-01-08 Centocor, Inc. Mammalian ch1 deleted mimetibodies, compositions, methods and uses
US6983177B2 (en) * 2003-01-06 2006-01-03 Optiscan Biomedical Corporation Layered spectroscopic sample element with microporous membrane
US20040132167A1 (en) * 2003-01-06 2004-07-08 Peter Rule Cartridge lance
US7413567B2 (en) * 2003-02-25 2008-08-19 Spectragenics, Inc. Optical sensor and method for identifying the presence of skin
ES2570987T3 (es) * 2003-02-25 2016-05-23 Tria Beauty Inc Aparato de tratamiento dermatológico, basado en láser de diodo y autónomo
WO2004075976A2 (en) 2003-02-25 2004-09-10 Spectragenics, Inc. Method and apparatus for the treatment of benign pigmented lesions
EP1596707A4 (de) * 2003-02-25 2010-08-18 Tria Beauty Inc Vorrichtung und verfahren zur behandlung von akne
EP1596747B1 (de) * 2003-02-25 2016-02-17 Tria Beauty, Inc. Augensicheres dermatologisches behandlungsgerät
US20040176754A1 (en) * 2003-03-06 2004-09-09 Island Tobin C. Method and device for sensing skin contact
WO2004075681A2 (en) 2003-02-25 2004-09-10 Spectragenics, Inc. Self-contained, eye-safe hair-regrowth-inhibition apparatus and method
EP2604215B1 (de) 2003-02-25 2017-10-11 Tria Beauty, Inc. Vorrichtung und Verfahren für augensichere, dermatologische Behandlung
WO2004078034A2 (en) * 2003-03-04 2004-09-16 Spectragenics, Inc. Method and apparatus for the repigmentation of human skin
EP2316373B9 (de) * 2003-03-27 2014-02-26 The General Hospital Corporation Vorrichtung zur dermatologischen Behandlung und partiellen Hautoberflächenerneuerung
US7153298B1 (en) * 2003-03-28 2006-12-26 Vandolay, Inc. Vascular occlusion systems and methods
US7374949B2 (en) 2003-05-29 2008-05-20 Bayer Healthcare Llc Diagnostic test strip for collecting and detecting an analyte in a fluid sample
JP4425593B2 (ja) * 2003-09-26 2010-03-03 テルモ株式会社 穿刺器具および穿刺器具用光照射装置
UA89481C2 (uk) 2003-09-30 2010-02-10 Центокор, Инк. Еритропоетинові міметичні шарнірно-серцевинні міметитіла людини, композиції, способи та застосування
US8016811B2 (en) 2003-10-24 2011-09-13 Altea Therapeutics Corporation Method for transdermal delivery of permeant substances
US20080279812A1 (en) * 2003-12-05 2008-11-13 Norwood Immunology, Ltd. Disease Prevention and Vaccination Prior to Thymic Reactivation
US7282060B2 (en) 2003-12-23 2007-10-16 Reliant Technologies, Inc. Method and apparatus for monitoring and controlling laser-induced tissue treatment
US7184184B2 (en) * 2003-12-31 2007-02-27 Reliant Technologies, Inc. High speed, high efficiency optical pattern generator using rotating optical elements
US7196831B2 (en) * 2003-12-31 2007-03-27 Reliant Technologies, Inc. Two-dimensional optical scan system using a counter-rotating disk scanner
US7090670B2 (en) * 2003-12-31 2006-08-15 Reliant Technologies, Inc. Multi-spot laser surgical apparatus and method
US7372606B2 (en) * 2003-12-31 2008-05-13 Reliant Technologies, Inc. Optical pattern generator using a single rotating component
US8535299B2 (en) * 2004-01-23 2013-09-17 Joseph Giovannoli Method and apparatus for skin reduction
US8777935B2 (en) * 2004-02-25 2014-07-15 Tria Beauty, Inc. Optical sensor and method for identifying the presence of skin
AU2005231359A1 (en) * 2004-03-31 2005-10-20 Centocor, Inc. Human GLP-1 mimetibodies, compositions, methods and uses
AU2005231470B2 (en) * 2004-04-01 2011-10-06 The General Hospital Corporation Method and apparatus for dermatological treatment
US7413572B2 (en) 2004-06-14 2008-08-19 Reliant Technologies, Inc. Adaptive control of optical pulses for laser medicine
US20070257013A1 (en) * 2004-08-19 2007-11-08 Bell John T Method and Apparatus for Marking a Vehicle
US7393662B2 (en) * 2004-09-03 2008-07-01 Centocor, Inc. Human EPO mimetic hinge core mimetibodies, compositions, methods and uses
US7635362B2 (en) * 2004-12-30 2009-12-22 Lutronic Corporation Method and apparatus treating area of the skin by using multipulse laser
JP2006326147A (ja) * 2005-05-30 2006-12-07 Shingo Wakamatsu レーザー治療装置
WO2006111201A1 (en) * 2005-04-18 2006-10-26 Pantec Biosolutions Ag Laser microporator
EP1933752A1 (de) 2005-04-18 2008-06-25 Pantec Biosolutions AG Mikroporator zur erzeugung einer permeationsfläche
JO3058B1 (ar) 2005-04-29 2017-03-15 Applied Molecular Evolution Inc الاجسام المضادة لمضادات -اي ال-6,تركيباتها طرقها واستعمالاتها
JP5175029B2 (ja) * 2005-06-17 2013-04-03 パナソニック株式会社 レーザ装置及び電池残量検出方法
HUE042561T2 (hu) 2005-06-30 2019-07-29 Janssen Biotech Inc Anti-IL-23-ellenanyagok, készítmények, eljárások és alkalmazások
US20070023521A1 (en) * 2005-07-29 2007-02-01 Chester Wildey Apparatus and method for security tag detection
JP2007050100A (ja) * 2005-08-18 2007-03-01 Rohm Co Ltd 被検体採取チップ
WO2007044840A2 (en) * 2005-10-10 2007-04-19 Reliant Technologies, Inc. Laser-induced transepidermal elimination of content by fractional photothermolysis
ES2517420T3 (es) 2005-12-29 2014-11-03 Janssen Biotech, Inc. Anticuerpos anti-IL-23 humanos, composiciones, procedimientos y usos
WO2007095183A2 (en) * 2006-02-13 2007-08-23 Reliant Technologies, Inc. Laser system for treatment of skin laxity
US7814915B2 (en) * 2006-03-03 2010-10-19 Cutera, Inc. Aesthetic treatment for wrinkle reduction and rejuvenation
EP1997432B1 (de) 2006-03-22 2013-05-22 Panasonic Corporation Bluttestgerät
KR20080103503A (ko) * 2006-03-22 2008-11-27 파나소닉 주식회사 바이오 센서 및 성분 농도 측정 장치
CN101404936B (zh) 2006-03-22 2011-08-24 松下电器产业株式会社 血液检查装置
WO2007108519A1 (ja) 2006-03-22 2007-09-27 Matsushita Electric Industrial Co., Ltd. 血液検査装置
JP5027110B2 (ja) * 2006-03-22 2012-09-19 パナソニック株式会社 レーザ穿孔装置
CN101404933B (zh) * 2006-03-22 2010-12-15 松下电器产业株式会社 血液检查装置
US20100034819A1 (en) * 2006-03-31 2010-02-11 Centocor Inc. Human epo mimetic hinge core mimetibodies, compositions, methods and uses for preventing or treating glucose intolerance related conditions on renal disease associated anemia
WO2007118246A1 (en) * 2006-04-07 2007-10-18 The General Hospital Corporation Method, system and apparatus for dermatological treatment and fractusal skin resurfacing
KR100782142B1 (ko) * 2006-04-14 2007-12-04 (주)아이소텍 Er:YAG레이저를 이용한 극소량 무통채혈장치 및 이를이용한 혈당측정장치
WO2007124562A1 (en) * 2006-04-27 2007-11-08 Meditech International Inc. Probe
US20080161745A1 (en) * 2006-09-08 2008-07-03 Oliver Stumpp Bleaching of contrast enhancing agent applied to skin for use with a dermatological treatment system
US20080281389A1 (en) * 2006-10-16 2008-11-13 Primaeva Medical Inc. Methods and devices for treating tissue
US8007493B2 (en) 2006-10-16 2011-08-30 Syneron Medical Ltd. Methods and devices for treating tissue
US8273080B2 (en) 2006-10-16 2012-09-25 Syneron Medical Ltd. Methods and devices for treating tissue
US8142426B2 (en) * 2006-10-16 2012-03-27 Syneron Medical Ltd. Methods and devices for treating tissue
US8133216B2 (en) * 2006-10-16 2012-03-13 Syneron Medical Ltd. Methods and devices for treating tissue
JP2010507425A (ja) 2006-10-25 2010-03-11 パンテック バイオソリューションズ アクチェンゲゼルシャフト レーザ発光素子用チップ部材
EP2097062A2 (de) * 2006-10-25 2009-09-09 Pantec Engineering AG Grossflächige parasystemische behandlung von erkrankungen der haut
WO2008052198A2 (en) * 2006-10-26 2008-05-02 Reliant Technologies, Inc. Methods of increasing skin permeability by treatment with electromagnetic radiation
US20080154247A1 (en) * 2006-12-20 2008-06-26 Reliant Technologies, Inc. Apparatus and method for hair removal and follicle devitalization
TW200843794A (en) * 2006-12-21 2008-11-16 Centocor Inc Use of long-acting GLP-1 receptor agonists to improve insulin sensitivity and lipid profiles
NZ580997A (en) * 2007-04-27 2011-08-26 Echo Therapeutics Inc Dermal abrasion device with feedback electrode to deliver data on skin thickness and removable abrasion heads
US8845630B2 (en) * 2007-06-15 2014-09-30 Syneron Medical Ltd Devices and methods for percutaneous energy delivery
WO2009008267A1 (ja) * 2007-07-11 2009-01-15 Konica Minolta Opto, Inc. 体液収集装置および体液収集方法
WO2009011213A1 (ja) * 2007-07-17 2009-01-22 Konica Minolta Opto, Inc. 体液収集用補助シートおよびそれを用いる体液収集装置
JP5185272B2 (ja) 2007-07-31 2013-04-17 パナソニック株式会社 穿刺装置及び血液検査装置
JP5595270B2 (ja) * 2007-08-08 2014-09-24 トリア ビューティ インコーポレイテッド 皮膚検知のための静電容量型センシング方法及び装置
US8529472B2 (en) * 2007-09-04 2013-09-10 Panasonic Corporation Blood analysis device and blood analysis system using the same
ATE536804T1 (de) 2007-10-11 2011-12-15 Panasonic Corp Hochspannungserzeugungsschaltung, punktionsvorrichtung und bluttestvorrichtung
WO2009052866A1 (en) * 2007-10-25 2009-04-30 Pantec Biosolutions Ag Laser device and method for ablating biological tissue
US20090112205A1 (en) * 2007-10-31 2009-04-30 Primaeva Medical, Inc. Cartridge electrode device
US20090156958A1 (en) * 2007-12-12 2009-06-18 Mehta Bankim H Devices and methods for percutaneous energy delivery
EP2268198A4 (de) 2008-04-25 2014-10-15 Tria Beauty Inc Optischer sensor und verfahren zur erkennung des vorhandenseins von haut und hautpigmentation
KR20160116056A (ko) 2008-08-14 2016-10-06 테바 파마슈티컬즈 오스트레일리아 피티와이 엘티디 항-il-12/il-23 항체
JP5401918B2 (ja) * 2008-10-29 2014-01-29 パナソニック株式会社 穿刺装置
AU2009308935B2 (en) 2008-10-31 2015-02-26 Janssen Biotech, Inc. Fibronectin type III domain based scaffold compositions, methods and uses
CN102596992B (zh) 2009-02-12 2015-09-09 詹森生物科技公司 基于ⅲ型纤连蛋白结构域的支架组合物、方法及用途
CA2655017A1 (en) 2009-02-20 2010-08-20 Abdeltif Essalik Non-invasive biomedical detection and monitoring systems
US20100217254A1 (en) * 2009-02-25 2010-08-26 Primaeva Medical, Inc. Methods for applying energy to tissue using isolated energy sources
US8615295B2 (en) * 2009-03-17 2013-12-24 Cardiothrive, Inc. External defibrillator
US8781576B2 (en) 2009-03-17 2014-07-15 Cardiothrive, Inc. Device and method for reducing patient transthoracic impedance for the purpose of delivering a therapeutic current
US7770689B1 (en) * 2009-04-24 2010-08-10 Bacoustics, Llc Lens for concentrating low frequency ultrasonic energy
EP2443707B1 (de) 2009-06-15 2015-09-30 Pantec Biosolutions AG Monolithischer seitengepumpter festkörperlaser und seine anwendung
WO2010145855A1 (en) 2009-06-15 2010-12-23 Pantec Biosolutions Ag Monolithic, side pumped solid-state laser and method for operating the same
US20100331867A1 (en) * 2009-06-26 2010-12-30 Joseph Giovannoli Apparatus and method for dermal incision
US20110198095A1 (en) * 2010-02-15 2011-08-18 Marc Vianello System and process for flue gas processing
NZ603581A (en) 2010-06-19 2015-05-29 Sloan Kettering Inst Cancer Anti-gd2 antibodies
KR101185482B1 (ko) * 2011-03-11 2012-10-02 (주)지티씨 레이저 발생 장치 및 방법
CA2881672A1 (en) * 2012-08-10 2014-02-13 The General Hospital Corporation Method and apparatus for dermatological treatment
WO2014144763A2 (en) 2013-03-15 2014-09-18 Memorial Sloan Kettering Cancer Center High affinity anti-gd2 antibodies
US9656094B2 (en) 2013-06-14 2017-05-23 Cardiothrive, Inc. Biphasic or multiphasic pulse generator and method
US9833630B2 (en) 2013-06-14 2017-12-05 Cardiothrive, Inc. Biphasic or multiphasic pulse waveform and method
US9907970B2 (en) 2013-06-14 2018-03-06 Cardiothrive, Inc. Therapeutic system and method using biphasic or multiphasic pulse waveform
US10279189B2 (en) 2013-06-14 2019-05-07 Cardiothrive, Inc. Wearable multiphasic cardioverter defibrillator system and method
US9616243B2 (en) 2013-06-14 2017-04-11 Cardiothrive, Inc. Dynamically adjustable multiphasic defibrillator pulse system and method
US10149973B2 (en) 2013-06-14 2018-12-11 Cardiothrive, Inc. Multipart non-uniform patient contact interface and method of use
WO2018140026A1 (en) 2017-01-27 2018-08-02 Memorial Sloan Kettering Cancer Center Bispecific her2 and cd3 binding molecules
CN107667120B (zh) 2015-03-17 2022-03-08 纪念斯隆-凯特林癌症中心 抗muc16抗体及其应用
US10765724B2 (en) 2016-03-29 2020-09-08 Janssen Biotech, Inc. Method of treating psoriasis with increased interval dosing of anti-IL12/23 antibody
BR112019000683A2 (pt) 2016-07-15 2019-04-24 Poseida Therapeutics Inc receptores de antígeno quiméricos e métodos para uso
JP2019528044A (ja) 2016-07-15 2019-10-10 ポセイダ セラピューティクス, インコーポレイテッド Muc1に特異的なキメラ抗原受容体(cars)およびその使用方法
CA3037961A1 (en) 2016-09-30 2018-04-05 Janssen Biotech, Inc. Safe and effective method of treating psoriasis with anti-il23 specific antibody
JP2020502261A (ja) 2016-11-16 2020-01-23 ヤンセン バイオテツク,インコーポレーテツド 抗il23特異的抗体で乾癬を治療する方法
KR20240038146A (ko) 2017-01-30 2024-03-22 얀센 바이오테크 인코포레이티드 활성 건선성 관절염의 치료를 위한 항-tnf 항체, 조성물, 및 방법
CN110418652A (zh) 2017-02-07 2019-11-05 詹森生物科技公司 用于治疗活动性强直性脊柱炎的抗tnf抗体、组合物和方法
WO2019040399A1 (en) 2017-08-22 2019-02-28 Shire-Nps Pharmaceuticals, Inc. GLP-2 FUSION POLYPEPTIDES AND USES THEREOF FOR TREATING AND PREVENTING GASTROINTESTINAL DISORDERS
JP2020532987A (ja) 2017-09-08 2020-11-19 ポセイダ セラピューティクス,インコーポレイティド キメラリガンド受容体(clr)介在性の条件遺伝子発現のための組成物および方法
TW201922780A (zh) 2017-09-25 2019-06-16 美商健生生物科技公司 以抗il12/il23抗體治療狼瘡之安全且有效之方法
MX2020006689A (es) 2017-12-20 2020-11-06 Poseida Therapeutics Inc Composiciones de vcar y metodos de uso.
US10828500B2 (en) 2017-12-22 2020-11-10 Cardiothrive, Inc. External defibrillator
CA3092551A1 (en) 2018-03-05 2019-09-12 Janssen Biotech, Inc. Methods of treating crohn's disease with anti-il23 specific antibody
BR112020018049A2 (pt) 2018-03-07 2020-12-29 Poseida Therapeutics, Inc. Composições de cartirina e métodos para uso
JP2019186417A (ja) * 2018-04-12 2019-10-24 大学共同利用機関法人自然科学研究機構 レーザー装置
JP2021523138A (ja) 2018-05-11 2021-09-02 ヤンセン バイオテツク,インコーポレーテツド Il−23抗体を使用してうつを治療する方法
WO2020016838A2 (en) 2018-07-18 2020-01-23 Janssen Biotech, Inc. Sustained response predictors after treatment with anti-il23 specific antibody
DK3883606T5 (da) 2018-09-24 2024-01-02 Janssen Biotech Inc Sikker og effektiv fremgangsmåde til behandling af colitis ulcerosa med anti-il12/il23-antistof
KR20210093973A (ko) 2018-11-20 2021-07-28 얀센 바이오테크 인코포레이티드 항-il23 특이적 항체로 건선을 치료하는 안전하고 효과적인 방법
WO2020128864A1 (en) 2018-12-18 2020-06-25 Janssen Biotech, Inc. Safe and effective method of treating lupus with anti-il12/il23 antibody
JP2022513507A (ja) 2018-12-20 2022-02-08 ポセイダ セラピューティクス,インコーポレイティド ナノトランスポゾン組成物および使用方法
MX2021008537A (es) 2019-01-15 2021-11-12 Janssen Biotech Inc Composiciones de anticuerpos anti-tnf y métodos para el tratamiento de la artritis idiopática juvenil.
KR20210118878A (ko) 2019-01-23 2021-10-01 얀센 바이오테크 인코포레이티드 건선성 관절염의 치료 방법에 사용하기 위한 항-tnf 항체 조성물
KR20210121137A (ko) 2019-01-29 2021-10-07 샤이어-엔피에스 파마슈티칼즈, 인크. 부갑상선 호르몬 변이체
EP3938384A4 (de) 2019-03-14 2022-12-28 Janssen Biotech, Inc. Herstellungsverfahren zur herstellung von anti-il12/il23-antikörperzusammensetzungen
MA55282A (fr) 2019-03-14 2022-01-19 Janssen Biotech Inc Procédés de fabrication pour la production de compositions d'anticorps anti-tnf
US20220153829A1 (en) 2019-03-14 2022-05-19 Janssen Biotech, Inc. Methods for Producing Anti-TNF Antibody Compositions
JP2022526881A (ja) 2019-03-14 2022-05-27 ヤンセン バイオテツク,インコーポレーテツド 抗tnf抗体組成物を産生するための方法
BR112021018441A2 (pt) 2019-03-18 2023-02-28 Janssen Biotech Inc Método para tratamento de psoríase em indivíduos pediátricos com anticorpo anti-il12/il23
MX2021014302A (es) 2019-05-23 2022-01-04 Janssen Biotech Inc Metodo para tratar la enfermedad inflamatoria del intestino con una terapia de combinacion de anticuerpos contra il-23 y tnf alfa.
CA3142580A1 (en) 2019-06-03 2020-12-10 Janssen Biotech, Inc. Anti-tnf antibodies, compositions, and methods for the treatment of active ankylosing spondylitis
WO2020245676A1 (en) 2019-06-03 2020-12-10 Janssen Biotech, Inc. Anti-tnf antibody compositions, and methods for the treatment of psoriatic arthritis
KR102310905B1 (ko) 2019-06-10 2021-10-08 유버 주식회사 Uv led의 복사 에너지 제어 장치
WO2021028752A1 (en) 2019-08-15 2021-02-18 Janssen Biotech, Inc. Anti-tfn antibodies for treating type i diabetes
CA3149892A1 (en) 2019-09-05 2021-03-11 Eric M. Ostertag Allogeneic cell compositions and methods of use
US20230079955A1 (en) 2019-12-20 2023-03-16 Poseida Therapeutics, Inc. Anti-muc1 compositions and methods of use
CN111166352B (zh) * 2020-02-11 2022-04-29 新乡医学院第一附属医院 一种智能动脉血采集装置
KR20220149588A (ko) 2020-03-04 2022-11-08 포세이다 테라퓨틱스, 인크. 대사성 간 장애의 치료를 위한 조성물 및 방법
EP4118107A1 (de) 2020-03-11 2023-01-18 Poseida Therapeutics, Inc. Chimäre stimulationsrezeptoren und verfahren zur verwendung bei der t-zell-aktivierung und -differenzierung
KR20230011295A (ko) 2020-04-14 2023-01-20 포세이다 테라퓨틱스, 인크. 암 치료에 사용하기 위한 조성물 및 방법
CN111496395A (zh) * 2020-04-17 2020-08-07 中国电子科技集团公司第十一研究所 J-t制冷器节流孔的加工工装及加工方法
WO2021214588A1 (en) 2020-04-21 2021-10-28 Janssen Biotech, Inc. Anti-tnf alpha agent for treating coronavirus infections
WO2021214587A1 (en) 2020-04-21 2021-10-28 Janssen Biotech, Inc. Anti-tnf alpha agent for treating viral infections
WO2022087148A1 (en) 2020-10-21 2022-04-28 Poseida Therapeutics, Inc. Compositions and methods for delivery of nucleic acids
EP4298205A1 (de) 2021-02-23 2024-01-03 Poseida Therapeutics, Inc. Genetisch modifizierte induzierte pluripotente stammzellen und verfahren zur verwendung davon
AU2022227607A1 (en) 2021-02-23 2023-08-24 Poseida Therapeutics, Inc. Compositions and methods for delivery of nucleic acids
US20240182921A1 (en) 2021-03-04 2024-06-06 Poseida Therapeutics, Inc. Compositions and methods for the treatment of hemophilia
US20220298236A1 (en) 2021-03-12 2022-09-22 Janssen Biotech, Inc. Safe and Effective Method of Treating Psoriatic Arthritis with Anti-IL23 Specific Antibody
EP4305062A1 (de) 2021-03-12 2024-01-17 Janssen Biotech, Inc. Verfahren zur behandlung von patienten mit psoriasisarthritis mit unzureichender reaktion auf eine tnf-therapie mit anti-il23-spezifischem antikörper
IL309996A (en) 2021-07-09 2024-03-01 Janssen Biotech Inc Production methods for the production of anti-TNF antibody compositions
CN117916260A (zh) 2021-07-09 2024-04-19 詹森生物科技公司 用于制备抗il12/il23抗体组合物的制造方法
AU2022306144A1 (en) 2021-07-09 2024-02-22 Janssen Biotech, Inc. Manufacturing methods for producing anti-tnf antibody compositions
AU2022360244A1 (en) 2021-10-04 2024-04-11 Poseida Therapeutics, Inc. Transposon compositions and methods of use thereof
KR20240099249A (ko) 2021-10-04 2024-06-28 포세이다 테라퓨틱스, 인크. 트랜스포사제 및 이의 용도
KR20240099352A (ko) 2021-10-29 2024-06-28 얀센 바이오테크 인코포레이티드 항-il23 특이적 항체로 크론병을 치료하는 방법
AU2022388887A1 (en) 2021-11-15 2024-07-04 Janssen Biotech, Inc. Methods of treating crohn's disease with anti-il23 specific antibody
US20230159633A1 (en) 2021-11-23 2023-05-25 Janssen Biotech, Inc. Method of Treating Ulcerative Colitis with Anti-IL23 Specific Antibody
WO2023141576A1 (en) 2022-01-21 2023-07-27 Poseida Therapeutics, Inc. Compositions and methods for delivery of nucleic acids
WO2023164573A1 (en) 2022-02-23 2023-08-31 Poseida Therapeutics, Inc. Genetically modified cells and methods of use thereof
WO2023187707A1 (en) 2022-03-30 2023-10-05 Janssen Biotech, Inc. Method of treating mild to moderate psoriasis with il-23 specific antibody
WO2023223265A1 (en) 2022-05-18 2023-11-23 Janssen Biotech, Inc. Method for evaluating and treating psoriatic arthritis with il23 antibody
WO2024036273A1 (en) 2022-08-11 2024-02-15 Poseida Therapeutics, Inc. Chimeric cd8-alpha co-receptor compositions and methods of use
WO2024110898A1 (en) 2022-11-22 2024-05-30 Janssen Biotech, Inc. Method of treating ulcerative colitis with anti-il23 specific antibody

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL40602A (en) * 1972-10-17 1975-07-28 Panengeneering Ltd Laser device particularly useful as surgical scalpel
US4028636A (en) * 1973-06-28 1977-06-07 The United States Of America As Represented By The Secretary Of The Navy Acousto-optical deflector tuned organic dye laser
JPS5669602A (en) * 1979-11-12 1981-06-11 Fuji Photo Optical Co Ltd Light guide device
WO1986002783A1 (en) * 1984-10-25 1986-05-09 Candela Corporation Long pulse tunable dye laser
US4648892A (en) * 1985-03-22 1987-03-10 Massachusetts Institute Of Technology Method for making optical shield for a laser catheter
CA1262757A (en) * 1985-04-25 1989-11-07 Richard M. Dwyer Method and apparatus for laser surgery
US4628416A (en) * 1985-05-03 1986-12-09 Coopervision, Inc. Variable spot size illuminator with constant convergence angle
DE3686621T2 (de) * 1985-07-31 1993-02-25 Bard Inc C R Infrarot laser-kathetergeraet.
AU606315B2 (en) * 1985-09-12 1991-02-07 Summit Technology, Inc. Surface erosion using lasers
US4710940A (en) * 1985-10-01 1987-12-01 California Institute Of Technology Method and apparatus for efficient operation of optically pumped laser
US4775361A (en) * 1986-04-10 1988-10-04 The General Hospital Corporation Controlled removal of human stratum corneum by pulsed laser to enhance percutaneous transport
US4712537A (en) * 1986-08-13 1987-12-15 Pender Daniel J Apparatus for treating recurrent ear infections
US4931053A (en) * 1988-01-27 1990-06-05 L'esperance Medical Technologies, Inc. Method and apparatus for enhanced vascular or other growth
SU1614808A1 (ru) * 1988-03-25 1990-12-23 Всесоюзный Научно-Исследовательский Институт Метрологической Службы Безыгольный инъектор
US5423798A (en) * 1988-04-20 1995-06-13 Crow; Lowell M. Ophthalmic surgical laser apparatus
US5074861A (en) * 1988-05-23 1991-12-24 Schneider Richard T Medical laser device and method
US4940411A (en) * 1988-08-25 1990-07-10 American Dental Laser, Inc. Dental laser method
US4949728A (en) * 1988-11-30 1990-08-21 Derek Brook Method for performing in vitro diagnostic test on horses utilizing a blood sample
SU1670858A1 (ru) * 1989-10-19 1994-04-30 Горбатова Наталия Евгеньевна Способ забора крови
AU7562591A (en) * 1990-03-14 1991-10-10 Candela Laser Corporation Apparatus for treating abnormal pigmentation of the skin
US5066291A (en) * 1990-04-25 1991-11-19 Cincinnati Sub-Zero Products, Inc. Solid-state laser frequency conversion system
US5182759A (en) * 1990-05-16 1993-01-26 Amoco Corporation Apparatus and method for pumping of a weakly absorbing lasant material
DE4032860A1 (de) * 1990-10-12 1992-04-16 Zeiss Carl Fa Kraftgesteuerter kontaktapplikator fuer laserstrahlung
WO1992014514A1 (en) * 1991-02-13 1992-09-03 Applied Medical Resources, Inc. Surgical trocar
RU2027450C1 (ru) * 1991-03-29 1995-01-27 Научно-исследовательский институт "Полюс" Устройство для перфорации кожи при взятии крови пациента для анализа
JPH07102209B2 (ja) * 1991-04-12 1995-11-08 株式会社ヒューテック 採血用レーザ装置
US5217455A (en) * 1991-08-12 1993-06-08 Tan Oon T Laser treatment method for removing pigmentations, lesions, and abnormalities from the skin of a living human
RU2005515C1 (ru) * 1991-09-16 1994-01-15 Научно-производственная внедренческая фирма "Созет" Устройство бесконтактной перфорации кожного покрова для забора крови
US5165418B1 (en) * 1992-03-02 1999-12-14 Nikola I Tankovich Blood sampling device and method using a laser
US5468239A (en) * 1992-04-13 1995-11-21 Sorenson Laboratories, Inc. Apparatus and methods for using a circumferential light-emitting surgical laser probe
US5437658A (en) * 1992-10-07 1995-08-01 Summit Technology, Incorporated Method and system for laser thermokeratoplasty of the cornea
US5342355A (en) * 1992-10-19 1994-08-30 Laser Centers Of America Energy delivering cap element for end of optic fiber conveying laser energy
RU2063180C1 (ru) * 1992-12-08 1996-07-10 Акционерное общество закрытого типа "ЛИНКС" Лазерное медицинское устройство
US5360447A (en) * 1993-02-03 1994-11-01 Coherent, Inc. Laser assisted hair transplant method
US5304170A (en) * 1993-03-12 1994-04-19 Green Howard A Method of laser-induced tissue necrosis in carotenoid-containing skin structures
US5461212A (en) * 1993-06-04 1995-10-24 Summit Technology, Inc. Astigmatic laser ablation of surfaces
US5397327A (en) * 1993-07-27 1995-03-14 Coherent, Inc. Surgical laser handpiece for slit incisions
JPH0739542A (ja) * 1993-07-30 1995-02-10 Shibuya Kogyo Co Ltd 採血装置
US5554153A (en) * 1994-08-29 1996-09-10 Cell Robotics, Inc. Laser skin perforator
US5522813A (en) * 1994-09-23 1996-06-04 Coherent, Inc. Method of treating veins

Also Published As

Publication number Publication date
ATE255371T1 (de) 2003-12-15
DE69331663T2 (de) 2002-11-07
ES2211696T3 (es) 2004-07-16
DE69331663D1 (de) 2002-04-11
DK1133953T3 (da) 2004-03-22
DE69333337D1 (de) 2004-01-15
ATE285718T1 (de) 2005-01-15
AU5587694A (en) 1994-05-24
WO1994009713A1 (en) 1994-05-11
DK1133952T3 (da) 2004-03-29
EP1133953B1 (de) 2003-12-03
ES2211697T3 (es) 2004-07-16
ATE213927T1 (de) 2002-03-15
EP0666726B1 (de) 2002-03-06
US5839446A (en) 1998-11-24
EP0666726A1 (de) 1995-08-16
EP1133952A1 (de) 2001-09-19
JP2004195245A (ja) 2004-07-15
DE69333338T2 (de) 2004-09-23
ES2173909T3 (es) 2002-11-01
EP1132055A1 (de) 2001-09-12
US5643252A (en) 1997-07-01
EP1133952B1 (de) 2003-12-03
ATE255370T1 (de) 2003-12-15
EP0666726A4 (de) 1997-03-19
CA2147358A1 (en) 1994-05-11
PT1133953E (pt) 2004-04-30
EP1133953A1 (de) 2001-09-19
DE69333338D1 (de) 2004-01-15
EP1132055B1 (de) 2004-12-29
DE69333733D1 (de) 2005-02-03
PT1133952E (pt) 2004-04-30
JPH10501992A (ja) 1998-02-24

Similar Documents

Publication Publication Date Title
DE69333337T2 (de) Laserperforator
US6443945B1 (en) Laser assisted pharmaceutical delivery and fluid removal
WO1994009713A9 (en) Laser perforator
US20010050083A1 (en) Irradiation enhanced permeation and delivery
WO1998033444A9 (en) Laser assisted topical anesthetic permeation
WO2001050963A1 (en) Improved laser assisted pharmaceutical delivery and fluid removal
US20050247321A1 (en) Laser perforator
AU762824B2 (en) Interstitial fluid monitoring
WO1998004201A1 (en) Laser with matte crystal element and container unit
WO2002026148A1 (en) Irradiation enhanced permeation and collection
MXPA99007144A (en) Laser assisted topical anesthetic permeation
WO2002026149A1 (en) Irradiation enhanced permeation and delivery

Legal Events

Date Code Title Description
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee