DE602004006275T2 - Verfahren zur Dotierung von einem Halbleitermaterial mit Cäsium - Google Patents

Verfahren zur Dotierung von einem Halbleitermaterial mit Cäsium Download PDF

Info

Publication number
DE602004006275T2
DE602004006275T2 DE602004006275T DE602004006275T DE602004006275T2 DE 602004006275 T2 DE602004006275 T2 DE 602004006275T2 DE 602004006275 T DE602004006275 T DE 602004006275T DE 602004006275 T DE602004006275 T DE 602004006275T DE 602004006275 T2 DE602004006275 T2 DE 602004006275T2
Authority
DE
Germany
Prior art keywords
cesium
sublimation
organic
semiconductor material
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE602004006275T
Other languages
English (en)
Other versions
DE602004006275D1 (de
Inventor
Ansgar Werner
Tilmann Romainczyk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NovaLED GmbH
Original Assignee
NovaLED GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NovaLED GmbH filed Critical NovaLED GmbH
Publication of DE602004006275D1 publication Critical patent/DE602004006275D1/de
Application granted granted Critical
Publication of DE602004006275T2 publication Critical patent/DE602004006275T2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Description

  • Das Verfahren bezieht sich auf ein Verfahren zum elektrischen Dotieren eines organischen Halbleitermaterials mit Cäsium. Elektrisches Dotieren eines organischen Halbleitermaterials bedeutet die Beimischung von Dotanden bzw. Dotierungsmolekülen zu den Halbleitermaterialien, um die Leitfähigkeit des Halbleitermaterials mittels einer Erhöhung der intrinsischen Ladungsträgerdichte auf dem Halbleitermaterial zu erhöhen.
  • Hintergrund der Erfindung
  • Diese Art dotierter organischer Halbleiterschichten werden beispielsweise in organischen Leuchtdioden verwendet. Das Dotieren von Elektronentransportschichten (ETL – Electron Transport Layer) in organischen Leuchtdioden unter Verwendung von Alkalimetallen ist eine übliche Technik, um die Leistungseffizienz solcher Vorrichtungen zu verbessern. Auf Grund der Nichtverfügbarkeit ausreichend starker molekularer Donatoren werden Alkalimetalle als Donatoratome eingesetzt. Von den Alkalimetallen wird häufig Cäsium (Cs) verwendet, da es die höchste Stabilität der OLEDs (Organic Light Emitting Diodes – organische Leuchtdioden) mit dieser Art von dotierter ETL aufweist. Organische Halbleiter werden als Elektronentransportmaterial bezeichnet, wenn ihre Elektronenbeweglichkeit höher ist als ihre Löcherbeweglichkeit oder die Elektronenbeweglichkeit größer ist als 1E-6 cm2/Vs (im relevanten Feldbereich von etwa 1-100E5V/cm). Die ETL-Materialien müssen einer Reduktion gegenüber stabil sein, um den Elektronenstrom über einen langen Zeitraum zu unterstützen. Die energetische Position des niedrigsten unbesetzten Molekülorbitals (LUMO – Lowest Unoccupied Molecular Orbital) liegt im Bereich von 2,4eV bis 3,8eV, vorzugsweise von 2,4 bis 3eV.
  • Gegenwärtig besteht die einzige Möglichkeit, Cäsiumdampf zu Dotierungszwecken bereitzustellen, im Einsatz von SAES Getters gelieferten so genannten Getterquellen. In diesen Quellen werden CsCrO4- oder CSMoO4-Salze mittels Thermolyse zersetzt, und der freigesetzte Dampf wird durch Gettermaterialien geführt, die den Sauerstoff aus der Gasphase entfernen. Nachdem der Getter passiert wurde, wird reiner Cs-Dampf freigesetzt.
  • Mit dieser Art von Quellen sind einige Nachteile verbunden. Die Quellen benötigen sehr hohe Betriebstemperaturen, um die Thermolyse durchzuführen. Der Behälter der Quelle erreicht im Betrieb Temperaturen von über 400°C, während der Inhalt noch mehr erhitzt wird. Dies verursacht zusätzlichen Aufwand, die Vakuumkammer abzukühlen. Auf Grund starker Gasadsorption am Gettermaterial, kann während des Aufheizens eine starke Entgasung beobachtet werden, besonders dann, wenn die Quelle zuvor der Luft ausgesetzt war. Es braucht lange Zeit (zehn Minuten), bis der Cs-Spender Cs-Dampf freisetzt. Weitere zehn Minuten müssen vergehen, bis die Cs-Verdampfungsgeschwindigkeit ausreichend stabil ist. Bei über dem Spender platzierten Quarzwaagen wird kein Ausschlag beobachtet, sogar wenn ersterer wassergekühlt ist. Dies stellt ein Haupthindernis für die Prozesssteuerung dar. Der reibungslose Betrieb der Quelle muss regelmäßig kontrolliert werden, wodurch der Durchsatz der Vakuumkammer verringert und Wartungszeit und -aufwand erhöht werden. Auf Grund der komplizierten Anordnung der verschiedenen Komponenten einer solchen Quelle, ist ihre geometrische Flexibilität eingeschränkt, welches in raumgreifenden Aufbauten und begrenzten Verdampfungskenndaten resultiert. Schließlich sind, zumindest für CsCrCO4, auf Grund der hohen Toxizität dieser Verbindung Gesundheits- und Umweltrisiken immanent.
  • Das Dokument WO 02/093664 A2 offenbart einen Cäsiumspender und ein Verfahren für dessen Verwendung. Auf Grund seiner hohen Reaktionsfähigkeit gegenüber atmosphärischen Gasen und Feuchtigkeit wird Cäsium gewöhnlich nicht als reines Metall, sondern eher in Form seiner gegenüber Luft bei Raumtemperatur stabilen Verbindungen eingesetzt. Einige Cäsiumverbindungen setzen das Metall durch einfaches Erwärmen frei. Legierungen mit Silizium oder Germanium können unter diesen Verbindungen erwähnt werden. Diese Art Legierungen wird beispielsweise im Dokument EP-A-360317 und im Dokument US 5,006,888 beschrieben. Es wird jedoch festgestellt, dass diese Verbindungen keine praktische Anwendung im industriellen Maßstab finden.
  • Zusammenfassung der Erfindung
  • Aufgabe der Erfindung ist es, ein Verfahren zum elektrischen Dotieren eines organischen Halbleitermaterials mit Cäsium bereitzustellen, bei dem das elektrische Dotieren in einer einfacheren Art und Weise mit verbesserter Prozesssteuerung durchgeführt werden kann.
  • Gemäß eines Aspekts der Erfindung wird ein Verfahren zum elektrischen Dotieren eines organischen Halbleitermaterials mit Cäsium bereitgestellt, bei dem das organische Halbleitermaterial einem Cäsiumdampf ausgesetzt ist. Der Cäsiumdampf wird mittels Sublimation von Cäsium aus einer Gallium-Cäsium-Legierung bereitgestellt.
  • Die Erfindung bietet den Vorteil, dass die Cäsiumsublimation für das elektrische Dotieren eines organischen Halbleiter-Leitermaterials einfacher zu steuern ist, da die Steuerung und Messung der Sublimationsrate verbessert werden kann. Eine Gesamtsteuerung des Prozesses des elektrischen Dotierens ist verlässlicher.
  • Vorteilhafte Ausgestaltungen der Erfindung werden in abhängigen Ansprüchen offenbart.
  • Beschreibung von bevorzugten Ausführungsformen der Erfindung
  • Nachfolgend soll die Erfindung beispielhaft im Detail unter Bezug auf die verschiedenen Ausführungsformen beschrieben werden.
  • Ein Verfahren zum elektrischen Dotieren eines organischen Halbleitermaterials mit Cäsium (Cs) beschrieben, bei dem das Halbleitermaterial einem Cäsiumdampf ausgesetzt ist. Der Cäsiumdampf wird mittels Sublimation von Cäsium aus einer Cäsium-Legierung bereitgestellt. Vorzugsweise bieten GaCs-Legierungen eine Möglichkeit, Cs-Dampf bereitzustellen. Hierbei wird Cs bei moderaten Temperaturen auf der Oberfläche der Legierung freigesetzt. Gleichzeitig verteilt sich weiteres Cs durch den Kern an die Oberfläche. Die Verdampfung findet unter einer konstanten Sublimationsgeschwindigkeit bei einer vorgegebenen Temperatur statt, bis schließlich der Cs-Gehalt aufgebraucht ist. Eine dünne Schale von reinem Ga wird unter angemessenen Bedingungen erzeugt und bedeckt den luftempfindlichen GaCs-Kern. In diesem Fall können die GaC-Stücke mindestens mehrere zehn Minuten lang ohne Degradierung an der Luft bearbeitet werden, was einen negativen Effekt auf die Dotierleistung des Cs-Dampfes hat.
  • Die Cäsiumverdampfung findet bereits bei moderaten Temperaturen von etwa 300°C statt. Es ist möglich einen Cs-Anteil auf einer wassergekühlten Quartz-Mikrowaage zu messen. Der Quellenbetrieb ist schnell. Ein stabiler Cs-Anteil wird durch Termperatursteuerung bereitgestellt. Für die Verdampfung der GaCs-Legierungen kann ein Standardverdampfer für organische Materialien eingesetzt werden.
  • In einem Beispiel zeigt eine Bathophenanthrolin (BPhen)-Schicht eine Steigerung der Leitfä higkeit, wenn sie dem von der GaCs-Legierung freigesetzten Dampf ausgesetzt wird BPhen ist ein bekanntes Elektronentransportmaterial auf dem Gebiet der OLEDs und kann leicht mit Cs dotiert werden.
  • Im Laufe der Versuchsreihe wurde bemerkt, dass die Quarzwaage (QMB1), die normalerweise zur Überwachung der Verdampfung molekularer Verbindungen eingesetzt wird, während des Betriebes des Verdampfers für GaCs-Legierungen eine stabile Verdampfungsgeschwindigkeit anzeigte. Wird die Verdampfungstemperatur auf einer konstanten Temperatur gehalten, kann über die Zeit eine konstante Geschwindigkeit beobachtet werden. Dies steht im Gegensatz zu den Beobachtungen bei Cs-Spendern von SAES, bei denen keine stabilen Geschwindigkeiten beobachtet werden konnten.
  • Eine Kalibrierung der Verdampfung wurde vorgenommen. Zu diesem Zweck wird eine zweite Quarzwaage (QMB2) an die Position der Probe gestellt. Durch den Vergleich der von QMB2 und QMB1 gemessenen Geschwindigkeiten kann der geometrische Ausstattungsfaktor bestimmt werden. Es wurde beobachtet, dass QMB2 eine mit der Zeit sinkende Geschwindigkeit anzeigte, während der Verdampfer bei einer stabilen Temperatur betrieben wurde und QMB1 eine stabile Geschwindigkeit anzeigte. Der Grund für dieses unterschiedliche Verhalten liegt höchstwahrscheinlich in der Tatsache, dass QMB1 wassergekühlt wird, während sich die nicht gekühlte QMB2 beim Betrieb aufheizen kann. Dies könnte den Haftkoeffizienten der auf die Quarzoberfläche auftreffenden Cs-Atome verringern. Daraufhin wurde eine Kalibrierung der Quellen versucht, wobei eine Oberflächenanalyse eines Cs-dotierten organischen Films mit Hilfe der Röntgen-Fotoelektronen-Spektroskopie (XPS – X-Ray Photoelectron Spectroscopy) angewandt wurde.
  • In einem weiteren Beispiel wurden zwei Proben Cs-dotierter Filme durch gemeinsame Verdampfung auf Au-Substraten hergestellt. Als Matrizen wurden Metallkomplexe angewendet. Das XPS-Signal des entsprechenden Metallatoms liefert weitere Informationen zur Stöchiometrie des Films. Beide Filme haben eine nominale Dotierkonzentration von 1:8:1 (Verhältnis von Cs zum Matrizenmaterial) wie durch die gemessenen Verdampfungsgeschwindigkeiten und unter der Annahme bestimmt, dass der Ausstattungsfaktor für den Cs-Verdampfer ähnliche Werte wie die der zuvor für molekulare Dotierstoffe festgestellten aufweist.
  • Die Filme wurden durch Luft zur XPS-Analysekammer übertragen. Infolgedessen wurde ein Schritt des Sputterns durchgeführt, um darüber liegende Schichten von adsorbiertem Gas zu entfernen. XPS-Spektren wurden für die Al Kα-Strahlung (1486.61 eV) aufgezeichnet. Für eine Cs:Ir(ppy)3-Probe wurde ein XPS durchgeführt. Ir(ppy)3 (Tris(2-phenylpyridin)-Iridium) ist kein dotierbares Elektronentransport-Matrizenmaterial für OLEDs, dient aber hierbei als Referenzmolekül, in dem ein Iridium-Zentralatom leicht durch XPS erfasst werden kann. Für Ga wurde kein XPS-Signal erfasst. Nach Abzug des Hintergrundes, wurden die Flächen der verschiedenen Peaks ermittelt. Diese Flächen müssen für die elementaren Sensitivitätsfaktoren spezifisch für die Spektrometer- und Entweichtiefenänderung mit der kinetischen Energie der Photoelektronen korrigiert werden. Die Tabelle 1 fasst die ermittelten Stöchiometrien zusammen (die Metall- und Kohlenstoff-Peaks wurden unter Verwendung der bekannten Molekularstruktur des Matrizenmaterials kombiniert). Die Stöchiometrie einer Cs-dotierten BPhen-Schicht, die typischerweise in OLEDs verwendet wird, wird ebenfalls in Tabelle 1 gezeigt.
  • Tabelle 1
    Figure 00050001
  • In einer noch weiteren Ausführungsform wurde die Dotierung von verschiedenen Matrizen mit einer Ga7Cs11-Legierung vorgenommen. Die Verbindung wurde vor ihrer Verwendung einer Erwärmung auf 420 °C ausgesetzt, um eine schützende Ga-Schale zu schaffen. Insgesamt 15 dotierte Proben wurden mit einer Tiegelfüllung (entspricht etwa 0,1 g reinem Cs) hergestellt. Noch immer trat kein Zeichen der Erschöpfung ein. Die Sublimationstemperatur von Cs liegt bei etwa 300 °C. Dies entspricht etwa 100 nm reinen Cs in den dotierten Filmen (Entfernung Quelle – Probe etwa 25 cm). Zusätzlich wird weiteres Cs vor und nach dem Versuch verbraucht. Es wurde geschätzt, dass die 0,1 g Entsprechung reinen Cs ausreichen sollte für eine Gesamtschichtdicke von 3000 nm Cs. Tabelle 2 zeigt Beispiele für den Dotierprozess gemäß dieser Erfindung.
  • Tabelle 2
    Figure 00060001
  • Elektrisches Dotieren wie oben beschrieben kann vorteilhafterweise mittels eines Standardverdampfers oder eines Tiegels, wie er für eine Abscheidung von organischem Material in einem Vakuum verwendet wird, ausgeführt werden. Eine bevorzugte Bauart eines Verdampfers vom so genannten Typ Knudsen, der einen elektrisch beheizten zylindrischen Tiegel umfasst, der normalerweise als eine Punktquelle verwendet wird, wenn eine große Distanz zwischen dem Tiegel und der zu dotierenden Substanz vorliegt. Der Verdampfer vom Typ Knudsen kann linear ausgeweitet werden, um eine lineare Quelle bereitzustellen.
  • Eine alternative lineare Quelle umfasst einen linearen Verdampferkopf mit Löchern. Der Kopf ist mit einem über ein erwärmtes Rohrsystem unabhängig erwärmten Volumen verbunden. Das vom Tiegel im erwärmten Volumen freigesetzte Material wird über das Rohrsystem zum linearen Verdampferkopf transportiert und durch die Löcher hin zur dotierenden Substanz freigesetzt. In einem solchen Verdampfer kann die Cäsiumlegierung als organisches Standardmaterial behandelt werden. Der Tiegel kann auf etwa 420°C oder weniger erhitzt werden, vorzugsweise auf etwa 300°C oder weniger, um Cäsiumdampf freizusetzen. Das erwärmte Rohrsystem und der lineare Kopf können bei Temperaturen über der Tiegeltemperatur (bis 50°C) bis hinunter auf 50°C betrieben werden.
  • Die Temperatur des Rohrsystems kann niedriger als die Sublimationstemperatur in dem Tiegelvolumen des Standardverdampfers gehalten werden, um chemische Reaktionen zu vermeiden. Auf diese Weise wird im Dotierprozess weniger Energie verbraucht.

Claims (13)

  1. Verfahren zum elektrischen Dotieren eines organischen Halbleitermaterials mit Cäsium, bei dem das organische Halbleitermaterial einem Cäsiumdampf ausgesetzt ist, dadurch gekennzeichnet, daß der Cäsiumdampf mittels Sublimation von Cäsium aus einer Gallium-Cäsium-Legierung bereitgestellt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Cäsiumdampf mittels Sublimation von Cäsium aus einer Ga7Cs11-Legierung bereitgestellt wird.
  3. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Halbleitermaterial als ein Dünnfilmmaterial bereitgestellt wird.
  4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Sublimation von Cäsium in einem Verdampfer bei einer Sublimationstemperatur von ungefähr 420°C oder weniger, vorzugsweise bei einer Sublimationstemperatur von ungefähr 300°C oder weniger durchgeführt wird.
  5. Verfahren nach einen der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Sublimation von Cäsium mittels einer Quarzwaage überwacht wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Quarzwaage mittels Wasser gekühlt wird.
  7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Cäsiumlegierung als ein festes Material bereitgestellt wird, wobei das feste Material vorerhitzt ist, um eine schützende Hülle zu erzeugen.
  8. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das organische Halbleitermaterial ein organisches Elektronentransportmaterial ist.
  9. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Cäsiumdampf mittels Sublimation von Cäsium von einem Standardverdampfer für organisches Material bereitgestellt wird.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der Standardverdampfer für organisches Material ein Tiegel vom Typ Knudsen ist.
  11. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der Standardverdampfer für organisches Material vom Typ lineare Quelle ist.
  12. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der Standardverdampfer für organisches Material ein Verdampfer mit einem linearen Kopf ist, welcher mit einem Tiegelvolumen mittels eines Rohrsystems verbunden ist.
  13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass eine Temperatur des Rohrsystems des Standardverdampfers für organisches Material gesteuert wird, niedriger als eine Temperatur in dem Tiegelvolumen zu sein.
DE602004006275T 2004-10-07 2004-10-07 Verfahren zur Dotierung von einem Halbleitermaterial mit Cäsium Expired - Lifetime DE602004006275T2 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP04023945A EP1648042B1 (de) 2004-10-07 2004-10-07 Verfahren zur Dotierung von einem Halbleitermaterial mit Cäsium

Publications (2)

Publication Number Publication Date
DE602004006275D1 DE602004006275D1 (de) 2007-06-14
DE602004006275T2 true DE602004006275T2 (de) 2007-12-20

Family

ID=34926891

Family Applications (1)

Application Number Title Priority Date Filing Date
DE602004006275T Expired - Lifetime DE602004006275T2 (de) 2004-10-07 2004-10-07 Verfahren zur Dotierung von einem Halbleitermaterial mit Cäsium

Country Status (3)

Country Link
US (1) US7507649B2 (de)
EP (1) EP1648042B1 (de)
DE (1) DE602004006275T2 (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7540978B2 (en) 2004-08-05 2009-06-02 Novaled Ag Use of an organic matrix material for producing an organic semiconductor material, organic semiconductor material and electronic component
EP1729346A1 (de) * 2005-06-01 2006-12-06 Novaled AG Lichtemittierendes Bauteil mit einer Elektrodenanordnung
EP1739765A1 (de) * 2005-07-01 2007-01-03 Novaled AG Organische Leuchtdiode und Anordnung mit mehreren organischen Leuchtdioden
EP1780816B1 (de) 2005-11-01 2020-07-01 Novaled GmbH Methode zur Herstellung eines elektronischen Bauelements mit einer Schichtstruktur und elektronisches Bauelement
EP1798306B1 (de) * 2005-12-07 2008-06-11 Novaled AG Verfahren zum Abscheiden eines Aufdampfmaterials
WO2007095061A2 (en) * 2006-02-09 2007-08-23 Qd Vision, Inc. Device including semiconductor nanocrystals and a layer including a doped organic material and methods
JP5683104B2 (ja) 2006-03-21 2015-03-11 ノヴァレッド・アクチエンゲゼルシャフト ドープされた有機半導体材料の製造方法及びそのために用いられる配合物
GB0625540D0 (en) * 2006-12-22 2007-01-31 Oled T Ltd Electroluminescent devices
GB0625865D0 (en) 2006-12-29 2007-02-07 Oled T Ltd Electro-optical or opto-electronic device
DE102007045518B4 (de) * 2007-09-24 2010-12-16 Siemens Ag Lösungsprozessiertes organisches elektronisches Bauelement mit verbesserter Elektrodenschicht
JP4920548B2 (ja) * 2007-10-31 2012-04-18 株式会社 日立ディスプレイズ 表示装置
US8058159B2 (en) * 2008-08-27 2011-11-15 General Electric Company Method of making low work function component
ES2673573T3 (es) 2013-12-23 2018-06-22 Novaled Gmbh Material semiconductor con dopaje N que comprende una matriz de óxido de fosfina y un metal dopante
US10749115B2 (en) 2015-06-23 2020-08-18 Novaled Gmbh N-doped semiconducting material comprising polar matrix and metal dopant
EP3109915B1 (de) 2015-06-23 2021-07-21 Novaled GmbH Organische lichtemittierende vorrichtung mit polarer matrix und metalldotiermittel
EP3109919B1 (de) 2015-06-23 2021-06-23 Novaled GmbH N-dotiertes halbleitermaterial mit polarer matrix und einem metalldotiermittel
EP3109916B1 (de) 2015-06-23 2021-08-25 Novaled GmbH Organische lichtemittierende vorrichtung mit polarer matrix, metalldotierstoff und silber-kathode
EP3168324A1 (de) 2015-11-10 2017-05-17 Novaled GmbH Verfahren zur herstellung einer metallhaltigen schicht
US10886491B2 (en) 2015-11-10 2021-01-05 Novaled Gmbh Process for making a metal containing layer
EP3168886B8 (de) 2015-11-10 2023-07-26 Novaled GmbH Metallschicht mit alkalimetall und zweitem metall
EP3168894B8 (de) 2015-11-10 2023-07-26 Novaled GmbH N-dotiertes halbleitermaterial mit zwei metallischen dotierstoffen

Family Cites Families (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1009204B (de) 1953-10-29 1957-05-29 Separator Ab Randdichtung fuer die Platten von Plattenwaermeaustauschern
US3644770A (en) * 1968-01-18 1972-02-22 Varian Associates Photoemitter having a p-type semiconductive substrate overlaid with cesium and n-type cesium oxide layers
US3673011A (en) * 1970-11-02 1972-06-27 Westinghouse Electric Corp Process for producing a cesium coated gallium arsenide photocathode
US4066569A (en) * 1975-12-30 1978-01-03 Hughes Aircraft Company Dopants for dynamic scattering liquid crystals
US4356429A (en) * 1980-07-17 1982-10-26 Eastman Kodak Company Organic electroluminescent cell
US4618453A (en) * 1985-05-30 1986-10-21 The United States Of America As Represented By The Secretary Of The Navy Conductive heterocyclic ladder polymers
US4769292A (en) * 1987-03-02 1988-09-06 Eastman Kodak Company Electroluminescent device with modified thin film luminescent zone
DE4024871A1 (de) * 1990-08-06 1992-02-13 Basf Ag Perlfoermige antistatische expandierbare styrolpolymerisate
US5093698A (en) * 1991-02-12 1992-03-03 Kabushiki Kaisha Toshiba Organic electroluminescent device
DE4106122A1 (de) * 1991-02-27 1992-09-03 Bayer Ag Neue naphthalimide, diese enthaltende toner und die verwendung der neuen naphthalimide als additive fuer toner
JP2998268B2 (ja) * 1991-04-19 2000-01-11 三菱化学株式会社 有機電界発光素子
US5325383A (en) 1993-05-17 1994-06-28 Eastman Kodak Company Laser diode operated in hybrid modulation modes
US6614161B1 (en) 1993-07-20 2003-09-02 University Of Georgia Research Foundation, Inc. Resonant microcavity display
FI95574C (fi) * 1994-02-16 1996-02-26 Valtion Teknillinen Elektroneja johtavia molekyylivalmisteita
EP0676461B1 (de) * 1994-04-07 2002-08-14 Covion Organic Semiconductors GmbH Spiroverbindungen und ihre Verwendung als Elektrolumineszenzmaterialien
CA2159842A1 (en) * 1994-12-05 1996-06-06 Joe A. Ortiz Diode drive current source
US5703436A (en) * 1994-12-13 1997-12-30 The Trustees Of Princeton University Transparent contacts for organic devices
US5707745A (en) * 1994-12-13 1998-01-13 The Trustees Of Princeton University Multicolor organic light emitting devices
US5825543A (en) 1996-02-29 1998-10-20 Minnesota Mining And Manufacturing Company Diffusely reflecting polarizing element including a first birefringent phase and a second phase
JPH10125469A (ja) * 1996-10-24 1998-05-15 Tdk Corp 有機el発光素子
US6046543A (en) 1996-12-23 2000-04-04 The Trustees Of Princeton University High reliability, high efficiency, integratable organic light emitting devices and methods of producing same
US5811833A (en) * 1996-12-23 1998-09-22 University Of So. Ca Electron transporting and light emitting layers based on organic free radicals
US5834893A (en) * 1996-12-23 1998-11-10 The Trustees Of Princeton University High efficiency organic light emitting devices with light directing structures
JPH10270171A (ja) * 1997-01-27 1998-10-09 Junji Kido 有機エレクトロルミネッセント素子
US6160828A (en) 1997-07-18 2000-12-12 The Trustees Of Princeton University Organic vertical-cavity surface-emitting laser
DE19732828C2 (de) 1997-07-30 2001-01-18 Siemens Ag Schaltungsanordnung zur Ansteuerung eines Leuchtdioden-Arrays
US6303238B1 (en) 1997-12-01 2001-10-16 The Trustees Of Princeton University OLEDs doped with phosphorescent compounds
DE19756361A1 (de) 1997-12-18 1999-06-24 Philips Patentverwaltung Organische lichtemittierende Diode mit Terbiumkomplex
JPH11251067A (ja) 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
GB9805476D0 (en) 1998-03-13 1998-05-13 Cambridge Display Tech Ltd Electroluminescent devices
JP2991183B2 (ja) 1998-03-27 1999-12-20 日本電気株式会社 有機エレクトロルミネッセンス素子
KR100582328B1 (ko) 1998-04-09 2006-05-23 이데미쓰 고산 가부시키가이샤 유기 전자 발광 소자
TW507103B (en) 1998-07-24 2002-10-21 Seiko Epson Corp Display device
JP2000075836A (ja) * 1998-09-02 2000-03-14 Sharp Corp 有機el発光装置とその駆動方法
JP2000196140A (ja) 1998-12-28 2000-07-14 Sharp Corp 有機エレクトロルミネッセンス素子とその製造法
GB2347013A (en) 1999-02-16 2000-08-23 Sharp Kk Charge-transport structures
US7001536B2 (en) 1999-03-23 2006-02-21 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
DE19916745A1 (de) 1999-04-13 2000-10-19 Mannesmann Vdo Ag Lichtemittierende Diode mit organischen lichtemittierenden Stoffen zur Erzeugung von Licht mit Mischfarben
US6878297B1 (en) 1999-06-09 2005-04-12 Cambridge Display Technology, Limited Method of producing organic light-emissive devices
US6579422B1 (en) 1999-07-07 2003-06-17 Sony Corporation Method and apparatus for manufacturing flexible organic EL display
US6310360B1 (en) 1999-07-21 2001-10-30 The Trustees Of Princeton University Intersystem crossing agents for efficient utilization of excitons in organic light emitting devices
TW465119B (en) * 1999-07-23 2001-11-21 Semiconductor Energy Lab EL display device and a method of manufacturing the same
BE1012802A3 (fr) 1999-07-28 2001-03-06 Cockerill Rech & Dev Dispositif electroluminescent et son procede de fabrication.
KR100377321B1 (ko) 1999-12-31 2003-03-26 주식회사 엘지화학 피-형 반도체 성질을 갖는 유기 화합물을 포함하는 전기소자
US7560175B2 (en) * 1999-12-31 2009-07-14 Lg Chem, Ltd. Electroluminescent devices with low work function anode
US6414661B1 (en) 2000-02-22 2002-07-02 Sarnoff Corporation Method and apparatus for calibrating display devices and automatically compensating for loss in their efficiency over time
US7233026B2 (en) * 2000-03-23 2007-06-19 Emagin Corporation Light extraction from color changing medium layers in organic light emitting diode devices
GB2361355B (en) * 2000-04-14 2004-06-23 Seiko Epson Corp Light emitting device
US7525165B2 (en) * 2000-04-17 2009-04-28 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
TW516164B (en) * 2000-04-21 2003-01-01 Semiconductor Energy Lab Self-light emitting device and electrical appliance using the same
EP1158483A3 (de) * 2000-05-24 2003-02-05 Eastman Kodak Company Festkörperanzeige mit Referenzpixel
EP1160888A1 (de) 2000-05-29 2001-12-05 Sony International (Europe) GmbH Lochleitermaterial und Verwendung in einer (Farbstoff-)Solarzelle
US6645645B1 (en) 2000-05-30 2003-11-11 The Trustees Of Princeton University Phosphorescent organic light emitting devices
US20020015807A1 (en) * 2000-06-19 2002-02-07 Youichirou Sugino Polarizer, polarizing plate, and liquid crystal display using the same
TW527848B (en) * 2000-10-25 2003-04-11 Matsushita Electric Ind Co Ltd Light-emitting element and display device and lighting device utilizing thereof
DE10058578C2 (de) 2000-11-20 2002-11-28 Univ Dresden Tech Lichtemittierendes Bauelement mit organischen Schichten
US6573651B2 (en) 2000-12-18 2003-06-03 The Trustees Of Princeton University Highly efficient OLEDs using doped ambipolar conductive molecular organic thin films
US6809333B2 (en) * 2000-12-25 2004-10-26 Samsung Sdi Co., Ltd. Organic electroluminescence element
JP4220669B2 (ja) * 2000-12-26 2009-02-04 出光興産株式会社 有機エレクトロルミネッセンス素子
SG107573A1 (en) 2001-01-29 2004-12-29 Semiconductor Energy Lab Light emitting device
KR100898304B1 (ko) 2001-03-02 2009-05-19 더 트러스티즈 오브 프린스턴 유니버시티 이중 도우프층, 인광 유기 발광 디바이스
ITMI20010995A1 (it) * 2001-05-15 2002-11-15 Getters Spa Dispensatori di cesio e processo per il loro uso
DE10135513B4 (de) * 2001-07-20 2005-02-24 Novaled Gmbh Lichtemittierendes Bauelement mit organischen Schichten
US6501230B1 (en) 2001-08-27 2002-12-31 Eastman Kodak Company Display with aging correction circuit
DE10145492B4 (de) 2001-09-14 2004-11-11 Novaled Gmbh Elektrolumineszente Lichtemissionseinrichtung, insbesondere als Weißlichtquelle
KR100437886B1 (ko) 2001-09-25 2004-06-30 한국과학기술원 고발광효율 광결정 유기발광소자
US6620350B2 (en) * 2001-10-01 2003-09-16 Hon Hai Precision Ind. Co., Ltd. Method for making gradient refractive index optical components
JP3823312B2 (ja) 2001-10-18 2006-09-20 日本電気株式会社 有機薄膜トランジスタ
US6734457B2 (en) * 2001-11-27 2004-05-11 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7141817B2 (en) 2001-11-30 2006-11-28 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7274363B2 (en) * 2001-12-28 2007-09-25 Pioneer Corporation Panel display driving device and driving method
DE10164016B4 (de) 2001-12-28 2020-01-23 Osram Opto Semiconductors Gmbh Organische Leuchtdiode (OLED) und Verfahren zu ihrer Herstellung
US7012363B2 (en) * 2002-01-10 2006-03-14 Universal Display Corporation OLEDs having increased external electroluminescence quantum efficiencies
US7224333B2 (en) * 2002-01-18 2007-05-29 Semiconductor Energy Laboratory Co. Ltd. Display device and driving method thereof
DE10207859A1 (de) 2002-02-20 2003-09-04 Univ Dresden Tech Dotiertes organisches Halbleitermaterial sowie Verfahren zu dessen Herstellung
US6833667B2 (en) * 2002-02-27 2004-12-21 Matsushita Electric Industrial Co., Ltd. Organic electroluminescence element and image forming apparatus or portable terminal unit using thereof
JP4046267B2 (ja) * 2002-03-26 2008-02-13 株式会社半導体エネルギー研究所 表示装置
DE10215210B4 (de) * 2002-03-28 2006-07-13 Novaled Gmbh Transparentes, thermisch stabiles lichtemittierendes Bauelement mit organischen Schichten
GB2388236A (en) * 2002-05-01 2003-11-05 Cambridge Display Tech Ltd Display and driver circuits
KR20050027982A (ko) * 2002-05-08 2005-03-21 제오럭스 코포레이션 피드백 증대 발광 다이오드를 이용한 조명 기구
DE10224021B4 (de) * 2002-05-24 2006-06-01 Novaled Gmbh Phosphoreszentes lichtemittierendes Bauelement mit organischen Schichten
DE10229231B9 (de) 2002-06-28 2006-05-11 Osram Opto Semiconductors Gmbh Verfahren zum Herstellen eines Strahlung emittierenden und/oder empfangenden Halbleiterchips mit einer Strahlungsein- und/oder -auskoppel-Mikrostruktur
ITMI20021904A1 (it) * 2002-09-06 2004-03-07 Getters Spa Elemento accessorio per dispensatori di metalli alcalini
TW556446B (en) 2002-09-11 2003-10-01 Opto Tech Corp Organic light-emitting device and the manufacturing method thereof
CN1682267A (zh) * 2002-09-16 2005-10-12 皇家飞利浦电子股份有限公司 显示装置
US6965197B2 (en) 2002-10-01 2005-11-15 Eastman Kodak Company Organic light-emitting device having enhanced light extraction efficiency
DE10251986A1 (de) 2002-11-08 2004-05-19 Covion Organic Semiconductors Gmbh Palladium- und Platin-Komplexe
DE10261609B4 (de) 2002-12-20 2007-05-03 Novaled Ag Lichtemittierende Anordnung
JP2004207136A (ja) * 2002-12-26 2004-07-22 Nitto Denko Corp 面光源及びこれを用いた表示装置
JP3910926B2 (ja) * 2003-02-26 2007-04-25 株式会社東芝 表示装置用透明基板の製造方法
DE10338406A1 (de) * 2003-08-18 2005-03-24 Novaled Gmbh Dotierte organische Halbleitermaterialien sowie Verfahren zu deren Herstellung
DE10339772B4 (de) * 2003-08-27 2006-07-13 Novaled Gmbh Licht emittierendes Bauelement und Verfahren zu seiner Herstellung
DE10357044A1 (de) 2003-12-04 2005-07-14 Novaled Gmbh Verfahren zur Dotierung von organischen Halbleitern mit Chinondiiminderivaten
CN1638585A (zh) * 2003-12-26 2005-07-13 日东电工株式会社 电致发光装置,平面光源和使用该平面光源的显示器
US20060044227A1 (en) * 2004-06-18 2006-03-02 Eastman Kodak Company Selecting adjustment for OLED drive voltage

Also Published As

Publication number Publication date
EP1648042A1 (de) 2006-04-19
US20060079004A1 (en) 2006-04-13
DE602004006275D1 (de) 2007-06-14
US7507649B2 (en) 2009-03-24
EP1648042B1 (de) 2007-05-02

Similar Documents

Publication Publication Date Title
DE602004006275T2 (de) Verfahren zur Dotierung von einem Halbleitermaterial mit Cäsium
DE973156C (de) Verfahren zur Herstellung lichtelektrisch leitender Schichten fuer Photowiderstaende
DE2813250C2 (de) Verfahren zur Herstellung von Verbindungshalbleiterchips
Flemban et al. Homogeneous vertical ZnO nanorod arrays with high conductivity on an in situ Gd nanolayer
EP2342772B1 (de) Organisches elektronisches bauelement und verfahren zu dessen herstellung
EP3610050B1 (de) Beschichtungsvorrichtung und verfahren zur reaktiven dampfphasenabscheidung unter vakuum auf einem substrat
DE1489147B2 (de)
Babaei et al. Preparation and Characterization of Mixed Halide MAPbI3− xClx Perovskite Thin Films by Three‐Source Vacuum Deposition
DE10224908A1 (de) Vorrichtung für die Beschichtung eines flächigen Substrats
EP1643568A1 (de) Verfahren zum Herstellen einer Schicht aus einem dotierten Halbleitermaterial und Vorrichtung
Seok et al. Plasma damage-free deposition of transparent Sn-doped In2O3 top cathode using isolated plasma soft deposition for perovskite solar cells
Chabanais et al. Behavior of the ε-Ga2O3: Sn evaporation during Laser-assisted atom probe tomography
Gorgoi et al. Charge-transfer at silver/phthalocyanines interfaces
EP2865001A1 (de) Schichtsystem für dünnschichtsolarzellen
EP2865012B1 (de) Schichtsystem für dünnschichtsolarzellen
Ghosh et al. Enhanced organophosphate sensing response of copper incorporated ZnO nanowires
Gorgoi et al. Density of occupied and unoccupied states monitored during metal deposition onto phthalocyanine layers
DE2143887C3 (de) Verfahren und Vorrichtung zur Erzeugung von Bildern auf einem strahlungsempfindlichen Aufzeichnungsmaterial
DE102007050288A1 (de) Halbleiterbauteil
DE19728321A1 (de) Verfahren und Vorrichtung zur Herstellung von stabilen endohedralen Fullerenen der Struktur ZaC¶x¶ mit x >= 60
DE10341914B4 (de) Einrichtung zur Herstellung dünner Schichten und Verfahren zum Betreiben der Einrichtung
Rogelet et al. Electronic structure of NiO (1 0 0) with adsorbed Na
Söderholm et al. A photoelectron spectroscopy and x-ray absorption study of single crystal with adsorbed Cs: on the origin of the states affected by electron doping and evidence for spatially resolved electron doping
Kennedy et al. Ion beam analysis of rare earth nitride thin films
Ghosh et al. Effect of titanium incorporation in zinc oxide nanowires for room temperature detection of chlorpyrifos

Legal Events

Date Code Title Description
8364 No opposition during term of opposition