DE4208249A1 - Induktive kochstellenbeheizung und verfahren zu ihrem betrieb - Google Patents

Induktive kochstellenbeheizung und verfahren zu ihrem betrieb

Info

Publication number
DE4208249A1
DE4208249A1 DE19924208249 DE4208249A DE4208249A1 DE 4208249 A1 DE4208249 A1 DE 4208249A1 DE 19924208249 DE19924208249 DE 19924208249 DE 4208249 A DE4208249 A DE 4208249A DE 4208249 A1 DE4208249 A1 DE 4208249A1
Authority
DE
Germany
Prior art keywords
resonant circuit
circuit
control
power
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19924208249
Other languages
English (en)
Inventor
Heinrich Dr Ing Vogelmann
Franz Dr Ing Bogdanski
Juergen Dipl Ing Horn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EGO Elektro Geratebau GmbH
Original Assignee
EGO Elektro Gerate Blanc und Fischer GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EGO Elektro Gerate Blanc und Fischer GmbH filed Critical EGO Elektro Gerate Blanc und Fischer GmbH
Priority to DE19924208249 priority Critical patent/DE4208249A1/de
Priority to EP19930103273 priority patent/EP0561207A3/de
Publication of DE4208249A1 publication Critical patent/DE4208249A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Cookers (AREA)

Description

Die Erfindung betrifft eine induktive Kochstellenbeheizung für Kochgefäße o. dgl.
Induktionsbeheizungen haben den Vorteil einer sehr trägheits­ armen Wärmeerzeugung unmittelbar im Kochgefäß, nämlich im Kochtopfboden. Das Kochgerät selbst bleibt weitgehend kalt. Ihr Nachteil ist der relativ hohe Bauaufwand und die schwie­ rige Steuerbarkeit. Da zur notwendigen Hochfrequenzerzeugung und ihrer Steuerung elektronische Bauteile benötigt werden und andererseits durch die Verlustwärme in der Elektronik und der Induktionsspule sich die Induktionserzeugungsmittel doch stärker erwärmen, war es notwendig, die Umwandlungs- und Steuerelektronik getrennt von der Kochstelle anzuordnen. Dadurch wurde der Einbau in normale Kochherde oder Kochmulden behindert und Induktionskochstellen waren daher meist in Sondergeräten eingebaut.
Aufgabe
Aufgabe der Erfindung ist es, eine induktive Kochstellen­ beheizung so zu steuern, daß das Aufsetzen oder Abnehmen eines geeigneten Kochgefäßes auf die bzw. von der Kochstelle mit der nötigen Sicherheit und Schnelligkeit erkannt wird. Insbesondere soll dies ohne aufwendige Zusatzabtastungen etc. in einer leicht in die Hochfrequenzerzeugung zu integrieren­ den Schaltung geschehen.
Lösungen und Erläuterungen
Diese Aufgabe wird durch den Anspruch 1 gelöst.
Nach der Erfindung wird also der Schwingkreis, in dem die Induktionserzeugungsmittel selbst liegen, auch zur Topferken­ nung herangezogen, indem in einem in Zeitabständen wiederhol­ ten Prüfzyklus jeweils eine Messung der Dämpfung, d. h. der Leistungsabnahme des Schwingkreises, durchgeführt wird und in Abhängigkeit von dessen Ergebnis entschieden wird, ob die volle Leistung eingeschaltet wird.
Die benötige Prüfleistung ist wegen der Kürze der Prüfphasen und der Möglichkeit, mit einem geringeren Prüfstrom zu ar­ beiten, außerordentlich gering und energetisch und für den Umwelteinfluß unbedeutend.
Insbesondere bei Verwendung einer Halbbrücken-Schaltung für den Induktions-Schwingkreis mit zwei wechselweise schaltenden elektronischen Leistungsschaltern ist es möglich, die eine Halbbrücke des Schwingkreises durch kurzzeitiges Schließen eines der beiden Leistungsschalter zu einer Prüfschwingung zu veranlassen und dann nach Ablauf einer kurzen Pause durch Wiedereinschaltung zu prüfen, wie groß die Schwingungsampli­ tude dann ist, d. h. wieviel Energie bis dahin abgenommen wurde. Dies kann beliebig oft wiederholt werden, aber schon nach der zweiten Schwingung ist das Ergebnis fehlerfrei und kann zur Entscheidung darüber, ob die Dämpfung ausreichend ist, herangezogen werden. Die Abnahme erfolgt normalerweise nach einer e-Funktion mit unterschiedlicher Konstante. Dem­ entsprechend werden auch aufgrund der Messung während der ersten Einschaltung die Grenzwerte für die zweite Einschal­ tung festgelegt, deren Überschreitung eine nicht ausreichende Dämpfung anzeigt. Der Meßstrom kann in dem Schwingkreis direkt abgegriffen und, ggf. über einen Meßwandler in der Steuerschaltung verarbeitet werden. Es ist auch möglich, stattdessen mit der Spannung im Schwingkreis, beispielsweise an einem der Schwingkreiskondensatoren, in vergleichbarer Weise zu arbeiten.
Während der eigentlichen Prüfung, d. h. des Zeitraumes, in dem einer der Leistungsschalter des Leistungskreises einige Male nacheinander eingeschaltet wird, einschl. der Pausen dazwischen, wird dem Schwingkreuz kaum Energie von außen zugeführt, weil dies über eine hochohmige Widerstandsbrücke erfolgt, die in dieser kurzen Zeit nur unbedeutende Energie­ mengen zuführen kann. Sollte dieser Wert bedeutender sein, könnte er auch durch entsprechende Grenzwertbemessung berück­ sichtigt werden. Wegen der großen Genauigkeit der Topferfas­ sung könnte die Topferkennungsschaltung auch dafür eingesetzt werden, eine Wertung des aufgesetzten Topfes vorzunehmen und in Abhängigkeit davon unterschiedliche Leistungsstufen fest­ zulegen, so könnte beispielsweise die Freigabe der absoluten Höchstleistung einer bestimmten Dämpfungsgröße vorbehalten sein.
Bekanntlich benötigen diese Beheizungen Töpfe mit ferromag­ netischem Boden, um ihre volle Wirksamkeit zu erreichen. Durch die Erfindung läßt sich eine so genaue Überprüfung der Leistungsabnahme bewerkstelligen, daß das Aufsetzen anderer Gegenstände auf die Induktionskochstelle, beispielsweise von Aluminiumtöpfen, o. dgl. nicht zu einer Einschaltung führt.
Während die positive Topferkennung, d. h. das Einschalten bei aufgesetztem Topf, zeitlich nicht so kritisch ist und deswegen die einzelnen Prüfzyklen in Abständen, die in der Größenordnung von Bruchteilen bis zu einigen Sekunden dauern, geschehen kann, ist vorteilhaft vorgesehen, daß die Abschal­ tung bei Wegnahme eines Topfes unmittelbar und ohne die geringste Verzögerung erfolgt. Dazu wird die Größe des Stro­ mes im Schwingkreis ständig überwacht und führt bei Über­ schreitung eines festgelegten Maximalwertes augenblicklich zur Abschaltung. Die dabei im Schwingkreis noch vorhandene Leistung kann über Freilaufdioden in einen den Schwingkreis versorgenden Zwischenkreis zurückgeleitet werden. Ein solcher Zwischenkreis kann zur Versorgung mehrerer, vorzugsweise zweier Schwingkreise bzw. Umrichter vorgesehen sein, die jeweils eine Induktionskochstelle betreiben.
Besonders bevorzugt kann die Überwachung des Maximalstromes im Schwingkreis zur Schnellabschaltung und die Messung des Prüfstromes für die "einschaltende Topferkennung" durch die gleichen Schaltungsbauteile durchgeführt werden, so daß die Schaltung einfach ist.
Diese und weitere Merkmale der Erfindung gehen außer aus den Ansprüchen auch aus der Beschreibung und den Zeichnungen hervor, wobei die einzelnen Merkmale jeweils für sich allein oder zu mehreren in Form von Unterkombinationen bei einer Ausführungsform der Erfindung und auf anderen Gebieten ver­ wirklicht sein und vorteilhafte sowie für sich schutzfähige Ausführungen darstellen können, für die hier Schutz bean­ sprucht wird.
Figuren-Kurzbeschreibung
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im folgenden näher erläutert. Es zeigen:
Fig. 1 eine Draufsicht auf ein Bauelement zur induk­ tiven Kochstellenbeheizung,
Fig. 2 einen schematischen Längsschnitt durch das Bauelement,
Fig. 3 einen Querschnitt,
Fig. 4 ein Blockschaltbild der Steuerung und Lei­ stungsversorgung von zwei Induktionsspulen,
Fig. 5 ein teilweise detaillierteres Schaltbild für den Betrieb einer Induktionsspule,
Fig. 6 + 7 schematische Darstellungen einer Abschirmung,
Fig. 8a)-d) Darstellungen "Strom über Zeit" verschiedener Impulsgrundmuster,
Fig. 9 eine tabellarische Darstellung der Zusammen­ setzung einzelnen Leistungsstufen aus Grundim­ pulsmustern,
Fig. 10 ein erläuterndes Diagramm eines Strom/ Zeitverlaufes,
Fig. 11a) + b) den Strom/Zeitverlauf und die zugehörigen Einschaltzeiten eines Topferkennungs-Prüfzyk­ lus und
Fig. 12 einen Querschnitt durch eine Litze, aus der eine Induktionsspule aufgebaut ist.
Bauelement
Die Fig. 1 bis 3 zeigen ein Bauelement 11 für zwei Induk­ tions-Kochstellen 10. Es ist zur Anordnung unter einer Platte 12 vorgesehen, beispielsweise einer Glaskeramik-Platte. Das Bauelement bildet eine kompakte, relativ flache, handhabbare Baueinheit, die mit Ausnahme des Netzanschlusses und eines Einstell- und Regelorgans 27 mit Einstellknopf 26, das auch eine Leistungssteuereinrichtung beinhalten kann, die alle zum Betrieb notwendigen Elemente enthält. Das Bauelement kann beispielsweise durch nicht dargestellte Federelemente von unten an die Platte 12 angedrückt werden. Durch diese Anord­ nung und den Einschluß aller wesentlichen Bauteile läßt sich die Induktions-Beheizung auch anstelle und zusätzlich zu üblichen Strahlungs-Kochstellen in einem Glaskeramik-Kochfeld anordnen.
Das Bauelement enthält in einer Blechschale 23 einen Kühlkör­ per 15, vorzugsweise ein Aluminiumformteil mit oben weit­ gehend geschlossener Fläche und Kühlrippen 18 an der Unter­ seite, die zwischen sich Kühlkanäle 19 bilden. Sie verlaufen etwa längs einer die beiden Kochstellen 10 verbindenden Achse 9. An der Oberseite besitzt der Kühlkörper Ausnehmungen 29, in denen Induktionserzeugungsmittel 14 angeordnet sind, die jeweils einer Kochstelle 10 zugeordnet sind. An der Unter­ seite des Kühlkörpers ist eine Platine 16 vorgesehen, bei­ spielsweise mit den äußeren Kühlrippen verschraubt, so daß die Kühlkanäle 19 und weitere, ebenfalls als Kühlkanäle dienende größere Räume 28 an der Unterseite des Kühlkörpers 15 einschließen. In diesen sind, vorzugsweise in wärmeleiten­ der Verbindung mit dem Kühlkörper 15, elektronische Lei­ stungssteuerelemente 21 angeordnet. Die Platine trägt eben­ falls elektronische Bauelemente, jedoch vorwiegend die zur Steuerung eingesetzten, mit relativ kleinen Strömen und daher geringerer Erwärmung arbeitenden Elemente. Das ganze ist passend in eine Blechschale eingesetzt. Die Platine könnte aber auch selbst die untere Abdeckung bilden. Im Bereich einer kurzen Randseite 24 des langgestreckt rechteckigen Bauelementes 11 sind Lüftungsöffnungen 25 vorgesehen, durch die ein in einer Ausnehmung des Kühlkörpers 15 angeordneter Ventilator 37 Luft ansaugt bzw. nach Durchströmen der Kühlka­ näle 19, 28 ausbläst. Auch ein mittig auf dem Kühlkörper angeordneter Ventilator mit einem Luftaustritt nach zwei oder mehr Seiten ist möglich. Dadurch werden die Leistungssteuer­ elemente und die Steuerelektronik unmittelbar vom Kühlluft­ strom gekühlt und die Leistungssteuerelemente geben zudem ihre Wärme durch Leitung an den luftgekühlten Kühlkörper ab.
Induktionsspule
Die Induktionserzeugungsmittel 14 bestehen aus einer Induk­ tionsspule 30 in Form einer flachen, scheiben- bzw. ringför­ migen Platte, darunter angeordneten Magnet-Rückschlußmitteln 31 und einer thermischen Isolierung 32 an der der Platte zugekehrten Seite, in deren Bereich eine Abschirmung 33 vorgesehen sein kann.
Die Induktionsspule 30 enthält als Wendel und/oder Spirale gewickelte Litzen 38, die aus Einzelleitern 39 (siehe Fig. 12) aufgebaut sind. Die Litze 38 ist aus mehreren, vorzugs­ weise fünf bis neun, im vorliegenden Falle sieben Kardeelen 40 aufgebaut, die miteinander verseilt sind und ihrerseits eine Anzahl zwischen fünf und neun, vorliegend sieben mitein­ ander verseilter Einzeldrähte enthalten. Die Einzelleiter sind auf übliche Weise, beispielsweise durch eine wärmebe­ ständige Lackschicht, elektrisch gegeneinander isoliert.
Die aus Kupfer bestehenden Einzelleiter 39 haben einen Durch­ messer d zwischen 0,1 und 0,4 mm, vorzugsweise 0,2 mm. Dieser Wert gilt für die hier bevorzugte Frequenz des der Induk­ tionsspule zugeführten Stromes zwischen 20 und 30 kHz, vor­ zugsweise ca. 25 kHz. Im einzelnen läßt sich auch für andere Frequenzen ein Basiswert D des Durchmessers des Einzelleiters nach folgender Formel ermitteln:
wobei D in Metern ermittelt wird. Die elektrische Leitfä­ higkeit k des Einzelleitermaterials ist in A/V*m, dessen Permeabilität µ in V*s/A*m einzusetzen ist und die Frequenz f in 1/s. Die bevorzugt verwendete Drahtstärke d liegt vor­ zugsweise zwischen einem Viertel und drei Viertel des nach dieser Formel berechneten Basiswertes D. Es hat sich erstaun­ licherweise gezeigt, daß bei diesen geringen Durchmessern des Einzelleiters die Verlustleistung in der Induktionsspule 30 wesentlich gesenkt werden konnte.
Nach bisher vorliegenden Erkenntnissen, die auch durch theo­ retische Rechnungen als erwiesen galten, sollten die Spulen­ verluste zwar bei Verringerung des Durchmessers d bis zu einem Wert gleich dem Basiswert D nach der o. g. Formel abnehmen, danach aber kaum noch. Die theoretischen, bisher als gesichert geltenden Erkenntnisse gingen von dem Skin- Effekt eines Einzelleiters aus und ermittelten für den o. g. Durchmesser D eine optimale Größe, weil dann der gesamte Durchmesser trotz der Stromverdrängung zur Oberfläche hin gleichmäßig durchflossen sei. Der Basiswert D entspricht der Eindringtiefe des Stromes in eine Leiteroberfläche, wobei wegen der runden Drahtform sich ein Eindringen von allen Seiten gleichzeitig ergibt und somit eine gleichmäßige Strom­ belegung über den Querschnitt. Die von dieser Theorie aus­ gehende Überlegung wurde jedoch erstaunlicherweise durch Versuche widerlegt. Bevorzugt wäre sogar ein Durchmesser von weniger als 0,2 mm, d. h. geringer als der Hälfte des Basis­ wertes D, jedoch setzen die mechanischen Möglichkeiten der Verarbeitung einer Durchmesserverkleinerung irgendwann ein Ende.
Versuche haben gezeigt, daß die Verluste durch Wirbelströme und ohmsche Verluste in den Einzelleitern infolge der von der Spule selbst erzeugten Induktion bei aufgrund der bisherigen Theorie üblicherweise angewendeten Drahtstärken (gleich dem Basiswert D von 0,4 mm bei 25 kHz Frequenz) bei 70-100 W liegen, während sie bei einer Spule gleicher Leistung bei einem Drahtdurchmesser d von 0,2 mm halbiert sind und nur etwa 40 W betragen. Dadurch ist die Spulenerwärmung wesent­ lich geringer und neben nicht unerheblicher Engergieeinspa­ rung können sonst auftretende Probleme mit der Spulenisolie­ rung und der Wärmeabfuhr aus der Spule ausgeschaltet werden.
Rückschlußmittel
Unter der Spule liegt, ebenfalls als flache, ringförmige Schicht mit einer mittleren Öffnung 35, das magnetische Rückschlußmittel 31, das aus Ferritsegmenten aufgebaut ist. Es schließt das an der Unterseite der Induktionsspule ent­ stehende magnetische Feld mit geringem magnetischen Wider­ stand, jedoch hohem elektrischen Widerstand, so daß auch dort die Wirbelstromverluste gering bleiben. Daher entsteht an der Unterseite der Induktionserzeugungsmittel 14 kein wesentli­ ches Induktionsfeld. Die magnetischen Rückschlußmittel 31 bilden ferner eine Wärmeleitbrücke zwischen der Induktions­ spule 30 und dem Kühlkörper, an dem sie anliegen, so daß die Spulen-Verlustwärme unmittelbar in den Kühlkörper abgeführt wird.
Thermische Isolation
Die thermische Isolation 32 liegt in Form einer die Induk­ tionsspule 30 abdeckenden Platte mit mittlerer Öffnung 35 zwischen dieser und der Glaskeramikplatte 12. Sie besteht aus einem sehr gut wärmedämmenden und möglichst auch elek­ trisch isolierenden Material, beispielsweise einem pyrogenen Kieselsäure-Aerogel, das zu einer Platte verpreßt ist.
Es erscheint ungewöhnlich, das eigentliche Heizelement, nämlich die Induktionsspule, thermisch gegenüber dem wärme­ aufnehmenden Kochgefäß abzuschirmen. Selbst wenn man berück­ sichtigt, daß die Energieübertragung durch Induktion und nicht durch Wärmeübertragung selbst geschieht, so sollte man meinen, daß zumindest für die Wärmeabfuhr der Verlustwärme in der Induktionsspule ein möglichst guter Wärmeschluß zum Verbraucher hin, dem Kochgefäß 13, vorteilhaft wäre. Es hat sich aber gezeigt, daß die Induktionsspule, insbesondere bei dem vorher erwähnten verlustarmen Spulenaufbau, so wenig Wärme erzeugt, daß durch eine Wärmebrücke zum Verbraucher diesem eher Wärme entzogen als ihm zugeführt würde. Durch die Wärmedämmung wird die Induktionsspule auf einem niedrigeren Temperaturniveau gehalten, was für die Spulenauslegung und -isolation Vorteile hat. Es ergibt sich ferner eine Wirkungs­ gradverbesserung dadurch, daß die Wärme des Kochgefäßes 13 nicht durch die Glaskeramikplatte nach unten abgeleitet wird. Die thermische Isolation 32 bildet vorteilhaft auch gleichzeitig eine elektrische Isolation gegen die Glaskera­ mikplatte 12, die bei erhöhter Temperatur elektrisch leitfä­ hig wird.
Platten-Überwachung
Im Bereich der mittleren Öffnung 35, die durch Isolation 32, Induktionsspule 30 und Rückschlußmittel 31 hindurchgeht, ist ein optischer Fühler 36 angeordnet, der die von der Glas­ keramikplatte herkommende Strahlung aufnimmt. Er überwacht somit mittelbar die der Glaskeramikplatte gefährlich werden könnende Temperatur des Kochgefäßes mittels berührungsloser Messung, die sonst im Magnetfeld einer Induktionskochstelle nur schwierig durchzuführen wäre. Es handelt sich also um eine Messung der Ursache für die Temperaturgefährdung der Glaskeramikplatte, da diese nur vom Kochgefäß erwärmt wird. Die Glaskeramik läßt die Strahlung weitgehend durch und ist daher selbst kaum berührungsfrei zu messen. Bei anderen Plattenmaterialien können diese auch selbst die Strahlungs­ quelle sein.
Der optische Fühler ist ein Infrarot-Detektor, dessen spek­ trale Empfindlichkeit im Infrarot-Bereich liegt. Bei steigen­ der Temperatur des Kochgefäßes erhöht sich auch das Maximum der Frequenz der abgestrahlten Photonen nach dem Wien′schen Verschiebungsgesetz. Ab einer vorgegebenen Temperatur ent­ spricht die Energie der abgestrahlten Photonen der spektralen Empfindlichkeit des IR-Detektors, so daß ein auswertbares Signal entsteht, das dann zur Abschaltung oder Verringerung der Leistung der Induktionsbeheizung verwendet wird. Dazu wirken die optischen Fühler 36 jeder Induktions-Kochstelle über Komparatoren 41 auf einen Mikro-Computer 42 ein (Fig. 4), von denen je einer zur Steuerung und Regelung einer Induktions-Kochstelle vorgesehen ist. Er ist jeweils über das Einstellorgan mit dem Einstellknopf 26 auf eine bestimmte Temperatur oder Leistungsstufe einstellbar. Die optischen Fühler 36 können Silicium-Dioden sein.
Alternativ könnten auch Meßwiderstände an die Platte angelegt werden, z. B. zwischen Isolation und Platte im Spulenbereich, wenn die Meßwiderstände vom Magnetfeld nicht oder nur wenig beeinflußt werden und eine Beeinflussung schaltungstechnisch oder im Meßprogramm kompensiert wird.
Abschirmung
Die Abschirmung 33 ist zwischen Induktionsspule 30 und Glas­ keramikplatte 12 vorgesehen. Sie kann an der Unter- oder Oberseite der thermischen Isolierung 32 liegen oder vorteil­ haft in sie eingebettet sein. Die Abschirmung besteht aus einem beispielsweise in den Fig. 4 und 6 dargestellten Draht- oder Bandgebilde, das wirbelstromarm ausgebildet ist. Das bedeutet einerseits, daß die Dicke der einzelnen Struk­ turelemente 45 (Drähte, Streifen o. dgl.) geringer ist als die Strom-Eindringtiefe bei der verwendeten Frequenz und andererseits die Strukturen keinesfalls elektrisch geschlos­ sen sind. Es ist daher in Fig. 6 ein offener Ringleiter 46 mit nach innen ragenden Ästen 45 vorgesehen, die unterschied­ lich lang sind, so daß die gesamte Fläche gleichmäßig belegt wird. Der Ring 46 ist mit einer Erdung 34 verbunden, bei­ spielsweise durch Anschluß an die geerdete Blechschale 23 des Bauelementes 11 (Fig. 1).
Fig. 7 zeigt eine Struktur, bei der von einem Mittelpunkt, an dem die Erdung angreift, Äste mit Leiterstrukturen 45 nach außen reichen, die ebenfalls so verästelt sind, daß sie das Kochfeld möglichst gleichmäßig abschirmen.
Durch diese Abschirmung wird, ohne daß wesentliche Verluste entstehen, das um die Induktionsspule herum ausgebildete elektrische Feld nach oben hin abgeschirmt und damit die elektrische Störstrahlung. Ferner können die Ableitströme vom Kochgefäß reduziert werden. Die Abschirmung könnte auch durch eine geerdete Schicht aus einem Widerstandsmaterial gebildet sein. Wesentlich ist, daß das Material unmagnetisch ist und zur Vermeidung von Wirbelstromverlusten einen gegenüber metallischen Leitern relativ hohen elektrischen Widerstand hat.
Basisschaltung
In Fig. 4 ist im Blockschaltbild und in Fig. 5 etwas detail­ lierter die Energieversorgung, Regelung und Steuerung der Induktionsspulen 30 dargestellt. Fig. 4 zeigt, daß der von dem Netzanschluß 22 kommende Wechselstrom über eine Funkent­ störung 50 und Gleichrichtung 51 einem gemeinsamen Zwischen­ kreis 52 zugeführt wird, von dem aus beide Umrichter 53, die man auch als Hochfrequenz-Generatoren bezeichnen könnte, für jede Induktionsspule 30 versorgt werden. Zwischenkreis und Umrichter werden von einer Steuerung 54 gesteuert, die ihrer­ seits von den Mikro-Computern (MC) 42 Signale erhält.
In Fig. 5 ist die Schaltung einer Induktionsspule 30 detail­ lierter dargestellt, wobei Steuerung, Umrichter 53 und Induk­ tionsspule 30 einer zweiten Kochstelle, die auch an den Zwischenkreis 52 angeschlossen ist, der Übersichtlichkeit halber nicht dargestellt ist. Wegen der Einzelheiten der Schaltung wird ausdrücklich auf Fig. 5 hingewiesen.
Jede Induktionsspule 30 liegt in einem Schwingkreis mit einer Halbbrücken-Schaltung, d. h. es sind zwei Zweige 55, 56 vorgesehen, in denen jeweils ein Kondensator 57, 58 und ein elektronischer Schalter 60, 61 liegt. Dabei kann es sich um IGBT-Bauelemente handeln, d. h. elektronische Halbleiter- Bauelemente, die mehrere Transistorfunktionen beinhalten und, von der Steuerung 62 angesteuert, außerordentlich schnell schalten können. Parallel zu diesen Leistungsschaltern 60, 61 ist je eine Freilaufdiode 63, 64 und ein Widerstand 65, 66 geschaltet. Diese Elemente bilden den als Schwingkreis ausge­ bildeten Umrichter 53, dem der Zwischenkreis 52 und die Gleichrichtung 51 vorgeschaltet ist. Eine Gleichrichterbrücke erzeugt eine pulsierende Gleichspannung, bei der also durch Gleichrichtung des Netz-Wechselstroms Sinus-Halbwellen der jeweils gleichen Polarität aneinandergereiht sind. Die Aus­ gänge der Gleichrichterbrücke 51 sind an die beiden Zweige 55, 56 gelegt. Im Zwischenkreis ist ein gemeinsamer Konden­ sator 67 zwischen den beiden Zweigen und ein von einem elek­ tronischen Schalter 69 geschalteter Widerstand 68 vorhanden. Bei dem Schalter 69 kann es sich um einen MOS-FET handeln, der im Zusammenwirken mit dem Widerstand vermeidet, daß beim Einschalten das Umrichters Knackgeräusche auftreten. Er entlädt den Zwischenkreis.
Im Ansteuerungsweg zu den Schaltern 60, 61 ist je eine An­ steuereinheit 80 vorgesehen, die eine galvanische Trennung zwischen dem Niederspannungsteil 54 und der Leistungsseite enthält, beispielsweise durch Optokoppler. Ferner werden darüber die Schalter mit der Steuerenergie versorgt. Diese wird über Versorgungseinheiten 81 zugeführt, die in den Zweigen der Widerstände 65, 66 liegen und die je eine Zener- Diode 82 und eine Diode 83 sowie einen Kondensator 84 ent­ hält. Die Zener-Diode begrenzt die Spannung auf die für die Schalter 60, 61 erforderliche Steuerspannung und Diode und Kondensator wirken als Gleichrichtung. Es wird dadurch ein einfaches "Netzgerät" für die Schalter-Ansteuer-Energie geschaffen, das seine Energie aus dem Widerstandszweig be­ zieht, d. h. aus einer ohnehin zur Verfügung stehenden Ener­ giequelle. Die Widerstände werden dadurch geringere Verlust­ energie erzeugen und trotzdem werden die übrigen Verhältnisse nicht beeinträchtigt, z. B. der Stromwert am Punkt 70.
Der dargestellte Schwingkreis im symmetrischen Schaltungs­ aufbau könnte auch durch einen mit unsymmetrischem Aufbau ersetzt werden, bei dem statt der beiden Schwingkreiskonden­ satoren 57, 58 nur einer vorgesehen ist. Der Schwingkreis nimmt dann nur halbseitig Energie aus dem Netz auf. Insbeson­ dere in Fällen, in denen es nicht auf die Einhaltung bestimm­ ter Funkentstörwerte ankommt, könnte dieser schaltungstech­ nisch einfachere Aufbau vorteilhaft sein.
An einem Abgreifpunkt 70 zwischen der Induktionsspule 30 und den Kondensatoren 57, 58 des Schwingkreises ist eine Schalt­ steuerung 71 für den Umrichter 53 angeschlossen, die ein Abtaste-Halteglied 72, einen Grenzwertspeicher 73, einen Komparator 74 und einen Ja/Nein-Speicher 75 enthält.
Diese Schaltsteuerung ist dazu vorgesehen, die Induktions­ beheizung sofort abzuschalten, wenn keine Leistungsabnahme erfolgt, beispielsweise wenn das Kochgefäß 13 von der Koch­ stelle entfernt ist und sie erst wieder einzuschalten, wenn ein Kochgefäß vorhanden ist. Dazu wird in relativ kurzen Zeitabständen eine Überprüfung vorgenommen, ob ein Abnehmer vorhanden ist. Dies geschieht durch eine Messung der Dämpfung der Induktionsspule 30.
Leistungssteuerung
Die Einschaltung des Schwingkreises erfolgt grundsätzlich im Nulldurchgang der Netzspannung, und zwar nach einem bestimm­ ten Schema, das vom Mikro-Computer 42 vorgegeben wird und im folgenden noch erläutert wird. Der Schwingkreis wird über die elektronischen Leistungsschalter 60, 61 gesteuert, und zwar von der Steuerung 62 aus. Vor jeder Halbwelle der erzeugten Hochfrequenz-Spannung, die in der Größenordnung von 25 kHz liegt, erfolgt im Nulldurchgang eine Umschaltung zwischen den Leistungsschaltern 60, 61. Es entsteht damit ein vollkommen freischwingender Umrichter bzw. Wechselrichter 53, der gerin­ ge Schaltverluste hat. Zur Leistungseinstellung bzw. -rege­ lung wird, wie noch erläutert wird, keine Phasenanschnitt- Steuerung verwendet, die in einer erzwungenen Schwingung resultieren würde. Die Frequenz ist nicht konstant und kann sich entsprechend der Sättigungseffekte durch Frequenzmodula­ tion einstellen. Dadurch ist keine Überdimensionierung der elektrischen Leistungsschalter 60, 61 notwendig und es folgt auch eine geringe Oberwellenerzeugung.
Die Leistungseinstellung erfolgt durch eine Schwingungspaket­ steuerung. Der Umrichter ist dabei im normalen Betrieb immer für eine volle Netzhalbwelle eingeschaltet. Grundlage der Leistungseinstellung ist, daß unterschiedliche Leistungsstu­ fen durch Einschaltmuster bestimmt sind, die aus einer Anein­ anderreihung bzw. Kombination gleicher oder auch unterschied­ licher, in sich symmetrischer Grundmuster von Wellenpaketen bestehen. Durch die vollständige Symmetrie wird eine Netz­ rückwirkung minimiert.
Die Fig. 8 und 9 zeigen ein Beispiel eines Musterbele­ gungsplans für eine solche Schwingungspaketsteuerung:
Ein Gesamt-Zeitintervall Z von 2,1 Sekunden Dauer ist in 35 Teilintervalle T von je 60 Millisekunden, d. h. sechs Netz- Halbwellen bei einer Frequenz von 50 Hz unterteilt. Es gibt insgesamt vier Grundmuster von Teilintervallen T, die in Fig. 8a) bis d) als Diagramme "Spannung über Zeit" dargestellt sind:
Fig. 8 a) zeigt ein Teilintervall T mit der Bezeichnung "*", in dem alle sechs Netzhalbwellen vorhanden sind. Es ist also ein "Volleistungs"-Intervall.
Fig. 8b) zeigt ein Teilintervall T mit der Bezeichnung "X", bei dem insgesamt vier Netzhalbwellen so verteilt sind, daß sich insgesamt eine symmetrische Verteilung ergibt. Gegenüber dem "Volleistungs"-Muster nach Fig. 8a) fehlt die dritte und sechste Netzhalbwelle (je eine positive und eine negative), so daß dieses Teilintervall "X" mit zwei Drittel Leistung belegt ist.
Fig. 8 c) enthält insgesamt nur zwei Netzhalbwellen, und zwar die erste als positive und die vierte als negative.
Auch hier ergibt sich eine symmetrische Aufteilung. Dieses Teilintervall T mit der Bezeichnung "Y" hat also einen Lei­ stungsanteil von einem Drittel.
Fig. 8d) zeigt die Nulleistung, d. h. während dieses Teil­ leistungsintervalles "0" wird keine Leistung freigegeben.
Fig. 9 zeigt nun die Belegungspläne unter Verwendung der insgesamt 35 Teilintervalle T, die zusammen das Zeitinter­ vall Z von 2,1 Sekunden Dauer bilden. Es sind dort lediglich beispielsweise verschiedene Leistungsstufen, beispielsweise entsprechend der Knebelstellung des Einstellknopfes 44, dargestellt, denen die unterschiedlichsten Kombinationen der Grundmuster entsprechend Fig. 8, jeweils hintereinanderge­ reiht, zugeordnet sind. Aus den dahinter angegebenen Prozent­ sätzen der Leistungsfreigabe ist zu erkennen, daß auf diese Weise die Leistungskennlinie bei einer leistungsgesteuerten Induktionskochstelle beliebig den Praxisforderungen angepaßt werden kann. So ist beispielsweise die Leistung in den unte­ ren Einstellstufen viel feiner regulierbar als in den oberen, was den Anforderungen der Praxis entspricht. Da jedes Grund­ muster "Y" nach Fig. 8c) nur weniger als einem Prozent Leistung innerhalb des Zeitraumes Z entspricht, kann die Leistung also prozentweise angepaßt werden. Es können dabei auch durchaus völlig unregelmäßige oder auch unstetige Ver­ läufe erzielt werden, wenn sich dies als zweckmäßig heraus­ stellt. Trotzdem ist jeweils eine Schaltung im Nulldurchgang der Spannung sichergestellt.
Fig. 8 zeigt positive und negative Netzhalbwellen, wie sie vor der Gleichrichtung vorliegen, um die Rückwirkungsfrei­ heit auf das Stromnetz zu demonstrieren. Im Schwingkreis liegen Netzhalbwellen in Form von gleichgerichtetem Wech­ selstrom vor.
In dem Zeitintervall Z, das beim erläuterten Beispiel 2,1 Sekunden beträgt, jedoch beliebig lang sein kann und in beliebig bemessene Teilintervalle T unterteilt sein kann, werden also die Grundmuster durch den Mikro-Computer ge­ steuert beliebig gemischt und erzeugen so eine netzseitig gleichstromfreie Steuerung bzw. Regelung in relativ kurzen, jedoch jeweils eine ganze Netzhalbwelle enthaltenen Impulsen. Die Einstellung kann über die Einstellelemente 43, wie in Fig. 9 dargestellt, rein leistungsabhängig sein, es können jedoch auch Regeleinflüsse von Temperaturfühlern o. dgl. mit auf den Mikro-Computer einwirken, so daß ein Regelkreis entsteht.
Der Start des Schwingkreises zur Erzeugung der die Induk­ tionsspule 30 speisenden Hochfrequenz beginnt also grund­ sätzlich im Nulldurchgang der Netzspannung und Amplitude wie Frequenz im Schwingkreis ändern sich mit dem Ansteigen und Abfallen von Strom und Spannung über die einzelnen Netzhalb­ wellen. Die Frequenz ist also am Beginn jeder Halbwelle größer und nimmt im Bereich von deren Maximum ab, weil der Umrichter frei schwingt. Ferner ändert sich die Frequenz nicht nur mit dem Strom, sondern auch mit dem Topfmaterial, weil beispielsweise durch magnetische Sättigung im Topfboden die Induktivität nicht konstant ist. Wenn die Induktivität der Gesamtanordnung kleiner wird, ergibt sich eine höhere Frequenz. Diese Anordnung hat auch Vorteile bezüglich der Funkentstörbarkeit, weil breitbandige Störer leichter zu entstören sind. Außerdem werden weniger Oberwellen erzeugt, weil Phasenanschnitt nicht nötig ist.
Topferkennung
Die anhand von Fig. 5 dargestellte Topferkennung, die auch einen Schutz der Umgebung gegen zu starke Induktionsfelder und einen Selbstschutz des Umrichters bewirkt, arbeitet wie folgt:
Wenn bei eingeschalteter Kochstelle das Kochgefäß von dieser entfernt wird, so steigt der Strom im Schwingkreis stark an, weil die Dämpfung abnimmt. Der Strom im Umrichter wird im Punkt 70 abgegriffen und von dem Abtast-Halteglied 72 detek­ tiert. Überschreitet er einen in dem Grenzwertspeicher 73 gespeicherten Grenzwert, so wird der Umrichter über die Steuerung 62 ausgeschaltet, indem die Leistungsschalter 60, 61 geschlossen bzw. nicht mehr geöffnet werden. Dies kann auch innerhalb einer Netzhalbwelle geschehen. Die im Schwing­ kreis dann vorhandene Energie wird über die Freilaufdioden 63, 64 in den Zwischenkreis 52 zurückgeleitet. Die Abschal­ tung arbeitet also in Abhängigkeit vom Strom im Schwingkreis außerordentlich schnell und verlustfrei.
Trotz eingeschalteter Kochstelle wird dann keine Leistung freigesetzt, bis wieder ein geeignetes Kochgefäß aufgesetzt wird. Diese Einschaltüberprüfung findet am Beginn jedes Zeitintervalls Z (im Beispiel 2,1 Sekunden) statt. Der Prüf­ vorgang läuft wie folgt ab:
In der Steuerung 62 gibt eine phasengesteuerte Schleifen­ schaltung (PLL "Phase Locked Loop") die Steuerungstaktfre­ quenz für die Leistungsschalter 60, 61 vor. Während des Betriebs des Schwingkreises stellt sie sich auf die Frequenz des Hauptschwingkreises ein und schaltet die Leistungsschal­ ter 60, 61 abwechselnd um. Im Leerlauf, d. h. während der Prüfphase gibt die Schleifenschaltung auf Anstoß durch den Mikro-Computer durch Schließen eines der beiden Leistungs­ schalter 60 oder 61 eine Halbschwingung frei. Vorher war über die Widerstände 65, 66 der Abgreifpunkt 70 auf eine bestimmte Spannung aufgeladen und damit eine gewisse Energie im Schwingkreis vorhanden. Bei der Einschaltung eines der Lei­ stungsschalter fließt demnach für eine Hochfrequenz-Halbwelle Strom. Das Abtast-Halteglied, z. B. ein Spitzenwert-Detektor, das auch einen Stromwandler enthält, um die tatsächlich fließenden Ströme in Meßströme umzuwandeln, mißt den Strom während dieses Anschwingens und speichert das Ergebnis. Es entspricht dem Wert imax in Fig. 10. In dem Schwingkreis klingt nun die Amplitude entsprechend dem Energieverbrauch durch die Dämpfung nach einer bestimmten Funktion (entspre­ chend einer e-Funktion) ab. Falls dieses Abklingen zu langsam vor sich geht, ist die Dämpfung zu niedrig und die Bedingun­ gen für eine Leistungseinschaltung sind nicht gegeben. Dies ist an Fig. 10 beispielsweise demonstriert, wo eine abklin­ gende Schwingung gezeigt ist und die Grenzwerte G1, G2, G3 und G4 beispielsweise die Werte angeben, die im Grenzwert­ speicher 73 gespeichert sein könnten. Werden sie überschrit­ ten, so bedeutet dies "keine ausreichende Dämpfung" und es wird ein Signal an den Mikro-Computer: "Keine Einschaltung" gegeben.
Die Topferkennung arbeitet also nach dem Prinzip der Dämp­ fungsmessung, wobei die Prüfung nur mit einer Hälfte des Umrichters arbeitet, so daß der Leistungsschwingkreis nicht anläuft, wozu eine wechselweise Einschaltung der beiden Leistungsschalter 60, 61 nötig wäre.
Beim Ausführungsbeispiel der Schaltung nach Fig. 4 und 5 findet der Prüfvorgang so statt, daß aus der ersten Schwingung beim Einschalten eines der Leistungstransistoren 60 oder 61 für einen sehr kurzen Zeitraum E von beispiels­ weise 20 Mikrosekunden (etwa eine Halbschwingung in Leer­ lauffrequenz) der Stromwert gemessen, durch das Abtast-Halte­ glied 72 festgehalten und daraus im Grenzwertspeicher 73 die nachfolgenden Grenzwerte, z. B. G1 bis G5 abgeleitet werden. Unter Steuerung durch den Mikro-Computer legt die Schleifen­ schaltung PLL danach Pausen P in gleicher Größenordnung ein und schaltet dann wiederum den Leistungstransistor ein. Aus dem Stromabfall in der nächsten Schwingung (siehe Fig. 11a) kann nun durch Vergleich mit den Grenzwerten, was über den Komparator 74 erfolgt, festgestellt werden, ob der Strom diese Grenzwerte (hier G2 und G3) überschritt. Das Ergebnis dieser Überprüfung wird im Speicher 75 zwischengespeichert.
Es erfolgt dann noch eine zweite Einschaltung, wo die Grenz­ werte G4 und G5 zum Vergleich herangezogen werden. Diese zweite Messung erfolgt sicherheitshalber, um eine Verfäl­ schung durch starke Frequenzabweichung, z. B. bei einem Aluminium- oder Kupfergegenstand statt eines Kochgefäßes Fehler zu vermeiden. Ergibt diese Messung ebenfalls kein Überschreiten der Grenzwerte, so ist die Dämpfung ausreichend und es erfolgt eine Leistungseinschaltung des Schwingkreises durch die Steuerung 62. Da die ganze Messung sich im Bereich von Mikrosekunden abspielte, klang die Energie im Schwing­ kreis ab, weil sie über den den Leistungsschaltern 60, 61 parallel geschalteten hochohmigen Spannungsteiler 65, 66 in dieser Zeit nicht ersetzt werden konnte. Bis zum nächsten Prüfzyklus am Beginn des nächsten Zeitintervalls Z (nach 2,1 Sekunden) ist jedoch der Schwingkreis über diesen Spannungs­ teiler wieder mit der entsprechenden Prüfspannung versorgt und eine erneute Prüfung kann beginnen, falls eine Über­ schreitung der Grenzwerte festgestellt und damit "zu wenig Dämpfung" detektiert wurde und der Schwingkreis nicht im Lei­ stungsbetrieb geschaltet wurde.
Die Prüfung kann mit einem sehr geringen Prüfstrom statt­ finden, beispielsweise mit einem Zehntel des Nennstroms bei Leistungsbetrieb. Da außerdem durch die sehr geringen Ein­ schaltzeiten von beispielsweise 20 Mikrosekunden innerhalb des Prüfzyklus von 2 Sekunden der Schwingkreis im Prüfbetrieb ca. nur 1/100 000stel der Gesamtzeit in Betrieb ist, beträgt die Gesamtleistungsfreigabe während der Prüfung nur einen völlig unbedeutenden Bruchteil der Gesamtleistung der Koch­ stelle und kann sowohl energetisch als auch von der Beein­ flussung der Umgebung her vernachlässigt werden. Es liegt beispielsweise bei einer Kochstelle von 2000 W in der Größenordnung von 1 bis 4 mW.
Durch diese Topferkennung mittels Überprüfung der möglichen Leistungsabnahme (Dämpfung) findet also eine sehr zuverlässi­ ge, kurzfristig zugreifende und prüfenergiearme Messung statt. Statt der Strommessung im Schwingkreis kann beispiels­ weise auch eine Spannungsmessung am Schwingkreiskondensator verwendet werden, um durch Messung des Abklingens der Span­ nungsamplitude einen Vergleich mit den aufgrund der Anfangs­ messung ermittelten Grenzwerten die Prüfung durchzuführen.
Die Prüfung arbeitet jedenfalls nur mit einer Hälfte des Umrichters, daher läuft der Leistungsschwingkreis während der Prüfphase nicht an. Ergeben bei den beiden aufeinander­ folgenden Messungen (zweite und dritte Einschaltung des PLL) die im Speicher 75 gespeicherten Werte beide "Dämpfungaus­ reichend" (Grenzwerte nicht überschritten), so wird in der Steuerung 72 unter Taktgabe der Schleifenschaltung PLL der Schwingkreis durch wechselseitiges Einschalten der Leistungs­ schalter 60, 61 mit vollem Strom in Gang gesetzt. Die Lei­ stungsfreigabe selbst erfolgt dann entsprechend dem anhand der Fig. 8 und 9 erläuterten Leistungsschema so lange, bis entweder die Kochstelle über das Einstellglied 43 ausgeschal­ tet wird oder durch Wegnahme des Topfes der Selbstschutz zu­ greift und die Leistung abgeschaltet wird, so daß sie wieder in die Prüfphase übergeht.

Claims (16)

1. Verfahren zum Betrieb einer induktiven Kochstellenbehei­ zung mit wenigstens einem Induktionserzeugungsmittel (14), das in einem Schwingkreis liegt, dadurch gekenn­ zeichnet, daß die leistungsbeaufschlagende Einschaltung des Schwingkreises in Abhängigkeit von einer Dämpfungs­ messung im Schwingkreis gesteuert wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß einer Leistungsbeaufschlagung eine Prüfphase vorgeschal­ tet wird, in der die Dämpfungsmessung vorgenommen wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß nach der Prüfphase eine leistungsbeaufschlagende Ein­ schaltung des Schwingkreises nur erfolgt, wenn die Dämpfungsmessung eine ausreichend große Dämpfung ermit­ telt hat.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß nach Einschaltung des Schwingkreises dieser auf Überschreitung eines Maximal­ wertes überwacht wird und in Abhängigkeit davon eine Abschaltung des Schwingkreises ausgelöst wird.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Dämpfungsmessung durch Messung von Stromwerten im Schwingkreis erfolgt.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Schwingkreis in einen ausklingenden, ggf. unterbrochenen Schwingungszustand versetzt wird und die Messung als Vergleichsmessung zwischen einem Anfangswert und einer oder vorzugsweise mehreren darauf folgenden Werten durchgeführt wird.
7. Verfahren nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, daß während der Prüfphase eine Ener­ giezufuhr zum Schwingkreis, vorzugsweise durch zeitlich verzögerte Zufuhr, gering gehalten wird.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Messungen während auf­ einanderfolgender Prüf-Zeitabschnitte (E) vorgenommen werden, in denen der Schwingkreis jeweils zu einer oder wenigen Schwingungen angeregt wird, wobei vorzugsweise die Prüf-Zeitabschnitte (E) Bruchteile einer Millisekun­ de, vorzugsweise zwischen 10 und 100 Mikrosekunden dauern, und einen zeitlichen Abstand (P) voneinander in der gleichen Größenordnung haben, und/oder die Prüfpha­ sen einen zeitlichen Abstand (Z) voneinander in der Größenordnung von Bruchteilen von Sekunden bis zu eini­ gen Sekunden haben.
9. Induktive Kochstellenbeheizung mit Induktionserzeugungs­ mitteln (14) in einem Schwingkreis und einer elektroni­ schen Steuerung (54) dafür, dadurch gekennzeichnet, daß die elektronische Steuerung (54) Schwingkreis-Steue­ rungsmittel (62) und Topferkennungsmittel (71) aufweist.
10. Kochstellenbeheizung nach Anspruch 9, dadurch gekenn­ zeichnet, daß die elektronische Steuerung (54) Abschalt­ mittel aufweist, die eine Abschaltung des Schwingkreises bei fehlender Leistungsabnahme bewirken.
11. Kochstellenbeheizung nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß die Topferkennungsmittel (71) eine Meßschaltung (72) für die Größe des im Schwingkreis fließenden Strom- oder Spannungswertes, einen Speicher (75) für Stromwertgrößen, Mittel zur Festlegung und Speicherung von Stromgrenzwerten (72, 73) in Abhängig­ keit von den gemessenen Stromwerten und einen Verglei­ cher (74) zur Feststellung einer Grenzwertüberschreitung enthält.
12. Kochstellenbeheizung nach Anspruch 11, dadurch gekenn­ zeichnet, daß die Meßschaltung in einen Halbbrücken- Schwingkreis mit je einem elektronischen Leistungsschal­ ter (60, 61) in beiden Schwingkreiszweigen (55, 56) eine Widerstandsbrücke (65, 66) enthält, die eine Energiezu­ fuhr zum Schwingkreis während einer Prüfphase auf eine unbedeutende Zunahme begrenzt.
13. Kochstellenbeheizung nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, daß die elektronische Steuerung (54) Schwingkreissteuerungsmittel enthält, die eine phasengesteuerte Schleifenschaltung (PLL) enthalten, die die elektronischen Leistungsschalter (60, 61) steuert und die vorzugsweise in einer Leerlauf-Steuerungstakt­ frequenz arbeitet, wenn der Schwingkreis nicht angeregt ist und nach dessen Anlaufen dessen Frequenz übernimmt.
14. Kochstellenbeheizung nach Anspruch 13, dadurch gekenn­ zeichnet, daß die Topferkennungsmittel (71) unter Steue­ rung durch die Leerlauf-Steuerungstaktfrequenz zur Schließung des elektronischen Leistungsschalters (60, 61) in einem der Zweige eines Halbbrücken-Schwingkreises für mehrere aufeinanderfolgende Prüfzeitabschnitte (E) ausgebildet ist.
15. Kochstellenbeheizung nach einem der Ansprüche 9 bis 14, dadurch gekennzeichnet, daß Topferkennungs- und ab­ schaltmittel (61) in einer gemeinsamen Schalteinrichtung enthalten sind und sie abhängig von der Tatsache, ob der Schwingkreis sich im Leistungsbetrieb befindet oder nicht, wechselseitig aktivierbar sind.
16. Kochstellenbeheizung nach einem der Ansprüche 5 bis 13, dadurch gekennzeichnet, daß die Leistungsschalter (60, 61) über je eine Ansteuereinheit (80) angesteuert wer­ den, die ggf. eine galvanische Trennung enthält und vorzugsweise über eine Versorgungseinheit (81) mit Steuerenergie versorgt wird, die aus einem Schaltungs­ teil abgezweigt wird, der dem Schwingkreis eine defi­ nierte Anfangsenergie zuführt, insbesondere dem die Widerstandsbrücke (65, 66) enthaltenden Schaltungsteil.
DE19924208249 1992-03-14 1992-03-14 Induktive kochstellenbeheizung und verfahren zu ihrem betrieb Withdrawn DE4208249A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE19924208249 DE4208249A1 (de) 1992-03-14 1992-03-14 Induktive kochstellenbeheizung und verfahren zu ihrem betrieb
EP19930103273 EP0561207A3 (en) 1992-03-14 1993-03-02 Operating method of an induction cooking hob

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19924208249 DE4208249A1 (de) 1992-03-14 1992-03-14 Induktive kochstellenbeheizung und verfahren zu ihrem betrieb

Publications (1)

Publication Number Publication Date
DE4208249A1 true DE4208249A1 (de) 1993-09-16

Family

ID=6454101

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19924208249 Withdrawn DE4208249A1 (de) 1992-03-14 1992-03-14 Induktive kochstellenbeheizung und verfahren zu ihrem betrieb

Country Status (2)

Country Link
EP (1) EP0561207A3 (de)
DE (1) DE4208249A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0658069A1 (de) * 1993-11-23 1995-06-14 Balay, S.A. Induktionserwärmungs-Kochgerät mit Vorrichtung zum Kühlen seiner Schaltungselemente
DE4444778A1 (de) * 1993-12-15 1995-06-22 Samsung Electronics Co Ltd Mikrowellenofen mit einer Induktionsheizfunktion sowie ein dazu geeignetes Steuerverfahren
EP0722261A1 (de) * 1995-01-10 1996-07-17 E.G.O. Elektro-Geräte Blanc und Fischer GmbH & Co. KG Kochherd mit Strahlungskochstelle und Induktionskochstelle
DE102007036334A1 (de) * 2007-08-02 2009-02-05 Electrolux Home Products Corporation N.V. Basiseinheit zum induktiven Aufheizen und Induktionsflüssigkeitserhitzungssystem
USRE42513E1 (en) 2003-01-30 2011-07-05 Hr Technology, Inc. RFID—controlled smart range and method of cooking and heating
EP2506671B1 (de) 2011-03-29 2017-09-13 BSH Hausgeräte GmbH Schaltungsvorrichtung

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29722103U1 (de) * 1997-12-16 1998-03-05 Schulte, Uwe, 51065 Köln Kochfeldanordnung
DE102005050035A1 (de) * 2005-10-14 2007-07-19 E.G.O. Elektro-Gerätebau GmbH Verfahren zur Topferkennung und Induktionsheizeinrichtung
KR100688016B1 (ko) * 2005-12-02 2007-02-27 엘지전자 주식회사 히터유닛을 구비한 전기조리기
ES2535245B1 (es) 2013-11-05 2016-02-16 Bsh Electrodomésticos España, S.A. Dispositivo de campo de cocción por inducción
JP6483399B2 (ja) 2014-10-23 2019-03-13 エイチピー プリンティング コリア カンパニー リミテッド 誘導加熱方式画像定着装置及び誘導加熱方式画像定着装置駆動プログラム
DE102019220199A1 (de) * 2019-12-19 2021-06-24 Robert Bosch Gesellschaft mit beschränkter Haftung Vorrichtung zum Versorgen eines mobilen Multischmelzgerätes mit Heizleistung und/oder zur Temperaturmessung
KR20210123045A (ko) 2020-04-02 2021-10-13 엘지전자 주식회사 공진형 전력 변환 장치의 구동 개시 시 커패시터를 방전시키는 방법 및 그 공진형 전력 변환 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013859A (en) * 1975-06-04 1977-03-22 Environment/One Corporation Induction cooking unit having cooking load sensing device and essentially zero stand-by power loss
SU1094162A2 (ru) * 1983-02-25 1984-05-23 Предприятие П/Я А-1067 Устройство дл регулировани мощности индукционной плиты
DE3601958C2 (de) * 1985-01-23 1989-01-12 Balay S.A., Zaragoza, Es
GB2207305A (en) * 1987-07-23 1989-01-25 Toshiba Kk Unsuitable-load detecting device for induction-heating cooking apparatus
SU1577081A2 (ru) * 1987-12-16 1990-07-07 Куйбышевский политехнический институт им.В.В.Куйбышева Устройство дл регулировани теплового режима методической индукционной установки

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2357141A1 (fr) * 1976-07-02 1978-01-27 Electricite De France Dispositif de chauffage par induction
US4438311A (en) * 1979-07-05 1984-03-20 Sanyo Electric Co., Ltd. Induction heating cooking apparatus
US4352000A (en) * 1979-08-10 1982-09-28 Sanyo Electric Co., Ltd. Induction heating cooking apparatus
US4686340A (en) * 1985-04-17 1987-08-11 Sanyo Electric Co., Ltd. Induction heating apparatus with unsuitable load detecting circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013859A (en) * 1975-06-04 1977-03-22 Environment/One Corporation Induction cooking unit having cooking load sensing device and essentially zero stand-by power loss
SU1094162A2 (ru) * 1983-02-25 1984-05-23 Предприятие П/Я А-1067 Устройство дл регулировани мощности индукционной плиты
DE3601958C2 (de) * 1985-01-23 1989-01-12 Balay S.A., Zaragoza, Es
GB2207305A (en) * 1987-07-23 1989-01-25 Toshiba Kk Unsuitable-load detecting device for induction-heating cooking apparatus
SU1577081A2 (ru) * 1987-12-16 1990-07-07 Куйбышевский политехнический институт им.В.В.Куйбышева Устройство дл регулировани теплового режима методической индукционной установки

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0658069A1 (de) * 1993-11-23 1995-06-14 Balay, S.A. Induktionserwärmungs-Kochgerät mit Vorrichtung zum Kühlen seiner Schaltungselemente
DE4444778A1 (de) * 1993-12-15 1995-06-22 Samsung Electronics Co Ltd Mikrowellenofen mit einer Induktionsheizfunktion sowie ein dazu geeignetes Steuerverfahren
DE4444778C2 (de) * 1993-12-15 2000-07-13 Samsung Electronics Co Ltd Mikrowellenofen mit einer Induktionsheizfunktion sowie ein dazu geeignetes Steuerverfahren
EP0722261A1 (de) * 1995-01-10 1996-07-17 E.G.O. Elektro-Geräte Blanc und Fischer GmbH & Co. KG Kochherd mit Strahlungskochstelle und Induktionskochstelle
USRE42513E1 (en) 2003-01-30 2011-07-05 Hr Technology, Inc. RFID—controlled smart range and method of cooking and heating
DE102007036334A1 (de) * 2007-08-02 2009-02-05 Electrolux Home Products Corporation N.V. Basiseinheit zum induktiven Aufheizen und Induktionsflüssigkeitserhitzungssystem
EP2506671B1 (de) 2011-03-29 2017-09-13 BSH Hausgeräte GmbH Schaltungsvorrichtung

Also Published As

Publication number Publication date
EP0561207A3 (en) 1993-10-13
EP0561207A2 (de) 1993-09-22

Similar Documents

Publication Publication Date Title
EP0561219B1 (de) Induktive Kochstellenbeheizung
EP0561208B1 (de) Induktive Kochstellenbeheizung
EP0561206B1 (de) Induktive Kochstellenbeheizung
DE3612707C2 (de)
DE4208249A1 (de) Induktive kochstellenbeheizung und verfahren zu ihrem betrieb
DE4022846C2 (de) Vorrichtung zur Leistungssteuerung und -begrenzung bei einer Heizfläche aus Glaskeramik oder einem vergleichbaren Material
DE2216255A1 (de) Vorrichtung bzw. schaltung zur induktiven heizung eines metallgegenstandes mittels einer spule
DE2231339A1 (de) Induktionsheizgeraet und schaltanordnungen dafuer
DE4022270C2 (de)
CA1053761A (en) Induction cooking apparatus
DE2605577A1 (de) Induktionserwaermungsvorrichtung
DE2230186A1 (de) Induktionskochgeraet
DE2837934C2 (de)
DE3601958A1 (de) Induktionsheizvorrichtung zum heizen der elektrischen platten eines kochers
DE3332990A1 (de) Elektromagnetische induktionsheizvorrichtung
DE2521941B2 (de) Induktions-heizvorrichtung
DE3917479A1 (de) Ausgangsleistungssteuerschaltung
DE2043688A1 (de) Kochgerat fur Speisen
DE112013007531T5 (de) Induktionswärmeherd
EP2670213B1 (de) Induktionsheizvorrichtung
EP2506673B1 (de) Induktionskochfeld
DE102017114951A1 (de) Verfahren zum Betrieb einer Kochstelle eines Induktionskochfelds mit einem Kochgeschirr
EP2692202B1 (de) Induktionsheizvorrichtung
DE19841759C2 (de) Elektromagnetisches Kochgerät
DE2559519C3 (de) Vorrichtung zur Überwachung der Belastung eines Induktionskochgerates

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8139 Disposal/non-payment of the annual fee