DE3038357A1 - Bildplattensystem mit verbesserter fehlercodierung - Google Patents

Bildplattensystem mit verbesserter fehlercodierung

Info

Publication number
DE3038357A1
DE3038357A1 DE19803038357 DE3038357A DE3038357A1 DE 3038357 A1 DE3038357 A1 DE 3038357A1 DE 19803038357 DE19803038357 DE 19803038357 DE 3038357 A DE3038357 A DE 3038357A DE 3038357 A1 DE3038357 A1 DE 3038357A1
Authority
DE
Germany
Prior art keywords
code
error
data word
information
word
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE19803038357
Other languages
English (en)
Inventor
Todd J. Indianapolis Ind. Christopher
Charles Benjamin Plainsboro N.J. Dieterich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/084,393 external-priority patent/US4308557A/en
Priority claimed from US06/084,396 external-priority patent/US4309721A/en
Application filed by RCA Corp filed Critical RCA Corp
Publication of DE3038357A1 publication Critical patent/DE3038357A1/de
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/91Television signal processing therefor
    • H04N5/92Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N5/9201Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving the multiplexing of an additional signal and the video signal
    • H04N5/9206Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving the multiplexing of an additional signal and the video signal the additional signal being a character code signal
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
    • G11B5/09Digital recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • G11B20/1806Pulse code modulation systems for audio signals
    • G11B20/1813Pulse code modulation systems for audio signals by adding special bits or symbols to the coded information
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/102Programmed access in sequence to addressed parts of tracks of operating record carriers
    • G11B27/105Programmed access in sequence to addressed parts of tracks of operating record carriers of operating discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/19Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier
    • G11B27/28Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording
    • G11B27/30Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording on the same track as the main recording
    • G11B27/3027Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording on the same track as the main recording used signal is digitally coded
    • G11B27/3036Time code signal
    • G11B27/3054Vertical Interval Time code [VITC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/82Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only
    • H04N9/8205Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only involving the multiplexing of an additional signal and the colour video signal
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/34Indicating arrangements 

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Error Detection And Correction (AREA)
  • Television Signal Processing For Recording (AREA)

Description

RCA 73862A
RCA Corporation, New York, N.Y. (V.St.A.)
Bildplattensystem mit verbesserter Fehlercodierung
Die Erfindung betrifft allgemein Bildplattenspielersysteme und insbesondere Fehlercodes, die in Bildplattensystemen benutzt werden, um Digitalinformation auf ein Videoaufzeichnungssignal zu codieren und zu decodieren.
Bei Bildplattensystemen können bestimmte Weiterentwicklungsmerkmale realisiert werden durch Aufzeichnung von Digitalinformation zusammen mit dem Videosignal. Beispiele solcher Weiterentwicklungsmerkmale umfassen ein automatisches Weiterspringen bei blockierten Rillen, die Anzeige der Programmspielzeit und die automatische Feststellung des Programmendes. In der US-Patentanmeldung U.S. Ser. No. 084,465 vom 12. Oktober 1979 (Vertr.Az: RCA 74436) mit dem Titel "Improved Digital On Video Recording And Playback System" von T. Christopher und C. Dieterich ist ein Bildplattensystem beschrieben, dessen Plattenspieler eine einfache und praktische Verbindungsstelle zwischen Video- und Digitalsignalen aufweist, um voraufgezeichnete Digitalinformation von dem Videosignal zu trennen, und dort ist auch beschrieben, wie eine solche Digitalinformation zur Realisierung der erwähnten Merkmale benutzt werden kann.
130017/0790
30 3 8 3 5
Das aufgezeichnete Digitalschcma umfaßt einen Startcode, einen Fehlercode und Informationsbits. Beim Abspielen tastet der Bildplattenspieler auf das Videosignal aufcodierte Digitaldaten ab, bis er einen Startcode feststellt. Nach der Feststellung des Startcodes werden der Fehlercode und die Informationsbits in geeignete Register eingetaktet. In einem sequentiellen Verfahren werden der Fehlercode und die Informationsbits decodiert, um festzustellen, ob ein Fehler vorliegt. Der Decodierprozeß führt zu einem vorherbestimmten Ergebnis (das hier nachfolgend als Rest bezeichnet wird), wenn kein Fehler festgestellt wird.
Bei einem bekannten System zur Decodierung digitaler Daten auf einem Bildplattenmedium enthält das Digitalschema ein Startbit, dem Informationsbits folgen, welchen wiederum ein Gruppenfehlercode folgt. Die Informationsbits enthalten eine Rillenidentifizierungsnummer zur Anzeige der Position des Abtaststiftes auf der Bildplatte. Eine vollständige Digitalnachricht wird auf das Videosignal während einer Zeile des Vertikalaustastintervalls aufcodiert.
Für die Decodierung so aufgezeichneter Digitaldaten im Plattenspieler wird bei dem bekannten System die die Daten enthaltende Zeile im Vertikalaustastintervall auf eine Decodierschaltung geschaltet. Nach dem Abfühlen des Startbits taktet der Decodierer jedes aufeinanderfolgende Bit in ein Datenregister und prüft den empfangenen Gruppenfehlercode auf etwa vorhandene empfangene Fehler. Ein Gruppenfehlercode führt nach der Decodierung zu einem speziellen Fehlerprüfungsergebnis (welches nachfolgend als Rest bezeichnet wird), das gleich Null ist, wenn es im Decoder mit Null beginnt, vorausgesetzt, daß keine Fehler festgestellt werden.
Das oben beschriebene Datensystem kann durch verschiedene störungsbedingte Fehler beeinträchtigt werden. Solche Fehler sind unter anderem Bildpositionsfehler, bei denen die empfangene Nachricht um ein oder mehrere Bit aus ihrer richtigen Position verschoben ist, und Fehlercodefehler, bei denen die Fehlercodeprü-
130017/079Q
fung beim Vorhandensein störungsbedingter Fehler eine Gültigkeit anzeigt. Es ist wichtig, daß die vom Plattenspieler gelesenen Digitaldaten im wesentlichen keine unentdeckten Fehler enthalten. Die durch Störungen (Rauschen) verursachten Fehler können ebenso wie andere Nachteile des oben beschriebenen Datensystems verringert werden bei Anwendung der hier beschriebenen verbesserten Digitaldatencodier/Decodieranordnung.
Die Anordnung zur Codierung von Digitaldaten umfaßt gemäß der Erfindung die Erzeugung eines Startcodes zu Beginn jeder Digitalnachricht und eines begleitenden Cosetfehlercodes sowie von Informationsbits. Vorzugsweise folgen der Fehlercode sowie die Informationsbits nacheinander dem Startcode. Die Anordnung der Informationsbits am Ende der Nachricht ist vorteilhaft, weil sie einen einfacheren Decoder im Bildplattenspieler ermöglicht. Als Startcode kann eine Barker-Folge erzeugt werden zur Verbesserung der Eigensynchronisierung und Verringerung von Bildpositionsfehlern.
Ein Cosetfehlercode ist ähnlich einem Gruppenfehlercode mit Ausnahme, daß entweder der Rest nach der Decodierung oder der Anfangsinhalt des Restregisters vor der Decodierung, oder beide, von Null verschieden sind. Mit anderen Worten vermeidet man durch die Verwendung eines Cosetcodes den Fall, wo alle Nullen als gültige fehlerfreie Nachricht erscheinen.
Die Verwendung eines Fehlercodes mit von Null verschiedenem Rest gemäß der Erfindung führt zu einer niedrigeren Rate unentdeckter Fehler, als es der Fall bei einem Gruppencode mit einem Nullrest wäre. Dies ist auf die besonderen Eigenschaften eines Videosignals und die Art zurückzuführen, in welcher die Digitalinformation auf dieses aufgeschrieben wird.Der Decoder sucht eine Digitalnachricht während des Vertikalaustastintervalls, wo die übertragenen Zeilen den Schwarzwert aufweisen (logische Null). Während dieser Zeit ist das Auftreten logischer Nullen wahrscheinlicher als das Auftreten logischer Einsen. Berücksichtigt man, daß der Rest von Null Null ist (nach der Decodierung), ist es daher wahrscheinlicher, daß Störungen zu einem Rest von Null führen als zu irgend-
130017/0780
einem anderen, von Null verschiedenen Rest. Wenn beispielsweise im vorbeschriebenen System eine Störimpulsfolge (noise burst) auftritt, die gleich dem Startcode ist, und ein Schwarzpegel nachfolgt (lauter Nullen), dann ergäbe sich ein Rest von Null. Bei dem hier beschriebenen Datensystem, wo der Decodierprozeß mit einer von Null verschiedenen Zahl beginnt und/oder mit einer von Null verschiedenen Zahl endet, treten solche Fehler nicht auf.
Für die Decodierung einer Digitalnachricht gemäß dem oben erwähnten Schema stehen verschiedene gerätetechnische Ausführungen zur Verfügung. Minimalerfordernisse umfassen einen Datenspeicher zum Speichern der empfangenen Daten, eine Fehlercodeprüfeinrichtung mit einem Fehlercodeprüfregister zur Berechnung eines Restes, einem Detektor für den Startcode, einem Detektor für einen gültigen Rest, und eine Steuerschaltung zum Steuern der gesamten Aufeinanderfolge des Decodierprozesses. Die Erfindung ist ebenfalls auf die Vereinfachung und Reduzierung der für die Decodierung der Digitalnachricht erforderlichen Geräte gerichtet.
Gemäß einem Merkmal der Erfindung ist ein Aufzeichnungsgerät vorgesehen, welches einen Fehlercode derart aufzeichnet, daß zumindest ein Teil des aufgezeichneten Digitaldatenwortes ein Fehlerprüfungsergebnis liefert, welches gleich dem Startcode ist. Gemäß einem weiteren Merkmal der Erfindung ist ein Decodierer für die Wiedergabe vorgesehen, welcher anzeigt, daß ein empfangenes Digitaldatenwort gültig ist, wenn zumindest ein Teil des empfangenen Datenwortes zu einem Fehlerprüfergebnis führt, welches gleich dem Startcode ist.
Bei einer Ausführungsform der Erfindung ist der Fehlercode so gewählt, daß 1) der Rest nach Decodierung einer gültigen Nachricht gleich dem Startcode ist und 2) ein solcher Rest über die gesamte Nachricht einschließlich des Startcodes berechnet wird. Das Fehlercodeprüfregister beginnt daher mit dem Startcode, und wenn nach dem Empfang der vollen Nachricht keine Fehler festgestellt werden, steht am Ende im Register ebenfalls der Startcode.
130017/0790
2038357
Im Betrieb werden aufeinanderfolgende Datenbits in das Fehlercodeprüfregister eingetaktet, bis ein Startcode festgestellt wird, Danach braucht das Fehlercodeprüfregister nicht gelöscht zu werden, sondern beginnt einfach mit der Berechnung des Restes, wobei es mit dem Startcode anfängt. Nachdem die vollständige Nachricht empfangen ist, wird dieselbe Einrichtung zur Feststellung des Startcodes nun zur Feststellung eines gültigen Restes benutzt. Die beim Bildplattenaufzeichnungsgerät benutzte Codiereinrichtung ist so ausgebildet, daß sie zu dem hier beschriebenen Bildplattenspielerdecoder paßt, ohne daß der gerätetechnische Aufwand sich wesentlich erhöht.
130017/0790
303835?
In den beiliegenden Zeichnungen zeigen:
Fig. 1 eine graphische Darstellung eines Fernsehsignals mit dem Vertikalaustastintervall zwischen ungeraden und geraden Halbbildern;
Fig. 2 eine graphische Darstellung des Digitaldatenschemas, wie es bei dem offenbarten Aufzeichnungsverfahren benutzt ist; Fig. 3 ein Blockschaltbild eines Bildplattencodierers; Fig. 4 ein Blockschaltbild eines Bildplattenspielers;
Fig. 5 ein Blockschaltbild, welches den Digitaldatengenerator des Bildplattencodierers gemäß Fig. 3 in mehr Einzelheiten zeigt;
Fig. 6 ein Blockschaltbild, welches mehr Einzelheiten des Informationspuffers für den Bildplattenspieler gemäß Fig. 4 zeigt;
Fig. 7 ein Schaltbild einer Einrichtung zur Erzeugung eines FehTerprüfcodes von den Informationsbits für den Bildplattencodierer gemäß Fig. 5;
Fig. 8 ein teilweise in Blockdarstellung ausgeführtes Schaltbild des Informationspuffers für den Bildplattenspieler gemäß Fig. 4;
Fig. 9 eine Ausführungsform eines Empfangssteuerzählers für den in Fig. 8 gezeigten Informationspuffer;
Fig. 10 ein Zustandsübergangsdiagramm für die Mikroprozessor-Steuerschaltung gemäß Fig. 4 und
Fig. 11 ein Flußdiagramm zur Veranschaulichung eines Programmalgorithmus für die Mikroprozessor-Steuerschaltung gemäß Fig. 4.
1 30017/0790
038357
Signal schema
Fig. 1 zeigt besondere Einzelheiten eines NTSC-Fernsehsignals im Schema gemäß der verdeckten Farbträgertechnik, wie sie in der US-PS 3 872 498 von D. Pritchard mit dem Titel "Color information translating systems" beschrieben ist. Die miteinander verschachtelten ungraden und geraden Halbbilder sind durch ein Vertikalaustastintervall voneinander getrennt. Der Fernsehfachmann erkennt leicht das übliche Vertikalaustastintervall, das ein erstes Austastimpulsintervall, ein Vertikalsynchronisierintervall und ein zweites Ausgleichsimpulsintervall, dem eine Anzahl von Horizontalzeilenintervallen zum Beginn jedes neuen Halbbildes folgen, enthält. Wie Fig. 1 zeigt, beginnt die Videosignal information in der Zeile 22' des Halbbildes 1 und in der Zeile 284' des Halbbildes 2.
Die der Halbbildnummer entsprechende Digital information erscheint in der Zeile 17' des Halbbildes 1 und in der Zeile 280' des Halbbildes 2. Digitalinformation könnte genauso gut in andere Zeilen des Vertikalaustastintervalls eingefügt werden. Um Einzelheiten des Digitalsignalschemas zu zeigen, ist in Fig. 2 der Zeitmaßstab während der Daten enthaltenen Horizontalzeile (Zeile 17' oder Zeile 280') gedehnt.
Daten werden als Leuchtdichtepegel dargestellt: 100 IRE-Einheiten bedeuten eine logische EINS und 0 IRE-Einheiten (Austastpegel) eine logische NULL. Das erste Datenbit folgt dem üblichen Horizontalsynchronimpuls 140 und dem Farbsynchronsignal 142. Die Frequenz des Farbsynchronsignals 142 beträgt etwa 1,53 MHz, also die Frequenz des verdeckten Farbträgers. Jedes Datenbit wird synchron mit dem verdeckten Farbträgersignal von 1,53 MHz übertragen. Wie Fig. 2 zeigt, umfaßt jede Digitalnachricht einen 13-Bit-Startcode, der mit B(x) bezeichnet ist, einen 13-Bit-Redundanz-Fehlerprüfcode, der mit C(x) bezeichnet ist, und 51 Informationsbit, die mit I(x) bezeichnet sind. Der Beginn der nächsten Horizontalzeile ist gekennzeichnet durch den nächsten Horizontalzeilensynchronimpuls 140a und das Farbsynchronsignal 142a. Somit sind die einzelnen Datenbits synchron mit dem Farbträger und die gesamte
130017/0790
digitale Nachricht ist synchron mit dem Vertikalsynchronimpuls. Die Datenfrequenz kann ein Vielfaches oder ein (ganzzahliger) Bruchteil einer geeigneten Farbträgerfrequenz sein. Natürlich können auch andere Leuchtdichtewerte den Logikwerten EINS und NULL zugeordnet werden, oder ein gegebener Leuchtdichtepegel kann durch mehr als ein Bit bezeichnet werden.
Bei dem hier beschriebenen System wird zur Synchronisierung des Datensystems mit der Digitalnachricht ein Startcode benutzt, und damit vermeidet man die Notwendigkeit, die Flanke des Horizontal- oder Vertikalsynchronimpulses feststellen zu müssen. Synchronisierfehler bei einem seriell arbeitenden Digital datensystem führen zu (Voll-)Bildfehlern, wo also die empfangenen Daten um ein oder mehr Bits aus ihrer richtigen Lage verschoben sind. Bisher bekannte Systeme zur Aufzeichnung von Digitaldaten in einer für Bildplatten codierten Form haben gezeigt, daß die Flanken der Synchronimpulse als Zeitbezug nicht zuverlässig sind und zu Fehlern des Vollbildes führen. Startcodes haben sich als zuverlässiger erwiesen.
Der speziell gewählte Startcode 1111100110101 ist einer der in der Radar- und Sonartechnik bekannten Barker-Codes, wie sie beispielsweise in dem Buch "Group Synchronization of Binary Digital Systems" von R. H. Barker, 1953 bei Academic Press, New York, beschrieben sind. Barker-Codes sind so gewählt, daß die Autokorrelationsfunktion eines einen Barker-Code enthaltenden und gegenüber sich selbst verschobenen Signals bei Koinzidenz maximal, andernfalls dagegen minimal ist. Das bedeutet, daß bei Zuordnung eines Wertes von +1 oder -1 zu jedem Bit im Startcode und Berechnung der Summe der jeweiligen Bitprodukte für jede Verschiebungsposition des Startcodes gegenüber sich selbst eine solche Autokorrelationsfunktion ein scharfes Maximum im Koinzidenzfalle ergibt. Insbesondere ergibt ein Barker-Code bei Verschiebung um irgendeine ungerade Anzahl von Stellen gegenüber sich selbst eine Autokorrelation von 0. Eine Verschiebung eines Barker-Codes um irgendeine gerade Anzahl von Stellen gegenüber sich selbst ergibt eine Autokorrelation von -1. Wenn jedoch Koinzidenz herrscht, ergibt die Autokorrelation den Wert N, wobei N die Anzahl von Bits im Barker-Code ist. Wenn also mit anderen Worten
130017/0790
ein Barker-Code um irgendeine Anzahl von Stellen gegenüber sich selbst verschoben wird, dann unterscheidet er sich um eine maximale Anzahl von Bitpositionen. Beim Vorhandensein von Rauschen verringert diese Eigenschaft die Wahrscheinlichkeit einer fehlerhaften Startcodeermittlung im Vergleich zu einem willkürlich gewählten Startcode.
Die Informationsbits I(x) enthalten eine Halbbildnummer, eine Bandnummer und einen Raum für Informationsbits für spätere Erweiterung. Die Halbbildnummern kennzeichnen jedes Halbbild des Videosignals durch eine individuelle 18-Bit-Binärzahl. Am Beginn der Bildplatte ist das erste Halbbild des Videoprogramms das Halbbild "null". Danach wird jedes Halbbild aufeinanderfolgend in ansteigendem Sinne numeriert. Die Bandnummern beziehen sich auf das aufgezeichnete Videosignal in einer Gruppe benachbarter Windungen der Spiral rille, die eine bandförmige Gestalt bilden. Das gesamte Material in einem solchen Rillenband wird durch eine gemeinsame Baridnummer identifiziert. Als ein Beispiel für die Bandnummernanwendung sei erwähnt, daß das Videosignal, nachdem das Ende des Videoprogrammaterials aufgezeichnet ist, die Bandnummer "dreiundsechzig" hat. Der Bildplattenspieler fühlt das Band dreiundsechzig als Ende des Programms und reagiert darauf durch Abheben des Abtasters von der Platte.
Der Fehl erprüfcode C(x) wird aus I(x) im Bildplattenaufzeichnungsgerät berechnet. Zu diesem Zweck wird I(x) mit einer Konstante H(x) multipliziert. Das erhaltene Produkt wird durch eine andere Konstante g(x) dividiert, und nach dieser Division wird der Rest (der Quotient wird nicht benutzt) zu einer dritten Konstanten M(x) addiert und man erhält C(x).
Im Bildplattenspieler wird die abgenommene Information auf Fehler geprüft, in dem man die gesamte Information einschließlich des Startcodes durch die erwähnte Konstante g(x) dividiert. Wenn der Rest gleich dem Startcode B(x) ist, dann wird die Information als fehlerfrei angesehen. Die Konstanten H(x) und M(x) werden so gewählt, daß der Rest der gesamten Information den Startcode ergibt. Die Konstante g(x), die sowohl bei der Bildplattenaufzeichnungsapparatur wie auch beim Bildplattenspieler benutzt wird, wird als das Generatorpolynom des Codes bezeichnet. Es wird ein spezifischer Wert g(x)
1 3001 7/0790
gewählt, der zu einem Code führt, mit Hilfe dessen sich Fehler feststellen lassen, was besonders vorteilhaft bei Verwendung bei einem Bildplattenmedium ist. In dem hier beschriebenen System werden die oben angeführten Addition-, Multiplikations- und Divisionsvorgänge entsprechend speziellen Regeln durchgeführt, die auf die Geräte zugeschnitten sind, mit denen sie ausgeführt werden sollen. Die Fehlercodierung wird in. größeren Einzelheiten später noch im Zusammenhang mit den Geräten für Codierung und Decodierung erläutert werden.
Ein Blockschaltbild eines Videoplattencodierers ist in Fig. 3 gezeigt. Ein Bildsignalgemisch von einer Quelle 30 v/ird in einer Addierschaltung 36 mit einem von einem Digitaldatengenerator 38 über eine Leitung 37 zugeführten, Digitaldaten darstellenden Bitstrom linear kombiniert. Eine Synchronisierschaltung 32 liefert einen Farbträger und Synchronisierimpulse, so daß die von dem Digitaldatengenerator 38 erzeugten Datenbits synchron mit dem am Anschluß 31a vorhandenen Farbträger sind und die Digital information in der richtigen Horizontalzeile des Vertikalaustastintervalls codiert wird. Auf der Datenleitung 39 auftretende und die Halbbildnummer sowie die Bandnummer darstellende Informationsdaten werden von einer Einrichtung 34 geliefert. Die Verwendung der Information über die Halbbildnummer und die Bandnummer wird im Zusammenhang mit dem Mikroprozessorprogramm (Fig. 10 und 11) erläutert werden. Die Digitaldaten und das Videosignal werden in der Addierschaltung 36 miteinander kombiniert. Eine weitere Signal verarbeitungsschaltung 40 bereitet das zusammengesetzte Videosignal für das Aufzeichnungsmedium vor: Dieses zusammengesetzte Bildsignal ist vom Typ mit verdecktem Farbträger und wird unter Benutzung von Frequenzmodulationstechniken aufgezeichnet.
Bei dem Bildplattenspieler gemäß Fig. 4 wird das Frequenzmodulationssignal mit Hilfe einer einen Abnehmerwandler und einen Abtaststift enthaltenden Abtasteinrichtung 20 abgetastet und mittels einer Videosignalverarbeitungsschaltung 18 in ein normgerechtes Fernsehsignal zur Wiedergabe mit einem üblichen Fernsehempfänger umgewandelt. Die Videosignalverarbeitungsschaltung 18 enthält eine Schaltung, die unter Steuerung durch das Farbsynchronsignal
130017/0790
einen 1,53 MHz-Oszillator mit dem Farbträger phasensynchronisiert. Der Farboszillator wird zusätzlich zu seiner üblichen Verwendung für die Demodulierung der verdeckten Farbträgerschwingung zur Lieferung eines digitalen Taktsignals herangezogen, das auf der Leitung 72 erscheint. Die Videosignalverarbeitungsschaltung 18 enthält ferner Einrichtungen zur Demodulierung des Videoträgers und Kammfilterung des demodulierten Videosignals. Ein Kammfilter 19 subtrahiert zwei aufeinanderfolgende Halbbildzeilen, und das Subtraktionsergebnis erscheint auf der Leitung 70 als verarbeitetes Videosignal. Da die Zeile 16', in welcher der Schwarzpegel herrscht, von der Zeile 17' subtrahiert wird, die mit Digitaldaten moduliert ist, sind die verarbeiteten Videosignale auf der Leitung 70 die wiedergewonnenen Digitaldaten. Natürlich kann die Zeile 16' irgendeinen konstanten Leuchtdichtepegel beinhalten. Wenn die der Datenzeile 17' nachfolgende Zeile 18' eine Zeile konstanter Leuchtdichte (einschließlich schwarz) ist, dann stellt das folgende Ausgangssignal des Kammfilters während der Zeile 18' wiederum wiedergewonnene Digitaldaten, jedoch invertiert, dar. Durch Subtraktion einer Zeile von einer benachbarten Zeile konstanter Leuchtdichte wird das wiedergewonnene Digitalsignal auf sich selbst bezogen, und Datenfehler infolge von Verschiebungen des Gleichspannungspegels im Videosignal werden eliminiert. Wenn es erwünscht ist, Daten in aufeinanderfolgenden Zeilen unterzubringen anstatt Daten neben Zeilen konstanter Leuchtdichte zu haben, dann wären Einrichtungen erforderlich, welche das Videosignal auf einen vorbestimmten Leuchtdichtepegel oder einen Gleichspannungsbezugspegel beziehen, damit sich der Digitaldatenfluß von dem Videosignal trennen läßt.
Aus Fig. 4 kann man sehen, daß der Informationspuffer 16 bei Zuführung des verarbeiteten Videosignals auf der Leitung 70 und des 1,53 MHz-Taktsignals auf der Leitung 72 Digitaldaten aus dem Videosignal extrahiert. Der Puffer wird gesteuert durch ein vom Mikroprozessor 10 über die Leitung 71 zugeführtes digitales Binärsteuersignal. Ein Binärzustand des Steuersignals auf der Leitung 71 läßt den Informationspuffer 16 Daten aufnehmen. Beim anderen Binärzustand konditioniert das Steuersignal auf der Leitung 71 den Informationspuffer 16 für die übertragung der empfangenen Daten zum Mikroprozessor 10. Wenn das Steuersignal auf der Leitung 71 einen hohen Pegel hat, dann öffnet sich der Informationspuffer 16 für die Abfühlung ankommender Daten auf der das verarbeitete Videosignal führenden Leitung 70 unter Verwendung
130017/0790
038357
des 1,53 MHz-Signals auf der Leitung 72 als Taktsignal. Nach Aufnahme einer vollständigen Information oder Nachricht liefert das Zustandssignal auf der Leitung 75 eine Anzeige darüber, daß die Information vollständig ist. Zur übertragung der Information zum Mikroprozessorspeicher wird das Steuersignal auf der Leitung 71 auf einen niedrigen Pegel gebracht. Dadurch wird der Informationspuffer 16 gesperrt und die internen Steuerschaltungen zurückgesetzt, und die Ergebnisse der Informationsfehlercodeprüfung auf die Zustandsleitung 75 geschaltet. Wenn das Zustandssignal anzeigt, daß die Information gültig ist (wenn also die Fehlercodeprüfung eine Gültigkeit ergibt), dann wird der Mikroprozessor 10 für die übertragung von Daten im Informationspuffer 16 zum Mikroprozessor 10 programmiert. Der Mikroprozessor liefert ein externes Taktsignal auf der Leitung 73 für den Datentransfer vom Informations puffer 16. Bei jedem Taktimpuls wird ein Bit der Daten auf der Leitung 74 aus den Informationspuffer heraus-und in den Mikroprozessor 10 hineingeschoben. Wenn sämtliche Daten in den Mikroprozessor 10 überführt sind, dann ist das Programm fertig für eine weitere digitale Information bzw. Nachricht, auf der Steuerleitung 71 erscheint wieder ein hoher Pegel und oer Vorgang wiederholt sich.
Der Mikroprozessor 10 steuert über den Informationspuffer 16 die Austastung der Zeile 17' (oder Zeile 280') aus dem Videosignal. Die erste digitale Information wird erhalten durch ständiges Absuchen des Videosignals nach einem Startcode. Danach wird der Informationspuffer 16 gesperrt. Dann wird der Informationspuffer, gesteuert durch das zeitliche Auftreten der ersten digitalen Nachricht, für etwa sechs Zeilen geöffnet, ehe die nächste digitale Nachricht erwartet wird. Wenn keine gültige Nachricht gefunden wird, dann wird der Informationspuffer 16 etwa sechs Zeilen nach dieser erwarteten Zeit des Auftretens gesperrt. Wird dagegen eine gültige Digitalnachricht gefunden, dann wird der Informationspuffer 16 gesperrt, und aufgrund des Zeitpunkts des Auftretens der derzeitigen Digitalnachricht wird die neue Zeit für das Auftreten der nächsten Digitalnachricht errechnet. Auf diese Weise öffnet der Mikroprozessor 10 ein Tor oder Datenfenster von etwa zwölf Zeilen Breite, welches zentrisch um die erwarteten Daten herum liegt.
1 30017/0790
Das Zeitintervall von der Mitte des einen Datenfensters zum nächsten ist etwa das Zeitintervall eines Videohalbbildes. Die Breite des Datenfensters wird so gewählt, daß für den Fall der ungünstigsten zeitlichen Verhältnisse die erwarteten Daten in das Datenfenster fallen. Quellen von Zeitfehlern, wie sie noch erläutert werden, sind: Das begrenzte Auflösungsvermögen des Digitalzeitgebers, die Driftrate des Zeitgebers, Programmunsicherheiten bei der Bestimmung des Zeitpunkts des Auftretens der derzeitigen Daten, Zeitdifferenzen zwischen ungraden und geraden verschachtelten Halbbildern. Anpassungen für die Verwendung anderer Mikroprozessoren und/oder Zeitgeber können durchgeführt werden durch entsprechende Justierung der Breite des Datenfensters. Das Mikroprozessorprogramm, welches die Logik für das Suchen von Daten und die Zentrierung des Datenfensters steuert, wird anschließend im Zusammenhang mit den Fig. 10 und 11 beschrieben.
Der Mikroprozessor 10 reagiert auch auf die Einsteller 14 am Bedienungsfeld des Plattenspielers (Auflegen, Pause und Abtasten) zur Betätigung des Spielermechanismus 12 und Ansteuerung des Anzeigefeldes 22 des Spielers entsprechend einem vorbestimmten Programm, wie ebenfalls noch erörtert werden wird. Der Spielermechanismus ist weiterhin mit mindestens einer Verschiebeeinrichtung für den Abtaststift versehen, die durch den Mikroprozessor 10 betätigt wird. Eine solche Verschiebebeeinrichtung arbeitet piezoelektrisch, elektromagnetisch oder in anderer Weise und versetzt den Signalabnehmer in benachbarte Rillen oder Signalspuren der Bildplatte. Die Verwendung einer solchen Verschiebe- oder Umspringeinrichtung für das Verlassen blockierter Rillen wird anschließend ebenfalls in Verbindung mit den in den Fig. 10 und 11 gezeigten Flußdiagrammen beschrieben.
Fehlercode
Wie bereits gesagt wurde, benutzt ein Bildplattenaufzeichnungsgerät die Informationsbits I(x) zur Berechnung von C(x). Wegen der großen Anzahl von Potentialkombinationen - I(x) und C(x) sind zusammen 64 Bits lang - und wegen des Wunsches die Fehlerfeststellungs- und Korrektureigenschaften eines gegebenen Codes ohne Zuhilfenahme einer Aufzählung zu bestimmen, werden
1 3001 7/0790
Fehlercodes mathematisch behandelt. Eine generelle mathematische Entwicklung der Ringtheorie und Galois'scher Felder GF(2m), die generell für Fehlercodes anwendbar sind, findet sich in der Veröffentlichung "Error Correcting Codes" von W. Wesley Peterson in der MIT Press, Cambridge, Mass. Für die hier vorliegenden Zwecke läßt sich die Fehlercodierung in der Bildplatte am besten anhand einiger einfacher Definitionen verstehen.
Eine digitale Nachricht, die EINSen und NULLen enthält, kann betrachtet werden als Darstellung eines algebraischen Polynoms, welches Potenzen von χ enthält. Die Koeffizienten der jeweiligen Potenzen von χ sind die einzelnen Bits der Nachricht. Beispielsweise kann die 4-Bit-Nachricht 1011 dargestellt werden durch das Polynom P(x) der Form P(x) = 1·χ3+0·χ2+1·χ+1·χ°
3
= x +x+1.
Wendet man diesen Ausdruck auf den Startcode 1111100110101 an, dann ergibt sich
B(x)=x12 +x1VV+x8 +x5 +x4 +x2 + 1.
Die höchste Potenz von χ wird der Grad des Polynoms genannt. Im obigen Beispiel ist B(x) ein Polynom zwölften Grades.
Polynome können addiert, subtrahiert, multipliziert und dividiert werden nach den üblichen Regeln der Algebra, außer daß Koeffizienten in Modulo-2-Ausdrücken geschrieben werden können. Eine Kurzschreibweise für den Rest eines Polynoms nach Division durch ein anderes Polynom wird durch Klammern angegeben. Wenn
P(x) _ n{v) . r(x)
und der Rest r(x) einen Grad niedriger als der Divisor g(x) ist, dann ist [P(X)] = r(x).
130017/0790
Bei der Bildplattenaufzeichnungsvorrichtung wird die gesamte auf der Bildplatte aufgezeichnete Nachricht oder Information ausgedrückt durch ein Poly nom T(x). Aus Fig. 2 ergibt sich
T(x) = B(x)x64+C(x)x51+I(x). (1)
Der Term χ verschiebt B(x) um 64 Bits, weil B(x) am Anfang des Daten-Schemas liegt. Entsprechend verschiebt der Term χ C(x) um 51 Bits, um darzustellen, daß C(x) vor I(x) aufgezeichnet ist. Gemäß der beschriebenen Anlage berechnet die Aufzeichnungseinrichtung einen Wert für C(x) so, daß die gesamte Nachricht T(x) einen Rest gleich B(x) ist,nachdem sie durch g(x) geteilt ist. Nimmt man C(x) von der Form an
C(x) = [Kx)-H(x)] + M(x), (2)
dann sind H(x) und M(x) konstante Polynome, die so gewählt sind, daß
Es läßt sich zeigen, daß die Gleichungen (1), (2) und (3) nach Lösung für die konstanten Polynome H(x) und M(x) ergeben
H(x) = [x127]
M(x) = [B(x)x13+B(x)x127].
Fig. 7 enthält eine Tabelle, in der gewählte Werte für B(x) und g(x) ebenso wie die abgeleiteten Werte für H(x) und M(x) aufgeführt sind. Die Bits höherer Ordnung sind in Fig. 7 rechts dargestellt, so daß dieselbe Reihenfolge haben, in der die Flipflop-Speicherelemente in dem logischen Diagramm derselben Figur erscheinen.
Im Bildplattenspieler wird die aufgezeichnete Digital information von den elektronischen Schaltungen des Spielers gelesen. Die auf der Bildplatte aufgezeichneten Daten sind T(x). Die vom Plattenspieler gelesenen Daten sind R(x). Wenn zwischen Aufnahme und Wiedergabe keine Fehler auftreten, dann ist T(x) = R(x). Die erhaltene Nachricht R(x) wird auf Fehler geprüft, indem R(x) durch g(x) dividiert wird. Ist der Rest gleich B(x),
130017/0790
dem Startcode, dann wird die Information als fehlerfrei angesehen. Wenn andererseits der Rest nicht gleich B(x) ist, dann bedeutet dies einen Fehler.
Die Eigenschaften des in der obengenannten Weise erzeugten Codes hängen von der Wahl von g(x), dem sogenannten Generatorpolynom, ab. Das im Einzelfall für die Bildplatte gewählte Polynom g(x) ist einer von dem Computer berechneten Codes, die Tadao Kasami in seiner Veröffentlichung "Optimum Shortened Cyclic Codes for Burst Error Correction" in den IEEE Transations on Information Theory 1963 beschrieben hat. Ein Farbsynchronsignalfehler in einem Digitalsystem stellt eine Fehlerart dar, bei welcher benachbarte Bits in einer Digitalnachricht verloren sind. Farbsynchronsignalfehler bilden einen wahrscheinlichen Typ von Übertragungsfehlern bei Bildplatten. Wie Kasami in der erwähnten Literaturstelle zeigt, kann ein Code, der einzelne Farbsynchronsignalfehler von 6 Bits oder weniger korrigieren kann, unter Verwendung eines Generatorpolynoms folgender Art benutzt werden
g(x)» X1VVVV+X6^xV+I.
Weiter läßt sich zeigen, daß für dieses Polynom g(x) alle einzelnen Farbsynchronsignalfehler von 13 Bits oder weniger festgestellt werden und mit einer Wahrscheinlichkeit von 99,988% aller einzelnen Farbsynchronsignalfehler, die länger als 13 Bits sind, ebenfalls festgestellt werden. Der hier beschriebene Bildplattenspieler benutzt nur die Fehlerfeststelleigenschaften des gewählten Codes.
Als ein besonderes Beispiel der Fehlercodeerzeugung sei der Fall angenommen, bei dem die Halbbildnummer 25 000 ist, die Bandnummer 17 und die Zahl der Reservebits 0 ist. Weil 25 000 in Binärdarstellung 000 110 000 101 000 ist und 17 in Binärdarstellung 010 001 ist (Bits höherer Ordnung stehen links), sind die 51 Informationsbits 000 000 000 000 000 000 000 000 000 110 000 110 101 000 010 001. Die Reihenfolge der übertragung geschieht folgendermaßen: Zuerst die Reservebits, dann folgt die Halbbildnummer und dann die Bandnummer, wobei die höchststell igen Bits zuerst übertragen werden. Der Fehlercode für den obengenannten speziellen Ausdruck
1 3001 7/0790
I(x) wird als Rest von I(x) ma! H(x) plus M(x) berechnet und dargestellt durch 0111100100010. Das nächste Videohalbbild ist 25 001 oder in Binärdarstellung 000 110 000 110 101 001. Für entsprechende Informationsbits 000 000 000 000 000 000 000 000 000 000 110 000 110 101 001 010 001 ist der richtige Fehlercode 1000101101110. Die vollständige Digital information für das Halbbild 25 001 einschließlich des Startcodes ist damit 1111100110101 1000101101110 000 000 000 000 000 000 000 000 000 000 110 000 110 101 001 010 001, dargestellt in der Reihenfolge der übertragung. Der Startcode ist in den ersten 13 Bits enthalten, der Fehlercode in den nächsten 13 Bits und die 51 Informationsbits sind die letzten. Bei dem Bildplattenspieler wird die oben angegebene Digital information auf Fehler geprüft, in dem die erhaltene Information durch g(x) geteilt wird. Werden keine Fehler festgestellt, dann ergibt sich der Rest zu 1111100110101, welcher genau der Startcode ist.
Geräte
Ein Blockschaltbild einer Anordnung zur Erzeugung der Funktion T(x) ist in Fig. 5 gezeigt. Unter Steuerung durch die Obertragungssteuerschaitung 50 werden 24 Inforniationsbits über die Datenleitung 39 und 27 Reserveinformationsbits über die Datenleitung 39a in ein 51-Bit-Schieberegister
44 eingespeichert. Dann wird I(x), das 51 Bits umfaßt, in ein anderes 51-Bit-Schieberegister 52 verschoben.
Zur gleichen Zeit, während der 51 Verschiebeimpulse, berechnet ein Codierer
45 C(x) auf folgende Weise. Die Polynon-Divisions- und -Multiplikationsschaltung 46 berechnet bei der 51-Bit-Serienzuführung von I(x) den Rest von I(x) mal H(x) geteilt durch g(x). Dann wird M(x) in der Polynom-Addierschaltung 48 parallel addiert. Der resultierende Code C(x) wird in ein 13-Bit-Schieberegister 54 eingegeben, und B(x), der Startcode, wird über die Datenleitung 49 in ein anderes 13-Bit-Schieberegister 47 eingegeben. Da der Startcode ein konstanter Digitalwert ist, erfolgt diese Eingabe vorzugsweise über feste Verbindungen mit den parallelen Eingangsleitungen des Schieberegisters 47, im Gegensatz zu einer Programmrealisierung.
13001 7/0790
Bei positiver Logikfestlegung sind die entsprechenden Paralleleingänge zum Schieberegister 47 mit Massepotential verbunden, wenn der Startcode eine NULL hat, und mit positivem Potential; wenn der Startcode eine EINS hat. Die Übertragungssteuerschaltung 50 steuert das serielle Herausschieben der gesamten Information T(x), welche in den drei Schieberegistern 52, 54 und 57 enthalten ist, im Synchronismus mit dem Farbträger auf der Leitung 31a. Ein auf der Leitung 33 zugeführter Videosynchronimpuls vei— sorgt die Obertragungssteuerschaltung 50 mit einem Zeitbezugssignal, so daß die digitale Information zum richtigen Zeitpunkt bezüglich des Videosignals übertragen wird.
Eine spezielle Ausführungsform eines Codierers (welche in Fig. 5 mit 45 bezeichnet ist) ist in Fig. 7 gezeigt. Taktgesteuerte Flipflops mit Ausgangsanschlüssen Q bis Q12 bilden einen Restspeicher. Multiplikation durch H(x) und Division durch g(x) werden gleichzeitig bitseriell durchgeführt. Danach wird der Rest an den Ausgängen Q0 bis Q12 des Restspeichers festgehalten (siehe hierzu Kapitel 7, Seiten 107-114 des bereits erwähnten Buches von Peterson, wo solche Schaltungen generell abgehandelt sind). Um zu erkennen, wie einfach die Schaltung gemäß Fig. 7 Polynome multipliziert und dividiert, sei erwähnt, daß sowohl die Addition wie auch die Subtraktion (der Koeffizienten der Glieder gleicher Potenzen) durch ein EXKLUSIV-ODER-Tor durchgeführt wird. Die Multiplikation von I(x) mit H(x) erfolgt durch entsprechende Verbindungen mit einem oder mehreren EXKLUSIV-ODER-Toren 80 bis 91. Wenn ein Koeffizient H(x), nicht aber g(x), gleich 1 ist (Bitpositionen 1, 3 und 8), dann ist der Eingang I(x) mit einem Eingang eines der ODER-Tore 80, 82 bzw. 87 verbunden. Die Division von I(x) durch g(x) erfolgt durch Multiplikation des Ausgangssignals von Q12 durch g(x) und Subtraktion des resultierenden Produktes vom Inhalt der Speicher Q0 bis Q12. Wenn ein Koeffizient von g(x), nicht aber H(x), gleich 1 ist (Bitpositionen 4, 7 und 11), dann wird der Ausgang von Q12 mit einem Eingang eines der EXKLUSIV-ODER-Tore 83, 86 bzw. 89 verbunden. Wenn H(x) und g(x) beide gleich 1 sind (Bitpositionen 0,2, 5, 6, 10 und 12) dann wird der Ausgang des EXKLUSIV-ODER-Tores 91 mit einem Eingang eines der EXKLUSIV-ODER-Tore 81, 84, 85, 88 bzw. 90 verbunden. Nach 51 Taktimpulsen,
130017/0790
je einer für jedes Bit von I(x), ist der Inhalt der Speicher QQ bis Q.^ gleich dem Rest von Ι(χ)·Η(χ) nach Division durch g(x).
Es sei darauf hingewiesen, wie M(x) zum Inhalt des Restspeichers hinzuaddiert wird. Die Addition der Koeffizienten erfolgt in Modulo-2-Arithmetik, die durch die EXKLUSIV-ODER-Funktion durchgeführt wird. Wenn M(x) Koeffizienten von +1 hat, dann wird der komplementäre Ausgang Q des entsprechenden Flipflops benutzt. Hat M(x) Koeffizienten 0, dann wird der nicht komplementäre Ausgang Q benutzt.
Ein Blockschaltbild einer Schaltung zur Decodierung der erhaltenen Information R(x) ist in Fig. 6 gezeigt, welches eine Ausführung des Informationspuffers 16 gemäß Fig. 4 darstellt. Ein Steuersignal auf der einen Eingang bildenden Leitung 71 konditioniert den Empfangsdecoder gemäß Fig, 6 entweder für die Zuführung von Daten vom Videosignal oder zur übertragung von Daten zum Mikroprozessor.
Im Empfangszustand wird jedes Bit gleichzeitig in zwei getrennte Register eingeschoben. Ein solches Register 60 ist für Daten und ein anderes Register 62 für die Fehlerprüfung bestimmt. Das Fehl erprüfregister 62 ist eine Polynom-Divisionsschaltung. Wenn jedoch neue Daten aufgenommen werden, dann wird die Teilerrückführung gesperrt, so daß sich ein Durch!aufschieberegister ergibt. Die Betriebsweise des Teilerregisters 62 wird nachfolgend in Einzelheiten in Verbindung mit Fig. 8 erläutert. Für den Augenblick genügt die Feststellung, daß das Register 62 unter Steuerung durch die Empfangssteuerschaltung 64 entweder aufeinanderfolgende Bits von R(x) einschiebt oder aufeinanderfolgende Bits R(x) durch g(x) teilt. In beiden Fällen steht der Inhalt des Registers 62 auf der Datenleitung 78 zur Verfügung und wird dem Startcode- und Datengültigkeitsdetektor 66 zugeführt.
Der Empfangsbetrieb beginnt mit der Konditionierung des Registers 62 für einen Schieberegisterbetrieb. Nachdem B(x) vom Detektor 66 festgestellt
1300 17/0790
-geist, konditioniert die Steuerschaltung 64 das Register 62 für den Betrieb als Polynom-Divisionsschaltung. Somit beginnt die Polynom-Division durch g(x) mit dem Vorhandensein von B(x) im Teilerregister 62. Die Empfangssteuerschaltung 64 reagiert ferner auf das Feststellen von B(x) mit dem Auszählen eines Zeitraums, der gleich den übrigen Nachrichtenbits (64 Taktinipulse) ist. Nach diesem Zeitraum enthält der Teiler 62 den Rest von R(x) modulo g(x), und das Ergebnis sollte B(x) sein, wenn die Information gültig ist. Während des Fehlerprüfens hat das Datenregister 60 Datenbits eingeschoben. Am Ende des erwähnten Zeitraums speichert das Datenregister 60 nur die letzten 24 Bits. Da jedoch die 24 Informationsbits am Ende der Nachricht stehen, enthält das Register 60 die zugeordneten Informationsbits. Sollen d^e Reserveinformationsbits benutzt werden, dann können zusätzliche Schieberegisterstufen hinzugefügt werden.
Die Interpretation der Ausgangszustandssignale auf der Leitung 75 hängt vom Zustand des Steuersignals auf der Leitung 71 ab. Konditioniert das Zustandssignal auf der Leitung 71 den Empfänger für die Datenaufnahme (Aufnahmezustand) dann ist das Zustandssignal auf der Leitung 75 definiert als "Nachricht empfangen". Wenn das Steuersignal auf der Leitung 71 den Empfänger für den Datentransfer konditioniert (Transferzustand), dann bedeutet das Zustandssignal auf der Leitung 75 "Daten gültig". Das Steuersignal auf der Leitung 71 setzt auch die Empfängersteuerschaltung 64 zurück und läßt die Ergebnisse der Restprüfung auf das Statussignal auf die Leitung 75 gelangen.
Die erhaltene Information wird unter Steuerung durch vom Mikroprozessor auf der Leitung 73 zugeführte externe Taktimpulse aus dem Schieberegister 60 herausgeholt. Nach dem Ausschieben der Daten kann das Steuersignal auf der Leitung 71 seinen vorherigen Zustand wieder annehmen und konditioniert erneut den Empfängerdecoder um kontinuierlich einen weiteren Startcode zu suchen.
130017/0790
Fig. 8 zeigt, teilweise als Blockschaltbild, eine Logikschaltung des Empfängerdecoders aus Fig. 6. Die Flipflops mit den Ausgangsanschiüssen Qq1 bis Q^1 bilden einen Restspeicher. Die Polynom-Division durch g(x) wird ausgeführt durch Multiplikation aufeinanderfolgender Speicherausgangsausdrücke von (Lp' durch g(x) und durch Subtraktion des Produktes (über EXKLUSIV-ODER-Tore 100 bis 108) vom Inhalt des Restspeichers. Eine Rückkopplungsleitung von Q^1 (über das NOR-Tor 109) führt zu einem EXKLUSIV-ODER-Tor, wenn g(x) Koeffizienten von 1 hat, mit Ausnahme für Da die Koeffizienten g(x) für die Bitpositionen C, 2, 4, 5, 6, 7 10, 11 und 12 eins sind, ist ein EXKLUSIV-ODER-Tor am Dateneingang jedes entsprechenden Flipflops des Restspeichers angeordnet, wie die Figur zeigt. Ein NAND-Tor 118 stellt B(x) fest, welches sowohl der Startcode als auch der gültige Fehl erprüfcode ist. Der Empfangssteuerzähler 117 beginnt auf ein Startsignal vom UND-Tor 120 hin zu zählen und zählt 23 Taktperioden und liefert dann ein Stop-Signal, welches mit Hilfe eines NAND-Tores 111 die Taktzuführung zu allen Decoder-Flipflops unterbricht. Eine der Veranschaulichung dienende Ausflihrungsform des Empfangssteuerzählers 117 ist in Fig. 9 mit sieben Flipflops 130 bis 136 gezeigt.
Der Betriebsablauf beim Datenempfang geht folgendermaßen vor sich. Wenn das Steuersignal auf der Leitung 71 einen hohen Wert hat, dann werden Daten durch ein UND-Tor 110 zur Divisionsschaltung 62 weitergeleitet. Das Flipflop 119 ist zuvor eingestellt worden und sperrt die Rückkopplungssignale in der Divisionsschaltung 62 durch Blockierung des NOR-Tores 109. Das Register 62 arbeitet nun als Schieberegister. Beim Feststellen von B(x) geht das Ausgangssignal des NAND-Tores 118 auf einen niedrigen Wert über, und das Q-Ausgangssignal des Flipflops 119 geht um eine Taktperiode später auf einen niedrigen Wert über. Daher wird die Rückkopplung für die Polynom-Division durch das Ausgangssignal des UND-Tores 120 über das NOR-Tor wieder hergestellt, wenn B(x) im Restspeicher festgestellt wird. Nach Taktperioden bleibt der Empfangssteuerzähler 117 stehen, und das Zustandssignal auf der Leitung 75 nimmt einen hohen Wert an, was bedeutet
130017/0790
"Information empfangen". Das Schieberegister 60 hält die letzten 24 Bits von I(x) fest. Zur Datenübertragung wird das Steuersignal auf der Leitung 71 auf einen niedrigen Wert gebracht. Das invertierte Ausgangssignal des NAND-Tores 118, welches einen niedrigen Wert hat, falls der Rest nach der Division B(x) ist, wird zum Zustandssignal auf der Leitung 75 geschaltet. Externe Taktinipulse auf der Leitung 73 bewirken sukzessive Datenverschiebungen im Speicher 60 zum Ausgangs-Datensignal auf der Leitung 74. Die externen Taktinipulse machen auch den Restspeicher durch Einschieben von Nullen leer.
Die oben beschriebene Anordnung beschreibt einen Restspeicher, der mit derselben Nicht-Null-Konstante beginnt und endet. Es versteht sich jedoch, daß auch andere Anordnungen möglich sind, wenn man einen Cosetcode benutzt. Beispielsweise kann der Restspeicher nach dem Feststellen von B(x) auf eine erste willkürliche Konstante gesetzt werden. Nach der Division wird dann der Restspeicher auf eine richtige zweite Konstante hin überprüft. Die erste oder die zweite Konstante kann Null sein, beide Konstanten jedoch nicht.
Es sei die vereinfachte Apparatur betrachtet, die sich aus dem hier beschriebenen Fehlercodeschema ergibt. Weil mit dem Startcode B(x) als gültigen Rest aufgehört wird, dient der Startcode-Detektor (NAND-Tor 118) auch als Detektor für einen gültigen Code. Weil die Division mit dem Startcode in der Divisionsschaltung beginnt, entfällt ein Steuerschritt, in dem der Restspeicher nicht leer gemacht werden muß.
Typischerweise ordnet man Fehlercodes am Ende einer Nachricht an. Durch Anordnung des Fehlercodes vor den Informationsbits vereinfacht sieht jedoch die Steuerschaltung weiter, weil sie nicht Informationsbits von Fehlerbits hinsichtlich des Datenspeicherregisters 60 unterscheiden muß. Außerdem ist die Empfangssteuerschaltung, wie sie in Fig. 8 gezeigt ist, ein einfacher Zähler 117 mit einem Startanschluß und einem Stopanschluß, der nur ein einziges Zeitintervall auszählen muß.
1 30017/0790
ι*
Realisierung des Mikroprozessors
Mit dem Videosignal wird Digital information, einschließlich Bandnummer und Halbbildnummer aufgezeichnet und vom Plattenspieler zur Durchführung einer Anzahl von Maßnahmen benutzt. So benutzt der Plattenspieler die Bandnummerinformation, um das Ende der Platte festzustellen (Band 63)„ Die Information der Halbbildnummern in ansteigender Reihenfolge wird benutzt zur Berechnung und Anzeige der Programmspielzeit auf einer Leuchtdiodenanzeigeeinheit 22 gemäß Fig. 1. Kennt man die Länge des Programmaterials, dann kann die Information über die Halbbildnummer zur Berechnung der restlichen Programmspieldauer heranziehen. Für NTSC-Signale läßt sich die abgelaufene Programmzeit in Minuten aus der Halbbildnummer dividiert durch 3600 ausrechnen. Gewünschtenfalls kann die verbleibende Programmzeit aus der vorherigen Berechnung ermittelt werden. Dieses Merkmal ist nützlich für den Zuschauer, wenn er eine gewünschte Stelle im Programm sucht. Ein besonders zweckmäßiges Merkmal, das aus der Information über die Halbbildnummer abgeleitet werden kann, ist die Korrektur einer Festfahrrilles was anschließend in Verbindung mit dem allgemeineren Fall der Spurfehlerkorrektur erläutert werden wird.
Halbbildnummern geben die tatsächliche Position des Abtaststiftes an. Damit läßt sich aus der ersten gelesenen gültigen Halbbildnummer die tatsächliche Abtaststiftposition immer dann bestimmen, wenn der Abtaststift erneut in eine Rille eintritt, ob er nun Spuren übersprungen hat oder ob der Abfühlmechanismus betätigt worden ist. Sowohl das Spurfehlerkorrektursystem als auch die Anzeigeeinrichtung für die Programmspielzeit benutzen Daten über die Halbbildnummer und teilen sich daher in den Decoderteil des Bildplatten-Di gi ta! datensystems. Die spezielle Ausführung des hier noch beschriebenen Spurfehlerkorrektursystems benutzt Daten über die Halbbildnummer (Abtaststiftposition), um den Abtaststift bei oder vor seiner zu erwartenden Position zu halten, eine vorbestimmte Relativgeschwindigkeit zwischen Abtaststift und Aufzeichnung vorausgesetzt. Die Programmspielzeit-Anzeige benutzt die Daten über die Halbbildnummer für eine Anzeige der Spielzeit, die tatsächlich eine andere Darstellung der Abtaststiftposition ist.
1 3001 7/0790.
Die Mikroporzessorsteuerschaltung arbeitet mit mehreren internen Betriebsarten. Fig. 10 zeigt ein Zustandswechseldiagramm zur Veranschaulichung der durch das Mikroporzessorprogramm ausgeführten Betriebsartlogik. Jeder der Kraise stellt eine Maschinenbetriebsart dar: Einlegen, Anlaufen, Aufsetzen, Spielen, Pause, Pausenverriegelung und Ende. Für jede Betriebsart ist die Position des Abtaststiftes und der Zustand der Anzeigeeinheit im jeweiligen Kreis eingetragen. Die Pfeile zwischen den Betriebsarten zeigen die logische Kombination der Signale, die von den Einstellern des Bedienungsfeldes gegeben werden (Einlegen, Pause, Abtasten), welche einen Wechsel von einem Betriebszustand in einen anderen veranlassen. Das Einlegesignal zeigt an, daß der Abspielmechanismus bereit ist, eine Bildplatte aufzunehmen. Das Pausesignal wird von einem zugehörigen Schalter des Steuerbedienfeldes gegeben, und das Abtastsignal zeigt den Betrieb des Abtastmechanismus an.
Nach dem Einschalten des Stromes geht das System in den Einlegezustand über» in welchem eine Bildplatte auf dem Plattenteller aufgelegt werden kann. Nach dem Auflegen geht der Plattenspieler für mehrere Sekunden in einen AnIaufzustand über, in welchem der Plattenteller auf die volle Drehzahl von 450 Umdrehungen pro Minute gebracht wird. Am Ende dieses Anlaufzustandes geht der Plattenspieler in den Aufsetzzustand über.
Im Aufsetzzustand senkt das Digitaluntersystem den Abtaststift ab und sucht kontinuierlich nach einer Abspielstelle, welche im Aufsetzbetrieb als gültiger Startcode oder gültiger Fehl erprüfrest definiert ist. Nach dem Finden einer Abspielstelle geht das System in den Abspielbetrieb über.
Im Abspiel betrieb stellt der Mikroprozessor im Speicher eine erwartete oder vorhergesagte Halbbildnummer ein. Die vorhergesagte Halbbildnummer wird für jedes Halbbild erhöht oder erneuert. Für alle aufeinanderfolgenden Ablesungen benutzt der Mikroprozessor die vorhergesagte Halbbildnummer für die Durchführung zweier zusätzlicher Prüfungen zur weiteren Verbesserung der Vollständigkeit (Integrität) der Daten.
Die erste zusätzliche Prüfung ist eine Sektorprüfung. Die hier betrachtete Bildplatte enthält acht Halbbilder pro Umdrehung, wodurch die Platte in acht
130017/0790
Sektoren unterteilt wird. Da die gegenseitige räumliche Lage der Sektoren festliegt, folgen die Sektoren bei der Plattendrehung einer periodisch wiederkehrenden Reihenfolge, selbst wenn der Abtaststift eine Anzahl von Rillen überspringt. Obgleich die Digital information von einem oder mehreren Halbbildern (Sektoren) nicht abgelesen werden kann, wenn der Abtaststift in eine neue Rille hineinspringt, merkt sich der Mikroprozessor die Zeit und erhöht die vorhergesagte Halbbildnummer entsprechend. Wenn der Abtaststift in einer neuen Rille sitzt und eine neue digitale Nachricht aufnimmt, dann wird die neue Halbbildnummer durch Vergleich mit der vorausgesagten Halbbildnummer überprüft. Ist der Sektor falsch, dann werden die Daten als Fehlabtastung angesehen.
Die Halbbildnummer wird durch eine Binärzahl von 18 Bit dargestellt. Aus der Halbbildnummer läßt sich die Sektorinformation als Rest nach Division der Halbbildnummer durch acht finden. Es sei aber darauf hingewiesen, daß die drei niedrigststelligen Bits einer Binärzahl eine Modulo-8-Zahl darstellen. Daher müssen die drei niedrigststelligen Bits jeder neuen Halbbildnummer gleich den niedrigststelligsten drei Bits der vorausgesagten Halbbildnummer sein, um die Sektorprüfung zu durchlaufen.
Eine zweite Prüfung für die Datenvollständigkeit ist die Bereichsprüfung, eine Prüfung des maximalen Bereichs der Abtaststiftbewegung längs des Plattenradius. Es ist zu erwarten, daß im ungünstigsten Falle in jeder Betriebsart nicht mehr als 63 Rillen übersprungen werden. Die Rillennummern werden durch die 15 höchstwertigen Bits jeder Halbbildnummer dargestellt. Der Mikroprozessor subtrahiert die momentane Rillennummer von der vorausgesagten Rillennummer. Wenn die Differenz größer als der akzeptable Bereich von 63 Rillen ist, dann werden die gegenwärtigen Daten als Fehl ablesung angesehen. Alle anderen Ablesungen werden als richtige Ablesungen betrachtet und zur Erneuerung der vorhergesagten Halbbildnummer benutzt. Nach 15 aufeinanderfolgenden Fehlablesungen geht das System wieder in den Aufsetzbetrieb über. Auch das Vorhandensein eines Abtastsignales bewirkt bei bestimmten Betriebsarten einen Wechsel in dem Aufsetzbetrieb, wie Fig. 10 zeigt.
13001 7/0790
Beim übergang vom Aufsetz- in den Abspielbetrieb setzt der Mikroprozessor die Fehlablesungszählung auf 13. Das bedeutet, daß beim übergang vom Aufsetzbetrieb in den Abspielbetrieb eines der nächsten beiden Halbbilder eine gute Ablesung ergeben muß, andernfalls erreicht der Zählerstand für schlechte Ablesungen den Wert 15 und bewirkt eine Rückkehr in den Aufsetzbetrieb.
Wird die Pausetaste während des Abspielbetriebes gedruckt, dann geht das System in den Betriebszustand Pause über, in welchem der Abtaststift von der Platte abgehoben wird und über diese in der jeweiligen radialen Position gehalten wird. Läßt man die Pausentaste los, dann geht der Plattenspieler in die Betriebsart Pausenverriegelung über und verbleibt dort. Beim erneuten Drücken der Pausentaste wird die Betriebsart Pausenverriegelung verlassen, und es erfolgt ein Wechsel zu" Aufsetzbetrieb. Wenn die Bandnummer 63 festgestellt ist, dann erfolgt der übergang vom Betriebszustand Spielen in den Betriebszustand Ende.
Fig. 11 zeigt ein Flußdiagramm des vom Mikroprozessor ausgeführten Programms. Der Mikroprozessor als Gerät enthält eine Unterbrechungsleitung und ein programmierbares Zeitsteuergerät. Ein handelsüblich erhältlicher Mikroprozessor, der sich für das hier beschriebene System eignet, ist das Fairchild Semiconductor Modell F8.
Der Mikroprozessor benutzt das Zeitsteuergerät zur Steuerung des Zeitfensters, in welchem der Inforniationspuffer nach Daten sucht. Dieses Datenfenster ist etwa zwölf Horizontalzeilen breit und liegt zentrisch um die erwarteten Daten. Werden keine Daten gefunden, dann hält das Zeitsteuergerät die interne Programmsynchronisierung auf ein Halbbild-Zeitintervall aufrecht.
Die Mikroprozessor-Unterbrecherleitung wird an das auf der Leitung 75 (Fig. 4) vorhandene Zustandssignal gekoppelt. Die Unterbrechungsleitungen werden nur im Aufsetzbetrieb aktiviert, wenn das System kontinuierlich nach Daten sucht. Das Programm wird unterbrochen, wenn eine Digitalnachricht auftritt. Wenn die Fehlercodeprüfung eine Gültigkeit ergibt, dann setzt
13001 7/0790
die nicht dargestellte Unterbrechungsschaltung (interrupt service routine) ein Unterbrechungszeichen. Danach wird das programmierbare Steuergerät im Abspielbetrieb benutzt, um die geschätzte Zeit des Auftretens der nächsten Digitalnachricht anzugeben.
Die von den Schaltern kommenden Eingangssignale (für Einlegen, Abtasten und Pause) weisen einen solchen Zustand auf, daß Schalterprellungen keine unerwünschten Reaktionen des Plattenspielers zur Folge haben. Das Mikroprozessorprogramm enthält einen speziellen Logikteil, mit Hilfe dessen die Eingangssignale von den Schaltern prellfrei gemacht werden. Die Werte der prellfreien Schaltersignale werden im Speicher gespeichert. Für jeden Schalter wird eine getrennte Entprellzählung festgehalten. Für die Prellprüfung 154 werden die Schalter abgetastet, und es erfolgt ein Vergleich mit dem gespeicherten Schalterwert. Wenn der abgetastete und der gespeicherte Zustand übereinstimmen, dann wird der Prellwert für den betreffenden Schalter auf Null gestellt. Die Schalterzustände werden sooft wie möglich abgetastet. Für jedes Halbbild (nach der NTSC-Norm alle 16 Millisekunden) werden alle Prellzählwerte unbedingt erhöht. Wenn der resultierende Prellwert gleich oder größer als 2 ist, dann werden die gespeicherten Daten auf den neuen (entprellten) Wert gebracht. Dann wird von dem neuen Schalterzustand ausgegangen.
Der erste programmierte Schritt (Fig. 11) nach dem Einschalten des Stromes, ist die Ersteinstellung 150 aller Programmparameter. Das Zeitsteuergerät wird so eingestellt, daß es ein Videohalbbild auszählt. Die Betriebsart wird auf Einlegen eingestellt.
Der nächste Schritt 152 ist ein Programm zur Durchführung der Zustandswechsel-Logikvorgänge, wie sie Fig. 10 zeigt. Die Entprellzählwerte werden zu diesem Zeitpunkt normalerweise erhöht und überprüft, um festzustellen, ob ein neuer Schalterzustand völlig prellfrei ist.
Nach den Logikvorgängen 152 für die Betriebsartauswahl tritt das.Programm in eine enge Schleife 153 ein, um erstens die Entprellzählwerte für die
1 30017/0790
Schaltereinstellungen auf Null zu tasten, falls nötig dem Schritt 154, und zweitens zu überprüfen, ob das Zeitsteuergerät schon dicht am Ende seiner Auszählung ist, Schritt 155, und drittens zu überprüfen, ob das Unterbrechungssignal eingestellt ist, Schritt 156.
Wenn das Unterbrechungssignal gesetzt ist, 156, dann erfolgt im Programm ein Datentransfer 157a aus dem Informationspuffer und ein Einstellen 157b des Zeitsteuergerätes zum Auszählen eines neuen Halbbildintervalles. Wenn die Unterbrecherschaltung das Unterbrechungssignal setzt, dann wird der Inhalt des Zeitsteuergerätes im Speicher aufgehoben. Das Programm verwendet nun den zuvor gespeicherten Zeitsteuergerätinhalt zur Einstellung des Zeitsteuergerätes, 157b, mit einem korrigierten Wert, der die etwaige Zeit des Auftretens der nächsten Digitalnachricht vorhersagt. Selbst wenn die Daten im Aufsetzzustand die erste gute Abtastung darstellen, dann wird der Fehlabtastungszähler auf 13 gestellt, 157c.
Wenn das Unterbrechungssignal nicht gesetzt wird, dann verzweigt sich das Programm gegen Ende der Zeitauszählung, 155. Befindet sich das Gerät nicht im Abspielzustand 159, dann wird der Zeitgeber (Zeitsteuerschaltung) für die Auszählung eines anderen Halbbildintervalls gesetzt, 158. Befindet sich das Gerät im Abspielzustand 159, dann ist eine Anzahl hinsichtlich der Zeit kritischer Aufgaben durchzuführen, 160. Das Datenfenster wird geöffnet, 160a (durch Einstellen des Steuersignals auf Leitung 71 in den Fig. 1 bis 8 auf eine logische EINS), und zwar für sechs Horizontalzeilen vor den erwarteten Daten. Die aufgenommenen Daten werden gelesen und geprüft, wie bereits erwähnt. Nach dem Aufnehmen der Daten, oder wenn keine Daten aufgenommen wurden, wird das Datenfenster wieder geschlossen. Der Inhalt des Zeitgebers, welcher die tatsächliche Zeit des Auftretens der Digitalnachricht darstellt, wird als ein Korrekturfaktor benutzt, um den Zeitgeber erneut einzustellen, 160b. Der Zeitgeber wird daher so eingestellt, daß das nächste Datenfenster über der vorausbestimmten Zeit des Auftretens der nächsten Digitalnachricht liegt, und zwar auf Grundlage der tatsächlichen Zeit des Auftretens der augenblicklichen Digitalnachricht.
1 30017/0790
038357
Die erwartete Halbbildnummer wird neu eingestellt, 160c, die Bandnummer wird für Start (Band 0) und Ende der Abspielung (Band 63) überprüft, und der Fehlabtastungszählwert wird für eine Fehlabtastung erhöht, 160g. Für gültige Halbbilddaten im Programmbetrachtungsmaterial wird die Zeit berechnet und angezeigt, 160f. Wenn gültige Halbbilddaten anzeigen, daß der Abtaststift zurückgesprungen ist, dann wird die Stiftverschiebungs- oder Anstoßeinrichtung betätigt, 160e und der Aufsetzbetrieb beginnt. Wenn der Fehlabtastungszählwert 15 erreicht, wird ebenfalls der Aufsetzbetrieb unmittelbar begonnen. Während der für kritische Aufgaben benutzten Zeit 160 wird die Schalterpren Überprüfung periodisch fortgesetzt, so daß die Schalter sooft wie möglich überprüft werden. Das Programm kehrt durch die Betriebsart-Wähllogikvorgänge, 152, unmittelbar in die enge Schleife 153 zurück und wartPt, bis der Zeitgebertest, 155, oder die Unterbrechungsprüfung, 156, das Auftreten der nächsten Digitalnachricht anzeigt.
Der Zeitgeber kann eingestellt werden durch eine Eingabe in ihn unmittelbar über programmierte Befehle. Anstatt eine Folge von Befehlen zu benutzen, ist es jedoch am besten, den Zeitgeber einzustellen durch Einrichtung eines Platzes im Speicher (einer Markierung), welche dem ausgezählten Zustand des Zeitgebers entspricht. Der Zeitgeber läuft dann frei. Der abgelaufene Zeitgeber oder das Ende seines Ablaufs wird festgestellt durch Vergleichen des Inhalts des Zeitgebers mit der im Speicher eingestellten Markierung. Der nächste gewünschte Auszählungszustand wird eingestellt durch Addierung des nächsten gewünschten Zeitintervall zum vorherigen Zeitgeberinhalt und Speicherung des Ergebnisses im Speicher. Der Speicher wird so jedesmal eingestellt, wenn gültige Daten erhalten werden, oder wenn keine Daten innerhalb des Datenfensters auftreten, indem eine neue Markierung im Speicher eingestellt wird entsprechend dem nächsten Auszählungszustand.
Der im Mikroprozessor bei der hier beschriebenen Anordnung benutzte programmierbare Zeitgeber wird durch das Programm veranlaßt, Zyklen des Eingangstaktes von 1,53 MHz durch einen Faktor von 200 zu dividieren. Der Zähler zählt somit für jeweils 200 Zyklen des 1,53 MHz-Taktes einmal.
13001 7/0790
Ein Vertikalhalbbild (bei NTSC eine sechzigste! Sekunde) dauert dann etwa 128 Zählungen des Zeitgebers. Man kann alternativ einen Zeitgeber benutzen, welcher ein anderes Vielfaches des 1,53 MHz-Taktes zählt, oder einen, welcher eine vom Videosignal unabhängige Zeitquelle benutzt.Das Datenfenster wird breit genug gemacht, um mehrere Zeitfehlerquellen zu erfassen. Die Zeitunsicherheit infolge des begrenzten Auflösungsvermögens des Zeitgebers ist gleich dem geringstwertigen Bit, das zwei Horizontalzeilen entspricht. Weil 128 Zeitgeber-Zahl werte nicht genau ein vertikales Halbbild ergeben, ist der akkumulierte Driftfehler nach 16 aufeinanderfolgenden Halbbildern, in denen keine gültige Nachricht angetroffen worden ist, etwas kleiner als eine Zeile. Da der Farbträgertakt von 1,53 MHz ein ungrades Vielfaches der halben Zeilenfrequenz ist, würde ein Zeitgeber, der ein entsprechendes Vielfaches des Farbträgertaktes zählt, eine Driftrate von Null haben. Bei der hier beschriebenen speziellen Anordnung beträgt die Programmunsicherheit bei der Bestimmung der Auftrittszeit von Daten etwa 97 Mikrosekunden, oder etwa 1,5 Zeilen. Weil abwechselnde Halbbilder ineinander verschachtelt sind, dauert schließlich die Zeit von einer digitalen Nachricht zur nächsten entweder 262 oder 263 Zeilen je nachdem, ob das augenblickliche Halbbild ungrade oder gerade ist. Obgleich das Programm Spuren ungrader und gerader Halbbilder halten könnte, ist es einfacher, nur das Datenfenster um eine zusätzliche Zeile zu vergrößern. Faßt man die obigen Faktoren zusammen, dann läßt sich zeigen, daß ein Datenfenster, das sich über drei Zeitgeberzählungen (etwa sechs Zeilen) sowohl vor als auch nach dem Start der erwarteten Daten erstreckt, auch für die ungünstigsten zeitlichen Zustände ausreichend ist.
Spurfehlerkorrektur
Wie bereits erwähnt wurde, kann die Information über die Halbbildnummer zum Feststellen blockierter Rillen führen. Wenn die neue Halbbildnummer (nach der Sektor- und Bereichsprüfung) kleiner als die erwartete Halbbildnummer ist, dann ist der Abtaststift zurückgesprungen und wiederholt die Spurabtastung einer oder mehrerer bereits vorher abgespielter Rillen, also
130017/0790
ist eine blockierte Rille aufgetreten= Wenn die neue Halbbildnummer größer als die erwartete Halbbildnummer ist, dann ist der Abtaststift vorgesprungen, also in Richtung auf die Plattenmitte. Bei der vorliegenden Erfindung werden übersprungene Rillen ignoriert; wenn die neue Halbbildnummer größer ist (aber noch die Sektor- und Bereichsprüfung erfüllt), dann wird das erwartete Halbbildung auf das neue Halbbild umnumeriert (daß es also diesem als neuen Stand entspricht). In bestimmten anderen Anwendungsfall en, etwa solchen, wo die Bildplatte benutzt wird, um Digital information auf vielen Horizontalzeilen aufzuzeichnen, kann es notwendig sein, die übersprungenen Rillen festzustellen und zu korrigieren. Für die hier betrachtete Videoanwendung erfolgt eine Korrektur der blockierten Rille durch Betätigung einer Verschiebungs- oder Anstoßeinrichtung für den Abtaststift, bis dieser in die erwartete Spur zurückgekehrt ist. Dabei wird der Abtaststift über die fehlerhafte Rille hinweggehoben.
Im allgemeineren Sinne stellt die erfindungsgemäße Verwendung der HaIbbildnummerinformation ein genaues Mittel dar, um allgemeine Spurfehler festzustellen. In jedem Bildplattensystem mit spiralförmigen oder kreisförmigen Spuren, einschließlich optischer und rillenloser Systeme, sind immer Spurfehler infolge von Defekten oder Verunreinigungen möglich. Das hier beschriebene System bietet die Möglichkeit, solche Spurfehler bei einem Bildplattenspieler festzustellen und zu korrigieren. Für eine positive Spurverfolgung ist eine in beiden Richtungen arbeitende Anstoß- oder Verschiebeeinrichtung vorgesehen, welche den Abnehmer im Programmaterial vorwärts oder rückwärts bewegen kann. Wenn somit ein Spurfehler ermittelt worden ist, sei es eine übersprungene oder eine blockierte Spur, dann wird der Abnehmer in einer solchen Richtung bewegt, daß der Spurfehler korrigiert wird. Wenn man auch die normale Abnehmerservoeinrichtung für Zwecke der Spurfehlerkorrektur heranziehen könnte, so ist doch eine getrennte Anstoßeinrichtung oder Repositionierungseinrichtung für den Abnehmer vorzuziehen. Die normale Servoeinrichtung ist im allgemeinen geeignet für eine stabile Spurverfolgung einer spiralförmigen Signalspur und kann nicht die richtigen Eigenschaften für die Reaktion auf plötzliche Spurfehler aufweisen.
130017/0790
Andererseits kann eine separate Anstoßeinrichtung speziell dafür gebaut werden, daß sie se schnell anspricht, wie es für die Korrektur von Spurfehlern notwendig ist. Ein besonderes Beispiel einer Anstoßeinrichtung zur Verwendung bei dem hier beschriebenen System findet sich in der US-Patentanmeldung USSN 39,358 von E. Simshauser mit dem Titel "TRACK SKIPPER APPARATUS FOR VIDEO DISC PLAYER" vom 15. Mai 1979, welche auf die Anmelderin auch der vorliegenden Anmeldung übertragen ist.
Es sind verschiedene Steuer- oder Regel algorithmen möglich. Der Abnehmer kann direkt zurückgeführt werden, um die Spur durch Hervorrufung einer Abtaststiftbewegung zu korrigieren, die proportional der Größe des festgestellten Spurfehlers ist. Die Anstoßeinrichtung kann aber auch durch eine Reihe von Impulsen betätigt werden, wobei die Anzahl der Impulse proportional der Größe des festgestellten Spurfehlers ist. Der Abnehmer wird um eine vorgegebene Anzahl von Spuren durch Impulse bewegt, bis der Abtaststift in die erwartete Spur zurückgekehrt ist. Bei bestimmten Anwendungen (beispielsweise bei der Wiedergewinnung digitaler Daten, die auf einer Bildplatte gespeichert sind) kann es erwünscht sein, den Abnehmer auf den Punkt seines Weglaufens zurückzubringen und einen zweiten Ableseversuch zu machen, anstatt den Abnehmer in die erwartete Spur zurückzubringen. In jedem Fall zeigt sich, daß man durch Verwendung einer Anstoßeinrichtung und einer geeigneten Steuerlogik eine erfolgreiche Spurabtastung erhalten kann, selbst wenn die Bildplatte Defekte oder Verschmutzungen aufweist, die andernfalls zu nichtakzeptierbaren Spurfehlern führen würden.
Bei einem digitalen Spurkorrektursystem ist die Sicherheit gegen unbemerkte Datenfehler besonders wichtig, um zu verhindern, daß gestörte Signale den Abnehmer unnötigerweise vor-oder zurücksetzen. Das hier beschriebene Datensystem verringert die Wahrscheinlichkeit eines unentdeckten Ablesefehlers auf vernachlässigbar kleine Werte.
In einer groben Näherung kann man die Wahrscheinlichkeit abschätzen, daß ein zufälliges digitales Eingangssignal von dem Datensystem als gültige
130017/0790
038357
Nachricht angesehen wird, die eine nicht der Reihenfolge entsprechende Halbbildnumnier enthält, so daß die Anstoßeinrichtung für den Abtaststift betätigt wird. Die Zufallswahrscheinlichkeit eines guten Startcodes beträgt
11
1 zu 2 . Die Zufallswahrscheinlichkeit eines guten Fehlercodes beträgt
13
ebenfalls 1 zu 2 . Die Zufallswahrscheinlichkeit einer guten Halbbildnumnier wird folgendermaßen berechnet. Die Halbbildnummern enthalten 18 Bits. Weil bei dem betrachteten System eine Platte acht Sektoren hat, bezeichnen die am wenigsten signifikanten 3 Bits jeder Halbbildnummer die Sektornummer9 welche zu der erwarteten Sektornummer passen muß. Die verbleibenden 15 Bits, welche die Rillennummer bezeichnen, können sich in einem zulässigen Bereich
IR verändern (^ 63 Rillen). Daher durchlaufen nur 126 von 2 zufälligen Halbbildnummern die Sektor- und Bereichsprüfungen. Berücksichtigt man alle Sicherheitsbetrachtungen, ds
nicht bemerkten Fehlers 126 zu V
alle Sicherheitsbetrachtungen, dann beträgt die Wahrscheinlichkeit eines
,44
Die obige Abschätzung beruht auf der Annahme rein zufälliger Eingangssignale ohne Berücksichtigung verschiedener Faktoren, welche die Wahrscheinlichkeit eines unentdeckten Fehlers noch weiter verringern.
Beispielsweise sind bei einer Bildplattenspur Farbsynchronsignal störungen9 wo irrtümliche Bits nebeneinander liegen,, wahrscheinlicher als andere Störungsarten. Wie bereits erwähnt wurde, stellt der spezielle gewählte Fehlercode alle einzelnen Farbsynchronsignalfehler bis zu 13 Bits fest und ebenso einen höheren Prozentsatz aller längerer Farbsynchronsignale. Wie ebenfalls bereits erläutert wurde, reduziert die Wahl eines Nicht-Null Restes für den Fehl erprüfcode (ein Cosetcode) weiterhin die Wahrscheinlichkeit unentdeckter Fehler. Auch der speziell gewählte Startcode, ein Barker-Code, verringert die Wahrscheinlichkeit, daß Störungen zu einer fälschlichen Startcodefeststellung führen.
Das auf Bildplattensysteme angewandte hier beschriebene Datensystem ergibt eine relativ niedrige Rate unentdeckter Fehler, und Fehlalarme, die andern-
1 3001 7/0790
ar 3033357
falls zu unnötigen Abtaststiftbewegungen führen würden, sind erheblich reduziert. Die von dem beschriebenen System gegebene Datensicherheit verbessert die Stabilität vieler Plattenspielerfunktionen, wie die Anzeige der Programmspielzeit, die für die richtige Betriebsweise von den aufgezeichneten Digitaldaten abhängen.
130017/0790
Leerseite

Claims (12)

PATENTANWÄLTE DR. DIETER V. BEZOLD DIPL. ING. PETER SCHÜTZ DIPL. ING. WOLFGANG HEUSLER MARIA-THERES1A-STRASSE 22 POSTFACH 86O2 6O D-8OOO MUENCHEN 86 ZUGELASSEN BEIM EUROPÄISCHEN PATENTAMT EUROPEAN PATENT ATTORNEYS MANDATAIRES EN BREVETS EUROPEENS TELEFON 089/4 70 60 06 TELEX 522 638 TELEGRAMM SOMBEZ RCA 73862A/Sch/Vu USSN 084393 vom 12. Oktober 1979 USSN 084396 vom 12. Oktober 1979 RCA Corporation, New York, N.Y. (V.St.A.) Patentansprüche
1) Bildplattenaufzeichnungsgerät zur Codierung eines Informationswortes auf ein Videosignal, gekennzeichnet durch einen Videosignalgenerator (30), durch einen Startcodegenerator (4 9) zur Erzeugung einer einem Startcode entsprechenden ersten Datenfolge, durch einen Fehlercodegenerator (45) zur Erzeugung einer einem Fehlercode entsprechenden zweiten Datenfolge über mindestens einen Teil des Informationswortes und durch einen Modulator (36,40) zur Modulierung des Videosignals entsprechend einem den Startcode, den Fehlercode und das Informationswort enthaltenden Datenwort, wobei der Fehlercode ein Cosetcode über mindestens einen Teil des aufgezeichneten Datenwortes ist.
2) Bildplattenaufzeichnungsgerät nach Anspruch 1 zur Codierung einer Informationswortes I(x) auf eine Horizontalzeile eines Videosignalgemisches währenddessen Vertikalaustastintervall,
1 30017/0790
038357
dadurch gekennzeichnet, daß der Fehlercodegenerator einen Fehlercode C(x) unter Verwendung eines Generator— polynoms g(x) erzeugt in der Form
C(x) = [Kx) · H(X)] + M(x) ,
wobei H(x) und M(x) jeweils konstante Polynome sind, und daß der Modulator das Videosignal während einer Horizontalzeile währenddessen Vertikalaustastintervalls entsprechend einem aufgezeichneten Wort T(x), welches den Fehlercode und das Informationswort enthält, moduliert, wobei H(x') und M(x) so gewählt sind, daß [T(X)] }*O ist.
3) Gerät nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Fehlercodegenerator durch das Informationswort steuerbar ist, daß eine Kombinationsschaltung zur Zusammenfassung des Informationswortes mit dem Fehlercode vorgesehen ist und daß der Fehlercodegenerator eine Einrichtung zur Steuerung der Erzeugung des Fehlercodes in solcher Weise aufweist, daß das Ergebnis der Fehlerprüfung mindestens eines Teils des Datenwortes gleich dem Startcode ist.
4) Bildplattenaufzeichnungsgerät nach Anspruch 1, dadurch gekennzeichnet, daß die Einrichtung zur Steuerung der Erzeugung des Fehlercodes von der Art ist, daß das Ergebnis der Fehlerprüfung des vollständigen Datenwortes gleich dem Startcode ist.
5) Gerät nach Anspruch 1 zur Codierung eines Informationswortes I(x) auf ein Videosignal, dadurch gekennzeichnet, daß der Startcode B(x) einer Startfolge entspricht, daß der Fehlercodegenerator den Fehlercode C(x) unter Verwendung eines Generatorpolynoms g(x) in der Form erzeugt,
C(x) = [Kx) · H(x)] + M(x) ,
wobei H(x) und M(x) jeweils konstante Polynome sind, und daß der Modulator das Videosignal entsprechend einem Datenwort T(x) der
T(x) = B(x)xm+n + C(x)xm + Kx)
1300 17/0790
moduliert, wobei η gleich der Anzahl von Bits im Fehlercode und m der Anzahl von Bits im Informationswort ist, und daß H(x) und M(x) so gewählt sind, daß die Beziehung [τ(χ)] = B (χ) erfüllt ist.
6) Decodiergerät zur Decodierung eines Informationswortes von einem Videosignal, welches während einer Horizontalzeile während seines Vertikalaustastintervalls entsprechend einem einen Fehlercode und ein Informationswort enthaltenden aufgezeichneten Datenwort moduliert ist, gekennzeichnet durch einen Empfänger, der bei Zuführung des modulierten Videosignals einzelne Bits eines empfangenen Datenwortes feststellt, durch eine mit dem Empfänger gekoppelte Polynomdivisionseinrichtung zur Dividierung mindestens eines Teils des empfangenen Datenwortes durch ein konstantes Polynom g(x) und Lieferung eines Restausgangssignals, welches einer Steuerschaltung zur Anzeige zugeführt wird, daß das empfangene Datenwort gültig ist, wenn der Restausgang der Polynomdivisionsschaltung gleich einem vorbestimmten, von Null verschiedenen Wert ist,
7) Gerät nach Anspruch 6 zum Abspielen einer Bildplatte, dadurch gekennzeichnet, daß der Empfänger für empfangene Daten ein Ausgangssignal liefert entsprechend den Bits des aufgezeichneten Datenwortes und daß ein erster Decoder zum Feststellen des Startcodes vorgesehen ist, daß die Polynomdivisionseinrichtung ein Fehlerprüfregister zur Division mindestens eines Teils des empfangenen Datenwortes durch ein konstantes Polynom g(x) enthält, und daß die Steuereinrichtung durch den ersten Decoder und das Fehlerprüfregister steuerbar ist und eine Einrichtung zur Einstellung des Fehlerprüfregisters auf eine erste vorbestimmte Konstante vor der Division sowie eine Anzeigeeinrichtung zur Anzeige, daß das empfangene Dätenwort gültig ist, wenn das Fehlerprüfregister eine zweite vorbestimmte Konstante nach der Division enthält, wobei mindestens eine der beiden vorbestimmten Konstanten ungleich Null ist, enthält.
8) Decodiergerät nach Anspruch 7, dadurch gekennzeichnet, daß der Startcode im Binärformat die folgende Form hat
1111100110101.
130017/0790
9) Decodiergerät nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß das konstante Polynom g(x) die Form hat
, , 13 12 11 10 7 6
g(x) =x +x +x +x +x+x
+ x +x +x + 1 .
10) Decodiergerät nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die Polynomdivisionsschaltung unter Steuerung durch die Steuereinrichtung das gesamte empfangene Datenwort dividiert.
11) Decodiergerät nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die Polynomdivisionsschaltung unter Steuerung durch die Steuereinrichtung eine Division der Kombination aus Information und Fehlercode des empfangenen Datenwortes bewirkt.
12) Gerät nach Anspruch 6 zum Abspielen einer Bildplatte, wobei das Datenwort einen Startcode und die Kombination eines Informationswortes mit einem Fehlerprüfcode enthält, dadurch gekennzeichnet, daß die Polynomdivisionsschaltung eine mit dem Empfänger gekoppelte Fehlerprüfeinrichtung zur Erzeugung eines Fehlerprüfergebnisses aufweist und daß die Steuerschaltung unter Steuerung durch die Fehlerprüfeinrichtung anzeigt, daß das empfangene Datenwort gültig ist, wenn mindestens ein Teil des empfangenen Datenwortes bei der Fehlerprüfung ein Ergebnis ergibt, welches gleich dem Startcode ist.
13) Gerät nach Anspruch 12, dadurch gekennzeichnet, daß die Steuereinrichtung anzeigt, daß das empfangene Datenwort gültig ist, wenn das vollständige empfangene Datenwort bei der Fehlerprüfung ein Ergebnis ergibt, das gleich dem Startcode ist.
14) Gerät nach Anspruch 12r wobei das Datenwort einen Startcode und eine Kombination des Informationswortes mit dem Fehlerprüfcode enthält, dadurch gekennzeichnet, daß die Steuerschaltung bei Zuführung des Restausgangssignals anzeigt, daß das empfangene Datenwort gültig ist, wenn das Restausgangssignal nach der Division durch g(x) gleich dem Startcode ist.
1 30017/0790
15) Gerät nach Anspruch 12 zum Abspielen einer Bildplatte, wobei das Datenwort einen Startcode und die Kombination eines Informationswortes mit einem Fehlerprüfcode enthält, mit einem an den Empfänger angekoppelten Detektor zur Feststellung des Startcodes, dadurch gekennzeichnet, daß die Polynomdivisionseinrichtung unter Steuerung durch ein Divisionsbefehlssignal mindestens einen Teil des empfangenen Datenwortes durch das konstante Polynom g(x) dividiert und ein Restregister enthält und daß die Steuerschaltung unter Steuerung durch den Detektor das Divisionsbefehlssignal nach dem Feststellen des Startcodes liefert, und daß die Steuerschaltung weiterhin eine Einrichtung enthält, die bei Zuführung des Restregisterinhaltes eine Anzeige liefert, daß das empfangene Datenwort gültig ist, wenn der Inhalt des Restregisters nach der Polynomdivision gleich dem Startcode ist.
16) Gerät nach Anspruch 12 zum Abspielen einer Bildplatte, wobei das Datenwort einen Startcode und die Kombination eines Infοrmationswortes mit einem Fehlerprüfcode enthält, dadurch gekennzeichnet, daß die Divisionseinrichtung enthält ein Schieberegister, welches mit dem Empfänger verbunden ist und eine Rückkopplung aufweist, die auf ein Aktivierungssignal hin das Ausgangssignal des Schieberegisters mit dem konstanten Polynom g(x) multipliziert und das Ergebnis vom Inhalt des Schieberegisters subtrahiert, einen mit dem Schieberegister verbundenen Detektor zum Feststellen des Startcodes, und daß die Steuerschaltung eine vom Detektor gesteuerte Einrichtung enthält, welche das Aktivierungssignal an die Rückkopplungsschaltung liefert, nachdem der Detektor den Startcode feststellt, sowie eine vom Detektor gesteuerte Einrichtung zum Feststellen des Startcodes im Schieberegister nach Empfang des Datenwortes zur Anzeige, daß das empfangene Datenwort gültig ist.
17) Bildplattenspieler zur Wiedergabe einer Bildplatte mit einer im wesentlichen spiralförmigen Informationsspur, welche ein mit einem Videosignal moduliertes aufgezeichnetes Trägersignal darstellt, wobei das Videosignal Informationssignale enthält, die
1 3001 7/0790
038357
aufgezeichnete Digitalzahlen darstellen, bei denen ein vorbestimmter Wert der Digitalzahlen einem Band von Spiralinformationsspurwindungen nach dem Ende des aufgezeichneten Videoprogramms entspricht, mit einem Signalabnehmer zum Abfühlen des aufgezeichneten Videosignals und einer Einrichtung zum Feststellen des Programmendes, dadurch gekennzeichnet, daß mit dem Signalabnehmer ein Detektor zur Decodierung der aufgezeichneten Digitalzahlen verbunden ist und daß eine Steuereinrichtung unter Steuerung durch die decodierten Digitalzahlen ein das Programmende anzeigendes Signal liefert, wenn der Detektor den vorbestimmten Wert der aufgezeichneten Digitalzahlen feststellt, und daß der Bildplattenspieler ferner eine Unterbrechungseinrichtung aufweist, die unter Steuerung durch das das Programir.ende anzeigende Signal den Betrieb des Abnehmers unterbricht.
130017/0790
DE19803038357 1979-10-12 1980-10-10 Bildplattensystem mit verbesserter fehlercodierung Ceased DE3038357A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/084,393 US4308557A (en) 1979-10-12 1979-10-12 Video disc system
US06/084,396 US4309721A (en) 1979-10-12 1979-10-12 Error coding for video disc system

Publications (1)

Publication Number Publication Date
DE3038357A1 true DE3038357A1 (de) 1981-04-23

Family

ID=26770922

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19803038357 Ceased DE3038357A1 (de) 1979-10-12 1980-10-10 Bildplattensystem mit verbesserter fehlercodierung

Country Status (15)

Country Link
KR (1) KR850001310B1 (de)
AR (1) AR227162A1 (de)
AU (1) AU538007B2 (de)
BR (1) BR8006460A (de)
DE (1) DE3038357A1 (de)
DK (1) DK429980A (de)
ES (1) ES8200983A1 (de)
FI (1) FI803145L (de)
FR (1) FR2467521A1 (de)
GB (1) GB2060230B (de)
IT (1) IT1133859B (de)
NL (1) NL8005624A (de)
NZ (1) NZ195228A (de)
PL (1) PL130439B1 (de)
SE (1) SE8006983L (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736479A (en) * 1980-07-29 1982-02-27 Victor Co Of Japan Ltd Automatic program searching playback device in playback device
GB2107557A (en) * 1981-10-14 1983-04-27 Rca Corp Coding system for recording digital audio
EP0136882B1 (de) * 1983-10-05 1988-03-30 Nippon Gakki Seizo Kabushiki Kaisha Datenverarbeitungskreis für ein digitales Audiosystem
JPS6377280A (ja) * 1986-09-20 1988-04-07 Pioneer Electronic Corp 静止画記録再生装置における初期設定方式

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3413599A (en) * 1963-05-31 1968-11-26 Ibm Handling of information with coset codes
NL7212015A (de) * 1972-09-04 1974-03-06
US3821703A (en) * 1972-12-26 1974-06-28 Ibm Signal transferring

Also Published As

Publication number Publication date
AR227162A1 (es) 1982-09-30
ES495838A0 (es) 1981-11-16
ES8200983A1 (es) 1981-11-16
IT8025253A0 (it) 1980-10-09
AU538007B2 (en) 1984-07-26
SE8006983L (sv) 1981-04-13
BR8006460A (pt) 1981-04-14
KR850001310B1 (ko) 1985-09-12
AU6299480A (en) 1981-04-16
FI803145L (fi) 1981-04-13
PL130439B1 (en) 1984-08-31
IT1133859B (it) 1986-07-24
NL8005624A (nl) 1981-04-14
GB2060230A (en) 1981-04-29
PL227240A1 (de) 1981-07-10
NZ195228A (en) 1985-01-31
KR830004744A (ko) 1983-07-16
FR2467521A1 (fr) 1981-04-17
DK429980A (da) 1981-04-13
GB2060230B (en) 1984-08-08

Similar Documents

Publication Publication Date Title
DE3038358C2 (de) Bildplattenaufzeichnunsgerät
DE3038359C2 (de) Bildplattenspieler
DE3038397A1 (de) Bildplattenspielersystem zur korrelierung der abtaststiftlage mit vorher von der platte abgenommener information
DE2734339C2 (de)
DE3036899C2 (de)
DE3420169C3 (de)
DE3102996C2 (de) Verfahren und Anordnung zur Speicherung und/oder Übertragung eines digitalen Farbfernsehinformationssignals
DE3004799C2 (de)
DE69122338T2 (de) Synchronsignal-Detektorschaltung und dieselbe enthaltender Synchronsignal-Detektorapparat
DE2809490A1 (de) System zur wiedergabe eines auf einen scheibenfoermigen aufzeichnungstraeger aufgezeichneten programms
DE2732515A1 (de) Datensignalaufzeichnungsgeraet
DE2440089A1 (de) Verfahren zur farbburst-phasenanpassung und anordnungen zur durchfuehrung des verfahrens
DE2924695C2 (de)
EP0226241B1 (de) Schaltungsanordnung zum Auswerten der Videoprogrammsystemdaten in einem Videorecorder
DE3888498T2 (de) Schaltung zum Detektieren eines Synchronisierungssignals.
DE69015421T2 (de) System zur Wiedergewinnung der Abtastfrequenz.
DE3140431A1 (de) Schaltung zum wiedergeben und demodulieren eines modulierten digitalsignals
DE2403601B2 (de) Faksimile-Empfänger mit einem Demodulator, einer Bildwiedergabevorrichtung und einer die beiden Einrichtungen verbindenden Umschalteinrichtung
DE3782477T2 (de) Verfahren und vorrichtung zum extrahieren von binaeren signalen enthaltend in den vertikalen austastintervallen von videosignalen.
DE3238119C2 (de) Einrichtungen zur Verarbeitung einer digitalen Darstellung eines Analogsignals und zur Rückumwandlung der verarbeiteten Digitaldarstellung in die Analogform
DE3038357A1 (de) Bildplattensystem mit verbesserter fehlercodierung
DE3038396C2 (de) Mikroprozessorgesteuerter Bildplattenspieler
DE69326855T2 (de) Datendekoder
DE2748233A1 (de) Verfahren und vorrichtung zum einsetzen eines adressensignales in ein videosignal
DE68923542T2 (de) Decodierung von biphasencodierten Daten.

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
8125 Change of the main classification

Ipc: H03K 13/32

8131 Rejection