DE2012846A1 - Elektroplattierlösung und Elektroplattierverfahren - Google Patents

Elektroplattierlösung und Elektroplattierverfahren

Info

Publication number
DE2012846A1
DE2012846A1 DE19702012846 DE2012846A DE2012846A1 DE 2012846 A1 DE2012846 A1 DE 2012846A1 DE 19702012846 DE19702012846 DE 19702012846 DE 2012846 A DE2012846 A DE 2012846A DE 2012846 A1 DE2012846 A1 DE 2012846A1
Authority
DE
Germany
Prior art keywords
solution
electroplating
plating
copper
solutions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE19702012846
Other languages
English (en)
Inventor
Vernon Edds Albuquerque N. Mex. Arnold (V.St.A.)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Atomic Energy Commission (AEC)
Original Assignee
US Atomic Energy Commission (AEC)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Atomic Energy Commission (AEC) filed Critical US Atomic Energy Commission (AEC)
Publication of DE2012846A1 publication Critical patent/DE2012846A1/de
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions

Description

ALEXANDER R. HERZFELD 6 Frankfurt a.m. wi3 RECHTSANWALT sophienstrasseaa
»El DEM LANDGERICHT FRANKFURT AM MAIN
Anmelderin: United States Atomic Energy Commission Washington D. C, USA
Elektroplattierlösung und Elektroplattierverfahren
Die Erfindung betrifft eine nichtwässerige Lösung zum Elektroplattieren, mit der ein Brüchigwerden der plattierten Teile durch Wasserstoff vermieden wird. Die Erfindung betrifft ferner ein Verfahren zum Elektroplattieren unter Verwendung dieser Lösung.
Zu dem umfangreichen Anwendungsgebiet des Elektroplattie- g rens gehören z. B. Korrosionsschutz, Materialvorbereitung zum Verlöten oder Verschwelssen, Verringerung des Eeibungskoeffizienten, Herstellung elektrischer Anschlüsse oder Kontaktflächen, u. a. m.
009041/1643
Die Qualität des zu plattierenden Metallteil· soll beim Plattieren nach Möglichkeit nicht verschlechtert werden. Beim Plattieren von Metallteilen, z. B. hochfestem Stahl mit bekannten wässerigen Plattierlösungen ist dies leider nicht der Fall. Es entsteht als Folge des meist an der Kathode als Nebenprodukt anfallenden Wasserstoffs eine unerwünschte Brüchigkeit des Materials (sog. Wasserstoffbrüchigkeit).
Ils Folge dieser Wasserstoffbrüchigkeit führt statische Belastung, selbst wenn sie unter der Normalbelastung liegt, häufig zum Bruch von Metall- oder Stahlteilen an sich hoher Festigkeit. Vermutlich wird bei der Behandlung an der Oberfläche des Metallteils Wasserstoff frei, der als atomarer Wasserstoff absorbiert wird und sich an den Belastungspunkten ansammelt. Die Brüchigkeit an den Belastungspunkten führt dann zum Bruch des Materials. Zwar ist bereits versucht worden, durch Wärmebehandlung von Stahl die Bruchigkeit zu verringern, jedoch ist eine etwaige Verbesserung nicht zuverlässig erzielbar. Damit ist die Behandlung wenig brauchbar, da ein zerstörungsfreies Werkstoffprüf verfahren zur zuverlässigen Voraussage des Ausmasses der Wasserstoffbrüchigkeit von Stahl und dergleichen bisher nicht bekannt geworden ist. Es besteht somit ein Bedürfnis nach einer Elek-' troplattierung ohne Wasserstoffbrüchigkeit· Dies gilt auch für Elektroplattierungen, bei denen aus einer Elektrolytlösung eine einphasige Legierung aufgebracht und gegebenenfalls
- 3 -009841/1648
auch der jeweilige Anteil der auf plattiert en Komponenten mit fortschreitender Plattierungetiefe mehr oder weniger ■terk verändert wird. Ein Gefälle der einzelnen Komponentenenteile in der Platt ierungeechicht ist z.B. günstig, wenn •im· «rat· Platt ierungeechicht ens einer gut haftenden Legierung und weitere Schichten aus leicht zu verbindenden, s. B. leicht verschweissbaren oder rerlötbaren Legierungen bestehen sollen, oder wenn mit zunehmender Plattierungetiefe der elektrische Widerstand oder andere Eigenschaften verän- | dert werden se Hem. In all diesen Fällen ist eine von Wasserstoffbrdohigkeit frei· Plattierung besonders günstig·.
Die Irfindumg hat eine Plattierungslösung sowie ein Plattierungsrerfehren sur Aufgabe, mit denen eine von Vasserstoffbr&ohigkeit freie Plattierung ersielt wird.
Die Aufgab· wird durch die nichtwässerige Elektroplattierungslösuag der Erfindung gelost, die ein organisches Lösungsmittel enthaltend Dimethylschwefeloxid und das Metallsali eines Plattiermetalle enthält.
Vaeb. dem Elektroplattierverf ehren der Erfindung wird ein Hetallsals des Plattiermetalls in Dimethylschwefelozid gelost, das Su platti«r«nd· Werkstück in diese Elektrolytlösung eingetaucht, eine Anode ebenfalls in die Losung eingetaucht, die
009841/164
Lösung auf eine Temperatur von 71 - 93° C erhitzt und von der Anode zu dem Werkstück durch die Lösung ein elektrischer Strom geleitet.
In den Zeichnungen zeigt die Figur 1 schematisch und teilweise im Schnitt eine zur Verwendung der erfindungsgemässen Lösung und zur Durchführung des Verfahrens geeignete Elektroplattiervorrichtung. Das Schaubild der Figur 2 zeigt die Niederschlagsgeschwindigkeit in Abhängigkeit von der Stromstärke.
Die Flattierung eines beliebigen, leitfähigen Werkstücks erfolgt mit der erfindungsgemässen, im wesentlichen nichtwässerigen Elektrolytlösung, die Dimethylschwefeloxid (DHSO) und ein Salz eines Plattiermaterials enthält. Gegebenenfalls kann die Lösung auch ein oder mehrere weitere Lösungsmittel, wie z. B. Dimethylformamid (DHF) und Äthylenglykol enthalten. Je nach dem verwendeten Metallsalz und deren Löslichkeit sind Mischungen verschiedener Lösungsmittel möglich.
Das aufzubringende Material kann je nach der gewünschten Löslichkeit und den Plattierungseigfenschaften in Form verschiedener Salze, z. B. Nitraten, Chloriden oder Sulfaten beigegeben werden. Zur Verbesserung der Löslichkeit können auch Komplexbildner, ζ. B. auf Ammoniakbasis, wie Ammoniumchlorid, Ammoniumnitrat, Ammoniumzyanid oder ander Zyanide wie Natriumzyanid und dergleichen eingesetzt werden.
- 5 -009841/1648
■ — 5 —
Aus diesen Lösungen heraus leicht plattierbare Metalle sind, z. B. Nickel und Kupfer. Weitere Metalle sind Kobalt, Blei, Zink, Silber und Cadmium. Biese Metalle können auf gleitfähige Werkstoffe wie z. B-. Messing, Bronze, Kupfer, Eisen, Stahl, Zink, Cadmium usw. aufplattiert werden. Bei der Plattierung von Stahl oder Eisen wird erfindungsgemäss eine Wasserstoffbrüchigkeit vermieden, obgleich aus hydratisierten Salzen oder der Atmosphäre 5 oder mehr Prozent Wasser in die Lösung eingeführt wird. Zur Begrenzung der aus der Atmosphäre absorbierten Feuchtigkeit-ist aber eine Abschirmung empfehlenswert, besonders wenn die Lösung kalt ist.
Der Einsatz dieser Lösungen erfolgt z. B. in der gezeigten Elektroplattiervorrichtung. Das die Elektrolytlösung 10 aufnehmende Gefäss 12 besteht aus einem nichtleitenden, mit der Lösung nicht in Umsetzung tretenden Material, wie z. B. Glas, Polytetrafluoräthylen, Polychlortrifluoräthylen oder einem mit diesen Stoffen überzogenen Material. Das zu plattierende Werkstück 14- wird in die Lösung 10 eingetaucht und über den Leiter 15 an eine Gleichstromquelle angeschlossen. Es dient also als Kathode.
Die Anode besteht aus einer geeigneten, vorzugsweise aus dem Plattierungsmetall bestehenden und damit die Lösung laufend mit Metallionen versorgenden Elektrode 18. Diese wird eben-
- 6 009841/1648
falls in die Lösung 10 eingetaucht und über den Leiter 19 an die Stromquelle 16 angeschlossen. Die Lösung 10 wird durch eine Heizquelle 20, z. B. einen Tauchsieder oder Brenner oder dergleichen auf die Plattiertemperatur erhitzt,
Als Beispiel für die Elektroplattierung mit Kupfer oder Nickel auf einem Werkstück seien die folgenden Lösungen genannt:
LÖSUNG A
DMSO
DMP
Kupferoxydul Ammoniumchlorid
1250 cm5 75 cm5 50 Gramm 50 Gramm
LÖSUNG B
DMSO
Kupferchlorid Ammoniumclilorid
1000
12,5 Gramm 25 Gramm
LÖSUNG C
DMSO
DMF
Kupferchlorid Ammoniumchlorid
840 cm5/Liter 153 cm^/Liter 35 Gramm/Liter 40 Gramm/Liter
009841/1648
LOSUHG D SHSO 750 cm3
SHF 120 cm3
Kupferchlorid 32 Gram
lawmiuBehlorid 32 Gr«u
2HSO LÖ8ÜHG F SHSO 800 c»3
Ithyl^lykol Ithyleneljkol 480 cm3
SHF Hiokeleulfat 20 cw?
Hickelchlorid 40-160 Gr
Hicktleulfat 160-40 Gr
800 cm3
400 c*3
114 Gramm
LöeUIG G
750 c«3
Ithyl««l7kol 450 ca Ii«k«lcalorid 180
009841/1648
LÖSUNG H
DMSO 562 cm3/Liter
Äthylenglykul 3^3 cm^/Liter
DMF 14,3 cm5/Liter
Nickelchlorid 114 Gramm/Liter
Nickelsulfat 24,6 Gramm/Liter
Die zu plattierenden Werkstücke oder Stoffe, z. B. Werkstück 14, können durch Waschen mit einer Lösung, durch Dampf- oder Säurebehandlung entfettet werden. Eine gewisse Reinigung erfolgt auch schon beim Eintauchen in die Elektrolytlösung.
Nach dem Plattieren werden die Gegenstände in geeigneter Weise gereinigt und gespült. Bei der Kupferplattierung können
die Gegenstände zur Entfernung restlicher Plattierlösung und zur Vermeidung einer Verfärbung des Kupfers z. B. mit Dimethylschwefeloxid oder dergleichen gespült werden.
Unter Verwendung der Lösung A kann z. B. Kupfer als glänzender, gut haftender, dichter Überzug auf zahlreichen Werkstoffen aufplattiert werden. Zur Erzielung guter Überzüge sind
z. B. Niederschlagsgeschwindigkeiten von etwa 0,00127 «m/Min, bei Stromstärken von 3 Amp./929 cm Kathodenfläche bie etwa
0,0127 mm/Min, bei 25 - 30 Amp./929 cm2 und einer Lösungetemperatur von etwa 71 - 930C» vorzugsweise ca. 88°, geeignet. Grössere Niederschlagsgeschwindigkeiten können durch Bewegen der Lösung und höhere Temperaturen erzielt werden.
- 9 -0098Λ1/1648
Mit der Lösung C lassen sich glänzende, gut haftende Kupfer-Überzüge bei einer Temperatur von etwa 82° im Strombereich von etwa 3-25 Amp./929 cm herstellen. Das Metallsalz kann in einer Konzentration von etwa 3 g/l bis etwa 300 g/l und entsprechenden Mengen eines geeigneten Komplexbildners vorliegen. Auch die übrigen Lösungen sind zur Herstellung von Kupferüberzügen im Temperaturbereich von 71 - 93° bei je nach Temperatur und Stromstärke verschiedenen Niederschlagsgeschwindigkeiten gut geeignet.
. i
Mit Kupferoxydul werden bessere Überzüge erzielt als mit .Kupferoxid. Die Oxidation des Kupferoxydulions zum Kupferoxidion ist umkehrbar durch Reduktion mit Hypophosphitionen, z. B. durch Zugabe von Natriumhypophosphit, Ammoniumhypophosphit oder unterphosphoriger Säure. Diese Zusätze eignen sich auch als Puffer, falls die pH-Werte der Kupferelektrolyt lösung über dem optimalen Bereich von etwa 2,3 - 4,5 pH liegen. Ein guter, gut haftender Nickelüberzug mit dicht mattierter Oberfläche lässt sich mit der Lösung E herstellen, bei Nie- * derschlagsgeschwindigkeiten von etwa 0,254- yu/Min. und 1,1 Amp./929 cm Kathodenfläche bis etwa 2,54 /u/Min, bei 12 Amp./929 cm oder mehr und Temperaturen von etwa 82 - 88 . Mit der Lösung H lässt sich ein guter Überzug z.B. aus Nickel bei einer Temperatur von etwa 82° und einer Stromstärke von etwa 10 Amp./ 929 cm erzielen, wobei eine langdauernde
- 10 009841/1648
gute Stabilität der Lösung gegeben ist. Gute Nickelüberzüge erhält man auch bei Verwendung der übrigen Lösungen innerhalb der angegebenen Strom- und Temperaturwerte.
Die zur Erzielung einer Plattierung mit gutem Aussehen und guter Haftung und Struktur erforderliche Mindesttemperatur der Lösung beträgt etwa 71°. Oberhalb von etwa 93° beginnt die Lösung sich zu zersetzen.
Die Wassermenge in den Lösungen kann durch Infrarotspektroskopie bestimmt oder auch errechnet werden. Die Lösung H kann z. B. 8% und die Lösung G etwa 3% (Volumen%) aus den Umsetzungsteilnehmern und Metallsalzen enthalten. Andere Lösungen können grössere oder kleinere Wassermengen enthalten, je nach den verwendeten Reagenzien und den zur Ausschaltung von Feuchtigkeit getroffenen Vorsichtsmassregeln.
Versuchsstäbe aus Stahl mit einer 0,5 mm tiefen Einkerbung mit einem Winkel von 45° wurden mit den Lösungen B und E bis zu einer Überzugstiefe von 5 /U. plattiert und sodann mit einem konstanten statischen Druck von 90% der Bruchfestigkeit belastet. Diese Stäbe brachen nach einer Belastungsdauer von 560 - 850 Stunden. Demgegenüber brachen mit bekannten, wässerigen Lösungen elektroplattierte Vergleichsstäbe durchschnittlich bereits nach weniger als 2 Stunden, die Mehrzahl sogar schon nach weniger als 1 Stunde.
- 11 009841/1648
Einen vergleichbaren technischen Fortschritt erzielt man auch bei der Aufbringung von Legierungen aus zwei oder mehr Metallen aus einer Mischung von zwei oder mehr nichtwässerigen Elektrolytlösungen. Der Prozentsatz der einzelnen Legierungskomponenten der Plattierung kann dabei durch Wahl der entsprechenden Stromwerte eingestellt werden. Durch Änderung der Stromstärke während des Niederschlags lässt sich auch ein Gefalle verschiedener Legierungen bzw. deren prozentualen Anteile erzielen.
Derartige Legierungsüberzüge können z. B. mit der 1 Errichtung der Figur 1 aufgebracht werden. Die Anode 18 besteht in diesem Falle aus einem der Plattierungsmetalle oder aus mehreren getrennten oder zusammengesetzten und elektrisch parallelgeschalteten Anoden aus Je einem Metall. Die entsprechenden Elektrolytlösungen können getrennt bereitet und dann zu einer Lösung 10 zusammengemischt werden. So können z. B. die Lösungen D und C getrennt durch Erhitzen und Einrühren der entsprechenden Salze in geeignete Lösungsmittel bereitet werden. Die einzelnen Lösungen werden dann vermischt. Die Mischlosung kann Kupfer- dder Nickelkomplexe bilden. Sie wird in ein ge eignetes Gefäse 12 gegeben, durch die Heizvorrichtung auf die geeignete Plattierungstemperatur erhitzt und an die Strom quelle gelegt. Die Stromquelle 16 wird dabei durch geeignete Mittel, s. B. einen Regelwiderstand und einen Stromzähler reguliert .
- 12 009841/1648
Bei Verwendung einer Mischung der Lösungen D und G werden bei einer Temperatur von etwa 82 und Stromstärken von etwa
2-22 Amp./929 cm Kathodenfläche gute Plattierungsüberzüge hergestellt. Wie die Kurve 30 der Figur 2 zeigt, kann durch zunehmende Stromstärken über diesen Bereich der prozentuale Nickelanteil eines aus einer Kupfer-Nickellegierung bestehenden Überzugs linear von etwas über O (meist um 5%) bis auf etwa 55% erhöht werden. Durch Auswahl des geeigneten Stromniveaus für die Plattierung können zuverlässig wiederholbare Kupfer- und Nickellegierungen von ca· 95% Ou - 5% Ni bis etwa 45% Cu - 55% Ni hergestellt werden. Ein unterschiedliches Gefälle der prozentualen Legierungsanteile erreicht man durch kontinuierliche, automatisch oder von Hand vorgenommene Änderung der Stromstärke. Durch nach Massgabe der gewünschten Eigenschaften der Plattierung vorgenommene stufenweise Änderung des Stroms entsprechend den auf der Kurve 50 der Figur 2 eingezeichneten Punkte können gegebenenfalls durch Zwischenlagen mit Legierungsgefällen getrennte Schichten verschiedener Legierungen aufgebracht werden. Durch bekannte Röntgenstrahlendiffraktionsverfahren lässt sich nach-
weisen, dass diese Plattierungsüberzüge aus einphasige* Material, also aus einer wirklichen Legierung bestehen.
Ein derartiges Legierungsgefälle kann besonders günstig sein zur Herstellung gedruckter Schaltungen von Strömungsverstär-
- 13 0098Λ1/16Α8
-.13 -
kern, und ähnlichen Bauelementen oder Geräten, in denen eine möglichst senkrechte Grenzfläche der geätzten und ungeätzten Teile erforderlich oder vorteilhaft ist. Durch Verwendung eines Überzugs mit einem höheren Kupferanteil an der Stossstelle mit dem plattierten Werkstück und nach aussen zunehmendem Nickelanteil kann durch Ätzen mit einem Kupfer begehrlicher als Nickel ätzenden Ätzmittel eine senkrechte Ätzfläche erzeugt werden; während die Plattierung fortschreitend weggeätzt wird, werden kupferhaltigere Teile freigelegt, so dass die Ätzung in dem gewünschten Sinne fortlaufend "be-, I schleunigt wird.
In allen Fällen wird durch Vermeidung einer Wasserstoffbrüchigkeit ein erheblicher technischer Fortschritt erzielt.
0098A1 M648

Claims (7)

  1. ι*
    Patent anSprüche
    Nichtwässerige Lösung zum Elektroplattieren ohne Wasserstoff brüchigkeit, dadurch gekennzeichnet, dass die Lösung ein organisches Lösungsmittel mit wenigstens Dimethylschwefeloxid und ein Metallsalz eines Plattierungsmetalls enthält.
  2. 2. Lösung zum Elektroplattieren gemäss Anspruch 1, dadurch gekennzeichnet, dass das organische Lösungsmittel aus Äthylenglykol oder Dimethylformamid besteht.
  3. 3· Lösung zum Elektroplattieren gemäss Anspruch 2, dadurch gekennzeichnet, dass das Metallsalz aus Nickelchlorid oder Nickelsulfat besteht.
  4. 4. Lösung zum Elektroplattieren gemäss Anspruch 1, dadurch gekennzeichnet, dass die Lösung ein komplexbildendes Mittel enthält.
  5. 5. Lösung zum Elektroplattieren gemäss einem der Ansprüche 1-4, dadurch gekennzeichnet, dass sie eine Mischung von zwei oder mehr Lösungen der Metallsalze verschiedener Metalle mit jeweils Dimethylschwefeloxid enthält.
    009841 /1648
  6. 6. Verfahren zum Elektroplattieren unter Verwendung der Lösung gemäss einem der Ansprüche 1-5, dadurch gekennzeichnet, dass das zu plattierende Werkstück sowie eine Anode in die Lösung eingetaucht werden, diese auf eine Temperatur von 71 -.93 erhitzt und von der Anode zu dem als Kathode dienenden Werkstück durch die Lösung ein Strom geleitet wird.
  7. 7. Verfahren gemäss Anspruch 6, dadurch gekennzeichnet, dass
    die Lösung Metallsalze mehrerer Metalle enthält und der f
    Strom zur Änderung des Niederschlags der einzelnen letalle entsprechend verändert wird.
    009841/1648
    Leerseite
DE19702012846 1969-03-24 1970-03-18 Elektroplattierlösung und Elektroplattierverfahren Pending DE2012846A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US80950869A 1969-03-24 1969-03-24

Publications (1)

Publication Number Publication Date
DE2012846A1 true DE2012846A1 (de) 1970-10-08

Family

ID=25201499

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19702012846 Pending DE2012846A1 (de) 1969-03-24 1970-03-18 Elektroplattierlösung und Elektroplattierverfahren

Country Status (6)

Country Link
US (1) US3616280A (de)
AU (1) AU1149970A (de)
CA (1) CA921423A (de)
DE (1) DE2012846A1 (de)
FR (1) FR2039138A7 (de)
GB (1) GB1272536A (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0328128A1 (de) * 1988-02-12 1989-08-16 Studiengesellschaft Kohle mbH Verfahren zur Haftvermittlung zwischen Metallwerkstoffen und galvanischen Aluminiumschichten und hierbei eingesetzte nichtwässrige Elektrolyte

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3990953A (en) * 1975-11-17 1976-11-09 Battelle Development Corporation Silicon electrodeposition
US4191557A (en) * 1977-03-25 1980-03-04 Aluminum Company Of America Production of metallic powders
US4192721A (en) * 1979-04-24 1980-03-11 Baranski Andrzej S Method for producing a smooth coherent film of a metal chalconide
US4290451A (en) * 1979-10-30 1981-09-22 L. W. Fleckenstein, Inc. Water conditioning system controls
US4376682A (en) * 1980-04-07 1983-03-15 Tdc Technology Development Corporation Method for producing smooth coherent metal chalconide films
US4376016A (en) * 1981-11-16 1983-03-08 Tdc Technology Development Corporation Baths for electrodeposition of metal chalconide films
US4634502A (en) * 1984-11-02 1987-01-06 The Standard Oil Company Process for the reductive deposition of polyoxometallates
US4624754A (en) * 1985-06-05 1986-11-25 Mcmanis Iii George E Ionic liquid compositions for electrodeposition
US4624753A (en) * 1985-06-05 1986-11-25 Mcmanis Iii George E Method for electrodeposition of metals
US4624755A (en) * 1985-06-05 1986-11-25 Mcmanis Iii George E Preparation of ionic liquids for electrodeposition
US5162295A (en) * 1989-04-10 1992-11-10 Allied-Signal Inc. Superconducting ceramics by sequential electrodeposition of metals, followed by oxidation
GB0513804D0 (en) * 2005-07-06 2005-08-10 Univ Leicester New mixture
FR2895206B1 (fr) * 2005-12-16 2008-03-21 Framatome Anp Sas Canne chauffante pour pressuriseur de circuit primaire d'un reacteur nucleaire a eau sous pression.
WO2020010215A1 (en) * 2018-07-05 2020-01-09 Xtalic Corporation Aluminum alloys and deposition methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0328128A1 (de) * 1988-02-12 1989-08-16 Studiengesellschaft Kohle mbH Verfahren zur Haftvermittlung zwischen Metallwerkstoffen und galvanischen Aluminiumschichten und hierbei eingesetzte nichtwässrige Elektrolyte

Also Published As

Publication number Publication date
FR2039138A7 (de) 1971-01-15
GB1272536A (en) 1972-05-03
CA921423A (en) 1973-02-20
US3616280A (en) 1971-10-26
AU1149970A (en) 1971-08-19

Similar Documents

Publication Publication Date Title
DE69830701T2 (de) Verfahren zur Herstellung eines verkupferten Aluminium Drahts
AT271127B (de) Verfahren und Bad zur Herstellung eines Iridiumüberzuges
DE2012846A1 (de) Elektroplattierlösung und Elektroplattierverfahren
AT514818B1 (de) Abscheidung von Cu, Sn, Zn-Beschichtungen auf metallischen Substraten
DE1094245B (de) Bleidioxyd-Elektrode zur Verwendung bei elektrochemischen Verfahren
DE2647527A1 (de) Bad und verfahren zum erzeugen von palladiumueberzuegen
DE2747955C2 (de)
DE1800049A1 (de) Nickel- oder Kupferfolie mit elektrolytisch aufgebrachter nickelhaltiger Haftschicht,insbesondere fuer duroplastische Traeger von gedruckten Schaltungen
DE1922598A1 (de) Gegenstand aus einem Metallsubstrat,auf den eine Nickel-Zinn-Legierung abgeschieden ist,sowie Verfahren zu dessen Herstellung
AT516876B1 (de) Abscheidung von dekorativen Palladium-Eisen-Legierungsbeschichtungen auf metallischen Substanzen
DE2025670A1 (de) Kontinuierlich durchgeführtes Plattierungsverfahren
DE2416218C3 (de) Verfahren zur Herstellung galvanisch verzinnter Stahlbleche
DE1100178B (de) Verfahren zur Herstellung von anlegierten Elektroden an Halbleiter-koerpern aus Silizium oder Germanium
DE1521464A1 (de) Verfahren zum Aufbringen von haftfesten Niederschlaegen von Metallen der Platingruppe auf Gegenstaende aus Titan
DE1521080A1 (de) Verfahren zur Aufbringung von metallischen Oberflaechenschichten auf Werkstuecke aus Titan
DE2002836A1 (de) Verfahren zum kontinuierlichen Herstellen von drahtfoermigem Gut,das mit einer einfachen Schicht aus Nickel oder einer Doppelschicht aus Nickel und Gold beschichtet ist
EP0619386B1 (de) Elektrolytische Abscheidung von Palladium oder Palladiumlegierungen
DE2439656C2 (de) Wäßriges saures Bad zur galvanischen Abscheidung einer Zinn-Nickel-Legierung
DE1168735B (de) Verfahren zum Vorbehandeln eines Gegenstandes aus Aluminium oder einer Aluminiumlegierung fuer das Aufbringen eines galvanischen Metallueberzuges
DE1278188B (de) Verfahren zur Herstellung von UEberzuegen unedler Metalle auf edleren Metallen durch chemische Reduktion von in Wasser geloesten Metallsalzen
DE804278C (de) Elektrolyt zum galvanischen Erzeugen von UEberzuegen aus Nickel und Nickellegierungen auf Metall und Nichtleitern
CH649581A5 (de) Mittel zur elektrolytischen ablagerung von metallischem palladium auf einem substrat.
DE2538817B2 (de) Bad und verfahren zum stromlosen vernickeln von metall und metallegierungen, insbesondere aluminium und aluminiumlegierungen
DE851526C (de) Verfahren zur Herstellung von Kupferoxydul-Trockengleichrichtern
DE603909C (de) Verfahren zur Vorbehandlung von Aluminium und seinen Legierungen fuer Galvanisierungszwecke