DE19930771A1 - Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern - Google Patents

Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern

Info

Publication number
DE19930771A1
DE19930771A1 DE19930771A DE19930771A DE19930771A1 DE 19930771 A1 DE19930771 A1 DE 19930771A1 DE 19930771 A DE19930771 A DE 19930771A DE 19930771 A DE19930771 A DE 19930771A DE 19930771 A1 DE19930771 A1 DE 19930771A1
Authority
DE
Germany
Prior art keywords
weight
mass
deformable
masses
preferred
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19930771A
Other languages
English (en)
Inventor
Thomas Holderbaum
Dieter Jung
Christian Nitsch
Bernd Richter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE19930771A priority Critical patent/DE19930771A1/de
Priority to EP00938813A priority patent/EP1192241B1/de
Priority to PCT/EP2000/005811 priority patent/WO2001002532A1/de
Priority to ES00938813T priority patent/ES2220474T3/es
Priority to DE50006266T priority patent/DE50006266D1/de
Priority to AU54067/00A priority patent/AU5406700A/en
Priority to AT00938813T priority patent/ATE265522T1/de
Priority to CA002313356A priority patent/CA2313356A1/en
Publication of DE19930771A1 publication Critical patent/DE19930771A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0047Detergents in the form of bars or tablets
    • C11D17/0065Solid detergents containing builders
    • C11D17/0073Tablets
    • C11D17/0078Multilayered tablets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Ein Herstellverfahren für Wasch- und Reinigungsmittelformkörper, das der bisherigen Tablettier- und Extrusionstechnologie hinsichtlich der Schonung der Inhaltsstoffe vor thermischer Belastung, Druck und Scherung überlegen ist, das apparativ weniger aufwendig und verfahrensökonomisch günstiger ist sowie höhere Durchsätze ermöglicht und ohne großen Aufwand auch zur Herstellung drei- oder mehrphasiger Formkörper einsetzbar ist, umfaßt die Herstellung (einer) verformbare(n/r) Masse(n), das Zuleiten dieser Masse mit einem Druck unterhalb von 40 bar zu Austrittsöffnungen und das Abschneiden und Aushärtenlassen der austretenden Materialstränge.

Description

Die vorliegende Erfindung betrifft ein neuartiges Verfahren zur Herstellung von ein- und mehrphasigen Wasch- und Reinigungsmittelformkörpern.
Wasch- und Reinigungsmittelformkörper sind im Stand der Technik breit beschrieben und erfreuen sich beim Verbraucher wegen der einfachen Dosierung zunehmender Beliebtheit. Tablettierte Reinigungsmittel haben gegenüber pulverförmigen Produkten eine Reihe von Vorteilen: Sie sind einfacher zu dosieren und zu handhaben und haben aufgrund ihrer kompakten Struktur Vorteile bei der Lagerung und beim Transport. Es existiert daher ein äußerst breiter Stand der Technik zu Wasch- und Reinigungsmittelformkörpern, der sich auch in einer umfangreichen Patentliteratur niederschlägt. Schon früh ist dabei den Ent­ wicklern tablettenförmiger Produkte die Idee gekommen, über unterschiedlich zusammen­ gesetzte Bereiche der Formkörper bestimmte Inhaltsstoffe erst unter definierten Bedingun­ gen im Wasch- oder Reinigungsgang freizusetzen, um so den Reinigungserfolg zu verbes­ sern. Hierbei haben sich neben den aus der Pharmazie hinlänglich bekannten Kern/Mantel- Tabletten und Ring/Kern-Tabletten insbesondere mehrschichtige Formkörper durchgesetzt, die heute für viele Bereiche des Waschens und Reinigens oder der Hygiene angeboten werden. Auch die optische Differenzierung der Produkte gewinnt zunehmend an Bedeu­ tung, so daß einphasige und einfarbige Formkörper auf dem Gebiet des Waschens und Reinigens weitgehend von mehrphasigen Formkörpern verdrängt wurden. Marktüblich sind derzeit zweischichtige Formkörper mit einer weißen und einer gefärbten Phase oder mit zwei unterschiedlich gefärbten Schichten. Daneben existieren Punkttabletten, Ring­ kerntabletten, Manteltabletten usw., die derzeit eine eher untergeordnete Bedeutung haben.
Die Herstellung der genannten Formkörper umfaßt dabei immer mindestens einen Tablet­ tierschritt, bei dem ein teilchenförmiges Vorgemisch unter Anwendung von Druck in einen kompakten Formkörper überführt wird. Bei den genannten Zweischichttabletten, Man­ tel/Kern-Tabletten usw. werden unterschiedliche Vorgemische auf bzw. ineinander ge­ preßt. Daneben existieren Vorschläge, Tabletten mittels herkömmlicher Preßtechnologie herzustellen und Kavitäten in diesen Tabletten mit Schmelzen oder ähnlichem aufzufüllen, um zu Kompositionsformkörpern aus verpreßten und nicht verpreßten Anteilen zu gelan­ gen.
Ein weiteres Verfahren, das zur Herstellung kompakter Wasch- und Reinigungsmittelstüc­ ke genutzt wird, ist die Extrusion. Hierbei wird ein Vorgemisch unter hohen Drücken pla­ stifiziert und durch Lochformen ausgetragen, wonach eine Formgebung durch Abschnei­ den und eventuelle Nachbehandlung erfolgt. Im Gegensatz zur Tablettierung, die der das Partikelbett quasi "gesintert" wird, und bei der die Formkörper noch ein Hohlvolumen be­ sitzen, führt die Extrusion durch die hohen Drücke von 100 bar und darüber zu sehr kom­ pakten Partikeln bzw. Stücken, deren inneres Hohlvolumen deutlich verringert ist.
Mehrschichtige Reinigungsmitteltabletten für das maschinelle Geschirrspülen werden bei­ spielsweise in der europäischen Patentanmeldung EP 224 128 (Henkel KGaA) beschrie­ ben. Die beiden Schichten weisen hierbei Löslichkeitsunterschiede auf, was zu vorteilhaf­ ten Anwendungseigenschaften führt.
Mehrphasige Reinigungstabletten für das WC werden beispielsweise in der EP 055 100 (Jeyes Group) beschrieben. Diese Schrift offenbart Toilettenreinigungsmittelblöcke, die einen geformten Körper aus einer langsam löslichen Reinigungsmittelzusammensetzung umfassen, in den eine Bleichmitteltablette eingebettet ist. Diese Schrift offenbart gleich­ zeitig die unterschiedlichsten Ausgestaltungsformen mehrphasiger Formkörper. Die Her­ stellung der Formkörper erfolgt nach der Lehre dieser Schrift entweder durch Einsetzen einer verpreßten Bleichmitteltablette in eine Form und Umgießen dieser Tablette mit der Reinigungsmittelzusammensetzung, oder durch Eingießen eines Teils der Reinigungsmit­ telzusammensetzung in die Form, gefolgt vom Einsetzen der verpreßten Bleichmittelt­ ablette und eventuell nachfolgendes Übergießen mit weiterer Reinigungsmittelzusammen­ setzung.
Auch die EP 481 547 (Unilever) beschreibt mehrphasige Reinigungsmittelformkörper, die für das maschinelle Geschirrspülen eingesetzt werden sollen. Diese Formkörper haben die Form von Kern/Mantel-Tabletten und werden durch stufenweises Verpressen der Be­ standteile hergestellt: Zuerst erfolgt die Verpressung einer Bleichmittelzusammensetzung zu einem Formkörper, der in eine mit einer Polymerzusammensetzung halbgefüllte Matrize eingelegt wird, die dann mit weiterer Polymerzusammensetzung aufgefüllt und zu einem mit einem Polymermantel versehen Bleichmittelformkörper verpreßt wird. Das Verfahren wird anschließend mit einer alkalischen Reinigungsmittelzusammensetzung wiederholt, so daß sich ein dreiphasiger Formkörper ergibt.
Ein anderer Weg zur Herstellung optisch differenzierter Wasch- und Reinigungsmittel­ formkörper wird in den internationalen Patentanmeldungen WO99/06522, WO99/27063 und WO99/27067 (Procter) beschrieben. Nach der Lehre dieser Schriften wird ein Formkörper bereitgestellt, der eine Kavität aufweist, die mit einer erstarrenden Schmelze befüllt wird. Alternativ wird ein Pulver eingefüllt und mittels einer Coating­ schicht in der Kavität befestigt. Allen drei Anmeldung ist gemeinsam, daß der die Kavität ausfüllende Bereich nicht verpreßt sein soll, da auf diese Weise "druckempfindliche" In­ haltsstoffe geschont werden sollen.
Sowohl die Tablettierung als auch die Extrusion führen zu einer hohen Druckbelastung der zu verarbeitenden Vorgemische, die die Inkorporation druckempfindlicher Inhaltsstoffe erschwert bzw. unmöglich macht. Auch die Herstellung drei- oder mehrphasiger Formkör­ per ist mit beiden Verfahren nicht mehr problemlos möglich, da der technische Aufwand mit zunehmender Anzahl der Phasen stark steigt.
Die Extrusion oder Co-Extrusion mehrerer Vorgemische ist bei stark unterschiedlichem Anteil der einzelnen Phasen kaum möglich. Die herkömmliche Tablettierung von Mehr­ schichttabletten findet auf dem Gebiet der Wasch- und Reinigungsmittelformkörper eben­ falls ihre Grenzen, wenn eine Schicht nur einen geringen Anteil am Gesamtformkörper aufweisen soll. Unterschreitet man eine bestimmte Schichtdicke, so ist ein Verpressen ei­ ner auf dem Rest des Formkörpers haftenden Schicht zunehmend erschwert.
Der vorliegenden Erfindung lag nun die Aufgabe zugrunde, ein Herstellungsverfahren für ein- und mehrphasige Formkörper bereitzustellen, bei dem auch druckempfindliche In­ haltsstoffe in abgegrenzte Regionen eingebracht werden können, wobei die abgegrenzte Region hinsichtlich ihrer Größe in Bezug auf den Gesamtformkörper keinen Beschränkun­ gen unterliegen sollte. Dabei sollte zudem einerseits eine optische Differenzierung zu her­ kömmlichen Zweischichttabletten erreicht werden, andererseits sollte die Herstellung der Formkörper ohne großen technischen Aufwand auch in Großserie sicher funktionieren, ohne daß die Formkörper Nachteile hinsichtlich der Stabilität aufweisen oder Ungenauig­ keiten bei der Dosierung zu befürchten wären.
Insbesondere lag der vorliegenden Erfindung die Aufgabe zugrunde, ein neuartiges Her­ stellverfahren für Wasch- und Reinigungsmittelformkörper bereitzustellen, das der bisheri­ gen Tablettier- und Extrusionstechnologie hinsichtlich der Schonung der Inhaltsstoffe vor thermischer Belastung, Druck und Scherung überlegen ist, das apparativ weniger aufwen­ dig und verfahrensökonomisch günstiger ist sowie höhere Durchsätze ermöglicht. Zusätz­ lich sollte das Verfahren ohne großen Aufwand auch zur Herstellung drei- oder mehrpha­ siger Formkörper einsetzbar sein.
Es wurde nun gefunden, daß sich die druckarme Strangverarbeitung verformbarer, härtba­ rer Massen zur Herstellung von Wasch- und Reinigungsmittelformkörpern eignet und da­ bei die genannten Anforderungsprofile erfüllt.
Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Wasch- und Reinigungs­ mittelformkörpern, bei dem man (eine) verformbare Masse(n) herstellt und diese mit einem Druck unterhalb von 40 bar Austrittsöffnungen zuleitet und die austretenden Material­ stränge auf Formkörperdimensionen abschneidet und aushärten läßt.
Vorzugsweise werden die verformbaren und nach der Verformung aushärtenden Massen den Austrittsöffnungen mit noch niedrigeren Drücken zugeleitet, um druckempfindliche Inhaltsstoffe zu schonen. Bevorzugte Verfahren sind dabei dadurch gekennzeichnet, daß man die verformbare(n) Masse(n) den Austrittsöffnungen mit einem Druck unterhalb von 35 bar, vorzugsweise unterhalb von 30 bar, besonders bevorzugt unterhalb von 20 bar und insbesondere unterhalb von 10 bar zuleitet.
Je nach Konfektionierung der verformbaren Massen (siehe unten) und je nach Konfigurie­ rung der verarbeitenden Maschinen können auch noch niedrigere Drücke realisiert werden, bzw. ist eine drucklose Verfahrensweise möglich. Verfahren, bei denen man die verform­ bare(n) Masse(n) den Austrittsöffnungen mit einem Druck unterhalb von 8,5 bar, vorzugs­ weise unterhalb von 7,5 bar, besonders bevorzugt unterhalb von 6,5 bar und insbesondere unterhalb von 5 bar zuleitet, sind eine weitere wichtige Ausführungsform der vorliegenden Erfindung.
Nachfolgend werden apparatechnische Parameter und verfahrenstechnische Besonderhei­ ten des erfindungsgemäßen Verfahrens beschrieben, bevor auf die Inhaltsstoffe und physi­ kalischen Parameter der zu verarbeitenden Massen eingegangen wird.
Das erfindungsgemäße Verfahren sieht die Verarbeitung verformbarer Massen vor, die nach der Formgebung zu kompakten Formkörpern aushärten bzw. erstarren. Im Gegensatz zur Extrusion von Wasch- und Reinigungsmitteln, wo feste, rieselfähige Vorgemische durch hohe Drücke plastifiziert und formgebend verarbeitet werden, wird das erfindungs­ gemäße Verfahren bei niedrigen Drücken betrieben und geht von verformbaren Massen aus. Diese verformbaren Massen sind nicht teilchenförmig, sondern teigartig bzw. plastisch und härten nach der formgebenden Verarbeitung aus.
Eine im Rahmen der vorliegenden Erfindung bevorzugte Verfahrensweise, die verformba­ ren Massen den Austrittsöffnungen zuzuleiten, besteht darin, sie zwischen zwei Walzen einzuziehen, die gegenläufigen Drehsinn aufweisen. Hierdurch wird die Masse, die sich zwischen den Walzen befindet, in Abhängigkeit von der Breite des Spaltes zwischen den Walzen und von der Walzengeschwindigkeit unter geringem Druck in Richtung der Aus­ trittsöffnungen gefördert. Je nach Anzahl der Walzenpaare und Austrittsöffnungen sowie je nach Ausgestaltung dieser Öffnungen resultieren ein- oder mehrphasige Materialstränge, die unterschiedliche Formen und/oder Farben aufweisen können. Diese Materialstränge werden in Abschnitte vorbestimmter Lange abgeschnitten und die einzelnen Strangab­ schnitte zum fertigen Wasch- und Reinigungsmittelformkörper erhärten gelassen.
Einphasige Formkörper werden dabei vorteilhafterweise hergestellt, indem eine verform­ bares Masse mit einem Walzenpaar einer Austrittsöffnung zugeleitet wird. Bevorzugte Verfahren sind dabei dadurch gekennzeichnet, daß eine verformbare Masse zwischen zwei Walzen eingezogen, als Materialstrang aus Austrittsöffnungen ausgetragen, auf die ge­ wünschte Formkörperdimension abgeschnitten und aushärten gelassen wird.
Für die bevorzugten Verfahren geeignete Apparate sind dabei beispielsweise von der Fir­ ma Hosokava Bepex GmbH unter dem Namen "Drehstab-Walzenpresse DP" erhältlich.
Die Austrittsöffnungen solcher Apparate können dabei beispielsweise kreisrund, dreieckig, quadratisch, rechteckig, herzförmig, halbmondförmig usw. ausgestaltet sein. Die erstge­ nannten Öffnungen bedingen dann zylindrische, prismatische, kubische oder tetragonale, tetragonale oder orthorhombische Formkörper. Die Zeichnungen zeigen in den Fig. 27 sowie 29 bis 42 exemplarisch einige mögliche Ausgestaltungsformen für Austrittsöffnun­ gen.
Es ist ebenfalls möglich, die Materialstränge vor dem Ablängen auf die gewünschten Formkörperdimensionen im formgebend verarbeitbaren Zustand nach Austritt aus den Öffnungen zu drehen. Auf diese Weise entstehen Formkörper mit unregelmäßigen, spiral­ förmigen Seitenflächen, die besondere optische Reize bieten.
Zweiphasige Formkörper lassen sich in entsprechender Weise mit zwei Walzenpaaren er­ zeugen. Hierzu bevorzugte Verfahren sind dadurch gekennzeichnet, daß zwei unterschied­ lich zusammengesetzte, verformbare Massen zwischen zwei Walzenpaaren eingezogen und als gefüllte, hohle oder mehrlagige Materialstränge aus Austrittsöffnungen ausgetra­ gen, auf die gewünschte Formkörperdimension abgeschnitten und aushärten gelassen wer­ den. Selbstverständlich ist es auch möglich, zwei identisch zusammengesetzte Massen analog zu verarbeiten. Dies dient dann nicht der Wirkstofftrennung oder der Erzielung be­ stimmter Wasch- und Reinigungseffekte, sondern dem optischen Anreiz. Auch für solche erfindungsgemäßen Verfahren geeigneten Apparate sind von der Firma Hosokava Bepex GmbH unter dem Namen "Doppel-Drehstab-Walzenpresse DDP" erhältlich. Die Aus­ trittsöffnungen solcher Apparate können dabei nebeneinander oder ineinander angeordnet sein, wodurch sich mehrlagige oder mehrphasige Formkörper ergeben. Die Abb. 15 bis 26 und 28 zeigen exemplarisch einige Querschnitte von Austrittsöffnungen für un­ terschiedliche Massen. In den Fig. 15, 16, 17, 19, 21, 23 und 25 resultieren Stränge und Formkörper, in denen ein Teil abgesehen von den Schnittflächen vom anderen Teil völlig umschlossen ist. Die anderen genannten Figuren zeigen Stränge bzw. Formkörper, in de­ nen der eine Teil an oder nur teilweise in den anderen Teil eingebettet ist. Auch hier ist wiederum eine Drehung der Materialstränge vor dem Ablängen zur Erzielung besonderer optischer Effekte möglich.
Das erfindungsgemäße Verfahren läßt sich auch problemlos zur Herstellung dreihphasiger Formkörper nutzen. Völlig analog zu den bisherigen Ausführungen werden solche erfin­ dungsgemäßen Verfahren durchgeführt, indem drei unterschiedlich zusammengesetzte, plastisch verformbare Massen zwischen drei Walzenpaaren eingezogen und als ein-, zwei- oder dreifach gefüllte, hohle, zwei- oder dreilagige Materialstränge aus Austrittsöffnungen ausgetragen, auf die gewünschte Formkörperdimension abgeschnitten und aushärten gelas­ sen werden.
Selbstverständlich ist es auch hier möglich, zwei oder gar drei identisch zusammengesetzte Massen analog zu verarbeiten. Dies dient dann wiederum nicht (nur) der Wirkstofftren­ nung oder der Erzielung bestimmter Wasch- und Reinigungseffekte, sondern dem opti­ schen Anreiz. Auch für die Herstellung dreiphasiger Formkörper geeignete Apparate sind von der Firma Hosokava Bepex GmbH unter dem Namen "Dreifach-Drehstab- Walzenpresse DP/3" erhältlich. Die Austrittsöffnungen solcher Apparate können dabei nebeneinander oder ineinander angeordnet sein, wodurch sich mehrlagige oder mehrphasi­ ge Formkörper ergeben. Die Abb. 1 bis 14 zeigen exemplarisch einige Quer­ schnitte von Austrittsöffnungen für unterschiedliche Massen. Auch hier ist wiederum eine Drehung der Materialstränge vor dem Ablängen zur Erzielung besonderer optischer Ef­ fekte möglich.
Die Möglichkeiten, mehrere Materialstränge auf-, neben- über- unter- oder ineinander aus den Apparaten auszutragen, sind dabei unbegrenzt, so daß sich auch vier- oder mehrphasi­ ge Formkörper auf einfache Weise herstellen lassen. Da die Apparate und die zugehörigen Düsensysteme einfach und robust konstruiert sind, ist ein Wechsel der Produktform und die Anpassung an unterschiedliche Markterfordernisse schnell und unkompliziert möglich. Auch durch die geeignete Behandlung der Materialstränge vor dem Schneiden lassen sich Formänderungen an den entstehenden Formkörpern problemlos hervorrufen. Werden bei­ spielsweise gemäß Fig. 1 aus drei Austrittsöffnungen mit rundem Querschnitt drei Mate­ rialstränge aneinander ausgetragen, so ergeben sich nach dem Ablängen Formkörper, die die Gestalt dreier gestapelter Zylinder aufweisen. Durch einfache Drehung der drei Materi­ alstränge um ihre Längsachse vor dem Ablängen erhält man Wasch- und Reinigungsmittel­ formkörper; die die Form von ineinandergedrehten Segmenten haben und an Tauwerk oder Zöpfe erinnern. Die Flexibilität der erfindungsgemäßen Verfahren hinsichtlich des Wech­ sels von Formen und ästhetischer Ausgestaltung liegt damit weit über der bislang bekann­ ten V erfahren.
Bei der Herstellung mehrphasiger Formkörper kann das Verhältnis der Phasen untereinan­ der frei gewählt werden, wobei es aus ästhetischen Gesichtspunkten vorteilhaft sein kann, wenn eine Phase mindestens 1/100, vorzugsweise mindestens 1/20 und insbesondere min­ destens 1/10 des Volumens oder des Gewichts der anderen Phase(n) ausmacht. In bevor­ zugten Verfahrensendprodukten liegt das Gewichtsverhältnis der Massen zueinander im Bereich von 1 : 1 bis 1 : 100, vorzugsweise von 1 : 2 bis 1 : 75 und insbesondere von 1 : 2,5 bis 1 : 30 (Zweiphasenformkörper) bzw. im Bereich von 1 : 1.1 bis 1 : 100 : 100, vorzugsweise von 1 : 1 : 2 bis 1 : 75 : 75 und insbesondere von 1 : 1 : 2,5 bis 1 : 30 : 30 (Dreiphasenformkörper). Das Verhältnis der Oberflächen der einzelnen Formkörperphasen liegt vorzugsweise in ähnli­ chen Bereichen.
Je nach Konfektionierung der verformbaren Massen (siehe unten), d. h. in Abhängigkeit von den Inhaltsstoffen und den physikalischen Parametern der zu verarbeitenden Massen lassen sich unterschiedlich hohe Durchsätze erzielen, die zudem von der Größe der Aus­ trittsöffnungen abhängen. Es ist dabei bevorzugt, bestimmte Austrittsgeschwindigkeiten für die Materialstränge einzuhalten. In bevorzugten Verfahren werden die Materialstränge mit einer Geschwindigkeit von 0,2 m/min bis 30 m/min, vorzugsweise zwischen 0,25 m/min bis 20 m/min. besonders bevorzugt von 0,5 m/min bis 15 m/min und insbesondere von 1 m/min bis 10 m/min aus den Austrittsöffnungen ausgetragen.
Prinzipiell ist das erfindungsgemäße Verfahren hinsichtlich Form und Größe der Aus­ trittsöffnungen nicht limitiert. Im Hinblick auf die zu fertigenden Produkte und ihre Größe bzw. Masse, die bei solchen Produkten üblicherweise im Bereich von 5 bis 500 g, vor­ zugsweise von 10 bis 250 g, besonders bevorzugt von 15 bis 100 g und insbesondere zwi­ schen 20 und 50 g liegt, sind Verfahren bevorzugt, bei denen die Austrittsöffnungen Öff­ nungsflächen von 50 mm2 bis 2500 mm2, vorzugsweise von 100 mm2 bis 2000 mm2, be­ sonders bevorzugt von 200 mm2 bis 1500 mm2 und insbesondere von 300 mm2 bis 1000 mm2 unter besonderer Bevorzugung von 350 mm2 bis 750 mm2, aufweisen.
Diese Werte können aber für einzelne Austrittsöffnungen unterschritten werden, beispiels­ weise wenn eine Austrittsöffnung dazu dient, einen dünnen "Schlauch" über einen ande­ ren Strang zu legen, damit dieser hierdurch quasi gecoatet wird. Solche Strangquerschnitte sind beispielsweise in den Fig. 15, 17, 21 und 23 skizziert, wobei der jeweils äußere Teil durchaus dünner sein kann. Im fertigen Formkörper liegen dann Stränge vor, die mit Ausnahme der Stirnflächen (Schnittflächen) beschichtet sind, woraus Effekte bezüglich der verzögerten oder beschleunigten Freisetzung erzielt werden können. Mit Ausnahme sol­ cher Coatingstränge sind aber Verfahren bevorzugt, bei denen die Dicke mindestens eines der aus den Austrittsöffnungen austretenden Materialstränge mindestens 5 mm, vorzugs­ weise mindestens 7,5 mm und insbesondere mindestens 10 mm beträgt.
Das Ablängen der aus den Austrittsöffnungen austretenden Materialstränge kann nach den bekannten Verfahren des Standes der Technik erfolgen, beispielsweise durch rotierende Messer, senkbare Schneiden oder Drähte usw. Die Masse der fertigen Formkörper richtet sich dabei einerseits nach der Größe der Austrittsöffnungen, andererseits nach der Länge der Abschnitte. Sollen herkömmliche Wasch- und Reinigungsmittelformkörper für übliche Einsatzzwecke wie beispielsweise Waschmitteltabletten oder Reinigungsmitteltabletten für das maschinelle Geschirrspülen bereitgestellt werden, sind Verfahren bevorzugt, bei denen die aus den Austrittsöffnungen austretenden Materialstränge auf eine Länge von 10 bis 100 mm, vorzugsweise von 12,5 bis 75 mm, besonders bevorzugt von 15 bis 60 mm und insbe­ sondere von 20 bis 50 mm, abgeschnitten werden.
In Abhängigkeit von der Zusammensetzung oder dem gewünschten Verwendungszweck können die genannten Grenzen allerdings auch über- oder unterschritten werden. So ist es beispielsweise möglich, nach Aushärtung schlechter lösliche Massen zu verarbeiten und diese auf Längen von 100 bis 1000 mm, vorzugsweise von 120 bis 750 mm und insbeson­ dere von 150 bis 500 mm abzuschneiden. Die auf diese Weise erhaltenen ausgehärteten "Stäbe" können dann als Depotblöcke in Wasch- oder Geschirrspülmaschinen eingebracht werden, wo sich pro Wasch- oder Spülgang ein definierter Teil des Blocks löst, während der Rest für den nächsten Reinigungsgang in der Maschine oder deren Dosiersystem ver­ bleibt.
Nach dem Ablängen auf die gewünschten Formkörperdimensionen werden die Strangab­ schnitte aushärten gelassen. Je nach Zusammensetzung der Massen erfolgt die Härtung auf unterschiedliche Weise (siehe unten), so daß die Härtung gegebenenfalls durch geeignete Maßnahmen unterstützt oder beschleunigt werden kann. So ist es beispielsweise möglich, eine Reaktivhärtung durch Aufdüsen von Aktivatoren oberflächlich zu initiieren oder zu beschleunigen. Auch die Bestrahlung mit radioaktiven Strahlen kann bei strahlenhärtenden Massen genutzt werden, ebenso wie UV-Strahlung für UV-aktive Massen. In bevorzugten Verfahren erfolgt die Härtung durch innere und äußere Trocknung und/oder Abkühlung, so daß bevorzugte Verfahren dadurch gekennzeichnet sind, daß die Aushärtung der auf Form­ körperdimensionen abgeschnittenen Materialstränge durch oberflächliche Trocknung und/oder Abkühlung, insbesondere durch Anblasen mit Kaltluft, unterstützt wird.
Nach der Darstellung der apparatechnischen bevorzugten Ausführungsformen folgt nun eine Beschreibung der zu verarbeitenden verformbaren und aushärtenden Massen. Hierbei wird sowohl auf die Zusammensetzung und physikalische Parameter eingegangen als auch mögliche Aushärtungsmechanismen beschrieben.
Die Aushärtung der verformbaren Masse(n) kann durch unterschiedliche Mechanismen erfolgen, wobei die zeitlich verzögerte Wasserbindung, die Kühlung unter den Schmelz­ punkt, die Verdampfung von Lösungsmitteln, die Kristallisation, durch chemische Reakti­ on(en), insbesondere Polymerisation sowie die Änderung der rheologischen Eigenschaften z. B. durch veränderte Scherung der Masse(n) als wichtigste Härtungsmechanismen neben der bereits genannten Strahlenthärtung durch UV-, Alpha- Beta- oder Gammastrahlen zu nennen sind.
In allen Fällen wird eine verformbare, vorzugsweise plastische, Masse hergestellt, die ohne große Drücke formgebend verarbeitet werden kann. Nach der formgebenden Verarbeitung erfolgt dann die Härtung durch geeignete Initiierung oder Abwarten eines bestimmten Zeit­ raums. Werden Massen verarbeitet, die ohne weitere Initiierung selbsthärtende Eigen­ schaften aufweisen, so ist dies bei der Verarbeitung zu berücksichtigen, um Aushärtungen während der formgebenden Verarbeitung und damit Blockaden und Störungen der Verfah­ rensabläufe zu vermeiden.
In im Rahmen der vorliegenden Erfindung bevorzugten Verfahren erfolgt die Aushärtung der verformbaren Masse(n) durch zeitlich verzögerte Wasserbindung.
Die zeitlich verzögerte Wasserbindung in den erfindungsgemäß verarbeiteten Massen kann dabei ihrerseits auf unterschiedliche Weise realisiert werden. Es bieten sich hier beispiels­ weise Massen an, die hydratisierbare, wasserfreie Rohstoffe oder Rohstoffe in niedrigen Hydratationsstufen, die in stabile höhere Hydrate übergehen können, sowie Wasser ent­ halten. Die Bildung der Hydrate, die nicht spontan erfolgt, führt dann zur Bindung von freiem Wasser, was seinerseits zu einer Aushärtung der Massen führt. Eine formgebende Verarbeitung mit niedrigen Drücken ist danach nicht mehr möglich, und es liegen handha­ bungsstabile Formkörper vor, die gegebenenfalls weiterbehandelt und/oder verpackt wer­ den können.
Die zeitlich versetzte Wasserbindung kann beispielsweise auch dadurch erfolgen, das man hydratwasserhaltige Salze, die sich bei Temperaturerhöhung in ihrem eigenen Kristallwas­ ser lösen, in die Massen einarbeitet. Sinkt die Temperatur später, so wird das Kristallwas­ ser wieder gebunden, was zu einem Verlust der formgebenden Verarbeitbarkeit mit einfa­ chen Mitteln und zu einer Erstarrung der Massen führt.
Auch die Quellung natürlich oder synthetischer Polymere als zeitlich verzögerter Wasser­ bindungsmechanismus ist im Rahmen des erfindungsgemäßen Verfahrens nutzbar. Hier können Mischungen aus ungequollenem Polymer und geeignetem Quellmittel, z. B. Was­ ser, Diole, Glycerin usw., in die Massen eingearbeitet werden, wobei eine Quellung und Aushärtung nach der Formgebung erfolgt.
Der wichtigste Mechanismus der Aushärtung durch zeitlich verzögerte Wasserbindung ist der Einsatz einer Kombination aus Wasser und wasserfreien bzw. -armen Rohstoffen, die langsam hydratisieren. Hierzu bieten sich insbesondere Substanzen an, die im Wasch- oder Reinigungsprozeß zur Reinigungsleistung beitragen. Im Rahmen des erfindungsgemäßen Verfahrens bevorzugte Inhaltsstoffe der verformbaren Massen sind dabei beispielsweise Phosphate, Carbonate, Silikate und Zeolithe.
Besonders bevorzugt ist es, wenn die entstehenden Hydratformen niedrige Schmelzpunkte aufweisen, da auf diese Weise eine Kombination der Aushärtungsmechanismen durch in­ nere Trocknung und Abkühlung erreicht wird. Bevorzugte Verfahren sind dadurch ge­ kennzeichnet, daß die verformbare(n) Masse(n) 10 bis 95 Gew.-%, vorzugsweise 15 bis 90 Gew.-%, besonders bevorzugt 20 bis 85 Gew.-% und insbesondere 25 bis 80 Gew.-% was­ serfreier Stoffe enthalten, welche durch Hydratisierung in eine Hydratform mit einem Schmelzpunkt unterhalb von 120°C, vorzugsweise unterhalb von 100°C und insbesondere unterhalb von 80°C übergehen.
Die verformbaren Eigenschaften der Massen können dabei durch Zusatz von Plastifizier­ hilfsmitteln wie Polyethylenglycolen, Polypropylenglycolen, Wachsen, Paraffinen, nich­ tionischen Tensiden usw. beeinflußt werden. Nähere Angaben zu den genannten Substanz­ klassen finden sich weiter unten.
Bevorzugt in die verformbaren Massen einzuarbeitende Rohstoffe stammen aus der Grup­ pe der Phosphate, wobei Alkalimetallphosphate besonders bevorzugt sind. Diese Stoffe werden bei der Herstellung der Massen in wasserfreier oder -armer Form eingesetzt und die gewünschten plastischen Eigenschaften der Massen mit Wasser sowie optionalen Pla­ stifizierhilfsmitteln eingestellt. Nach der formgebenden Verarbeitung erfolgt dann die Aushärtung der ausgefonmten und abgelängten Stränge durch Hydratation der Phosphate.
Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (ins­ besondere Natrium- und Kalium-) -Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekula­ ren Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkru­ stationen in Geweben und tragen überdies zur Reinigungsleistung bei.
Natriumdihydrogenphosphat, NaH2PO4, existiert als Dihydrat (Dichte 1,91 gcm-3, Schmelzpunkt 60°) und als Monohydrat (Dichte 2,04 gcm-3). Beide Salze sind weiße, in Wasser sehr leicht lösliche Pulver, die beim Erhitzen das Kristallwasser verlieren und bei 200°C in das schwach saure Diphosphat (Dinatriumhydrogendiphosphat, Na2H2P2O7), bei höherer Temperatur in Natiumtrimetaphosphat (Na3P3O9) und Maddrellsches Salz (siehe unten), übergehen. NaH2PO4 reagiert sauer; es entsteht, wenn Phosphorsäure mit Natron­ lauge auf einen pH-Wert von 4,5 eingestellt und die Maische versprüht wird. Kaliumdihy­ drogenphosphat (primäres oder einbasiges Kaliumphosphat, Kaliumbiphosphat, KDP), KH2PO4, ist ein weißes Salz der Dichte 2,33 gcm-3, hat einen Schmelzpunkt 253° [Zerset­ zung unter Bildung von Kaliumpolyphosphat (KPO3)x] und ist leicht löslich in Wasser.
Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HPO4, ist ein farbloses, sehr leicht wasserlösliches kristallines Salz. Es existiert wasserfrei und mit 2 Mol. (Dichte 2,066 gcm-3, Wasserverlust bei 95°), 7 Mol. (Dichte 1,68 gcm-3, Schmelzpunkt 48° unter Verlust von 5 H2O) und 12 Mol. Wasser (Dichte 1,52 gcm-3, Schmelzpunkt 35° unter Verlust von 5 H2O), wird bei 100° wasserfrei und geht bei stärkerem Erhitzen in das Diphosphat Na4P2O7 über. Dinatriumhydrogenphosphat wird durch Neutralisation von Phosphorsäure mit Sodalösung unter Verwendung von Phenolphthalein als Indikator her­ gestellt. Dikaliumhydrogenphosphat (sekundäres od. zweibasiges Kaliumphosphat), K2HPO4, ist ein amorphes, weißes Salz, das in Wasser leicht löslich ist.
Trinatriumphosphat, tertiäres Natriumphosphat, Na3PO4, sind farblose Kristalle, die als Dodecahydrat eine Dichte von 1,62 gcm-3 und einen Schmelzpunkt von 73-76°C (Zerset­ zung), als Decahydrat (entsprechend 19-20% P2O5) einen Schmelzpunkt von 100°C und in wasserfreier Form (entsprechend 39-40% P2O5) eine Dichte von 2,536 gcm-3 aufweisen. Trinatriumphosphat ist in Wasser unter alkalischer Reaktion leicht löslich und wird durch Eindampfen einer Lösung aus genau 1 Mol Dinatriumphosphat und 1 Mol NaOH herge­ stellt. Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K3PO4, ist ein wei­ ßes, zerfließliches, körniges Pulver der Dichte 2,56 gcm-3, hat einen Schmelzpunkt von 1340° und ist in Wasser mit alkalischer Reaktion leicht löslich. Es entsteht z. B. beim Er­ hitzen von Thomasschlacke mit Kohle und Kaliumsulfat. Trotz des höheren Preises werden in der Reinigungsmittel-Industrie die leichter löslichen, daher hochwirksamen, Kaliump­ hosphate gegenüber entsprechenden Natrium-Verbindungen vielfach bevorzugt.
Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P2O7, existiert in wasserfreier Form (Dichte 2,534 gcm-3, Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1,815-1,836 gcm-3, Schmelzpunkt 94° unter Wasserverlust). Bei Substanzen sind farblose, in Wasser mit alkalischer Reaktion lösliche Kristalle. Na4P2O7 entsteht beim Er­ hitzen von Dinatriumphosphat auf <200° oder indem man Phosphorsäure mit Soda im stöchiometrischem Verhältnis umsetzt und die Lösung durch Versprühen entwässert. Das Decahydrat komplexiert Schwermetall-Salze und Härtebildner und verringert daher die Härte des Wassers. Kaliumdiphosphat (Kaliumpyrophosphat), K4P2O7, existiert in Form des Trihydrats und stellt ein farbloses, hygroskopisches Pulver mit der Dichte 2,33 gcm-3 dar, das in Wasser löslich ist, wobei der pH-Wert der 1%igen Lösung bei 25° 10,4 beträgt.
Durch Kondensation des NaH2PO4 bzw. des KH2PO4 entstehen höhermol. Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphos­ phate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann. Insbesondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch:
Schmelz- oder Glühphosphate, Grahamsches Salz, Kurrolsches und Maddrellsches Salz. Alle höheren Natrium- und Kaliumphosphate werden gemeinsam als kondensierte Phos­ phate bezeichnet.
Das technisch wichtige Pentanatriumtriphosphat, Na5P3O10 (Natnumtnpolyphosphat), ist ein wasserfrei oder mit 6 H2O kristallisierendes, nicht hygroskopisches, weißes, wasser­ lösliches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O]n-Na mit n = 3. In 100 g Was­ ser lösen sich bei Zimmertemperatur etwa 17 g, bei 60° ca. 20 g, bei 100° rund 32 g des kristallwasserfreien Salzes; nach zweistündigem Erhitzen der Lösung auf 100° entstehen durch Hydrolyse etwa 8% Orthophosphat und 15% Diphosphat. Bei der Herstellung von Pentanatriumtriphosphat wird Phosphorsäure mit Sodalösung oder Natronlauge im stöchiometrischen Verhältnis zur Reaktion gebracht und die Lsg. durch Versprühen ent­ wässert. Ähnlich wie Grahamsches Salz und Natriumdiphosphat löst Pentanatriumtriphos­ phat viele unlösliche Metall-Verbindungen (auch Kalkseifen usw.). Pentakaliumtriphos­ phat, K5P3O10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-%- igen Lösung (< 23% P2O5, 25% K2O) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natriumkaliumtripolyphosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert:
(NaPO3)3 + 2 KOH → Na3K2P3O10 + H2O
Diese Phosphate sind erfindungsgemäß genau wie Natriumtripolyphosphat, Kaliumtripoly­ phosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtri­ polyphosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripoly­ phosphat und Natriumkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat sind erfindungsgemäß ein­ setzbar.
In bevorzugten Verfahren enthalten die verformbare(n) Masse(n) Phosphat(e), vorzugswei­ se Alkalimetallphosphat(e), besonders bevorzugt Pentanatrium- bzw. Pentakaliumtriphos­ phat (Natrium- bzw. Kaliumtripolyphosphat), in Mengen von 20 bis 80 Gew.-%, vorzugs­ weise von 25 bis 75 Gew.-% uns insbesondere von 30 bis 70 Gew.-%, jeweils bezogen auf die Masse.
Werden Phosphate als einzige hydratisierbare Stoffe in den Massen eingesetzt, so sollte die Menge an zugesetztem Wasser deren Wasserbindevermögen nicht überschreiten, um den Gehalt der Formkörper an freiem Wasser gering zu halten. Insgesamt haben sich zur Ein­ haltung der vorstehend genannten Grenzwerte Verfahren als bevorzugt herausgestellt, bei denen das Gewichtsverhältnis von Phosphat(en) zu Wasser in der verformbaren Masse kleiner 1 : 0,3, vorzugsweise kleiner 1 : 0,25 und insbesondere kleiner 1 : 0,2 ist.
Weitere Inhaltsstoffe, die anstelle von oder zusätzlich zu Phosphaten in den verformbaren Massen enthalten sein können, sind Carbonate und/oder Hydrogencarbonate, wobei die Alkalimetallsalze und darunter besonders die Kalium- und/oder Natriumsalze bevorzugt sind. In bevorzugten Verfahren enthalten die verformbare(n) Masse(n) Carbonat(e) und/oder Hydrogencarbonat(e), vorzugsweise Alkalicarbonate, besonders bevorzugt Natri­ umcarbonat, in Mengen von 5 bis 50 Gew.-%, vorzugsweise von 7,5 bis 40 Gew.-% und insbesondere von 10 bis 30 Gew.-%, jeweils bezogen auf die Masse.
Auch hierbei gilt bezüglich des Wassergehalts der Massen das Vorstehend Gesagte. Es haben sich dabei insbesondere Verfahren als bevorzugt herausgestellt, bei denen das Ge­ wichtsverhältnis von Carbonat(en) und/oder Hydrogencarbonat(en) zu Wasser in der ver­ formbaren Masse kleiner 1 : 0,2, vorzugsweise kleiner 1 : 0,15 und insbesondere kleiner 1 : 0,1 ist.
Weitere Inhaltsstoffe, die anstelle von oder zusätzlich zu den genannten Phosphaten und/oder Carbonatenl/Hydrogencarbonaten in den verformbaren Massen enthalten sein können, sind Silikate, wobei die Alkalimetallsilikate und darunter besonders die amorphen und/oder kristallinen Kalium- und/oder Natriumdisilikate bevorzugt sind.
Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+1.H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Derartige kristalline Schichtsilikate werden beispielsweise in der europäischen Patentanmeldung EP A-0 164 514 beschrieben. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na2Si2O5.yH2O bevorzugt, wobei β-Natrium­ disilikat beispielsweise nach dem Verfahren erhalten werden kann, das in der internatio­ nalen Patentanmeldung WO-A-91/08171 beschrieben ist.
Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1 : 2 bis 1 : 3,3, vorzugsweise von 1 : 2 bis 1 : 2,8 und insbesondere von 1 : 2 bis 1 : 2,6, welche lösever­ zögert sind und Sekundärwascheigenschaflen aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispiels­ weise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalli­ ne Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels auf­ weisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokri­ stalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamor­ phe Silikate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Was­ sergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE-A- 44 00 024 beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Sili­ kate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
In im Rahmen der vorliegenden Erfindung bevorzugten Verfahren enthalten die verform­ bare(n) Masse(n) Silikat(e), vorzugsweise Alkalisilikate, besonders bevorzugt kristalline oder amorphe Alkalidisilikate, in Mengen von 10 bis 60 Gew.-%, vorzugsweise von 15 bis 50 Gew.-% und insbesondere von 20 bis 40 Gew.-%, jeweils bezogen auf die Masse, ent­ halten.
Auch hierbei gilt bezüglich des Wassergehalts der Massen das Vorstehend Gesagte. Es haben sich dabei insbesondere Verfahren als bevorzugt herausgestellt, bei denen das Ge­ wichtsverhältnis von Silikat(en) zu Wasser in der verformbaren Masse kleiner 1 : 0,25, vorzugsweise kleiner 1 : 0,2 und insbesondere kleiner 1 : 0,15 ist.
Ebenfalls als wichtige Komponente in den erfindungsgemäß zu verarbeitenden Massen geeignet sind Stoffe aus der Gruppe der Zeolithe. Insbesondere bei der Herstellung von Waschmitteltabletten stellen diese Substanzen bevorzugte Gerüststoffe dar. Zeolithe wei­ sen die allgemeine Formel
M2/nO.Al2O3.xSiO2.yH2O
auf, in der M ein Kation der Wertigkeit n ist, x für Werte steht, die größer oder gleich 2 sind und y Werte zwischen 0 und 20 annehmen kann. Die Zeolithstrukturen bilden sich durch Verknüpfung von AlO4 Tetraedern mit SiO4 Tetraedern, wobei dieses Netzwerk von Kationen und Wassermolekülen besetzt ist. Die Kationen in diesen Strukturen sind relativ mobil und können in unterschiedlichen Graden durch andere Kationen ausgetauscht sein. Das interkristalline "zeolithische" Wasser kann je nach Zeolithtyp kontinuierlich und re­ versibel abgegeben werden, während bei einigen Zeolithtypen auch strukturelle Änderun­ gen mit der Wasserabgabe bzw. -aufnahme einhergehen.
In den strukturellen Untereinheiten bilden die "primären Bindungseinheiten" (AlO4 Tetraeder und SiO4-Tetraeder) sogenannte "sekundäre Bindungseinheiten", die die Form ein- oder mehrfacher Ringe besitzen. So treten in verschiedenen Zeolithen beispielsweise 4-, 6- und 8-gliedrige Ringe auf (als S4R, S6R und S8R bezeichnet), andere Typen werden über vier- und sechsgliedrige Doppelringprismen verbunden (häufigste Typen: D4R als viereckiges bzw. D6R als sechseckiges Prisma). Diese "sekundären Untereinheiten" ver­ binden unterschiedliche Polyhedra, die mit griechischen Buchstaben bezeichnet werden. Am verbreitetsten ist hierbei ein Vielflächner, der aus sechs Quadraten und acht gleichsei­ tigen Sechsecken aufgebaut ist und der als "β" bezeichnet wird. Mit diesen Baueinheiten lassen sich mannigfaltige unterschiedliche Zeolithe realisieren. Bislang sind 34 natürliche Zeolith-Mineralien sowie ungefähr 100 synthetische Zeolithe bekannt.
Der bekannteste Zeolith, Zeolith 4 A, stellt eine kubische Zusammenstellung von β- Käfigen dar, die durch D4R-Untereinheiten verknüpft sind. Er gehört der Zeolith- Strukturgruppe 3 an und sein dreidimensionales Netzwerk weist Poren von 2,2 Å und 4,2 Å Größe auf, die Formeleinheit in der Elementarzelle läßt sich mit Na12[AlO2)12(SiO2)12]. 27 H2O beschreiben.
Bevorzugt werden im erfindungsgemäßen Verfahren Zeolithe vom Faujasit-Typ eingesetzt. Zusammen mit den Zeolithen X und Y gehört das Mineral Faujasit zu den Faujasit-Typen innerhalb der Zeolith-Strukturgruppe 4, die durch die Doppelsechsring-Untereinheit D6R gekennzeichnet ist (Vergleiche Donald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, Seite 92). Zur Zeolith-Strukturgruppe 4 zählen neben den genannten Faujasit-Typen noch die Mineralien Chabazit und. Gmelinit sowie die synthetischen Zeolithe R (Chabazit-Typ), S (Gnielinit-Typ), L und ZK-5. Die beiden letztgenannten synthetischen Zeolithe haben keine mineralischen Analoga.
Zeolithe vom Faujasit-Typ sind aus β-Käflgen aufgebaut, die tetrahedral über D6R- Untereinheiten verknüpft sind, wobei die β-Käfige ähnlich den Kohlenstoffatomen im Diamanten angeordnet sind. Das dreidimensionale Netzwerk der im erfindungsgemäßen Verfahren eingesetzten Zeolithe vom Faujasit-Typ weist Poren von 2,2 und 7,4 Å auf, die Elementarzelle enthält darüber hinaus 8 Kavitäten mit ca. 13 Å Durchmesser und. läßt sich durch die Formel Na86[(AlO2)86(SiO2)106.264 H2O beschreiben. Das Netzwerk des Zeo­ lith X enthält dabei ein Hohlraumvolumen von ungefähr 50%, bezogen auf den dehydrati­ sierten Kristall, was den größten Leerraum aller bekannten Zeolithe darstellt (Zeolith Y: ca. 48% Hohlraumvolumen, Faujasit: ca. 47% Hohlraumvolumen). (Alle Daten aus: Do­ nald W. Breck: "Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Syd­ ney, Toronto, 1974, Seiten 145, 176, 177).
Im Rahmen der vorliegenden Erfindung kennzeichnet der Begriff "Zeolith vom Faujasit- Typ" alle drei Zeolithe, die die Faujasit-Untergruppe der Zeolith-Strukturgruppe 4 bilden. Neben dem Zeolith X sind erfindungsgemäß also auch Zeolith Y und Faujasit sowie Mi­ schungen dieser Verbindungen erfindungsgemäß einsetzbar, wobei der reine Zeolith X bevorzugt ist.
Auch Mischungen oder Cokristallisate von Zeolithen des Faujasit-Typs mit anderen Zeo­ lithen, die nicht zwingend der Zeolith-Strukturgruppe 4 angehören müssen, sind erfin­ dungsgemäß einsetzbar, wobei die Vorteile des erfindungsgemäßen Verfahrens besonders deutlich zu Tage treten, wenn mindestens 50 Gew.-% des Abpuderungsmittels aus einem Zeolithen vom Faujasit-Typ bestehen. Denkbar ist beispielsweise auch, daß man die mini­ male Menge eines Zeoliths vom Faujasit-Typ (0,5 Gew.-%, bezogen auf das Gewicht des entstehenden Formkörpers) einsetzt und als restliches Abpuderungsmittel herkömmlichen Zeolith A verwendet. Bevorzugt ist aber in jedem Fall, daß das Abpuderungsmittel aus­ schließlich aus einem oder mehreren Zeolithen vom Faujasit-Typ besteht, wobei Zeolith X wiederum bevorzugt ist.
Die Aluminiumsilikate, die im erfindungsgemäßen Verfahren bevorzugt eingesetzt werden, sind kommerziell erhältlich, und die Methoden zu ihrer Darstellung sind in Standardmono­ graphien beschrieben.
Beispiele für kommerziell erhältliche Zeolithe vom X-Typ können durch die folgenden Formeln beschrieben werden:
Na86[(AlO2)86(SiO2)106].x H2O,
K86[(AlO2)86(SiO2)106].x H2O,
Ca40Na6[(AlO2)86(SiO2)106].x H2O,
Sr21Ba22[(AlO2)86(SiO2)106].x H2O,
in denen x Werte zwischen 0 und 276 annehmen kann und die Porengrößen von 8,0 bis 8,4 Å aufweisen.
Kommerziell erhältlich und im Rahmen des erfindungsgemäßen Verfahrens bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel
nNa2O.(1-n)K2O.Al2O3.(2-2,5)SiO2.(3,5-5,5)H2O
beschrieben werden kann.
Auch Zeolithe vom Y-Typ sind kommerziell erhältlich uns lassen sich beispielsweise durch die Formeln
Na56[(AlO2)56(SiO2)136].x H2O,
K56[(AlO2)56(SiO2)136].x H2O,
in denen x für Zahlen zwischen 0 und 276 steht und die Porengrößen von 8,0 Å aufweisen, beschreiben.
Bevorzugte Verfahren sind dadurch gekennzeichnet, daß die verformbare(n) Masse(n) Zeolith(e), vorzugsweise Zeolith A, Zeolith P, Zeolith X und Mischungen aus diesen, in Mengen von 10 bis 60 Gew.-%, vorzugsweise von 15 bis 50 Gew.-% und insbesondere von 20 bis 40 Gew.-%, jeweils bezogen auf die Masse, enthalten.
Die Teilchengrößen der bevorzugt im erfindungsgemäßen Verfahren eingesetzten Zeolithe vom Faujasit-Typ liegt dabei vorzugsweise im Bereich von 0,1 bis zu 100 µm, vorzugs­ weise zwischen 0,5 und 50 µm und insbesondere zwischen 1 und 30 µm, jeweils mit Stan­ dard-Teilchengrößenbestimmungsmethoden gemessen.
Es ist dabei generell bevorzugt, in den erfindungsgemäß zu verarbeitenden Massen feintei­ lige Feststoffe einzusetzen, unabhängig davon, ob es sich dabei um die genannten Zeolithe oder andere Gerüststoffe oder Bleichmittel, Bleichaktivatoren oder andere Feststoffe han­ delt. Ganz allgemein sind Verfahrensvarianten bevorzugt, bei denen die mittlere Partikel­ größe der in der/den verformbaren Masse(n) eingesetzten Feststoffe unter 400 µm, vor­ zugsweise unter 300 µm und insbesondere unter 200 µm liegt.
Die mittlere Partikelgröße stellt dabei das arithmetische Mittel aus den einzelnen Teilchen­ größen dar, die noch schwanken können. Besonders bevorzugte Verfahren sind dadurch gekennzeichnet, daß weniger als 10 Gew.-%, vorzugsweise weniger als 5 Gew.-% und insbesondere weniger als 1 Gew.-% der in der/den verformbaren Masse(n) eingesetzten Feststoffe Teilchengrößen oberhalb 1000 µm aufweisen. Der obere Teilchengrößenbereich läßt sich noch weiter einengen, so daß besonders bevorzugte Verfahren dadurch gekenn­ zeichnet sind, daß weniger als 15 Gew.-%, vorzugsweise weniger als 10 Gew.-% und ins­ besondere weniger als 5 Gew.-% der in der/den verformbaren Masse(n) eingesetzten Fest­ stoffe Teilchengrößen oberhalb 800 µm aufweisen.
Generell sind aber noch engere Teilchengrößenverteilungen bevorzugt, bei denen die Schwankungsbreite um die mittlere Teilchengröße maximal 50%, vorzugsweise maximal 40% und insbesondere maximal 30% der mittleren Teilchengröße beträgt, die Teilchen­ größen also minimal das 0,7- und maximal das 1,3-fache der mittleren Teilchengröße aus­ machen.
Vorstehend wurde das Gewichtsverhältnis von Wasser zu bestimmten Inhaltsstoffen in erfindungsgemäß bevorzugt zu verarbeitenden Massen angegeben. Nach der Verarbeitung wird dieses Wasser vorzugsweise in Form von Hydratwasser gebunden, so daß die Verfah­ rensendprodukte vorzugsweise einen deutlich niedrigeren Gehalt an freiem Wasser aufwei­ sen. Bevorzugte Endprodukte des erfindungsgemäßen Verfahrens sind dabei im wesentli­ chen wasserfrei, d. h. in einem Zustand, bei dem der Gehalt an flüssigem, d. h. nicht in Form von Hydratwasser und/oder Konstitutionswasser vorliegendem Wasser unter 2 Gew.-%, vorzugsweise unter 1 Gew.-% und insbesondere sogar unter 0,5 Gew.-%, jeweils bezogen auf die Formkörper, liegt. Dementsprechend sind erfindungsgemäße Verfahren bevorzugt, bei denen die Formkörper weniger als 10 Gew.-%, vorzugsweise weniger als 5 Gew.-%, besonders bevorzugt weniger als 1 Gew.-% und insbesondere weniger als 0,5 Gew.-% frei­ es Wasser enthalten. Wasser kann dementsprechend im wesentlichen nur in chemisch und/oder physikalisch gebundener Form bzw. als Bestandteil der als Feststoff vorliegenden Rohstoffe bzw. Compounds, aber nicht als Flüssigkeit, Lösung oder Dispersion in den Endprodukten des erfindungsgemäßen Verfahrens vorliegen. Vorteilhafterweise weisen die Formkörper am Ende des erfindungsgemäßen Herstellungsprozesses insgesamt einen Was­ sergehalt von nicht mehr als 15 Gew.-% auf, wobei dieses Wasser also nicht in flüssiger freier Form, sondern chemisch und/oder physikalisch gebunden vorliegt, und es insbeson­ dere bevorzugt ist, daß der Gehalt an nicht an Zeolith und/oder an Silikaten gebundenem Wasser im festen Vorgemisch nicht mehr als 10 Gew.-% und insbesondere nicht mehr als 7 Gew.-% beträgt.
Im Rahmen der vorliegenden Erfindung besonders bevorzugte Verfahrensendprodukte besitzen nicht nur einen äußerst geringen Anteil an freiem Wasser, sondern sind vorzugs­ weise selbst noch in der Lage, weiteres freies Wasser zu binden. In bevorzugten Verfahren beträgt der Wassergehalt der Formkörper 50 bis 100% des berechneten Wasserbindever­ mögens beträgt.
Das Wasserbindevermögen ist die Fähigkeit einer Substanz (hier: des Verfahrensendpro­ dukts), Wasser in chemisch stabiler Form aufzunehmen und gibt letztlich an, wieviel Was­ ser in Form von stabilen Hydraten von einer Substanz bzw. einem Formkörper gebunden werden kann. Der dimensionslose Wert des Wasserbindevermögens (WBV) errechnet sich dabei aus:
wobei n die Zahl der Wassermoleküle im entsprechenden Hydrat der Substanz und M die Molmasse der nicht hydratisierten Substanz ist. Damit ergibt sich beispielsweise für das Wasserbindevermögen von wasserfreiem Natriumcarbonat (Bildung von Natriumcarbonat- Monohydrat) ein Wert von
Der Wert WBV kann dabei für alle hydratbildenden Substanzen, die in den erfindungsge­ mäß zu verarbeitenden Massen eingesetzt werden, berechnet werden. Über die prozentua­ len Anteile dieser Substanzen ergibt sich dann das Gesamt-Wasserbindevermögen der Re­ zeptur. In bevorzugten Verfahrensendprodukten beträgt der Wassergehalt dann zwischen 50 und 100% dieses berechneten Wertes.
Neben dem Wassergehalt der Verfahrensendprodukte und dem Verhältnis von Wasser zu bestimmten Rohstoffen können auch Angaben über den absoluten Wassergehalt der erfin­ dungsgemäß zu verarbeitenden Massen gemacht werden. In besonders bevorzugten Ver­ fahren weist/weisen die verformbare(n) Masse(n) bei der Verarbeitung einen Wassergehalt von 2,5 bis 30 Gew.-%, vorzugsweise von 5 bis 25 Gew.-% und insbesondere von 7,5 bis 20 Gew.-%, jeweils bezogen auf die Masse, auf.
Ein weiterer Mechanismus zur Aushärtung der im erfindungsgemäßen Verfahren verar­ beiteten Massen liegt in der Abkühlung bei der Verarbeitung der Massen oberhalb ihres Erweichungspunktes. Verfahren, bei denen die Aushärtung der verformbaren Masse(n) durch Kühlung unter den Schmelzpunkt erfolgt, sind demnach bevorzugt.
Unter Temperatureinwirkung erweichbare Massen lassen sich einfach konfektionieren, indem die gewünschten weiteren Inhaltsstoffe mit einem schmelz- oder erweichbaren Stoff vermischt und die Mischung auf Temperaturen im Erweichungsbereich dieses Stoffes er­ wärmt und bei diesen Temperaturen formgebend verarbeitet wird. Besonders bevorzugt werden hierbei als schmelz- oder erweichbare Substanzen Wachse, Paraffine, Polyalky­ lenglycole usw. eingesetzt. Diese werden nachfolgend beschrieben.
Die schmelz- oder erweichbaren Substanzen sollten einen Schmelzbereich (Erstarrungsbereich) in einem solchen Temperaturbereich aufweisen, bei dem die übrigen Inhaltsstoffe der zu verarbeitenden Massen keiner zu hohen thermischen Belastung ausgesetzt werden. Andererseits muß der Schmelzbereich jedoch ausreichend hoch sein, um bei zu­ mindest leicht erhöhter Temperatur noch einen handhabbaren Fomikörper bereitzustellen. In erfindungsgemäß bevorzugten Massen weisen die schmelz- oder erweichbaren Substanzen einen Schmelzpunkt über 30°C auf.
Es hat sich als vorteilhaft erwiesen, wenn die schmelz- oder erweichbaren Substanzen keinen scharf definierten Schmelzpunkt zeigt, wie er üblicherweise bei reinen, kristallinen Substanzen auftritt, sondern einen unter Umständen mehrere Grad Celsius unfassenden Schmelzbereich aufweisen. Die schmelz- oder erweichbaren Substanzen weisen vorzugsweise einen Schmelzbereich auf, der zwischen etwa 45°C und etwa 75°C liegt. Das heißt im vorliegenden Fall, daß der Schmelzbereich innerhalb des angegebenen Temperaturintervalls auftritt und bezeichnet nicht die Breite des Schmelzbereichs. Vorzugsweise beträgt die Breite des Schmelzbereichs wenigstens 1°C, vorzugsweise etwa 2 bis etwa 3°C.
Die oben genannten Eigenschaften werden in der Regel von sogenannten Wachen erfüllt. Unter "Wachsen" wird eine Reihe natürlicher oder künstlich gewonnener Stoffe "erstanden, die in der Regel über 40°C ohne Zersetzung schmelzen und schon wenig oberhalb des Schmelzpunktes verhältnismäßig niedrigviskos und nicht fadenziehend sind. Sie weisen eine stark temperaturabhängige Konsistenz und Löslichkeit auf.
Nach ihrer Herkunft teilt man die Wachse in drei Gruppen ein, die natürlichen Wachse, chemisch modifizierte Wachse und die synthetischen Wachse.
Zu den natürlichen Wachsen zählen beispielsweise pflanzliche Wachse wie Candelillawachs, Carnaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarmawachs, Reiskeimölwachs, Zuckerrohrwachs, Ouricurywachs, oder Montanwachs, tierische Wachse wie Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), oder Bürzelfett, Mineralwachse wie Ceresin oder Ozokerit (Erdwachs), oder petrochemische Wachse wie Petrolatum, Paraffinwachse oder Mikrowachse.
Zu den chemisch modifizierten Wachsen zählen beispielsweise Hartwachse wie Montanesterwachse, Sassolwachse oder hydrierte Jojobawachse.
Unter synthetischen Wachsen werden in der Regel Polyalkylenwachse oder Polyalkylenglycolwachse verstanden. Als schmelz- oder erweichbaren Substanzen für die durch Abkühlung aushärtenden Massen einsetzbar sind auch Verbindungen aus anderen Stoffklassen, die die genannten Erfordernisse hinsichtlich des Erweichungspunkts erfüllen. Als geeignete synthetische Verbindungen haben sich beispielsweise höhere Ester der Phthalsäure, insbesondere Dicyclohexylphthalat, das kommerziell unter dem Namen Unimoll® 66 (Bayer AG) erhältlich ist, erwiesen. Geeignet sind auch synthetisch hergestellte Wachse aus niederen Carbonsäuren und Fettalkoholen, beispielsweise Dimyristyl Tartrat, das unter dem Namen Cosmacol® ETLP (Condea) erhältlich ist. Umgekehrt sind auch synthetische oder teilsynthetische Ester aus niederen Alkoholen mit Fettsäuren aus nativen Quellen einsetzbar. In diese Stoffklasse fällt beispielsweise das Tegin® 90 (Goldschmidt), ein Glycerinmonostearat-palinitat. Auch Schellack, beispielsweise Schellack-KPS-Dreiring-SP (Kalkhoff GmbH) ist erfindungsgemäß als schmelz- oder erweichbaren Substanzen einsetzbar.
Ebenfalls zu den Wachsen im Rahmen der vorliegenden Erfindung werden beispielsweise die sogenannten Wachsalkohole gerechnet. Wachsalkohole sind höhermolekulare, wasserunlösliche Fettalkohole mit in der Regel etwa 22 bis 40 Kohlenstoffatomen. Die Wachsalkohole kommen beispielsweise in Form von Wachsestern höhermolekularer Fettsäuren (Wachssäuren) als Hauptbestandteil vieler natürlicher Wachse vor. Beispiele für Wachsalkohole sind Lignocerylalkohol (1-Tetracosanol), Cetylalkohol, Myristylalkohol oder Melissylalkohol. Die Umhüllung der erfindungsgemäß umhüllten Feststoffpartikel kann gegebenenfalls auch Wollwachsalkohole enthalten, worunter man Triterpenoid- und Steroidalkohole, beispielsweise Lanolin, versteht, das beispielsweise unter der Handelsbezeichnung Argowax® (Pamentier & Co) erhältlich ist. Ebenfalls zumindest anteilig als Bestandteil der schmelz- oder erweichbaren Substanzen einsetzbar sind im Rahmen der vorliegenden Erfindung Fettsäureglycerinester oder Fettsäurealkanolamide aber gegebenenfalls auch wasserunlösliche oder nur wenig wasserlösliche Polyalkylenglycolverbindungen.
Besonders bevorzugte schmelz- oder erweichbaren Substanzen in den zu verarbeitenden Massen sind solche aus der Gruppe der Polyethylenglycole (PEG) und/oder Polypropy­ lenglycole (PPG) enthält, wobei Polyethylenglycole mit Molmassen zwischen 1500 und 36.000 bevorzugt, solche mit Molmassen von 2000 bis 6000 besonders bevorzugt und sol­ che mit Mohnassen von 3000 bis 5000 insbesondere bevorzugt sind. Auch entsprechende Verfahren, die dadurch gekennzeichnet sind, daß die die plastisch verformbare(n) Masse(n) mindestens einen Stoff aus der Gruppe der Polyethylenglycole (PEG) und/oder Polypro­ pylenglycole (PPG) enthält/enthalten, sind bevorzugt.
Hierbei sind erfindungsgemäß zu verarbeitende Massen besonders bevorzugt, die als ein­ zige schmelz- oder erweichbaren Substanzen Propylenglycole (PPG) und/oder Polyethy­ lenglycole (PEG) enthalten. Erfindungsgemäß einsetzbare Polypropylenglycole (Kurzzei­ chen PPG) sind Polymere des Propylenglycols, die der allgemeinen Formel I
genügen, wobei n Werte zwischen 10 und 2000 annehmen kann. Bevorzugte PPG weisen Molmassen zwischen 1000 und 10.000, entsprechend Werten von n zwischen 17 und ca. 170, auf.
Erfindungsgemäß bevorzugt einsetzbare Polyethylenglycole (Kurzzeichen PEG) sind dabei Polymere des Ethylenglycols, die der allgemeinen Formel II
H-(O-CH2-CH2)n-OH (II)
genügen, wobei n Werte zwischen 20 und ca. 1000 annehmen kann. Die vorstehend ge­ nannten bevorzugten Molekulargewichtsbereiche entsprechen dabei bevorzugten Berei­ chen des Wertes n in Formel IV von ca. 30 bis ca. 820 (genau: von 34 bis 818), besonders bevorzugt von ca. 40 bis ca. 150 (genau: von 45 bis 136) und insbesondere von ca. 70 bis ca. 120 (genau: von 68 bis 113).
In einer weiteren bevorzugten Ausführungsform enthalten die erfindungsgemäß zu verarbeitenden Massen im überwiegenden Anteil Paraffinwachs. Das heißt, daß wenigstens 50 Gew.-% der insgesamt enthaltenen schmelz- oder erweichbaren Substanzen, vorzugsweise mehr, aus Paraffinwachs bestehen. Besonders geeignet sind Paraffinwachsgehalte (bezogen auf die Gesamtmenge schmelz- oder erweichbarer Substanzen) von etwa 60 Gew.-%, etwa 70 Gew.-% oder etwa 80 Gew.-%, wobei noch höhere Anteile von beispielsweise mehr als 90 Gew.-% besonders bevorzugt sind. In einer besonderen Ausführungsform der Erfindung besteht die Gesamtmenge der eingesetzten schmelz- oder erweichbaren Substanzen mindestens einer Masse ausschließlich aus Paraffinwachs.
Paraffinwachse weisen gegenüber den anderen genannten, natürlichen Wachsen im Rahmen der vorliegenden Erfindung den Vorteil auf, daß in einer alkalischen Reinigungsmittelumgebung keine Hydrolyse der Wachse stattfindet (wie sie beispielsweise bei den Wachsestern zu erwarten ist), da Paraffinwachs keine hydrolisierbaren Gruppen enthält.
Paraffinwachse bestehen hauptsächlich aus Alkanen, sowie niedrigen Anteilen an Iso- und Cycloalkanen. Das erfindungsgemäß einzusetzende Paraffin weist bevorzugt im wesentlichen keine Bestandteile mit einem Schmelzpunkt von mehr als 70°C, besonders bevorzugt von mehr als 60°C auf. Anteile hochschmelzender Alkane im Paraffin können bei Unterschreitung dieser Schmelztemperatur in der Reinigungsmittelflotte nicht erwünschte Wachsrückstände auf den zu reinigenden Oberflächen oder dem zu reinigenden Gut hinterlassen. Solche Wachsrückstände fuhren in der Regel zu einem unschönen Aussehen der gereinigten Oberfläche und sollten daher vermieden werden.
Bevorzugt zu verarbeitende Massen enthalten als schmelz- oder erweichbaren Substanzen mindestens ein Paraffinwachs mit einem Schmelzbereich von 50°C bis 60°C, wobei bevor­ zugte Verfahren dadurch gekennzeichnet sind, daß die verformbare(n) Masse(n) ein Paraf­ flnwachs mit einem Schmelzbereich von 50°C bis 55°C enthält/enthalten.
Vorzugsweise ist der Gehalt des eingesetzten Paraffinwachses an bei Umgebungstemperatur (in der Regel etwa 10 bis etwa 30°C) festen Alkanen, Isoalkanen und Cycloalkanen möglichst hoch. Je mehr feste Wachsbestandteile in einem Wachs bei Raumtemperatur vorhanden sind, desto brauchbarer ist es im Rahmen der vorliegenden Erfindung. Mit zunehmenden Anteil an festen Wachsbestandteilen steigt die Belastbarkeit der Verfahrensendprodukte gegenüber Stößen oder Reibung an anderen Oberflächen an, was zu einem länger anhaltenden Schutz führt. Hohe Anteile an Ölen oder flüssigen Wachsbestandteilen können zu einer Schwächung der Formkörper oder Formkörperbereiche führen, wodurch Poren geöffnet werden und die Aktivstoffe den Eingangs genannten Umgebungseinflüssen ausgesetzt werden.
Die schmelz- oder erweichbaren Substanzen können neben Paraffin als Hauptbestandteil noch eine oder mehrere der oben genannten Wachse oder wachsartigen Substanzen enthalten. In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung sollte das die schmelz- oder erweichbaren Substanzen bildende Gemisch so beschaffen sein, daß die Masse und der daraus gebildete Formkörper bzw Formkörperbestandteil wenigstens weitgehend wasserunlöslich sind. Die Löslichkeit in Wasser sollte bei einer Temperatur von etwa 30°C etwa 10 mg/l nicht übersteigen und vorzugsweise unterhalb 5 mg/l liegen.
In solchen Fällen sollten die schmelz- oder erweichbaren Substanzen jedoch eine möglichst geringe Wasserlöslichkeit, auch in Wasser mit erhöhter Temperatur, aufweisen, um eine temperaturunabhängige Freisetzung der Aktivsubstanzen möglichst weitgehend zu ver­ meiden.
Das vorstehend beschriebene Prinzip dient der verzögerten Freisetzung von Inhaltsstoffen zu einem bestimmten Zeitpunkt im Reinigungsgang und läßt sich besonders vorteilhaft anwenden, wenn im Hauptspülgang mit niedrigerer Temperatur (beispielsweise 55°C) gespült wird, so daß die Aktivsubstanz aus den Klarspülerpartikeln erst im Klarspülgang bei höheren Temperaturen (ca. 70°C) freigesetzt wird.
Bevorzugte erfindungsgemäß zu verarbeitende Massen sind dadurch gekennzeichnet, daß sie als schmelz- oder erweichbaren Substanzen ein oder mehrere Stoffe mit einem Schmelz­ bereich von 40°C bis 75°C in Mengen von 6 bis 30 Gew.-%, vorzugsweise von 7,5 bis 25 Gew.-% und insbesondere von 10 bis 20 Gew.-%, jeweils bezogen auf das Gewicht der Masse, enthalten.
Ein weiterer Mechanismus, nach dem die Aushärtung der Massen erfolgen kann, ist die Verdampfung von Lösungsmitteln. Hierzu können Lösungen oder Dispersionen der ge­ wünschten Inhaltsstoffe in einem oder mehreren geeigneten, leichtflüchtigen Lösungsmit­ tel hergestellt werden, die nach dem formgebenden Verarbeitungsschritt diese(s) Lö­ sungsmittel abgeben und dabei aushärten. Als Lösungsmittel bieten sich beispielsweise niedere Alkanole, Aldehyde, Ether, Ester usw. an, deren Auswahl je nach weiterer Zu­ sammensetzung der zu verarbeitenden Massen vorgenommen wird. Besonders geeignete Lösungsmittel für solche Verfahren, bei denen die Aushärtung der verformbarer. Masse(n) durch Verdampfung von Lösungsmitteln erfolgt, sind Ethanol, Propanol, Isopropanol, 1- Butanol, 2-Butanol, 2-Methy-1-Propanol, 2-Methyl-2-Propanol, 1-Pentanol, 2-Pentanol, 3- Pentanol, 2,2-Dimethyl-1-Propanol, 3-Methyl-1-butanol; 3-Methyl-2-butanol, 2-Methyl-2- butanol, 2-Methyl-1-Butanol, 1-Hexanol sowie die Essigsäureester der vorstehend ge­ nannten Alkohole, insbesondere Essigsäureethylester.
Die Verdampfung der genannten Lösungsmittel kann durch sich der Formgebung und Ab­ längung anschließende Erwärmung, oder durch Luftbewegung beschleunigt werden. Auch Kombinationen der genannten Maßnahmen sind hierzu geeignet, beispielsweise das Anbla­ sen der abgelängten Formkörper mit Warm- oder Heißluft.
Ein weiterer Mechanismus, der der Erhärtung der formgebend verarbeiteten und abge­ längten Massen zugrunde liegen kann, ist die Kristallisation. Verfahren, bei denen die Aushärtung der verformbaren Masse(n) durch Kristallisation erfolgt, sind ebenfalls bevor­ zugt.
Die Kristallisation als der Aushärtung zugrundeliegender Mechanismus kann genutzt wer­ den, indem beispielsweise Schmelzen kristalliner Substanzen als Grundlage einer oder mehrerer formgebend verarbeitbarer Massen dienen. Nach der Verarbeitung gehen solche Systeme in einen höheren Ordnungszustand über, der wiederum zur Aushärtung des ge­ samten gebildeten Formkörpers führt. Die Kristallisation kann aber auch durch Auskristal­ lisieren aus übersättigter Lösung erfolgen. Übersättigung ist dabei im Rahmen der vorlie­ genden Erfindung die Bezeichnung für einen metastabilen Zustand, in dem in einem abge­ schlossenen System mehr von einem Stoff vorhanden ist, als zur Sättigung erforderlich ist. Eine beispielsweise durch Unterkühlung erhaltene übersättigte Lösung enthält demnach mehr gelösten Stoff, als sie im thermischen Gleichgewicht enthalten dürfte. Der Überschuß an gelöster Substanz kann durch Impfen mit Keimen oder Staubteilchen oder durch Er­ schütterung des Systems zur augenblicklichen Kristallisation gebracht werden. Im Rahmen der vorliegenden Erfindung bezieht sich der Begriff "übersättigt" immer auf eine Tempe­ ratur von 20°C. Lösen sich in einem bestimmten Lösungsmittel bei einer Temperatur von 20°C von einem Stoff x Gramm im Liter, so ist die Lösung im Rahmen der vorliegenden Erfindung als "übersättigt" zu bezeichnen, wenn sie (x + y) Gramm des Stoffes im Liter enthält, wobei y < 0 gilt. So sind im Rahmen der vorliegenden Erfindung auch Lösungen als "übersättigt" zu bezeichnen, die mit einer erhöhten Temperatur als Grundlage einer zu verarbeitenden Masse dienen und bei dieser Temperatur verarbeitet werden, bei der sich mehr an gelöstem Stoff in der Lösung befindet, als sich bei 20°C in derselben Menge Lö­ sungsmittel lösen würde.
Unter dem Begriff "Löslichkeit" versteht die vorliegende Erfindung die maximale Menge eines Stoffes, die das Lösungsmittel bei einer bestimmten Temperatur aufnehmen kann, d. h. den Anteil des gelösten Stoffes in einer bei der betreffenden Temperatur gesättigten Lösung. Enthält eine Lösung mehr gelösten Stoff, als sie bei einer gegebenen Temperatur im thermodynamischen Gleichgewicht enthalten dürfte (z. B. bei Unterkühlung), so nennt man sie übersättigt. Durch Impfen mit Keimen läßt sich bewirken, daß der Überschuß als Bodenkörper der nun nur noch gesättigten Lösung ausfällt. Eine in Bezug auf eine Sub­ stanz gesättigte Lösung vermag aber noch andere Stoffe aufzulösen (z. B. kann man in ei­ ner gesättigten Kochsalz-Lösung noch Zucker auflösen).
Der Zustand der Übersättigung läßt sich, wie vorstehend beschrieben, durch langsames Abkühlen bzw. durch Unterkühlung einer Lösung erreichen, solange der gelöste Stoff im Lösungsmittel bei höheren Temperaturen besser löslich ist. Andere Möglichkeiten, zu übersättigten Lösungen zu gelangen, sind beispielsweise das Vereinigen zweier Lösungen, deren Inhaltsstoffe zu einem anderen Stoff reagieren, welcher nicht sofort ausfällt (verhin­ derte bzw. verzögerte Fällungsreaktionen). Der letztgenannte Mechanismus ist als Grund­ lage der Bildung von erfindungsgemäß zu verarbeitenden Massen besonders geeignet.
Prinzipiell ist der Zustand der Übersättigung bei jeder Art von Lösung erreichbar, wenn­ gleich die Anwendung des in der vorliegenden Anmeldung beschriebenen Prinzips wie bereits erwähnt bei der Herstellung von Wasch- und Reinigungsmitteln Anwendung findet.
Demzufolge sind einige Systeme, die prinzipiell zur Bildung übersättigter Lösungen nei­ gen, erfindungsgemäß weniger gut einsetzbar, da die zugrundeliegenden Stoffsysteme ökologisch, toxikologisch oder aus ökonomischen Gründen nicht eingesetzt werden kön­ nen. Neben nichtionischen Tensiden oder gängigen nichtwäßrigen Lösungsmitteln sind daher erfindungsgemäße Verfahren mit dem zuletzt genannten Aushärtungsmechanismus besonders bevorzugt, bei denen als Grundlage mindestens einer zu verarbeitenden Masse eine übersättigte wäßrige Lösung eingesetzt wird.
Wie bereits vorstehend erwähnt, bezieht sich der Zustand der Übersättigung im Rahmen der vorliegenden Erfindung auf die gesättigte Lösung bei 20°C. Durch den Einsatz von Lösungen, die eine Temperatur oberhalb von 20°C aufweisen, kann der Zustand der Über­ sättigung leicht erreicht werden. Erfindungsgemäße Verfahren, bei denen die durch Kri­ stallisation aushärtende Masse bei der Verarbeitung eine Temperatur zwischen 35 und 120°C, vorzugsweise zwischen 40 und 110°C, besonders bevorzugt zwischen 45 und 90°C und insbesondere zwischen 50 und 80°C, aufweist, sind im Rahmen der vorliegenden Er­ findung bevorzugt.
Da die hergestellten Wasch- und Reinigungsmittelformkörper in der Regel weder bei er­ höhten Temperaturen gelagert noch später bei diesen erhöhten Temperaturen angewandt werden, führt die Abkühlung der Mischung zur Ausfällung des Anteils an gelöstem Stoff aus der übersättigten Lösung, der über die Sättigungsgrenze bei 20°C hinweg in der Lö­ sung enthalten war. Die übersättigte Lösung kann sich so beim Abkühlen in eine gesättigte Lösung und einen Bodenkörper aufteilen. Es ist aber auch möglich, daß durch Rekristalli­ sations- und Hydratationsphänomene die übersättigte Lösung bei der Abkühlung zu einem Feststoff erstarrt. Dies ist beispielsweise der Fall, wenn sich bestimmte hydratwasserhalti­ ge Salze beim Erhitzen in ihrem Kristallwasser auflösen. Beim Abkühlen bilden sich hier oft übersättigte Lösungen, die durch mechanische Einwirkung oder Keimzugabe zu einem Feststoff - dem kristallwasserhaltigen Salz als dem bei Raumtemperatur thermodynamisch stabilen Zustand - erstarren. Bekannt ist dieses Phänomen beispielsweise von Natriumthio­ sulfat-Pentahydrat und Natriumacetat-Trihydrat, wobei insbesondere das letztgenannte hydratwasserhaltige Salz in Form der übersättigten Lösung im erfindungsgemäßen. Verfah­ ren vorteilhaft einsetzbar ist. Auch spezielle Wasch- und Reinigungsmittel-Inhaltsstoffe, wie beispielsweise Phosphonate zeigen dieses Phänomen und eignen sich in Form der Lö­ sungen hervorragend als Granulationshilfsmittel. Hierzu werden die entsprechenden Phos­ phonsäuren (siehe unten) mit konzentrierter Alkalilauge neutralisiert, wobei sich die Lö­ sung durch die Neutralisationswärme aufheizt. Beim Abkühlen bilden sich aus diesen Lö­ sungen Feststoffe der entsprechenden Alkaliphosphonate. Durch Einarbeiten weiterer Wasch- und Reinigungsmittel-Inhaltsstoffe in die noch warmen Lösungen lassen sich er­ findungsgemäß verarbeitbare Massen unterschiedlicher Zusammensetzung herstellen. Be­ sonders bevorzugte erfindungsgemäße Verfahren sind dadurch gekennzeichnet, daß die als Grundlage der aushärtenden Masse dienende übersättigte Lösung bei Raumtemperatur zu einem Feststoff erstarrt. Bevorzugt ist hierbei, daß die vormals übersättigte Lösung nach dem Erstarren zu einem Feststoff durch Erhitzen auf die Temperatur, bei der die übersät­ tigte Lösung gebildet wurde, nicht wieder in eine übersättigte Lösung überführt werden kann. Dies ist beispielsweise bei den erwähnten Phosphonaten der fall.
Die als Grundlage der aushärtenden Masse dienende übersättigte Lösung kann - wie vor­ stehend erwähnt - auf mehreren Wegen erhalten und dann nach optionaler Zumischung weiterer Inhaltsstoffe erfindungsgemäß verarbeitet werden. Ein einfacher Weg besteht bei­ spielsweise darin, daß die als Grundlage der aushärtenden Masse dienende übersättigte Lösung durch Auflösen des gelösten Stoffes in erhitztem Lösungsmittel hergestellt wird. Werden auf diese Weise im erhitzten Lösungsmittel höhere Mengen des gelösten Stoffes gelöst, als sich bei 20°C lösen würden, so liegt eine im Sinne der vorliegenden Erfindung übersättigte Lösung vor, die entweder heiß (siehe oben) oder abgekühlt und im metastabi­ len Zustand in den Mischer gegeben werden kann.
Es ist ferner möglich, hydratwasserhaltige Salze durch "trockenes" Erhitzen zu entwässern und im eigenen Kristallwasser aufzulösen (siehe oben). Auch dies ist eine Methode, im Rahmen der vorliegenden Erfindung einsetzbare übersättigte Lösungen herzustellen.
Ein weiterer Weg besteht darin, eine nicht-übersättigte Lösung mit einem Gas oder einer weiteren Flüssigkeit bzw. Lösung zu versetzen, so daß der gelöste Stoff in der Lösung zu einem schlechter löslichen Stoff reagiert oder sich in der Mischung der Lösungsmittel schlechter löst. Das Vereinigen zweier Lösungen, die jeweils zwei Stoffe enthalten, welche miteinander zu einem schlechter löslichen Stoff reagieren, ist ebenfalls eine Methode zur Herstellung übersättigter Lösungen, solange der schlechter lösliche Stoff nicht augenblick­ lich ausfällt. Im Rahmen der vorliegenden Erfindung ebenfalls bevorzugte Verfahren sind dadurch gekennzeichnet, daß die als Grundlage der aushärtenden Masse dienende übersät­ tigte Lösung durch Vereinigung von zwei oder mehr Lösungen hergestellt wird. Beispiele für solche Wege, übersättigte Lösungen herzustellen, werden nachstehend behandelt.
Bevorzugte erfindungsgemäße Verfahren sind dadurch gekennzeichnet, daß die übersät­ tigte wäßrige Lösung durch Vereinigen einer wäßrigen Lösung eines oder mehrerer saurer Inhaltsstoffe von Wasch- und Reinigungsmitteln, vorzugsweise aus der Gruppe der Ten­ sidsäuren, der Buildersäuren und der Komplexbildnersäuren, und einer wäßrigen Alkalilö­ sung, vorzugsweise einer wäßrigen Alkalihydroxidlösung, insbesondere einer wäßrigen Natriumhydroxidlösung, erhalten wird.
Unter den bereits weiter oben erwähnten Vertretern der genannten Verbindungsklassen nehmen insbesondere die Phosphonate im Rahmen der vorliegenden Erfindung eine her­ ausragende Stellung ein. In bevorzugten erfindungsgemäßen Verfahren wird daher die übersättigte wäßrige Lösung durch Vereinigen einer wäßrigen Phosphonsäurelösung mit Konzentrationen oberhalb 45 Gew.-%, vorzugsweise oberhalb 50 Gew.-% und insbesonde­ re oberhalb 55 Gew.-%, jeweils bezogen auf die Phosphonsäurelösung und einer wäßrigen Natriumhydroxidlösung mit Konzentrationen oberhalb 35 Gew.-%, vorzugsweise oberhalb 40 Gew.-% und insbesondere oberhalb 45 Gew.-%, jeweils bezogen auf die Natriumhy­ droxidlösung, erhalten.
Die Aushärtung der verformbaren Masse(n) kann erfindungsgemäß auch durch chemische Reaktion(en), insbesondere Polymerisation, erfolgen. Prinzipiell sind dabei alle chemi­ schen Reaktionen geeignet, die ausgehend von einem oder mehreren flüssigen bis pastösen Stoffen durch Reaktion mit (einem) anderen Stoff(en) zu Feststoffen führen. Insbesondere chemische Reaktionen, die nicht schlagartig zur genannten Zustandsänderung fuhren, sind dabei geeignet. Aus der Vielfalt chemischer Reaktionen, die zur Erstarrungsphänomena führen, sind insbesondere Reaktionen geeignet, bei denen der Aufbau größerer Moleküle aus kleineren Molekülen erfolgt. Hierzu zählen wiederum bevorzugt Reaktionen, bei denen viele kleine Moleküle zu (einem) größeren Molekül(en) reagieren. Dies sind sogenannte Polyreaktionen (Polymerisation, Polyaddition, Polykondensation) und polymeranaloge Reaktionen. Die entsprechenden Polymerisate, Polyaddukte (Polyadditionsprodukte) oder Polykondensate (Polykondensationsprodukte) verleihen dem fertig abgelängten Formkör­ per dann seine Festigkeit.
Im Hinblick auf den Einsatzzweck der erfindungsgemäß hergestellten Produkte ist es be­ vorzugt, als Aushärtungsmechanismus die Bildung von solchen festen Substanzen aus flüs­ sigen oder pastösen Ausgangsstoffen zu nutzen, die im Wasch- und Reinigungsmittel oh­ nehin als Inhaltsstoffe, beispielsweise Cobuilder, soil-repellents oder soil-release-Polymere eingesetzt werden sollen. Solche Cobuilder können beispielsweise aus den Gruppen der Polycarboxylate/Polycarbonsäuren, polymeren Polycarboxylate, Asparaginsäure, Polyace­ tale, Dextrine usw. stammen. Diese Stoffklassen werden weiter unten beschrieben. Ein weiterer Mechanismus, nach dem die Aushärtung der verformbaren Masse(n) im Rah­ men des erfindungsgemäßen Verfahrens erfolgen kann, ist die durch Änderung der rheolo­ gischen Eigenschaften erfolgende Aushärtung.
Dabei macht man sich die Eigenschaft zunutze, daß bestimmte Substanzen unter Einwir­ kung von Scherkräften ihre rheologischen Eigenschaften zum Teil drastisch ändern. Bei­ spiele für solche Systeme, die dem Fachmann geläufig sind, sind beispielsweise Schichtsi­ likate, die unter Scherung in geeigneten Matrizes stark verdickend wirken und zu schnittfe­ sten Massen führen können.
Selbstverständlich können in einer Masse auch zwei oder mehrere Aushärtungsmechanis­ men miteinander verbunden bzw. gleichzeitig genutzt werden. Hier bieten sich beispiels­ weise die Kristallisation unter gleichzeitiger Lösungsmittelverdampfung, die Abkühlung bei gleichzeitiger Kristallisation, die Wasserbindung ("innere Trocknung") bei gleichzeiti­ ger äußerer Trocknung usw. an.
Der allgemeinen Beschreibung von Mechanismen, die im erfindungsgemäßen Verfahren der Aushärtung zugrunde liegen können, schließt sich eine detaillierte Beschreibung der in den zu verarbeitenden Massen sonst noch einzusetzenden Inhaltsstoffe an.
Bevorzugte Endprodukte des erfindungsgemäßen Verfahrens, also bevorzugte Wasch- und Reinigungsmittelformkörper, enthalten weiterhin ein oder mehrere Tensid(e). Demzufolge ist es bevorzugt, daß mindestens eine der zu verarbeitenden Massen Tensid(e) enthält. In den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern können anionische, nichtionische, kationische und/oder amphotere Tenside beziehungsweise Mischungen aus diesen eingesetzt werden. Bevorzugt sind aus anwendungstechnischer Sicht Mischungen aus anionischen und nichtionischen Tensiden. Der Gesamttensidgehalt der Formkörper liegt im Falle von Waschmitteltabletten bei 5 bis 60 Gew.-%, bezogen auf das Formkör­ pergewicht, wobei Tensidgehalte über 15 Gew.-% bevorzugt sind, während Reinigungs­ mitteltabletten für das maschinelle Geschirrspülen vorzugsweise unter 5 Gew.-% Tensid(e) enthalten.
Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9-13- Alkylbenzolsulfonate, Olefinsulfonate, d. h. Gemische aus Alken- und Hydroxyalkansul­ fonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z. B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren ge­ eignet.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglyce­ rinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevor­ zugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fett­ säuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Ca­ prinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefel­ säurehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettal­ kohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin be­ vorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemi­ schen Rohstoffen. Aus waschtechnischem Interesse sind die C12-C16-Alkylsulfate und C15-Alkylsulfate sowie C14-C15-Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-Patentschriften 3,234,258 oder 5,075,041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten gerad­ kettigen oder verzweigten C7-21-Alkohole, wie 2-Methyl-verzweigte C9-11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-18-Fettalkohole mit 1 bis 4 EO, sind ge­ eignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8-18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sul­ fosuccinate 81217 00070 552 001000280000000200012000285918110600040 0002019930771 00004 81098enthalten einen Fettalkohokest, der sich von ethoxylierten Fettalkoholen ab­ leitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fet­ talkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z. B. Kokos-, Palmkem- oder Talgfettsäuren, abgeleitete Seifengemische.
Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxy­ lierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durch­ schnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alko­ holrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalko­ holresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z. B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14 Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxy­ lierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine einge­ engte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylver­ zweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykose­ einheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungs­ grad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine belie­ bige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als allei­ niges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und pro­ poxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkyl­ kette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Pa­ tentanmeldung JP 58/217598 beschrieben sind oder die vorzugsweise nach dem in der in­ ternationalen Patentanmeldung WO-A-90/13533 beschriebenen Verfahren hergestellt wer­ den.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N­ dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealka­ nolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vor­ zugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (III),
in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Was­ serstoff, einen Alkyl- oder Hydroxyalkykest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuc­ kers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylie­ rung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (N),
in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlen­ stoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Aryl­ rest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Poly­ hydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substitu­ iert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes.
[Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann beispielsweise nach der Lehre der internationalen Anmeldung WO-A-95/07331 durch Umsetzung mit Fettsäu­ remethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhy­ droxyfettsäureamide überführt werden.
Im Rahmen der vorliegenden Erfindung ist die Herstellung von Wasch- und Reinigungs­ mittelformkörpern bevorzugt, die anionische(s) und nichtionische(s) Tensid(e) enthalten, wobei anwendungstechnische Vorteile aus bestimmten Mengenverhältnissen, in denen die einzelnen Tensidklassen eingesetzt werden, resultieren können.
So sind beispielsweise Wasch- und Reinigungsmittelformkörper besonders bevorzugt, bei denen das Verhältnis von Aniontensid(en) zu Niotensid(en) zwischen 10 : 1 und 1 : 10, vor­ zugsweise zwischen 7,5 : 1 und 1 : 5 und insbesondere zwischen 5 : 1 und 1 : 2 beträgt. Bevor­ zugt sind auch Wasch- und Reinigungsmittelformkörper, die Tensid(e), vorzugsweise anionische(s) und/oder nichtionische(s) Tensid(e), in Mengen von 5 bis 40 Gew.-%, vor­ zugsweise von 7,5 bis 35 Gew.-%, besonders bevorzugt von 10 bis 30 Gew.-% uns insbe­ sondere von 12,5 bis 25 Gew.-%, jeweils bezogen auf das Formkörpergewicht, enthalten.
Es kann aus anwendungstechnischer Sicht Vorteile haben, wenn bestimmte Tensidklassen in einigen Phasen der Wasch- und Reinigungsmittelformkörper oder im gesamten Form­ körper, d. h. in allen Phasen, nicht enthalten sind. Eine weitere wichtige Ausführungsform der vorliegenden Erfindung sieht daher vor, daß mindestens eine Phase der Formkörper frei von nichtionischen Tensiden ist.
Umgekehrt kann aber auch durch den Gehalt einzelner Phasen oder des gesamten Form­ körpers, d. h. aller Phasen, an bestimmten Tensiden ein positiver Effekt erzielt werden. Das Einbringen der oben beschriebenen Alkylpolyglycoside hat sich dabei als vorteilhaft er­ wiesen, so daß Wasch- und Reinigungsmittelformkörper bevorzugt sind, in denen minde­ stens eine Phase der Formkörper Alkylpolyglycoside enthält.
Ähnlich wie bei den nichtionischen Tensiden können auch aus dem Weglassen von anioni­ schen Tensiden aus einzelnen oder allen Phasen Wasch- und Reinigungsmittelformkörper resultieren, die sich für bestimmte Anwendungsgebiete besser eignen. Es sind daher im Rahmen der vorliegenden Erfindung auch Wasch- und Reinigungsmittelformkörper denk­ bar, bei denen mindestens eine Phase der Formkörper frei von anionischen Tensiden ist.
Wie bereits erwähnt, beschränkt sich der Einsatz von Tensiden bei Reinigungsmittelt­ abletten für das maschinelle Geschirrspülen vorzugsweise auf den Einsatz nichtionischer Tenside in geringen Mengen. Im Rahmen der vorliegenden Erfindung bevorzugt als Reini­ gungsmitteltabletten einzusetzende Wasch- und Reinigungsmittelformkörper sind dadurch gekennzeichnet, daß sie Gesamttensidgehalte unterhalb von 5 Gew.-%, vorzugsweise un­ terhalb von 4 Gew.-%, besonders bevorzugt unterhalb von 3 Gew.-% und insbesondere unterhalb von 2 Gew.-%, jeweils bezogen auf ihr Gesamtgewicht, aufweisen. Als Tenside werden in maschinellen Geschirrspülmitteln üblicherweise lediglich schwachschäumende nichtionische Tenside eingesetzt. Vertreter aus den Gruppen der anionischen, kationischen oder amphoteren Tenside haben dagegen eine geringere Bedeutung. Mit besonderem Vorzug enthalten erfindungsgemäß hergestellte Reinigungsmittelformkörper für das maschinellen Geschirrspülen nichtionische Tenside, insbesondere nichtionische Tenside aus der Gruppe der alkoxylierten Alkohole. Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol einge­ setzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üb­ licherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z. B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Al­ kohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die an­ gegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zu­ sätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
Insbesondere bei der erfindungsgemäßen Herstellung von Waschmittelformkörpern oder Reinigungsmittelformkörpern für das maschinelle Geschirrspülen ist es bevorzugt, daß die Wasch- und Reinigungsmittelformkörper ein nichtionisches Tensid enthalten, das einen Schmelzpunkt oberhalb Raumtemperatur aufweist. Demzufolge enthält mindestens eine der verformbaren Massen im erfindungsgemäßen Verfahren bevorzugt ein nichtionisches Tensid mit einem Schmelzpunkt oberhalb von 20°C. Bevorzugt einzusetzende nichtioni­ sche Tenside weisen Schmelzpunkte oberhalb von 25°C auf, besonders bevorzugt einzu­ setzende nichtionische Tenside haben Schmelzpunkte zwischen 25 und 60°C, insbesondere zwischen 26,6 und 43,3°C.
Geeignete nichtionische Tenside, die Schmelz- bzw. Erweichungspunkte im genannten Temperaturbereich aufweisen, sind beispielsweise schwachschäumende nichtionische Ten­ side, die bei Raumtemperatur fest oder hochviskos sein können. Werden bei Raumtempe­ raturhochviskose Niotenside eingesetzt, so ist bevorzugt, daß diese eine Viskosität ober­ halb von 20 Pas, vorzugsweise oberhalb von 35 Pas und insbesondere oberhalb 40 Pas aufweisen. Auch Niotenside, die bei Raumtemperatur wachsartige Konsistenz besitzen, sind bevorzugt.
Bevorzugt als bei Raumtemperatur feste einzusetzende Niotenside stammen aus den Grup­ pen der alkoxylierten Niotenside, insbesondere der ethoxylierten primären Alkohole und Mischungen dieser Tenside mit strukturell komplizierter aufgebauten Tensiden wie Po­ lyoxypropylen/Polyoxyethylen/Polyoxypropylen (PO/EO/PO)-Tenside. Solche (PO/EO/PO)-Niotenside zeichnen sich darüber hinaus durch gute Schaumkontrolle aus.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das nichtionische Tenside mit einem Schmelzpunkt oberhalb Raumtemperatur ein ethoxyliertes Niotensid, das aus der Reaktion von einem Monohydroxyalkanol oder Alkylphenol mit 6 bis 20 C- Atomen mit vorzugsweise mindestens 12 Mol, besonders bevorzugt mindestens 15 Mol, insbesondere mindestens 20 Mol Ethylenoxid pro Mol Alkohol bzw. Alkylphenol hervor­ gegangen ist.
Ein besonders bevorzugtes bei Raumtemperatur festes, einzusetzendes Niotensid wird aus einem geradkettigen Fettalkohol mit 16 bis 20 Kohlenstoffatomen (C16-20-Alkohol), vor­ zugsweise einem C18-Alkohol und mindestens 12 Mol, vorzugsweise mindestens 15 Mol und insbesondere mindestens 20 Mol Ethylenoxid gewonnen. Hierunter sind die soge­ nannten "narrow range ethoxylates" (siehe oben) besonders bevorzugt.
Das bei Raumtemperatur feste Niotensid besitzt vorzugsweise zusätzlich Propylenoxidein­ heiten im Molekül. Vorzugsweise machen solche PO-Einheiten bis zu 25 Gew.-%, beson­ ders bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Mol­ masse des nichtionischen Tensids aus. Besonders bevorzugte nichtionische Tenside sind ethoxylierte Monohydroxyalkanole oder Alkylphenole, die zusätzlich Polyoxyethylen- Polyoxypropylen Blockcopolymereinheiten aufweisen. Der Alkohol- bzw. Alkylphenolteil solcher Niotensidmoleküle macht dabei vorzugsweise mehr als 30 Gew.-%, besonders be­ vorzugt mehr als 50 Gew.-% und insbesondere mehr als 70 Gew.-% der gesamten Molma­ sse solcher Niotenside aus.
Weitere besonders bevorzugt einzusetzende Niotenside mit Schmelzpunkten oberhalb Raumtemperatur enthalten 40 bis 70% eines Polyoxypropy­ len/Polyoxyethylen/Polyoxypropylen-Blockpolymerblends, der 75 Gew.-% eines umge­ kehrten Block-Copolymers von Polyoxyethylen und Polyoxypropylen mit 17 Mol Ethy­ lenoxid und 44 Mol Propylenoxid und 25 Gew.-% eines Block-Copolymers von Po­ lyoxyethylen und Polyoxypropylen, initiiert mit Trimethylolpropan und enthaltend 24 Mol Ethylenoxid und 99 Mol Propylenoxid pro Mol Trimethylolpropan.
Nichtionische Tenside, die mit besonderem Vorzug eingesetzt werden können, sind bei­ spielsweise unter dem Namen Poly Tergent® SLF-18 von der Firma Olin Cfhemicals er­ hältlich.
Ein weiter bevorzugtes Tensid läßt sich durch die Formel
R1O[CH2CH(CH3)O]x[CH2CH2O]y[CH2CH(OH)R2]
beschreiben, in der R1 für einen linearen oder verzweigten aliphatischen Kohlenwasser­ stoffrest mit 4 bis 18 Kohlenstoffatomen oder Mischungen hieraus steht, R2 einen linearen oder verzweigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen oder Mischungen hieraus bezeichnet und x für Werte zwischen 0,5 und 1,5 und y für einen Wert von minde­ stens 15 steht.
Weitere bevorzugt einsetzbare Niotenside sind die endgruppenverschlossenen Po­ ly(oxyalkylierten) Niotenside der Formel
R1O[CH2CH(R3)O]x[CH2]kCH(OH)[CH2]jOR2
in der R1 und R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen. Wenn der Wert x ≧ 2 ist, kann jedes R3 in der obenstehenden Formel unterschiedlich sein. R1 und R2 sind vorzugsweise lineare oder verzweigte, gesät­ tigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 6 bis 22 Kohlenstoffatomen, wobei Reste mit 8 bis 18 C-Atomen besonders bevorzugt sind. Für den Rest R3 sind H, -CH3 oder -CH2CH3 besonders bevorzugt. Besonders bevorzugte Werte für x liegen im Bereich von 1 bis 20, insbesondere von 6 bis 15.
Wie vorstehend beschrieben, kann jedes R3 in der obenstehenden Formel unterschiedlich sein, falls x ≧ 2 ist. Hierdurch kann die Alkylenoxideinheit in der eckigen Klammer variiert werden. Steht x beispielsweise für 3, kann der Rest R3 ausgewählt werden, um Ethylen­ oxid- (R3 = H) oder Propylenoxid- (R3 = CH3) Einheiten zu bilden, die in jedweder Rei­ henfolge aneinandergefügt sein können, beispielsweise (EO)(PO)(EO), (EO)(EO)(PO), (EO)(EO)(EO), (PO)(EO)(PO), (PO)(PO)(EO) und (PO)(PO)(PO). Der Wert 3 für x ist hierbei beispielhaft gewählt worden und kann durchaus größer sein, wobei die Variations­ breite mit steigenden x-Werten zunimmt und beispielsweise eine große Anzahl (EO)- Gruppen, kombiniert mit einer geringen Anzahl (PO)-Gruppen einschließt, oder umge­ kehrt.
Insbesondere bevorzugte endgruppenverschlossenen Poly(oxyalkylierte) Alkohole der obenstehenden Formel weisen Werte von k = 1 und j = 1 auf, so daß sich die vorstehende Formel zu
R1O[CH2CH(R3)O]xCH2CH(OH)CH2OR2
vereinfacht. In der letztgenannten Formel sind R1, R2 und R3 wie oben definiert und x steht für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesondere von 6 bis 18. Beson­ ders bevorzugt sind Tenside, bei denen die Reste R1 und R2 9 bis 14 C-Atome aufweisen, R3 für H steht und x Werte von 6 bis 15 annimmt.
Die vorstehenden Angaben bezogen sich dabei zum Teil auf die Verfahrensendprodukte, die - wie weiter oben erwähnt - auch zwei-, drei- oder vierphasig ausgestaltet sein können. Bezogen auf die einzelne zu verarbeitende Masse, die Tensid(e) enthält, sind bei der Pro­ duktion von Reinigungsmitteltabletten für das maschinelle Geschirrspülen Verfahren be­ vorzugt, bei denen die verformbare(n) Masse(n) Gesamttensidgehalte unterhalb von 5 Gew.-%, vorzugsweise unterhalb von 4 Gew.-%, besonders bevorzugt unterhalb von 3 Gew.-% und insbesondere unterhalb von 2 Gew.-%, jeweils bezogen auf die Masse, auf­ weisen.
Neben den genannten Bestandteilen Builder und Tensid, können die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper weitere in Wasch- und Reinigungsmittel übliche Inhaltsstoffe aus der Gruppe der Bleichmittel, Bleichaktivatoren, Desintegrationshilfsmit­ tel, Farbstoffe, Duftstoffe, optischen Aufheller, Enzyme, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, Vergrauungsinhibitoren, Farbübertragungsinhibitoren und Korro­ sionsinhibitoren enthalten. Diese Stoffe können dabei in allen zu verarbeitenden Massen eingesetzt werden, es ist aber auch möglich, durch die Trennung bestimmter Inhaltsstoffe vorteilhafte Eigenschaften nutzbar zu machen.
Um den Zerfall hochverdichteter Formkörper zu erleichtern, ist es möglich, Desintegrati­ onshilfsmittel, sogenannte Tablettensprengmittel, in diese einzuarbeiten, um die Zerfalls­ zeiten zu verkürzen. Diese Stoffe eignen sich beispielsweise dazu, die Freisetzung einzel­ ner Formkörperbereiche gegenüber anderen Bereichen zu beschleunigen. Dies läßt sich im erfindungsgemäßen Verfahren dadurch realisieren, daß nur eine der zu verarbeitenden Massen solche Stoffe enthält, oder daß mehrere Massen solche Stoffe in unterschiedlichen Mengen enthalten. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden ge­ mäß Römpp (9. Auflage, Bd. 6, S. 4440) und Voigt "Lehrbuch der pharmazeutischen Technologie" (6 Auflage, 1987, S. 182-184) Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sorgen.
Diese Stoffe, die auch aufgrund ihrer Wirkung als "Spreng"mittel bezeichnet werden, ver­ größern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfs­ mittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. mo­ difizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein- Derivate.
Bevorzugte Wasch- und Reinigungsmittelformkörper enthalten 0,5 bis 10 Gew.-%, vor­ zugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% eines oder mehrerer Desinte­ grationshilfsmittel, jeweils bezogen auf das Formkörpergewicht. Enthält nur eine Masse Desintegrationshilfsmittel, so beziehen sich die genannten Angaben nur auf das Gewicht dieser Masse.
Als bevorzugte Desintegrationsmittel werden im Rahmen der vorliegenden Erfindung Desintegrationsmittel auf Cellulosebasis eingesetzt, so daß bevorzugte Wasch- und Reini­ gungsmittelformkörper ein solches Desintegrationsmittel auf Cellulosebasis in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% enthalten. Reine Cellulose weist die formale Bruttozusammensetzung (C6H10O5)n auf und stellt formal betrachtet ein β-1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy- Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy- Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose- Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Cellulo­ seester und -ether sowie Aminocellulosen. Die genannten Cellulosederivate werden vor­ zugsweise nicht allein als Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulose­ derivaten ist.
Die als Desintegrationshilfsmittel eingesetzte Cellulose wird vorzugsweise nicht in feintei­ liger Form eingesetzt, sondern vor dem Zumischen zu den zu verpressenden Vorgemischen in eine gröbere Form überführt, beispielsweise granuliert oder kompaktiert. Wasch- und Reinigungsmittelformkörper, die Sprengmittel in granularer oder gegebenenfalls cogranu­ lierter Form enthalten, werden in den deutschen Patentanmeldungen DE 197 09 991 (Ste­ fan Herzog) und DE 197 10 254 (Henkel) sowie der internationalen Patentanmeldung WO98/40463 (Henkel) beschrieben. Diesen Schriften sind auch nähere Angaben zur Her­ stellung granulierter, kompaktierter oder cogranulierter Cellulosesprengmittel zu entneh­ men. Die Teilchengrößen solcher Desintegrationsmittel liegen zumeist oberhalb 200 µm, vorzugsweise zu mindestens 90 Gew.-% zwischen 300 und 1600 µm und insbesondere zu mindestens 90 Gew.-% zwischen 400 und 1200 µm. Die vorstehend genannten und in den zitierten Schriften näher beschriebenen gröberen Desintegrationshilfsmittel auf Cellulose­ basis sind im Rahmen der vorliegenden Erfindung bevorzugt als Desintegrationshilfsmittel einzusetzen und im Handel beispielsweise unter der Bezeichnung Arbocel® TF-30-HG von der Firma Rettenmaier erhältlich.
Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Kompo­ nente kann mikrokristalline Cellulose verwendet werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulo­ sen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 µm aufwei­ sen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 µm kom­ paktierbar sind.
Im Rahmen der vorliegenden Erfindung bevorzugte Wasch- und Reinigungsmittelform­ körper enthalten zusätzlich ein Desintegrationshilfsmittel, vorzugsweise ein Desintegrati­ onshilfsmittel auf Cellulosebasis, vorzugsweise in granularer, cogranulierter oder kompak­ tierter Form, in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Formkörpergewicht.
Die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper können darüber hinaus ein gasentwickelndes Brausesystem enthalten, das in eine oder mehrere der zu verarbeiten­ den Massen inkorporiert wird. Das gasentwickelnde Brausesystem kann aus einer einzigen Substanz bestehen, die bei Kontakt mit Wasser ein Gas freisetzt. Unter diesen Verbindun­ gen ist insbesondere das Magnesiumperoxid zu nennen, das bei Kontakt mit Wasser Sauer­ stoff freisetzt. Üblicherweise besteht das gasfreisetzende Sprudelsystem jedoch seinerseits aus mindestens zwei Bestandteilen, die miteinander unter Gasbildung reagieren. Während hier eine Vielzahl von Systemen denk- und ausführbar ist, die beispielsweise Stickstoff, Sauerstoff oder Wasserstoff freisetzen, wird sich das in den erfindungsgemäßen Wasch- und Reinigungsmittelformkörpern eingesetzte Sprudelsystem sowohl anhand ökonomi­ scher als auch anhand ökologischer Gesichtspunkte auswählen lassen. Bevorzugte Brause­ systeme bestehen aus Alkalimetallcarbonat und/oder -hydrogencarbonat sowie einem Aci­ difizierungsmittel, das geeignet ist, aus den Alkalimetallsalzen in wäßrige Lösung Kohlen­ dioxid freizusetzen.
Bei den Alkalimetallcarbonaten bzw. -hydrogencarbonaten sind die Natrium- und Kalium­ salze aus Kostengründen gegenüber den anderen Salzen deutlich bevorzugt. Selbstver­ ständlich müssen nicht die betreffenden reinen Alkalimetallcarbonate bzw. -hydrogencarbonate eingesetzt werden; vielmehr können Gemische unterschiedlicher Car­ bonate und Hydrogencarbonate aus waschtechnischem Interesse bevorzugt sein.
In bevorzugten Wasch- und Reinigungsmittelformkörper werden als Brausesystem 2 bis 20 Gew.-%, vorzugsweise 3 bis 15 Gew.-% und insbesondere 5 bis 10 Gew.-% eines Alkali­ metallcarbonats oder -hydrogencarbonats sowie 1 bis 15, vorzugsweise 2 bis 12 und insbe­ sondere 3 bis 10 Gew.-% eines Acidifizierungsmittels, jeweils bezogen auf den gesamten Formkörper, eingesetzt. Der Gehalt einzelner Massen an den genannten Substanzen kann dabei durchaus höher liegen.
Als Acidifizierungsmittel, die aus den Alkalisalzen in wäßriger Lösung Kohlendioxid frei­ setzen, sind beispielsweise Borsäure sowie Alkalimetallhydrogensulfate, Alkalimetalldihy­ drogenphosphate und andere anorganische Salze einsetzbar. Bevorzugt werden allerdings organische Acidifizierungsmittel verwendet, wobei die Citronensäure ein besonders bevor­ zugtes Acidifizierungsmittel ist. Einsetzbar sind aber auch insbesondere die anderen festen Mono-, Oligo- und Polycarbonsäuren. Aus dieser Gruppe wiederum bevorzugt sind Wein­ säure, Bernsteinsäure, Malonsäure, Adipinsäure, Maleinsäure, Fumarsäure, Oxalsäure so­ wie Polyacrylsäure. Organische Sulfonsäuren wie Amidosulfonsäure sind ebenfalls ein­ setzbar. Kommerziell erhältlich und als Acidifizierungsmittel im Rahmen der vorliegenden Erfindung ebenfalls bevorzugt einsetzbar ist Sokalan® DCS (Warenzeichen der BASF), ein Gemisch aus Bernsteinsäure (max. 31 Gew.-%), Glutarsäure (max. 50 Gew.-%) und Adi­ pinsäure (max. 33 Gew.-%).
Bevorzugt sind im Rahmen der vorliegenden Erfindung Wasch- und Reingungsmittel­ formkörper, bei denen als Acidifizierungsmittel im Brausesystem ein Stoff aus der Gruppe der organischen Di-, Tri- und Oligocarbonsäuren bzw. Gemische aus diesen eingesetzt werden.
In im Rahmen der vorliegenden Erfindung bevorzugten Verfahren enthält mindestens eine der verformbaren Massen Bleichmittel aus der Gruppe der Sauerstoff oder Halogen- Bleichmittel, insbesondere der Chlorbleichmittel, unter besonderer Bevorzugung von Na­ triumperborat und Natriumpercarbonat, in Mengen von 2 bis 25 Gew.-%, vorzugsweise von 5 bis 20 Gew.-% und insbesondere von 10 bis 15 Gew.-%, jeweils bezogen auf die Masse. Diese Stoffe werden nachfolgende beschrieben.
Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen hat das Natriumpercarbonat besondere Bedeutung. Dabei ist "Natriumpercarbonat" eine in unspe­ zifischer Weise verwendete Bezeichnung für Natriumcarbonat-Peroxohydrate, welche streng genommen keine "Percarbonate" (also Salze der Perkohlensäure) sondern Wasser­ stoffperoxid-Addukte an Natriumcarbonat sind. Die Handelsware hat die durchschnittliche Zusammensetzung 2 Na2CO3.3 H2O2 und ist damit kein Peroxycarbonat. Natriumpercar­ bonat bildet ein weißes, wasserlösliches Pulver der Dichte 2,14 gcm-3, das leicht in Natri­ umcarbonat und bleichend bzw. oxidierend wirkenden Sauerstoff zerfällt.
Natriumcarbonatperoxohydrat wurde erstmals 1899 durch Fällung mit Ethanol aus einer Lösung von Natriumcarbonat in Wasserstoffperoxid erhalten, aber irrtümlich als Peroxy­ carbonat angesehen. Erst 1909 wurde die Verbindung als Wasserstoffperoxid- Anlagerungsverbindung erkannt, dennoch hat die historische Bezeichnung "Natriumper­ carbonat" sich in der Praxis durchgesetzt.
Die industrielle Herstellung von Natriumpercarbonat wird überwiegend durch Fällung aus wäßriger Lösung (sogenanntes Naßverfahren) hergestellt. Hierbei werden wäßrige Lösun­ gen von Natriumcarbonat und Wasserstoffperoxid vereinigt und das Natriumpercarbonat durch Aussalzmittel (überwiegend Natriumchlorid), Kristallisierhilfsmittel (beispielsweise Polyphosphate, Polyacrylate) und Stabilisatoren (beispielsweise Mg2+-Ionen) gefällt. Das ausgefällte Salz, das noch 5 bis 12 Gew.-% Mutterlauge enthält, wird anschließend abzen­ trifuigiert und in Fließbett-Trocknern bei 90°C getrocknet. Das Schüttgewicht des Fertig­ produkts kann je nach Herstellungsprozeß zwischen 800 und 1200 g/l schwanken. In der Regel wird das Percarbonat durch ein zusätzliches Coating stabilisiert. Coatingverfahren und Stoffe, die zur Beschichtung eingesetzt werden, sind in der Patentliteratur breit be­ schrieben. Grundsätzlich können erfindungsgemäß alle handelsüblichen Percarbonattypen eingesetzt werden, wie sie beispielsweise von den Firmen Solvay Interox, Degussa, Kemi­ ra oder Akzo angeboten werden.
Weitere brauchbare Bleichmittel sind beispielsweise Natriumperborattetrahydrat und Na­ triumperboratmonohydrat, Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Auch beim Einsatz der Bleichmittel ist es möglich, auf den Einsatz von Tensiden und/oder Gerüststoffen zu verzichten, so daß reine Bleichmitteltabletten herstellbar sind. Sollen solche Bleichmitteltabletten zur Textil­ wäsche eingesetzt werden, ist eine Kombination von Natriumpercarbonat mit Natriumses­ quicarbonat bevorzugt, unabhängig davon, welche weiteren Inhaltsstoffe in den Formkör­ pern enthalten sind. Werden Reinigungs- oder Bleichmitteltabletten für das maschinelle Geschirrspülen hergestellt, so können auch Bleichmittel aus der Gruppe der organischen Bleichmittel eingesetzt werden. Typische organische Bleichmittel sind die Diacylperoxide, wie z. B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäu­ ren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren ge­ nannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstitu­ ierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-α-Naphtoesäure und Magnesium-monoperphthalat, (b) die aliphatischen oder substituiert aliphatischen Peroxy­ säuren, wie Pemxylaurinsäure, Peroxystearinsäure, ε-Phthalimidoperoxycapronsäure [Phthaloiminoperoxyhexansäure (PAP)], o-Carboxybenzamidoperoxycapronsäure, N­ nonenylamidoperadipinsäure und N-nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1,12-Diperoxycarbonsäure, 1,9- Diperoxyazelainsäure, Diperocysebacinsäure, Diperoxybrassylsäure, die Diperoxyphthal­ säuren, 2-Decyldiperoxybutan-1,4-disäure, N,N-Terephthaloyl-di(6-aminopercapronsäue) können eingesetzt werden.
Als Bleichmittel in Formkörpern für das maschinelle Geschirrspülen können auch Chlor oder Brom freisetzende Substanzen eingesetzt werden. Unter den geeigneten Chlor oder Brom freisetzenden Materialien kommen beispielsweise heterocyclische N-Brom- und N- Chloramide, beispielsweise Trichlorisocyanursäure, Tribromisocyanursäure, Dibromisocyanursäure und/oder Dichlorisocyanursäure (DICA) und/oder deren Salze mit Kationen wie Kalium und Natrium in Betracht. Hydantoinverbindungen, wie 1,3-Dichlor-5,5- dimethylhydanthoin sind ebenfalls geeignet.
In erfindungsgemäß weiter bevorzugten Verfahren enthält mindestens eine der verformba­ ren Massen Bleichaktivatoren aus den Gruppen der mehrfach acylierten Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), der N-Acylimide, insbesondere N- Nonanoylsuccinimid (NOSI), der acylierten Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS) und n-Methyl-Morpholinium- Acetonitril-Methylsulfat (MMA), in Mengen von 0,25 bis 15 Gew.-%, vorzugsweise von 0,5 bis 10 Gew.-% und insbesondere von 1 bis 5 Gew.-%, jeweils bezogen auf die Masse. Auch diese Substanzen werden nachfolgend beschrieben.
Um beim Waschen oder Reinigen bei Temperaturen von 60°C und darunter eine verbes­ serte Bleichwirkung zu erreichen, können Bleichaktivatoren eingearbeitet werden. Bleich­ aktivatoren, die die Wirkung der Bleichmittel unterstützen, sind beispielsweise Verbindun­ gen, die eine oder mehrere N- bzw. O-Acylgruppen enthalten, wie Substanzen aus der Klasse der Anhydride, der Ester, der Imide und der acylierten Imidazole oder Oxime. Bei­ spiele sind Tetraacetylethylendiamin (TAED), Tetraacetylmethylendiamin (TAMD) und Tetraacetylhexylendiamin (TAHD), aber auch Pentaacetylglucose (PAG), 1,5-Diacetyl- 2,2-dioxohexahydro-1,3,5-triazin (DADHT) und Isatosäureanhydrid (ISA).
Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C- Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N- Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat, 2,5-Diacetoxy-2,5-dihydrofuran, n-Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA), und die aus den deutschen Patentanmeldungen DE 196 16 693 und DE 196 16 767 bekannten Enolester sowie acetyliertes Sorbitol und Mannitol beziehungsweise deren Mischungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton, und/oder N-acylierte Lactame, beispielsweise N- Benzoylcaprolactam. Hydrophil substituierte Acylacetale und Acyllactame werden ebenfalls bevorzugt eingesetzt. Auch Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden.
Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie bei­ spielsweise Mn-, Fe-, Co-, Ru- oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.
Bevorzugt werden Bleichaktivatoren aus der Gruppe der mehrfach acylierte Alkylen­ diamine, insbesondere Tetraacetylethylendiamin (TAED), N-Acylimide, insbesondere N- Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), n-Methyl-Morpholinium-Acetonitril- Methylsulfat (MMA), vorzugsweise in Mengen bis 10 Gew.-%, insbesondere 0,1 Gew.-% bis 8 Gew.-%, besonders 2 bis 8 Gew.-% und besonders bevorzugt 2 bis 6 Gew.-% bezo­ gen auf das gesamte Mittel, eingesetzt.
Bleichverstärkende Übergangsmetallkomplexe, insbesondere mit den Zentralatomen Mn, Fe, Co, Cu, Mo, V, Ti und/oder Ru, bevorzugt ausgewählt aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)- Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans, des Mangansulfats werden in üblichen Mengen, vorzugsweise in einer Menge bis zu 5 Gew.-%, insbesondere von 0,0025 Gew.-% bis 1 Gew.-% und be­ sonders bevorzugt von 0,01 Gew.-% bis 0,25 Gew.-%, jeweils bezogen auf das gesamte Mittel, eingesetzt. Aber in spezielle Fällen kann auch mehr Bleichaktivator eingesetzt wer­ den.
Wegen ihrer oxidierenden Wirkung ist es vorteilhaft, die Bleichmittel von anderen Inhalts­ stoffen zu trennen, wozu sich insbesondere erfindungsgemäße Verfahren zur Herstellung von Mehrphasenformkörpern eignen. Verfahren, in denen eine der verformbaren Massen Bleichmittel enthält, während eine andere verformbare Masse Bleichaktivatoren enthält, sind bevorzugt.
Ein weiteres bevorzugtes Verfahren ist dadurch gekennzeichnet, daß mindestens eine der verformbaren Massen Silberschutzmittel aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole und der Übergangsmetall­ salze oder -komplexe, besonders bevorzugt Benzotriazol und/oder Alkylaminotriazol, in Mengen von 0,01 bis 5 Gew.-%, vorzugsweise von 0,05 bis 4 Gew-% und insbesondere von 0,5 bis 3 Gew.-%, jeweils bezogen auf die Masse, enthält.
Die genannten Korrosionsinhibitoren können zum Schutze des Spülgutes oder der Ma­ schine ebenfalls in die zu verarbeitenden Massen eingearbeitet werden, wobei im Bereich des maschinellen Geschirrspülens Silberschutzmittel eine besondere Bedeutung haben. Einsetzbar sind die bekannten Substanzen des Standes der Technik. Allgemein können vor allem Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole und der Übergangsmetallsal­ ze oder -komplexe eingesetzt werden. Besonders bevorzugt zu verwenden sind Benzotria­ zol und/oder Alkylaminotriazol. Man findet in Reinigerformulierungen darüber hinaus häufig aktivchlorhaltige Mittel, die das Korrodieren der Silberoberfläche deutlich vermin­ dern können. In chlorfreien Reinigern werden besonders Sauerstoff und stickstoffhaltige organische redoxaktive Verbindungen, wie zwei- und dreiwertige Phenole, z. B. Hydro­ chinon, Brenzkatechin, Hydroxyhydrochinon, Gallussäure, Phloroglucin, Pyrogallol bzw. Derivate dieser Verbindungsklassen. Auch salz- und komplexartige anorganische Verbin­ dungen, wie Salze der Metalle Mn, Ti, Zr, Hf, V, Co und Ce finden häufig Verwendung. Bevorzugt sind hierbei die Ubergangsmetallsalze, die ausgewählt sind aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt-(Carbonyl)- Komplexe, der Chloride des Cobalts oder Mangans und des Mangansulfats. Ebenfalls kön­ nen Zinkverbindungen zur Verhinderung der Korrosion am Spülgut eingesetzt werden.
Werden Korrosionsschutzmittel in mehrphasigen Formkörpern eingesetzt, so ist es bevor­ zugt, diese von den Bleichmitteln zu trennen. Verfahren, bei denen eine der verformbaren Massen Bleichmittel enthält, während eine andere verformbare Masse Korrosionsschutz­ mittel enthält, sind demnach bevorzugt.
Auch die Trennung der Bleichmittel von anderen Inhaltsstoffen kann vorteilhaft sein. Er­ findungsgemäße Verfahren, bei denen eine der verformbaren Massen Bleichmittel enthält, während eine andere verformbare Masse Enzyme enthält, sind ebenfalls bevorzugt. Als Enzyme kommen dabei insbesondere solche aus der Klassen der Hydrolasen wie der Pro­ teasen, Esterasen, Lipasen bzw. lipolytisch wirkende Enzyme, Amylasen, Cellulasen bzw. andere Glykosylhydrolasen und Gemische der genannten Enzyme in Frage. Alle diese Hy­ drolasen tragen in der Wäsche zur Entfernung von Verfleckungen wie protein-, fett- oder stärkehaltigen Verfleckungen und Vergrauungen bei. Cellulasen und andere Glykosylhy­ drolasen können darüber hinaus durch das Entfernen von Pilling und Mikrofibrillen zur Farberhaltung und zur Erhöhung der Weichheit des Textils beitragen. Zur Bleiche bzw. zur Hemmung der Farbübertragung können auch Oxidoreduktasen eingesetzt werden. Beson­ ders gut geeignet sind aus Bakterienstämmen oder Pilzen wie Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus, Coprinus Cinereus und Humicola insolens sowie aus deren gentechnisch modifizierten Varianten gewonnene enzymatische Wirkstoffe. Vor­ zugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Ba­ cillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease und Cellulase oder aus Cellulase und Lipase bzw. lipolytisch wirkenden En­ zymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen und Cellulase, insbesondere jedoch Protease und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere alpha- Amylasen, Iso-Amylasen, Pullulanasen und Pektinasen. Als Cellulasen werden vorzugs­ weise Cellobiohydrolasen, Endoglucanasen und -Glucosidasen, die auch Cellobiasen ge­ nannt werden, bzw. Mischungen aus diesen eingesetzt. Da sich verschiedene Cellulase- Typen durch ihre CMCase- und Avicelase-Aktivitäten unterscheiden, können durch ge­ zielte Mischungen der Cellulasen die gewünschten Aktivitäten eingestellt werden.
In Reinigungsmitteltabletten für das maschinelle Geschirrspülen werden naturgemäß ande­ re Enzyme eingesetzt, um den unterschiedlichen behandelten Substraten und Verschmut­ zungen Rechnung zu tragen. Hier kommen insbesondere solche aus der Klassen der Hy­ drolasen wie der Proteasen, Esterasen, Lipasen bzw. lipolytisch wirkende Enzyme, Amyla­ sen, Glykosylhydrolasen und Gemische der genannten Enzyme in Frage. Alle diese Hy­ drolasen tragen zur Entfernung von Anschmutzungen wie protein-, fett- oder stärkehaltigen Verfleckungen bei. Zur Bleiche können auch Oxidoreduktasen eingesetzt werden. Beson­ ders gut geeignet sind aus Bakterienstämmen oder Pilzen wie Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus, Coprinus Cinereus und Humicola insolens sowie aus deren gentechnisch modifizierten Varianten gewonnene enzymatische Wirkstoffe. Vor­ zugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Ba­ cillus Ientus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Pro­ tease, Lipase bzw. lipolytisch wirkenden Enzymen, insbesondere jedoch Protease und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von be­ sonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekann­ ten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere alpha-Amylasen, Iso- Amylasen, Pullulanasen und Pektinasen.
Die Enzyme können an Trägerstoffe adsorbiert oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,5 bis etwa 4,5 Gew.-%, jeweils bezogen auf die Masse(n), betragen.
Unabhängig vom Anwendungszweck der erfindungsgemäß hergestellten Formkörper (bei­ spielsweise Waschmittelformkörper oder Reinigungsmittelformkörper) sind Verfahren bevorzugt, bei denen einer der aus den Austrittsöffnungen austretenden Materialstränge Enzyme enthält.
Solche enzymhaltigen Massen werden vorzugsweise in Mehrstrangverfahren verarbeitet, d. h. neben einem Materialstrang, der Enzyme enthält, existiert mindestens ein weiterer Strang, der vorzugsweise frei von Enzymen ist. Hier sind Verfahren besonders bevorzugt, bei denen der enzymhaltige Materialstrang durch ein enzymfreies Material umhüllt ist.
Auch eine Trennung der Bleichmittel von den weiter oben beschriebenen Tensiden kann vorteilhaft sein, so daß bevorzugte Verfahren dadurch gekennzeichnet sind, daß eine der verformbaren Massen Bleichmittel enthält, während eine andere verformbare Masse Ten­ side, vorzugsweise nichtionische Tenside, unter besonderer Bevorzugung alkoxylierter Alkohole mit 10 bis 24 Kohlenstoffatomen und 1 bis 5 Alkylenoxideinheiten, enthält.
Weitere Inhaltsstoffe, die im Rahmen des erfindungsgemäßen Verfahrens Bestandteil einer oder mehrerer Masse(n) sein können, sind beispielsweise Cobuilder (siehe oben) Farbstof­ fe, optische Aufheller, Duftstoffe, soil-release-Verbindungen, soil-repellents, Antioxidanti­ en, Fluoreszenzmittel, Schauminhibitoren, Silikon- und/oder Paraffinöle, Farbübertra­ gungsinhibitoren, Vergrauungshibitoren, Waschkraftverstärker usw. Diese Stoffe werden nachfolgend beschrieben.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natrium­ salze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citro­ nensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adi­ pinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus die­ sen.
Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Buil­ derwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grund­ sätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV- Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäu­ re-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Poly­ meren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus die­ ser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.
Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als beson­ ders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Mole­ külmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vor­ zugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.
Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vor­ zugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthal­ ten.
Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei ver­ schiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acryl­ säure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE- A-43 03 320 und DE-A-44 17 734 beschrieben werden und als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen. Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyas­ paraginsäuren bzw. deren Salze und Derivate, von denen in der deutschen Patentanmel­ dung DE-A-195 40 086 offenbart wird, daß sie neben Cobuilder-Eigenschaften auch eine bleichstabilisierende Wirkung aufweisen.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dial­ dehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxyl­ gruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialde­ hyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkata­ lysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolysepro­ dukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Poly­ saccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglu­ cosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungs­ produkte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind beispielsweise aus den europäischen Patentanmeldungen EP-A-0 232 202, EP-A-0 427 349, EP-A-0 472 042 und EP-A-0 542 496 sowie den inter­ nationalen Patentanmeldungen WO 92/18542, WO 93/08251, WO 93/16110, WO 94/28030, WO 95/07303, WO 95/12619 lud WO 95/20608 bekannt. Ebenfalls ge­ eignet ist ein oxidiertes Oligosaccharid gemäß der deutschen Patentanmeldung DE-A- 196 00 018. Ein an des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendia­ mindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'- disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Gly­ cerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathalti­ gen Formulierungen bei 3 bis 15 Gew.-%.
Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbon­ säuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maxi­ mal zwei Säuregruppen enthalten. Derartige Cobuilder werden beispielsweise in der inter­ nationalen Patentanmeldung WO 95/20029 beschrieben.
Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Da­ bei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1,1-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Ho­ mologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP ver­ wendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbin­ devermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche ent­ halten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkali­ ionen auszubilden, als Cobuilder eingesetzt werden.
Um den ästhetischen Eindruck der erfindungsgemäßen Wasch- und Reinigungsmittelform­ körper zu verbessern, können sie ganz oder teilweise mit geeigneten Farbstoffen eingefärbt werden. Besondere optische Effekte lassen sich dabei erreichen, wenn im Falle der Her­ stellung von Formkörpern aus mehreren Massen die zu verarbeitenden Massen unter­ schiedlich eingefärbt sind. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegen­ über den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Sub­ stantivität gegenüber den behandelten Substraten wie beispielsweise Textilfasern oder Ge­ schirrteilen, um diese nicht anzufärben.
Bevorzugt für den Einsatz in erfindungsgemäßen Waschmittelformkörpern sind alle Fär­ bemittel, die im Waschprozeß oxidativ zerstört werden können sowie Mischungen dersel­ ben mit geeigneten blauen Farbstoffen, sog. Blautönern. Es hat sich als vorteilhaft erwie­ sen Färbemittel einzusetzen, die in Wasser oder bei Raumtemperatur in flüssigen organi­ schen Substanzen löslich sind. Geeignet sind beispielsweise anionische Färbemittel, z. B. anionische Nitrosofarbstoffe. Ein mögliches Färbemittel ist beispielsweise Naphtholgrün (Colour Index (CI) Teil 1: Acid Green 1; Teil 2: 10020), das als Handelsprodukt bei­ spielsweise als Basacid® Grün 970 von der Fa. BASF, Ludwigshafen, erhältlich ist, sowie Mischungen dieser mit geeigneten blauen Farbstoffen. Als weitere Färbemittel kommen Pigmosol® Blau 6900 (CI 74160), Pigmosol® Grün 8730 (CI 74260), Basonyl® Rot 545 FL (CI 45170), Sandolan® Rhodamin EB400 (CI 45100), Basacid® Gelb 094 (CI 47005), Sicovit® Patentblau 85 E 131 (CI 42051), Acid Blue 183 (CAS 12217-22-0, CI Acidblue 183), Pigment Blue 15 (CI 74160), Supranol® Blau GLW (CAS 12219-32-8, CI Acidblue 221)), Nylosan® Gelb N-7GL SGR (CAS 61814-57-1, CI Acidyellow 218) und/oder San­ dolan® Blau (CI Acid Blue 182, CAS 12219-26-0) zum Einsatz.
Bei der Wahl des Färbemittels muß beachtet werden, daß die Färbemittel keine zu starke Affinität gegenüber den textilen Oberflächen und hier insbesondere gegenüber Kunstfasern aufweisen. Gleichzeitig ist auch bei der Wahl geeigneter Färbemittel zu berücksichtigen, daß Färbemittel unterschiedliche Stabilitäten gegenüber der Oxidation aufweisen. Im all­ gemeinen gilt, daß wasserunlösliche Färbemittel gegen Oxidation stabiler sind als wasser­ lösliche Färbemittel. Abhängig von der Löslichkeit und damit auch von der Oxidati­ onsempfindlichkeit variiert die Konzentration des Färbemittels in den Wasch- oder Reini­ gungsmitteln. Bei gut wasserlöslichen Färbemitteln, z. B. dem oben genannten Basacid® Grün oder dem gleichfalls oben genannten Sandolan® Blau, werden typischerweise Fär­ bemittel-Konzentrationen im Bereich von einigen 10-2 bis 10-3 Gew.-% gewählt. Bei den auf Grund ihrer Brillanz insbesondere bevorzugten, allerdings weniger gut wasserlöslichen Pigmentfarbstoffen, z. B. den oben genannten Pigmosol®-Farbstoffen, liegt die geeignete Konzentration des Färbemittels in Wasch- oder Reinigungsmitteln dagegen typischerweise bei einigen 10-3 bis 10-4 Gew.-%.
Die nach dem erfindungsgemäßen Verfahren hergestellten Wasch- und Reinigungsmittel­ formkörper können einen oder mehrere optische(n) Aufheller enthalten. Diese Stoffe, die auch "Weißtöner" genannt werden, werden in modernen Waschmittel eingesetzt, da sogar frisch gewaschene und gebleichte weiße Wäsche einen leichten Gelöstich aufweist. Opti­ sche Aufheller sind organische Farbstoffe, die einen Teil der unsichtbaren UV-Strahlung des Sonnenlichts in längerwelliges blaues Licht umwandeln. Die Emission dieses blauen Lichts ergänzt die "Lücke" im vom Textil reflektierten Licht, so daß ein mit optischem Aufheller behandeltes Textil dem Auge weißer und heiler erscheint. Da der Wirkungsme­ chanismus von Aufhellern deren Aufziehen auf die Fasern voraussetzt, unterscheidet man je nach "anzufärbenden" Fasern beispielsweise Aufheller für Baumwolle, Polyamid- oder Polyesterfasern. Die handelsüblichen für die Inkorporation in Waschmittel geeigneten Aufheller gehören dabei im wesentlichen fünf Strukturgruppen an. Der Stilben-, der Diphe­ nylstilben-, der Cumann-Chinolin-, der Diphenylpyrazolingruppe und der Gruppe der Kombination von Benzoxazol oder Benzimidazol mit konjugierten Systemen. Ein Über­ blick über gängige Aufheller ist beispielsweise in G. Jakobi A. Löhr "Detergents and Textile Washing", VCH Verlag, Weinheim, 1987, Seiten 94 bis 100 zu finden. Geeignet sind z. B. Salze der 4,4'-Bis[(4-anilino-6-morpholino-s-triazin-2-yl)amino]-stilben-2,2'- disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino- Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der sub­ stituierten Diphenylstyryle anwesend sein, z. B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)- diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2- sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden.
Duftstoffe werden den erfindungsgemäßen Mitteln zugesetzt, um den ästhetischen Ein­ druck der Produkte zu verbessern und dem Verbraucher neben der Leistung des Produkts ein visuell und sensorisch "typisches und unverwechselbares" Produkt zur Verfügung zu stellen. Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z. B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Koh­ lenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dime­ thylbenzyl-carbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethyl­ phenyl-glycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z. B. die linearen Alka­ nale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z. B. die Jonone, ∝- Isomethylionon und Methyl-cedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehö­ ren hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mi­ schungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümmöle können auch natürliche Riechstoffgemische enthal­ ten, wie sie aus pflanzlichen Quellen zugänglich sind, z. B. Pine-, Citrus-, Jasmin-, Pat­ chouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Ka­ millenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
Üblicherweise liegt der Gehalt der erfindungsgemäß hergestellten Wasch- und Reini­ gungsmittelformkörper an Duftstoffen bis zu 2 Gew.-% der gesamten Formulierung. Die Duftstoffe können direkt in die erfindungsgemäßen Mittel eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die die Haftung des Par­ füms auf der Wäsche verstärken und durch eine langsamere Duftfreisetzung für langan­ haltenden Duft der Textilien sorgen. Als solche Trägermaterialien haben sich beispielswei­ se Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.
Zusätzlich können die Wasch- und Reinigungsmittelformkörper auch Komponenten ent­ halten, welche die Öl- und Fettauswaschbarkeit aus Textilien positiv beeinflussen (soge­ nannte soil repellents). Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfindungsgemäßen Waschmittel, das diese Öl- und fettlösende Komponente enthält, gewaschen wurde. Zu den bevorzugten Öl- und fettlösenden Komponenten zählen beispielsweise nichtionische Celluloseether wie Methyl­ cellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezo­ gen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbe­ sondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders be­ vorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäu­ re-Polymere.
Als Schauminhibitoren, die in den erfindungsgemäß hergestellten Mitteln eingesetzt wer­ den können, kommen beispielsweise Seifen, Paraffine oder Silikonöle in Betracht, die ge­ gebenenfalls auf Trägermaterialien aufgebracht sein können.
Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethersulfonsäu­ ren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für die­ sen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z. B. abgebaute Stärke, Aldehydstärken usw. Auch Polyvinylpyrrolidon ist brauchbar. Bevorzugt werden jedoch Celluloseether wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mische­ ther wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxy­ methylcellulose und deren Gemische in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt.
Da textile Flächengebilde, insbesondere aus Reyon, Zellwolle, Baumwolle und deren Mi­ schungen, zum Knittern eigen können, weil die Einzelfasern gegen Durchbiegen, Knicken. Pressen und Quetschen quer zur Faserrichtung empfindlich sind, können die erfindungs­ gemäß hergestellten Mittel synthetische Knitterschutzmittel enthalten. Hierzu zählen bei­ spielsweise synthetische Produkte auf der Basis von Fettsäuren, Fettsäureestern. Fettsäure­ amiden, -alkylolestern, -alkylolamiden oder Fettalkoholen, die meist mit Ethylenoxid um­ gesetzt sind, oder Produkte auf der Basis von Lecithin oder modifizierter Phosphorsäuree­ ster.
Zur Bekämpfung von Mikroorganismen können die erfindungsgemäß hergestellten Mittel antimikrobielle Wirkstoffe enthalten. Hierbei unterscheidet man je nach antimikrobiellem Spektrum und Wirkungsmechanismus zwischen Bakteriostatika und Bakteriziden, Fun­ giostatika und Fungiziden usw. Wichtige Stoffe aus diesen Gruppen sind beispielsweise Benzalkoniumchloride, Alkylarlylsulfonate, Halogenphenole und Phenolmercuriacetat, wobei auch gänzlich auf diese Verbindungen verzichtet werden kann.
Um unerwünschte, durch Sauerstoffeinwirkung und andere oxidative Prozesse verursachte Veränderungen an den Mitteln und/oder den behandelten Textilien zu verhindern, können die Mittel Antioxidantien enthalten. Zu dieser Verbindungsklasse gehören beispielsweise substituierte Phenole, Hydrochinone, Brenzcatechnine und aromatische Amine sowie or­ ganische Sulfide, Polysulfide, Dithiocarbamate, Phosphite und Phosphonate.
Ein erhöhter Tragekomfort kann aus der zusätzlichen Verwendung von Antistatika resultie­ ren, die den erfindungsgemäß hergestellten Mitteln zusätzlich beigefügt werden. Antistati­ ka vergrößern die Oberflächenleitfähigkeit und ermöglichen damit ein verbessertes Abflie­ ßen gebildeter Ladungen. Äußere Antistatika sind in der Regel Substanzen mit wenigstens einem hydrophilen Molekülliganden und geben auf den Oberflächen einen mehr oder min­ der hygroskopischen Film. Diese zumeist grenzflächenaktiven Antistatika lassen sich in stickstoffhaltige (Amine, Amide, quartäre Ammoniumverbindungen), phosphorhaltige (Phosphorsäureester) und schwefelhaltige (Alkylsulfonate, Alkylsulfate) Antistatika un­ terteilen. Externe Antistatika sind beispielsweise in den Patentanmeldungen FR 1,156,513 GB 873 214 und GB 839 407 beschrieben. Die hier offenbarten Lauryl- (bzw. Stearyl-) dimethylbenzylammoniumchloride eignen sich als Antistatika für Textilien bzw. als Zusatz zu Waschmitteln, wobei zusätzlich ein Avivageeffekt erzielt wird.
Zur Verbesserung des Wasserabsorptionsvermögens, der Wiederbenetzbarkeit der behan­ delten Textilien und zur Erleichterung des Bügelns der behandelten Textilien können in den erfindungsgemäß hergestellten Mitteln beispielsweise Silikonderivate eingesetzt wer­ den. Diese verbessern zusätzlich das Ausspülverhalten der Mittel durch ihre schauminhi­ bierenden Eigenschaften. Bevorzugte Silikonderivate sind beispielsweise Polydialkyl- oder Alkylarylsiloxane, bei denen die Alkylgruppen ein bis fünf C-Atome aufweisen und ganz oder teilweise fluoriert sind. Bevorzugte Silikone sind Polydimethylsiloxane, die gegebe­ nenfalls derivatisiert sein können und dann aminofunktionell oder quaterniert sind bzw. Si- OH-, Si-H- und/oder Si-Cl-Bindungen aufweisen. Die Viskositäten der bevorzugten Sili­ kone liegen bei 25°C im Bereich zwischen 100 und 100.000 Centistokes, wobei die Siliko­ ne in Mengen zwischen 0,2 und 5 Gew.-%, bezogen auf das gesamte Mittel eingesetzt werden können.
Schließlich können die erfindungsgemäß hergestellten Mittel auch UV-Absorber enthalten, die auf die behandelten Textilien aufziehen und die Lichtbeständigkeit der Fasern verbes­ sern. Verbindungen, die diese gewünschten Eigenschaften aufweisen, sind beispielsweise die durch strahlungslose Desaktivierung wirksamen Verbindungen und Derivate des Ben­ zophenons mit Substituenten in 2- und/oder 4-Stellung. Weiterhin sind auch substituierte Benzotriazole, in 3-Stellung phenylsubstituierte Acrylate (Zimtsäurederivate), gegebenen­ falls mit Cyanogruppen in 2-Stellung, Salicylate, organische Ni-Komplexe sowie Natur­ stoffe wie Umbelliferon und die körpereigene Urocansäure geeignet.
Bei den vorstehenden Ausführungen wurde teilweise der Gehalt der Endprodukte des er­ findungsgemäßen Verfahrens an den einzelnen Substanzen genannten. Bezogen auf die zu verarbeitenden Massen sind generell Verfahren bevorzugt, bei denen mindestens eine der verformbaren Massen weiterhin einen oder mehrere Stoffe aus den Gruppen der Enzyme, Korrosionsinhibitoren, Belagsinhibitoren, Cobuilder, Farb- und/oder Duftstoffe in Ge­ samtmengen von 6 bis 30 Gew.-%, vorzugsweise von 7,5 bis 25 Gew.-% und insbesondere von 10 bis 20 Gew.-%, jeweils bezogen auf die Masse, enthält.
Bei allen vorstehend genannten Inhaltsstoffen können vorteilhafte Eigenschaften daraus resultieren, sie von anderen Inhaltsstoffen zu trennen bzw. sie mit bestimmten anderen Inhaltsstoffen gemeinsam zu konfektionieren. Bei mehrphasigen Formkörpern können die einzelnen Phasen auch einen unterschiedlichen Gehalt an demselben Inhaltsstoff aufwei­ sen, wodurch Vorteile erzielt werden können. Verfahren, bei denen mindestens zwei der verformbaren Massen denselben Wirkstoff in unterschiedlichen Mengen enthalten, sind dabei bevorzugt. Der Begriff "unterschiedliche Menge" bezieht sich dabei wie bereits er­ läutert, nicht auf die absolute Menge des Inhaltsstoffs in der Masse, sondern auf die Rela­ tivmenge, bezogen auf das Phasengewicht, stellt also eine Gew.-%-Angabe, bezogen auf die einzelnen Masse, dar.
Die Endprodukte des erfindungsgemäßen Verfahren können in den unterschiedlichsten geometrischen Formen bereitgestellt werden, wobei diese Flexibilität einer der vielen Vor­ züge des erfindungsgemäßen Verfahrens ist. Es ist aber auch möglich, erfindungsgemäß Formkörper herzustellen, die in ihrem Erscheinungsbild an herkömmliche Formkörper angelehnt sind. Beispielsweise können die in vorbestimmter Raumform und vorbestimmter Größe gefertigt werden, wobei als Raumform kommen praktisch alle sinnvoll handhabba­ ren Ausgestaltungen in Betracht kommen, beispielsweise also die Ausbildung als Tafel, die Stab- bzw. Barrenform, Würfel, Quader und entsprechende Raumelemente mit ebenen Sei­ tenflächen sowie insbesondere zylinderförmige Ausgestaltungen mit kreisförmigem oder ovalem Querschnitt. Diese letzte Ausgestaltung erfaßt dabei die Darbietungsform von der Tablette bis zu kompakten Zylinderstücken mit einem Verhältnis von Höhe zu Durchmes­ ser oberhalb 1.
Die Endprodukte des erfindungsgemäßen Verfahrens können dabei jeweils als voneinander getrennte Einzelelemente ausgebildet sein, die der vorbestimmten Dosiermenge der Wasch- und/oder Reinigungsmittel entspricht. Ebenso ist es aber möglich, die abgelängten Materialstränge so auszubilden, die eine Mehrzahl solcher Masseneinheiten in einem Preßling verbinden, wobei insbesondere durch vorgegebene Sollbruchstellen die leichte Abtrennbarkeit portionierter kleinerer Einheiten vorgesehen ist. Für den Einsatz von Tex­ tilwaschmitteln in Maschinen des in Europa üblichen Typs mit horizontal angeordneter Mechanik kann die Ausbildung als Tabletten, in Zylinder- oder Quaderform zweckmäßig sein, wobei ein Durchmesser/Höhe-Verhältnis im Bereich von etwa 0,5 : 2 bis 2 : 0,5 be­ vorzugt ist.
Die Raumform einer anderen Ausführungsform der Formkörper ist in ihren Dimensionen der Einspülkammer von handelsüblichen Haushaltswaschmaschinen angepaßt, so daß die Formkörper ohne Dosierhilfe direkt in die Einspülkammer eindosiert werden können, wo sie sich während des Einspülvorgangs auflöst. Selbstverständlich ist aber auch ein Einsatz der Waschmittelformkörper über eine Dosierhilfe problemlos möglich und im Rahmen der vorliegenden Erfindung bevorzugt.
Ein weiterer bevorzugter Formkörper, der hergestellt werden kann, hat eine platten- oder tafelartige Struktur mit abwechselnd dicken langen und dünnen kurzen Segmenten, so daß einzelne Segmente von diesem "Riegel" an den Sollbruchstellen, die die kurzen dünnen Segmente darstellen, abgebrochen und in die Maschine eingegeben werden können. Dieses Prinzip des "riegelförmigen" Formkörperwaschmittels kann auch in anderen geometri­ schen Formen, beispielsweise senkrecht stehenden Dreiecken, die lediglich an einer ihrer Seiten längsseits miteinander verbunden sind, verwirklicht werden.
Solche "riegelförmigen" Strangabschnitte lassen sich durch einen Nachbehandlungsschritt nach dem Ablängen herstellen, der darin besteht, ein zweites Messer oder einen zweiten Messersatz in die abgelängten Strangabschnitte zu drücken, ohne diese zu zerteilen. Auch eine oberflächliche Formgebung oder Anfertigung Positiv- bzw. Negativschriftzügen kann erfindungsgemäß erfolgen. Bevorzugte Verfahren sind dementsprechend dadurch gekenn­ zeichnet, daß die abgelängten Formkörper einem Nachbehandlungsschritt unterworfen werden.
Der Nachbehandlungsschritt kann neben dem Einprägen von Schriftzügen auch das Ein­ prägen von Mustern, Formen usw. beinhalten. Auf diese Weise können beispielsweise er­ findungsgemäß hergestellte Universalwaschmittel durch ein T-Shirt-Symbol, erfindungs­ gemäß hergestellte Colorwaschmittel durch ein Wollsymbol, erfindungsgemäß hergestellte Reinigungsmittelformkörper für das maschinelle Geschirrspülen durch Symbole wie Glä­ ser, Teller, Töpfe, Pfannen usw. kenntlich gemacht werden. Der Kreativität von Produkt­ managern sind hierbei keine Grenzen gesetzt. Bevorzugte erfindungsgemäße Verfahren umfassen daher als Nachbehandlungsschritt einen zusätzlichen Formgebungsschritt, insbe­ sondere die Prägung.
Auch eine nachfolgende Beschichtung der abgelängten Formkörper ist möglich, sofern die Aufbringung eines zusätzlichen Coating gewünscht sein sollte. Hier sind dann Verfahren bevorzugt, bei denen der Nachbehandlungsschritt das Überziehen der Formkörper mit ei­ nem gießfähigen Material, vorzugsweise einem gießfähigen Material mit einer Viskosität < 5000 mPas, umfaßt.
Unabhängig von der Anzahl der Phasen und der Art der Nachbehandlung sind allgemein Verfahren bevorzugt, die dadurch gekennzeichnet sind, daß die Formkörper eine Dichte oberhalb von 800 kgdm-3, vorzugsweise oberhalb von 900 kgdm-3, besonders bevorzugt oberhalb von 1000 kgdm-3 und insbesondere oberhalb von 1100 kgdm-3 aufweisen. In sol­ chen Formkörpern treten die Vorteile der Angebotsform eines kompakten Wasch- oder Reinigungsmittels besonders deutlich zutage.
Die vorliegende Erfindung stellt ein Verfahren bereit, das es ermöglicht, einfach und unter wechselnden Rahmenbedingungen Wasch- und Reinigungsmittelformkörper herzustellen.
Ein bevorzugter Aushärtungsmechanismus liegt dabei, wie oben beschrieben, in der zeit­ lich verzögerten Wasserbindung, wobei entsprechende Wasch- und Reinigungsmittelform­ körper im Stand der Technik nicht beschrieben sind. Ein weiterer Gegenstand der vorlie­ genden Erfindung ist daher ein Wasch- und Reinigungsmittelformkörper, enthaltend min­ destens 30 Gew.-% Phosphat(e), der dadurch gekennzeichnet ist, daß der Wassergehalt der Formkörper 50 bis 100% des berechneten Wasserbindevermögens beträgt.
Bezüglich der Definition des Wasserbindevermögens und seiner Berechnung kann auf die vorstehenden Ausführungen verwiesen werden, um Redundanzen zu vermeiden. Der Phosphatgehalt bevorzugter erfindungsgemäß hergestellter Formkörper liegt höher, so daß Wasch- und Reinigungsmittelformkörper bevorzugt sind, die mindestens 40 Gew.-%, vor­ zugsweise mindestens 45 Gew.-% und insbesondere mindestens 50 Gew.-% Phosphat(e), jeweils bezogen auf das Formkörpergewicht, enthalten.
Wie bereits bei den Ausführungen zum erfindungsgemäßen Verfahren erwähnt, sind insbe­ sondere Alkalimetallphosphate bevorzugt einzusetzende Phosphate. So sind völlig analog auch Wasch- und Reinigungsmittelformkörper bevorzugt, die Alkalimetallphosphat(e), besonders bevorzugt Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kalium­ tripolyphosphat), in Mengen von 30 bis 80 Gew.-%, vorzugsweise von 35 bis 75 Gew.-% uns insbesondere von 50 bis 70 Gew.-%, jeweils bezogen auf das Formkörpergewicht, ent­ halten.
Bei der Beschreibung des erfindungsgemäßen Verfahrens wurde erläutert, daß im Rahmen der vorliegenden Erfindung besonders bevorzugte Verfahrensendprodukte nicht nur einen äußerst geringen Anteil an freiem Wasser besitzen, sondern vorzugsweise selbst noch in der Lage sind, weiteres freies Wasser zu binden. In bevorzugten Wasch- und Reinigungs­ mittelformkörper beträgt daher der Wassergehalt der Formkörper 55 bis 95%, vorzugswei­ se 60 bis 90% und insbesondere 65 bis 85% des berechneten Wasserbindevermögens. Bezüglich weiterer Inhaltsstoffe, ihrer Mengen und physikalischen Eigenschaften kann ebenso auf die vorstehenden Ausführungen verwiesen werden wie bezüglich der Mehrpha­ sigkeit erfindungsgemäßer Formkörper, der Aufteilung von Inhaltsstoffen auf die einzelnen Phasen und der Mengenverhältnisse der Phasen untereinander.

Claims (51)

1. Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern, dadurch gekennzeichnet, daß man (eine) verformbare Masse(n) herstellt und diese mit einem Druck unterhalb von 40 bar Austrittsöffnungen zuleitet und die austretenden Material­ stränge auf Formkörperdimensionen abschneidet und aushärten läßt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die verformbare(n) Masse(n) den Austrittsöffnungen mit einem Druck unterhalb von 35 bar, vorzugsweise unterhalb von 30 bar, besonders bevorzugt unterhalb von 20 bar und insbesondere un­ terhalb von 10 bar zuleitet.
3. Verfahren nach einem der Anspruche 1 oder 2, dadurch gekennzeichnet, daß man die verformbare(n) Masse(n) den Austrittsöffnungen mit einem Druck unterhalb von 8,5 bar, vorzugsweise unterhalb von 7,5 bar, besonders bevorzugt unterhalb von 6,5 bar und insbesondere unterhalb von 5 bar zuleitet.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß eine ver­ formbare Masse zwischen zwei Walzen eingezogen, als Materialstrang aus Aus­ trittsöffnungen ausgetragen, auf die gewünschte Formkörperdimension abgeschnitten und aushärten gelassen wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß zwei unter­ schiedlich zusammengesetzte, verformbare Massen zwischen zwei Walzenpaaren ein­ gezogen und als gefüllte, hohle oder mehrlagige Materialstränge aus Austrittsöffnun­ gen ausgetragen, auf die gewünschte Formkörperdimension abgeschnitten und aushär­ ten gelassen werden.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß drei unter­ schiedlich zusammengesetzte, plastisch verformbare Massen zwischen drei Walzenpaa­ ren eingezogen und als ein-, zwei- oder dreifach gefüllte, hohle, zwei- oder dreilagige Materialstränge aus Austrittsöffnungen ausgetragen, auf die gewünschte Formkörper­ dimension abgeschnitten und aushärten gelassen werden.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Materi­ alstränge mit einer Geschwindigkeit von 0,2 m/min bis 30 m/min. vorzugsweise zwi­ schen 0,25 m/min bis 20 m/min, besonders bevorzugt von 0,5 m/min bis 15 m/min und insbesondere von 1 m/min bis 10 m/min aus den Austrittsöffnungen ausgetragen wer­ den.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Aus­ trittsöffnungen Öffnungsflächen von 50 mm2 bis 2500 mm2, vorzugsweise von 100 mm2 bis 2000 mm2, besonders bevorzugt von 200 mm2 bis 1500 mm2 und insbesondere von 300 mm2 bis 1000 mm2 unter besonderer Bevorzugung von 350 mm2 bis 750 mm2, aufweisen.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Dicke mindestens eines der aus den Austrittsöffnungen austretenden Materialstränge minde­ stens 5 mm, vorzugsweise mindestens 7,5 mm und insbesondere mindestens 10 mm beträgt.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die aus den Austrittsöffnungen austretenden Materialstränge auf eine Länge von 10 bis 100 mm, vorzugsweise von 12,5 bis 75 mm, besonders bevorzugt von 15 bis 60 mm und insbe­ sondere von 20 bis 50 mm, abgeschnitten werden.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Aus­ härtung der auf Formkörperdimensionen abgeschnittenen Materialstränge durch ober­ flächliche Trocknung und/oder Abkühlung, insbesondere durch Anblasen mit Kaltluft, unterstützt wird.
12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die ver­ formbare(n) Masse(n) 10 bis 95 Gew.-%, vorzugsweise 15 bis 90 Gew.-%, besonders bevorzugt 20 bis 85 Gew.-% und insbesondere 25 bis 80 Gew.-% wasserfreier Stoffe enthalten, welche durch Hydratisierung in eine Hydratform mit einem Schmelzpunkt unterhalb von 120°C, vorzugsweise unterhalb von 100°C und insbesondere unterhalb von 80°C übergehen.
13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die ver­ formbare(n) Masse(n) Phosphat(e), vorzugsweise Alkalimetallphosphat(e), besonders bevorzugt Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripoly­ phosphat), in Mengen von 20 bis 80 Gew.-%, vorzugsweise von 25 bis 75 Gew.-% uns insbesondere von 30 bis 70 Gew.-%, jeweils bezogen auf die Masse, enthalten.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß das Gewichtsverhältnis von Phosphat(en) zu Wasser in der verformbaren Masse kleiner 1 : 0,3, vorzugsweise klei­ ner 1 : 0,25 und insbesondere kleiner 1 : 0,2 ist.
15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß die ver­ formbare(n) Masse(n) Carbonat(e) und/oder Hydrogencarbonat(e), vorzugsweise Al­ kalicarbonate, besonders bevorzugt Natriumcarbonat, in Mengen von 5 bis 50 Gew.-%, vorzugsweise von 7,5 bis 40 Gew.-% und insbesondere von 10 bis 30 Gew.-%, jeweils bezogen auf die Masse, enthalten.
16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die ver­ formbare(n) Masse(n) Silikat(e), vorzugsweise Alkalisilikate, besonders bevorzugt kri­ stalline oder amorphe Alkalidisilikate, in Mengen von 10 bis 60 Gew.-%, vorzugsweise von 15 bis 50 Gew.-% und insbesondere von 20 bis 40 Gew.-%, jeweils bezogen auf die Masse, enthalten.
17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß die ver­ formbare(n) Masse(n) Zeolith(e), vorzugsweise Zeolith A, Zeolith P, Zeolith X und Mischungen aus diesen, in Mengen von 10 bis 60 Gew.-%, vorzugsweise von 15 bis 50 Gew.-% und insbesondere von 20 bis 40 Gew.-%, jeweils bezogen auf die Masse, ent­ halten.
18. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß die mittle­ re Partikelgröße der in der/den verformbaren Masse(n) eingesetzten Feststoffe unter 400 µm, vorzugsweise unter 300 µm und insbesondere unter 200 µm liegt.
19. Verfahren nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß weniger als 10 Gew.-%, vorzugsweise weniger als 5 Gew.-% und insbesondere weniger als 1 Gew.-% der in der/den verformbaren Masse(n) eingesetzten Feststoffe Teilchengrößen oberhalb 1000 µm aufweisen.
20. Verfahren nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß weniger als 15 Gew.-%, vorzugsweise weniger als 10 Gew.-% und insbesondere weniger als 5 Gew.-% der in der/den verformbaren Masse(n) eingesetzten Feststoffe Teilchengrößen oberhalb 800 µm aufweisen.
21. Verfahren nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, daß der Was­ sergehalt der Formkörper 50 bis 100% des berechneten Wasserbindevermögens be­ trägt.
22. Verfahren nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, daß die ver­ formbare(n) Masse(n) bei der Verarbeitung einen Wassergehalt von 2,5 bis 30 Gew.-%, vorzugsweise von 5 bis 25 Gew.-% und insbesondere von 7,5 bis 20 Gew.-%, jeweils bezogen auf die Masse, aufweisen.
23. Verfahren nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, daß die Aus­ härtung der verformbaren Masse(n) durch zeitlich verzögerte Wasserbindung erfolgt.
24. Verfahren nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, daß die Aus­ härtung der verformbaren Masse(n) durch Kühlung unter den Schmelzpunkt erfolgt.
25. Verfahren nach einem der Ansprüche 1 bis 24, dadurch gekennzeichnet, daß die Aus­ härtung der verformbaren Masse(n) durch Verdampfung von Lösungsmitteln erfolgt.
26. Verfahren nach einem der Ansprüche 1 bis 25, dadurch gekennzeichnet, daß die Aus­ härtung der verformbaren Masse(n) durch Kristallisation erfolgt.
27. Verfahren nach einem der Ansprüche 1 bis 26, dadurch gekennzeichnet, daß die Aus­ härtung der verformbaren Masse(n) durch chemische Reaktion(en), insbesondere Po­ lymerisation, erfolgt.
28. Verfahren nach einem der Ansprüche 1 bis 27, dadurch gekennzeichnet, daß die Aus­ härtung der verformbaren Masse(n) durch Änderung der rheologischen Eigenschaften erfolgt.
29. Verfahren nach einem der Ansprüche 1 bis 28, dadurch gekennzeichnet, daß die ver­ formbare(n) Masse(n) Gesamttensidgehalte unterhalb von 5 Gew.-%, vorzugsweise unterhalb von 4 Gew.-%, besonders bevorzugt unterhalb von 3 Gew.-% und insbeson­ dere unterhalb von 2 Gew.-%, jeweils bezogen auf die Masse, aufweisen.
30. Verfahren nach einem der Ansprüche 1 bis 29, dadurch gekennzeichnet, daß minde­ stens eine der verformbaren Massen Bleichmittel aus der Gruppe der Sauerstoff oder Halogen-Bleichmittel, insbesondere der Chlorbleichmittel, unter besonderer Bevorzu­ gung von Natriumperborat und Natriumpercarbonat, in Mengen von 2 bis 25 Gew.-%, vorzugsweise von 5 bis 20 Gew.-% und insbesondere von 10 bis 15 Gew.-%, jeweils bezogen auf die Masse, enthält.
31. Verfahren nach einem der Ansprüche 1 bis 30, dadurch gekennzeichnet, daß minde­ stens eine der verformbaren Massen Bleichaktivatoren aus den Gruppen der mehrfach acylierten Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), der N- Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), der acylierten Phenolsulfo­ nate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso- NOBS) und n-Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA), in Mengen von 0,25 bis 15 Gew.-%, vorzugsweise von 0,5 bis 10 Gew.-% und insbesondere von 1 bis 5 Gew.-%, jeweils bezogen auf die Masse, enthält.
32. Verfahren nach einem der Ansprüche 1 bis 31, dadurch gekennzeichnet, daß minde­ stens eine der verformbaren Massen Silberschutzmittel aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole und der Übergangsmetallsalze oder -komplexe, besonders bevorzugt Benzotriazol und/oder Alkylaminotriazol, in Mengen von 0,01 bis 5 Gew.-%, vorzugsweise von 0,05 bis 4 Gew.-% und insbesondere von 0,5 bis 3 Gew.-%, jeweils bezogen auf die Masse, enthält.
33. Verfahren nach einem der Ansprüche 1 bis 32, dadurch gekennzeichnet, daß minde­ stens eine der verformbaren Massen weiterhin einen oder mehrere Stoffe aus den Gruppen der Enzyme, Korrosionsinhibitoren, Belagsinhibitoren, Cobuilder, Farb- und/oder Duftstoffe in Gesamtmengen von 6 bis 30 Gew.-%, vorzugsweise von 7,5 bis 25 Gew.-% und insbesondere von 10 bis 20 Gew.-%, jeweils bezogen auf die Masse, enthält.
34. Verfahren nach einem der Ansprüche 5 bis 33, dadurch gekennzeichnet, daß eine der verformbaren Massen Bleichmittel enthält, während eine andere verformbare Masse Bleichaktivatoren enthält.
35. Verfahren nach einem der Ansprüche 5 bis 34, dadurch gekennzeichnet, daß eine der verformbaren Massen Bleichmittel enthält, während eine andere verformbare Masse Enzyme enthält.
36. Verfahren nach einem der Ansprüche 5 bis 35, dadurch gekennzeichnet, daß eine der verformbaren Massen Bleichmittel enthält, während eine andere verformbare Masse Korrosionsschutzmittel enthält.
37. Verfahren nach einem der Ansprüche 5 bis 35, dadurch gekennzeichnet, daß einer der aus den Austrittsöffnungen austretenden Materialstränge Enzyme enthält.
38. Verfahren nach Anspruch 37, dadurch gekennzeichnet, daß der enzymhaltige Material­ strang durch ein enzymfreies Material umhüllt ist.
39. Verfahren nach einem der Ansprüche 5 bis 38, dadurch gekennzeichnet, daß eine der verformbaren Massen Bleichmittel enthält, während eine andere verformbare Masse Tenside, vorzugsweise nichtionische Tenside, unter besonderer Bevorzugung alkoxy­ lierter Alkohole mit 10 bis 24 Kohlenstoffatomen und 1 bis 5 Alkylenoxideinheiten, enthält.
40. Verfahren nach einem der Ansprüche 5 bis 39, dadurch gekennzeichnet, daß minde­ stens zwei verformbare Massen denselben Wirkstoff in unterschiedlichen Mengen ent­ halten.
41. Verfahren nach einem der Ansprüche 1 bis 40, dadurch gekennzeichnet, daß die ver­ formbare(n) Masse(n) ein Paraffinwachs mit einem Schmelzbereich von 50°C bis 55°C enthält/enthalten.
42. Verfahren nach einem der Ansprüche 1 bis 41, dadurch gekennzeichnet, daß die die plastisch verformbare(n) Masse(n) mindestens einen Stoff aus der Gruppe der Polye­ thylenglycole (PEG) und/oder Polypropylenglycole (PPG) enthält/enthalten.
43. Verfahren nach einem der Ansprüche 1 bis 42, dadurch gekennzeichnet, daß die Form­ körper weniger als 10 Gew.-%, vorzugsweise weniger als 5 Gew.-%, besonders bevor­ zugt weniger als 1 Gew.-% und insbesondere weniger als 0,5 Gew.-% freies Wasser enthalten.
44. Verfahren nach einem der Ansprüche 1 bis 43, dadurch gekennzeichnet, daß die Form­ körper eine Dichte oberhalb von 800 kgdm-3, vorzugsweise oberhalb von 900 kgdm-3, besonders bevorzugt oberhalb von 1000 kgdm-3 und insbesondere oberhalb von 1100 kgdm-3 aufweisen.
45. Verfahren nach einem der Ansprüche 1 bis 44, dadurch gekennzeichnet, daß die Form­ körper einem Nachbehandlungsschritt unterworfen werden.
46. Verfahren nach Anspruch 45, dadurch gekennzeichnet, daß der Nachbehandlungs­ schritt das Überziehen der Formkörper mit einem gießfähigen Material, vorzugsweise einem gießfähigen Material mit einer Viskosität < 5000 mPas, umfaßt.
47. Verfahren nach einem der Ansprüche 45 oder 46, dadurch gekennzeichnet, daß der Nachbehandlungsschritt einen zusätzlichen Formgebungsschritt, insbesondere die Prä­ gung, umfaßt.
48. Wasch- und Reinigungsmittelformkörper, enthaltend mindestens 30 Gew.-% Phos­ phat(e), dadurch gekennzeichnet, daß der Wassergehalt der Formkörper 50 bis 100% des berechneten Wasserbindevermögens beträgt.
49. Wasch- und Reinigungsmittelformkörper nach Anspruch 48, dadurch gekennzeichnet, daß die Formkörper mindestens 40 Gew.-%, vorzugsweise mindestens 45 Gew.-% und insbesondere mindestens 50 Gew.-% Phosphat(e), jeweils bezogen auf das Formkör­ pergewicht, enthalten.
50. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 48 oder 49, da­ durch gekennzeichnet, daß die Formkörper Alkalimetallphosphat(e), besonders bevor­ zugt Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphos­ phat), in Mengen von 30 bis 80 Gew.-%, vorzugsweise von 35 bis 75 Gew.-% uns ins­ besondere von 50 bis 70 Gew.-%, jeweils bezogen auf das Formkörpergewicht, ent­ halten.
51. Wasch- und Reinigungsmittelformkörper nach einem der Ansprüche 48 bis 50, dadurch gekennzeichnet, daß der Wassergehalt der Formkörper 55 bis 95%, vorzugsweise 60 bis 90% und insbesondere 65 bis 85% des berechneten Wasserbindevermögens be­ trägt.
DE19930771A 1999-07-03 1999-07-03 Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern Withdrawn DE19930771A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE19930771A DE19930771A1 (de) 1999-07-03 1999-07-03 Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern
EP00938813A EP1192241B1 (de) 1999-07-03 2000-06-23 Verfahren zur herstellung von wasch- und reinigungsmittelformkörpern
PCT/EP2000/005811 WO2001002532A1 (de) 1999-07-03 2000-06-23 Verfahren zur herstellung von wasch- und reinigungsmittelformkörpern
ES00938813T ES2220474T3 (es) 1999-07-03 2000-06-23 Procedimiento para la fabricacion de cuerpos moldeados de agentes de lavado y de limpieza.
DE50006266T DE50006266D1 (de) 1999-07-03 2000-06-23 Verfahren zur herstellung von wasch- und reinigungsmittelformkörpern
AU54067/00A AU5406700A (en) 1999-07-03 2000-06-23 Method for producing washing and cleaning agent shaped bodies
AT00938813T ATE265522T1 (de) 1999-07-03 2000-06-23 Verfahren zur herstellung von wasch- und reinigungsmittelformkörpern
CA002313356A CA2313356A1 (en) 1999-07-03 2000-07-04 Process for producing laundry detergent and cleaning product tablets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19930771A DE19930771A1 (de) 1999-07-03 1999-07-03 Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern

Publications (1)

Publication Number Publication Date
DE19930771A1 true DE19930771A1 (de) 2001-01-04

Family

ID=7913582

Family Applications (2)

Application Number Title Priority Date Filing Date
DE19930771A Withdrawn DE19930771A1 (de) 1999-07-03 1999-07-03 Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern
DE50006266T Expired - Lifetime DE50006266D1 (de) 1999-07-03 2000-06-23 Verfahren zur herstellung von wasch- und reinigungsmittelformkörpern

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE50006266T Expired - Lifetime DE50006266D1 (de) 1999-07-03 2000-06-23 Verfahren zur herstellung von wasch- und reinigungsmittelformkörpern

Country Status (7)

Country Link
EP (1) EP1192241B1 (de)
AT (1) ATE265522T1 (de)
AU (1) AU5406700A (de)
CA (1) CA2313356A1 (de)
DE (2) DE19930771A1 (de)
ES (1) ES2220474T3 (de)
WO (1) WO2001002532A1 (de)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10010759A1 (de) * 2000-03-04 2001-09-13 Henkel Kgaa Verfahren zur Herstellung von Formkörpern
DE10134309A1 (de) * 2001-07-14 2003-02-06 Henkel Kgaa Coextrusion von Wasch- und Reinigungsmitteln
DE10211184A1 (de) * 2002-03-14 2003-10-02 Henkel Kgaa Applikation von Hilfsmitteln und Zusatzstoffen für das maschinelle Geschirrspülen
DE10253214A1 (de) * 2002-11-15 2004-06-03 Henkel Kgaa Portionierte Mittel mit unterschiedlichen Bestandteilen
WO2004085595A1 (de) * 2003-03-25 2004-10-07 Henkel Kommanditgesellschaft Auf Aktien Gestaltsoptimierte wasch-oder reinigungsmitteltabletten
WO2004099359A1 (en) * 2003-05-10 2004-11-18 Unilever Plc Process for producing structured materials
DE10331464A1 (de) * 2003-05-21 2004-12-16 Aweco Appliance Systems Gmbh & Co. Kg Haushaltsmaschinenreiniger
DE10324788A1 (de) * 2003-05-31 2004-12-16 Beiersdorf Ag Dosierbare feste Reinigungszubereitung
WO2005047446A1 (de) * 2003-11-13 2005-05-26 Henkel Kommanditgesellschaft Auf Aktien Stossbelastungsresistente tablette
WO2007051989A1 (en) * 2005-11-07 2007-05-10 Reckitt Benckiser N.V. Dosage element
EP1845153A1 (de) * 2006-04-12 2007-10-17 Unilever N.V. Waschmitteltabletten
US7300911B2 (en) 2000-03-04 2007-11-27 Henkel Kommanditgesellschaft Auf Aktien Method of preparing multiphase laundry detergent and cleaning product shaped bodies having noncompressed parts
WO2008049652A1 (de) * 2006-10-27 2008-05-02 Henkel Ag & Co. Kgaa Wasch- oder reinigungsmittelformkörper
US8146609B2 (en) 2006-10-30 2012-04-03 Reckitt Benckiser N.V. Device status indicator for a multi-dosing detergent delivery device
US8146610B2 (en) 2006-10-30 2012-04-03 Reckitt Benckiser N.V. Multi-dosing detergent delivery device
US8221696B2 (en) 2004-08-23 2012-07-17 Reckitt Benckiser N.V. Detergent dispensing device
USD663911S1 (en) 2009-07-22 2012-07-17 Reckitt Benckiser N.V. Detergent dispensing device lid
US8329112B2 (en) 2006-10-30 2012-12-11 Reckitt Benckiser N.V. Multi-dosing detergent delivery device
US8338357B2 (en) 2006-01-21 2012-12-25 Reckitt Benckiser N.V. Multiple dosing ware washing article
US8375962B2 (en) 2006-01-21 2013-02-19 Reckitt Benckiser N. V. Dosage element and chamber
US8815018B2 (en) 2007-05-30 2014-08-26 Reckitt Benckiser N.V. Detergent dosing device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2404662A (en) * 2003-08-01 2005-02-09 Reckitt Benckiser Cleaning composition
GB2406821A (en) 2003-10-09 2005-04-13 Reckitt Benckiser Nv Detergent body
US8389036B2 (en) 2006-01-13 2013-03-05 Gianpaola Belloli Product obtained from a powdered or granular material and process for obtaining the product
EP2053120B1 (de) * 2007-10-26 2016-11-23 Dalli-Werke GmbH & Co. KG Wasch- oder reinigungsmittelformkörper mit einfärbbarer reliefstruktur
US20110027426A1 (en) * 2007-12-18 2011-02-03 Gianpaolo Belloli Product tablet and related pack
WO2022225898A1 (en) * 2021-04-19 2022-10-27 Decon Water Technologies, LLC Industrial laundry systems and methods

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA717943A (en) * 1963-02-04 1965-09-14 Unilever Limited Detergent compositions
US3455834A (en) * 1964-01-22 1969-07-15 Colgate Palmolive Co Process for production of detergent tablets
DE3541146A1 (de) * 1985-11-21 1987-05-27 Henkel Kgaa Mehrschichtige reinigungsmitteltabletten fuer das maschinelle geschirrspuelen
US5133892A (en) * 1990-10-17 1992-07-28 Lever Brothers Company, Division Of Conopco, Inc. Machine dishwashing detergent tablets
GB2298867A (en) * 1995-03-11 1996-09-18 Procter & Gamble Detergent compositions in tablet form
DE19624416A1 (de) * 1996-06-19 1998-01-02 Henkel Kgaa Verfahren zur Herstellung von festen Wasch- oder Reinigungsmitteln
DE19649565A1 (de) * 1996-11-29 1998-06-04 Knoll Ag Verfahren zum Herstellen von Granulaten eines Wasch- oder Reinigungsmittels
DE19709411A1 (de) * 1997-03-07 1998-09-10 Henkel Kgaa Waschmittelformkörper

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7300911B2 (en) 2000-03-04 2007-11-27 Henkel Kommanditgesellschaft Auf Aktien Method of preparing multiphase laundry detergent and cleaning product shaped bodies having noncompressed parts
DE10010759B4 (de) * 2000-03-04 2006-04-27 Henkel Kgaa Verfahren zur Herstellung von Formkörpern
DE10010759A1 (de) * 2000-03-04 2001-09-13 Henkel Kgaa Verfahren zur Herstellung von Formkörpern
DE10134309A1 (de) * 2001-07-14 2003-02-06 Henkel Kgaa Coextrusion von Wasch- und Reinigungsmitteln
DE10211184A1 (de) * 2002-03-14 2003-10-02 Henkel Kgaa Applikation von Hilfsmitteln und Zusatzstoffen für das maschinelle Geschirrspülen
DE10211184B4 (de) * 2002-03-14 2004-10-07 Henkel Kgaa Applikation von Hilfsmitteln und Zusatzstoffen für das maschinelle Geschirrspülen
DE10253214A1 (de) * 2002-11-15 2004-06-03 Henkel Kgaa Portionierte Mittel mit unterschiedlichen Bestandteilen
WO2004085595A1 (de) * 2003-03-25 2004-10-07 Henkel Kommanditgesellschaft Auf Aktien Gestaltsoptimierte wasch-oder reinigungsmitteltabletten
WO2004099359A1 (en) * 2003-05-10 2004-11-18 Unilever Plc Process for producing structured materials
DE10331464A1 (de) * 2003-05-21 2004-12-16 Aweco Appliance Systems Gmbh & Co. Kg Haushaltsmaschinenreiniger
DE10324788A1 (de) * 2003-05-31 2004-12-16 Beiersdorf Ag Dosierbare feste Reinigungszubereitung
WO2005047446A1 (de) * 2003-11-13 2005-05-26 Henkel Kommanditgesellschaft Auf Aktien Stossbelastungsresistente tablette
US8221696B2 (en) 2004-08-23 2012-07-17 Reckitt Benckiser N.V. Detergent dispensing device
EP2206769A1 (de) * 2005-11-07 2010-07-14 Reckitt Benckiser N.V. Dosierungselement
WO2007051989A1 (en) * 2005-11-07 2007-05-10 Reckitt Benckiser N.V. Dosage element
US8338357B2 (en) 2006-01-21 2012-12-25 Reckitt Benckiser N.V. Multiple dosing ware washing article
US8375962B2 (en) 2006-01-21 2013-02-19 Reckitt Benckiser N. V. Dosage element and chamber
EP1845153A1 (de) * 2006-04-12 2007-10-17 Unilever N.V. Waschmitteltabletten
WO2008049652A1 (de) * 2006-10-27 2008-05-02 Henkel Ag & Co. Kgaa Wasch- oder reinigungsmittelformkörper
US8146609B2 (en) 2006-10-30 2012-04-03 Reckitt Benckiser N.V. Device status indicator for a multi-dosing detergent delivery device
US8146610B2 (en) 2006-10-30 2012-04-03 Reckitt Benckiser N.V. Multi-dosing detergent delivery device
US8329112B2 (en) 2006-10-30 2012-12-11 Reckitt Benckiser N.V. Multi-dosing detergent delivery device
US8815018B2 (en) 2007-05-30 2014-08-26 Reckitt Benckiser N.V. Detergent dosing device
USD663911S1 (en) 2009-07-22 2012-07-17 Reckitt Benckiser N.V. Detergent dispensing device lid
USD670468S1 (en) 2009-07-22 2012-11-06 Reckitt Benckiser N.V. Detergent dispensing device lid

Also Published As

Publication number Publication date
AU5406700A (en) 2001-01-22
WO2001002532A1 (de) 2001-01-11
EP1192241B1 (de) 2004-04-28
DE50006266D1 (de) 2004-06-03
ES2220474T3 (es) 2004-12-16
CA2313356A1 (en) 2001-01-03
ATE265522T1 (de) 2004-05-15
EP1192241A1 (de) 2002-04-03

Similar Documents

Publication Publication Date Title
EP1192241B1 (de) Verfahren zur herstellung von wasch- und reinigungsmittelformkörpern
DE10010760A1 (de) Mehrphasige Wasch- und Reinigungsmittelformkörper mit nicht-gepreßten Anteilen
DE19940547A1 (de) Wasch- oder Reinigungsmittelformkörper mit Partialcoating
DE19920118B4 (de) Wasch- und Reinigungsmittelformkörper mit Beschichtung und Verfahren zu seiner Herstellung
DE10120441C2 (de) Waschmittelformkörper mit viskoelastischer Phase
EP1165742B1 (de) Ein- oder mehrphasige wasch- und reinigungsmittelformkörper mit speziellen bleichaktivatoren
DE19934704A1 (de) Wasch- und Reinigungsmittelformkörper mit Dispersionsmitteln
DE19955240A1 (de) Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern
EP1123378B1 (de) Wasch- und reinigungsmittelformkörper mit wasserfrei granuliertem brausesystem
EP1165741B1 (de) Wasch- und reinigungsmittelformkörper mit speziellen bleichaktivatoren
DE10045267B4 (de) Wasch- und Reinigungsmittelformkörper mit Polyurethan-Beschichtung
DE10044495A1 (de) Formkörper
WO2000014196A1 (de) Waschmitteltabletten mit bindemitteln
DE10134309A1 (de) Coextrusion von Wasch- und Reinigungsmitteln
DE19950765A1 (de) Abriebverbesserte Wasch- oder Reinigungsmittelformkörper
DE19919444B4 (de) Wasch- und Reinigungsmittelformkörper mit Bindemittelcompound, Verfahren zu seiner Herstellung sowie Verwendung von Bindemittelcompounds
WO2000017307A1 (de) Wasch- und reinigungsmittelformkörper mit natriumpercarbonat
DE10044073A1 (de) Beschichtete Tabletten und Verfahren zur Tablettenbeschichtung
DE10026334A1 (de) Wasch- und Reinigungsmittelformkörper mit Pfropfcopolymer-Beschichtung
DE19957438A1 (de) Wasch- und Reinigungsmittelformkörper
DE10048058A1 (de) Muldentabletten und Verfahren zu ihrer Herstellung
DE19925503A1 (de) Mehrphasige Wasch- und Reinigungsmittelformkörper mit optischen Aufhellern
DE19940548A1 (de) Wasch- oder Reinigungsmittelformkörper
DE10045977A1 (de) Verfahren zum Reinigen von Hohlkörpern
DE19932569A1 (de) Wasch- und Reinigungsmittelformkörper, insbesondere für das maschinelle Geschirrspülen

Legal Events

Date Code Title Description
8141 Disposal/no request for examination