DE1598569B2 - Doppelfokussierendes Massenspektrometer - Google Patents

Doppelfokussierendes Massenspektrometer

Info

Publication number
DE1598569B2
DE1598569B2 DE1598569A DE1598569A DE1598569B2 DE 1598569 B2 DE1598569 B2 DE 1598569B2 DE 1598569 A DE1598569 A DE 1598569A DE 1598569 A DE1598569 A DE 1598569A DE 1598569 B2 DE1598569 B2 DE 1598569B2
Authority
DE
Germany
Prior art keywords
ion
field
electrical
mass spectrometer
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE1598569A
Other languages
English (en)
Other versions
DE1598569C3 (de
DE1598569A1 (de
Inventor
Koji Nisiwaki
Tamotsu Noda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of DE1598569A1 publication Critical patent/DE1598569A1/de
Publication of DE1598569B2 publication Critical patent/DE1598569B2/de
Application granted granted Critical
Publication of DE1598569C3 publication Critical patent/DE1598569C3/de
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/28Static spectrometers
    • H01J49/32Static spectrometers using double focusing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Description

Ein Verstärker 18 und ein Schreiber 19 sind mit dem ersten Ionenkollektor 5 verbunden, während dem zweiten Ionenkollektor 2 ebenso ein Verstärker 20 und ein Schreiber 21 zugeordnet sind. Ein Spitzenwertabtaster 22 ist über einen Schalter 27 mit dem Ausgang des Verstärkers 18 verbunden, und ein Höchstwertdiskriminator 23 ist über die Energiequelle 26 an den Ausgang des Schaltkreises 17 angeschlossen. Die Ausgänge des Spitzenwertabtasters 22 und Höchstwertdiskriminators 23 sind mit einer Kippschaltung 24 verbunden, deren Ausgang wiederum an den Schaltkreis 17 angeschlossen ist. Weiterhin sind Schalter 27 und 28 vorgesehen.
In der F i g. 2 ist die Beziehung zwischen dem ersten Spalt 4, dem ersten Ionenkollektor 5 und einem Ionenbündel 29 dargestellt. In der Mitte des Ionenkollektors 5 ist ein Spalt 25 als Durchlaß für den Anteil des Ionenbündels 29 vorgesehen, das den ersten Spalt 4 passiert hat.
Bei einem Massenspektrometer mit dem vorstehend beschriebenen Aufbau wird eine in die Ionisie-, rungskammer 10 eingegebene Probe durch Beschüß ' mit den von der Kathode 11 emittierten Elektronen ionisiert, und die so erzeugten Ionen treten aus der Ionisierungskammer 10 durch den Ionenaustrittsspalt 9 aus und werden durch das Elektodensystem 13 beschleunigt und zum Magnetfeld hingelenkt.
Wenn daher die Energiequelle 14 für das Magnetfeld angeschlossen ist und der Schaltkreis 15 in Betrieb ist und für eine kontinuierliche Veränderung des durch die Magnetpole 3 erzeugten Magnetfeldes sorgt, wird das in das Magnetfeld eintretende Ionenbündel aufgespalten bzw. auseinandergezogen und im wesentlichen abhängig vom Unterschied der Ionenmassen abgelenkt und nacheinander nach Durchtritt durch den ersten Spalt 4 vom ersten Ionenkollektor 5 aufgefangen. Die vom ersten Ionenkollektor 5 aufgefangenen Ionen werden in einen elektrischen Strom umgewandelt, der dann durch den Verstärker 18 verstärkt und zum Schreiber 19 weitergeleitet wird. Der Schreiber 19 registriert somit ein Massenspektrum.
Andererseits wird ein Teil des Ionenbündels nach dem Durchlaufen des ersten Spaltes 4 und nach Durchtritt durch den Spalt 25 des ersten Ionenkollektors 5 zum elektrostatischen Feld gelenkt, das durch die Elektroden 6 erzeugt wird. Wenn daher die Energiequelle 26 eingeschaltet ist, wird das in das elektrostatische Feld eintretende Ionenbündel aufgespalten bzw. auseinandergezogen, und zwar im wesentlichen abhängig von der Differenz der Geschwindigkeit der Ionen, und das aufgespaltene Ionenbündel wird schließlich nach Durchtritt durch den zweiten Spalt 7 nacheinander von dem zweiten Ionenkol-Iektor2 aufgefangen. Die vom zweiten Ionenkollektor 2 aufgefangenen Ionen werden in einen elektrischen Strom umgewandelt, der dann durch den Verstärker 20 verstärkt und zum Schreiber 21 gespeist wird. Der Schreiber 21 registriert somit ein Massenspektrum.
Gemäß der vorstehenden Betriebsweise übt das durch die Elektroden 6 erzeugte elektrostatische Feld auf das Ionenbündel eine von dem Unterschied der Geschwindigkeit der Ionen abhängige Dispersionswirkung aus, und irgendeine Abweichung bzw. Streuung der Ionenbahnen infolge unterschiedlicher Ionengeschwindigkeiten nach der Massendispersion durch das Magnetfeld wird zum Verschwinden gebracht. Das vom Schreiber 21 aufgezeichnete Massenspektrum hat daher eine höhere Auflösung als das vom Schreiber 19 aufgezeichnete Massenspektrum. Anders ausgedrückt, es erscheinen auf dem Schreiber 19 ein Massenspektrum geringer Auflösung (einfachfokussiertes Massenspektrum) und auf dem Schreiber 21 ein Massenspektrum hoher Auflösung (doppeltfokussiertes Massenspektrum).
Es soll nun angenommen werden, daß ein Massenspektrum, wie es in der F i g. 4 a gezeigt ist, auf dem Schreiber 19 auftritt und daß Spitzenwerte B, C und D des Massenspektrums beispielsweise »Multiplets« sind. Das vom Schreiber 21 registrierte Massenspektrum zeigt dann die in der F i g. 4 b wiedergegebene Form, bei dem die Spitzenwerte B, C und D deutlich in die Spitzenwertkomponenten B1 und B0, C1 und C, sowie D1 und D aufgespalten sind.
In einigen Fällen können Ionen, die durch Ionisierung der Probenmoleküle in der Ionenquelle 1 erzeugt werden, mit zusätzlicher Energie ausgestattet sein und während ihrer Wanderung von der Ionenquelle 1 in Richtung zum ersten Ionenkollektor 5 in leichte Ionen zerfallen. Diese Ionen werden im allge^ meinen metastabile Ionen genannt. Wenn metastabile Ionen, die nach der Emission aus der Ionenquelle 1 vor dem Eintritt in das Magnetfeld erzeugt werden, in das Magnetfeld eintreten, werden sie abhängig von der Stärke des Magnetfeldes abgelenkt.
Eine Veränderung des Magnetfeldes bewirkt, daß derartige metastabile Ionen, die einer gewissen Feldstärke entsprechen, allein durch den ersten Ionenkollektor 5 nach Durchtritt durch den Spalt 4 gesammelt werden. Die Spitzenwerte M1 und M0 in F i g. 4 a entsprechen solchen metastabilen Ionen. Da die metastabilen Ionen jedoch nicht nur willkürliche Energien haben, sondern ihre Energieniveaus auch vergleichsweise niedriger sind als diejenigen von üblichen Ionen, werden sie während ihres Durchganges durch das elektrostatische Feld stark abgelenkt und weichen von der erwarteten Ionenbahn ab, mit dem Ergebnis, daß sie den zweiten Ionenkollektor 2 nicht erreichen, und ihnen zugeordnete Spitzenwerte erscheinen kaum auf dem Schreiber 21.
Nachfolgend wird die Arbeitsweise des Massenspektrometers bei geschlossenen Schaltern 27 und 28 beschrieben. Es soll angenommen werden, daß der Ausgang des Verstärkers 18 eine Signalform hat, wie sie in der F i g. 3 a gezeigt wird. Bei Abtastung eines solchen Ausgangssignals tritt der Spitzenwertabtaster 22 in Tätigkeit und liefert ein Ausgangssignal der in F i g. 3 b gezeigten Form. Gleichzeitig mit dem Betrieb des Spitzenwertabtasters 22 wird die Kippschaltung 24 zur Erzeugung eines Ausgangssignals der in F i g. 3 c gezeigten Form erregt, und der Schaltkreis 17 wird ausgelöst, um ein Ausgangssignal der in F i g. 3 d gezeigten Form zu erzeugen. Der Schaltkreis 17 bewirkt eine Änderung der Spannung von einer wählbaren Einsatzspannung bis zu einer wählbaren oberen Grenzspannung, und das durch die Elektrode 6 erzeugte elektrische Feld wird dadurch in der Weise kontinuierlich verändert, daß dem durchtretenden Ionenbündel eine Brems- bzw. Ablenkwirkung in RichtungG (Fig. 1) erteilt wird, die zur Ablenkung durch das Magnetfeld entgegengesetzt ist. Wenn diese Ablenkspannung ihren Höchstwert erreicht, liefert der Höchstwertdiskriminator 23 ein Ausgangssignal der in der F i g. 3 e gezeigten Form,
durch das sowohl die Kippschaltung 24 als auch der Schaltkreis 17 in Ausgangseinstellung zurückgebracht werden.
Durch die kontinuierliche Änderung des elektrostatischen Feldes in der vorstehend beschriebenen Art und Weise wird die Raumbewegungsgeschwindigkeit des Ionenbündels, das durch das elektrostatische Feld hindurchtritt, klein gemacht. Es soll angenommen werden, daß das Massenspektrum der Fig.4b oberhalb der Ansprechgrenze des Verstärkers 20 registriert wurde; auf dem Schreiber 21 erscheint dann als Ergebnis der vorstehend beschriebenen Änderung des elektrostatischen Feldes ein Massenspektrum, wie dieses in der Fig.4c gezeigt ist, dessen Spitzenwerte deutlicher voneinander getrennt sind als in der F i g. 4 b.
So ist der SpitzenwertD bei dem in der Fig.4c gezeigten Spektrum in drei SpitzenwertkomponentenDj', D1" und D2 aufgespalten, was beweist, daß der SpitzenwertD1 der Fig. 4b durch die Änderung des elektrostatischen Feldes in der vorstehend beschriebenen Weise in zwei Spitzenwertkomponenten D1 und D1" aufgespalten wird.
Da die vorstehend beschriebene Änderung des elektrostatischen Feldes in Richtung einer Erhöhung der Zahl der am zweiten Ionenkollektor 2 nachgewiesenen Ionen wirksam ist, ist das Massenspektrum der F i g. 4 c mit höherer Empfindlichkeit aufgenommen als das Massenspektrum der F i g. 4 b.
Es könnte als vorteilhaft betrachtet werden, eine langsame Änderung des Magnetfeldes zu wählen, um eine verbesserte Empfindlichkeit und Auflösung zu erzielen, aber eine solche Arbeitsweise ist in Anbetracht der dadurch verlängerten Analysenzeit im allgemeinen unerwünscht. Es ist jedoch möglich, die Änderung des elektrostatischen Feldes innerhalb einer begrenzten Zeit auszuführen, die vom ersten Auftreten eines Ausgangssignals am ersten Ionenkollektor 5 bis zum Ende eines solchen Ausgangssignals reicht.
Hierzu 2 Blatt Zeichnungen

Claims (2)

1 2 doppeltfokussierendes Massenspektrometer der einPatentansprüche: gangs genannten Art anzugeben, das eine verbesserte Empfindlichkeit und Auflösung ohne Verlängerung
1. Doppeltfokussierendes Massenspektrometer, der Analysenzeit aufweist.
das in der angegebenen Reihenfolge eine Ionen- 5 Diese Aufgabe wird erfindungsgemäß gelöst durch
quelle, Magnetpole zur Erzeugung eines Magnet- Mittel, die jeweils bei Auftreten eines elektrischen Si-
feldes und zugeordnete Mittel für die Änderung gnals am ersten Ionenkollektor bewirken, daß dieses
der Magnetfeldstärke, eine erste Spaltblende, elektrische Signal für die Steuerung einer Variation
einen ersten Ionenkollektor mit Spalt, Elektroden der Feldstärke des elektrischen Feldes ausgenutzt
zur Erzeugung eines elektrischen Feldes, eine io wird, deren Zeitdauer auf die Zeitdauer dieses elek-
zweite Spaltblende und einen zweiten Ionenkol- trischen Signals abgestimmt ist, wobei die auf diese
lektor sowie Mittel zur gleichzeitigen Ubertra- Weise bewirkte Änderung der elektrischen FeId-
gung der elektrischen Signale von den beiden stärke dem durch das elektrische Feld hindurchtre-
Ionenkollektoren aufweist, gekennzeich- tenden Ionenbündel eine der Aufspaltungsrichtung
net durch Mittel (22 bis 24), die jeweils bei 15 durch das Magnetfeld entgegengesetzte Verschiebung
Auftreten eines elektrischen Signals am ersten erteilt.
Ionenkollektor (5) bewirken, daß dieses elektri- Das erfindungsgemäße doppeltfokussierende Massche Signal für die Steuerung einer Variation der senspektrometer arbeitet im Vergleich zu den her-Feldstärke des elektrischen Feldes ausgenutzt kömmlichen doppeltfokussierenden Massenspektrowird, deren Zeitdauer auf die Zeitdauer dieses 20 metern, die nicht mit derartigen Mitteln zur Ändeelektrischen Signals abgestimmt ist, wobei die auf rung der Feldstärke des elektrostatischen Feldes ausdiese Weise bewirkte Änderung der elektrischen gestattet sind, mit verbesserter Empfindlichkeit, ho-Feldstärke dem durch das elektrische Feld hin- her Auflösung und ohne Verlängerung der Analysendurchtretenden Ionenbündel eine der Aufspal- zeit.
tungsrichtung durch das Magnetfeld entgegenge- 25 Eine Ausgestaltung der Erfindung ist gekennzeich-
setzte Verschiebung erteilt. net durch einen Spitzenwertabtaster für den Empfang
2. Doppeltfokussierendes Massenspektrometer des Signals am ersten Ionenkollektor, eine Kippnach Anspruch 1, gekennzeichnet durch einen schaltung, die durch den Spitzenwertabtaster betätigt Spitzenwertabtaster (22) für den Empfang des Si- wird, einen Schaltkreis für die Änderung des elektrignals am ersten Ionenkollektor, eine Kippschal- 30 sehen Feldes, dessen Funktion durch die Betätigung tung (24), die durch den Spitzenwertabtaster (22) der Kippschaltung ausgelöst wird und einen Höchstbetätigt wird, einen Schaltkreis (17) für die An- wertdiskriminator, der bei Empfang des oberen derung des elektrischen Feldes, dessen Funktion Grenzwertes des vom Kreis erzeugten Feldes die durch die Betätigung der Kippschaltung (24) aus- Kippschaltung und den Kreis in ihre Ausgangs- bzw. gelöst wird und einen Höchstwertdiskriminator 35 Nullstellungen zurückbringt.
(23), der bei Empfang des oberen Grenzwertes Nachfolgend wird die Erfindung an Hand der
des vom Kreis (17) erzeugten Feldes die Kipp- Zeichnung näher erläutert. Es zeigt
schaltung (24) und den Kreis (17) in ihre Aus- F i g. 1 ein Blockdiagramm eines erfindungsgemä-
gangs- bzw. Nullstellungen zurückbringt. ßen doppeltfokussierenden Massenspektrometers,
40 F i g. 2 die Anordnung des ersten Spaltes und des ersten Ionenkollektors in bezug zum Ionenstrahl in
Perspektive,
F i g. 3 a bis 3 e die Ausgangssignale verschiedener elektrischer Schaltkreise des in der F i g. 1 gezeigten
Die Erfindung bezieht sich auf ein doppeltfokussie- 45 Massenspektrometers, und
rendes Massenspektrometer, das in der ange- F i g. 4 a bis 4 c aufgenommene Massenspektren
gebenen Reihenfolge eine Ionenquelle, Magnet- zur weiteren Erläuterung der Erfindung,
pole zur Erzeugung eines Magnetfeldes und zu- In der F i g. 1 umfaßt ein erfindungsgemäßes dopgeordnete Mittel für die Änderung der Magnetfeld- peltfokussierendes Massenspektrometer eine Ionenstärke, eine erste Spaltblende, einen ersten Ionenkol- 50 quelle 1 und einen zweiten Ionenkollektor 2, zwilektor mit Spalt, Elektroden zur Erzeugung eines sehen denen Magnetpole 3, ein erster Spalt 4, ein erelektrischen Feldes, eine zweite Spaltblende und ster Ionenkollektor 5, Elektroden 6 und ein zweiter einen zweiten Ionenkollektor sowie Mittel zur gleich- Spalt 7 in der genannten Reihenfolge angeordnet zeitigen Übertragung der elektrischen Signale von sind. Die Ionenquelle 1 umfaßt eine Ionisierungsden beiden Ionenkollektoren aufweist. 55 kammer 10 mit einer Probeneinlaßöffnung 8 und
Mit einem solchen Gerät ist es möglich, gleichzei- einem Ionenaustrittsspalt 9, eine geheizte Kathode 11 tig ein doppeltfokussiertes Massenspektrum (hohe zur Ionisierung der in die Ionisierungskammer 10 Auflösung) und ein einfachfokussiertes Massenspek- durch die Probeneinlaßöffnung 8 eintretenden Protrum (geringe Auflösung; lediglich Anwendung eines benmoleküle durch Elektronenbeschuß, eine Elektro-Magnetfeldes) zu erhalten, wobeL im einfachfokus- 6° denkollektorelektrode 12 und ein Elektrodensystem sierten Spektrum metastabile Ionen in großer Menge 13 zur Ionenbeschleunigung für die Beschleunigung in Erscheinung treten, die eine niedrige und willkür- eines durch den Ionenaustrittsspalt 9 austretenden liehe Energie haben. Ionenbündels.
Die Anwendung eines solchen doppeltfokussieren- Die Magnetpole 3 sind mit einer Energiequelle 14
den Massenspektrometers ist sehr vorteilhaft für eine 65 und einem Schaltkreis 15 für das Magnetfeld verbuneinfache, genaue und alle Einzelheiten berücksichti- den, während die Elektroden 6 an eine Energie-
gende Analyse der Molekülstruktur. quelle 26 und einen Schaltkreis 17 für das elektrosta-
Es ist Aufgabe der vorliegenden Erfindung, ein tische Feld angeschlossen sind.
DE1598569A 1965-09-30 1966-09-29 Doppelfokussierendes Massenspektrometer Expired DE1598569C3 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5940865 1965-09-30

Publications (3)

Publication Number Publication Date
DE1598569A1 DE1598569A1 (de) 1971-01-07
DE1598569B2 true DE1598569B2 (de) 1974-08-15
DE1598569C3 DE1598569C3 (de) 1975-05-22

Family

ID=13112409

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1598569A Expired DE1598569C3 (de) 1965-09-30 1966-09-29 Doppelfokussierendes Massenspektrometer

Country Status (3)

Country Link
US (1) US3475604A (de)
DE (1) DE1598569C3 (de)
GB (1) GB1134448A (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1255962A (en) * 1968-07-05 1971-12-08 Atomic Energy Authority Uk Improvements in or relating to gas chromatography-mass spectrometry
US3769513A (en) * 1972-12-14 1973-10-30 Perkin Elmer Corp Ion kinetic energy spectrometer
JPS5222558B2 (de) * 1972-12-18 1977-06-17
US4099052A (en) * 1976-12-07 1978-07-04 E. I. Du Pont De Nemours And Company Mass spectrometer beam monitor
USRE31043E (en) * 1976-12-07 1982-09-28 E. I. Du Pont De Nemours And Company Mass spectrometer beam monitor
FR2376511A1 (fr) * 1976-12-31 1978-07-28 Cameca Spectrometre de masse a balayage ultra-rapide
JPS5546420A (en) * 1978-09-29 1980-04-01 Hitachi Ltd Mass spectroscope
EP0016561A1 (de) * 1979-03-15 1980-10-01 University Of Manchester Institute Of Science And Technology Massenspektrometer
GB9510052D0 (en) * 1995-05-18 1995-07-12 Fisons Plc Mass spectrometer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2659821A (en) * 1952-01-25 1953-11-17 Jr John A Hipple Spectrometric analysis of solids

Also Published As

Publication number Publication date
GB1134448A (en) 1968-11-20
DE1598569C3 (de) 1975-05-22
DE1598569A1 (de) 1971-01-07
US3475604A (en) 1969-10-28

Similar Documents

Publication Publication Date Title
DE3750928T2 (de) Laufzeit-Massenspektrometrie.
EP0403965B1 (de) MS-MS-Flugzeit-Massenspektrometer
DE112014006538T5 (de) Verfahren der gezielten massenspektrometrischen Analyse
DE69118492T2 (de) Massenspektrometer mit elektrostatischem Energiefilter
DE1598569C3 (de) Doppelfokussierendes Massenspektrometer
DE2701606A1 (de) System zum verarbeiten positiver und negativer ionen im massenspektrometer
DE4316805A1 (de) Nachweis sehr großer Molekülionen in einem Flugzeitmassenspektrometer
DE69127989T2 (de) Massenspektrometer für neutrale gesputterte Atome, die mit Laser ionisiert sind
DE19635645A1 (de) Hochauflösende Ionendetektion für lineare Flugzeitmassenspektrometer
DE69121463T2 (de) Ionenbündelvorrichtung
EP0221339B1 (de) Ionen-Zyklotron-Resonanz-Spektrometer
DE3872848T2 (de) Verfahren zur analyse der flugzeit mit stetiger abtastung und analysierungsvorrichtung zur durchfuehrung des verfahrens.
DE1292884B (de) Verfahren und Vorrichtung zum massenspektrometrischen Analysieren eines Gasgemisches
DE102018122960B4 (de) Breitbandig hohe Massenauflösungen in Reflektor-Flugzeitmassenspektrometern
DE69204892T2 (de) Femtosekunden-Streakkamera.
DE3438987A1 (de) Auger-elektronenspektrometer mit hoher aufloesung
DE60014758T2 (de) Flugzeitmassenspektrometerionenquelle zur Analyse von Gasproben
DE1950938B2 (de) Massenspektrograph
DE1498767A1 (de) Massenspektrometer,insbesondere fuer Gasanalysen und Hochvakuummessungen
DE69935996T2 (de) Massenspektrometer mit hohem ionisations-wirkungsgrad
DE2754198A1 (de) Ionenstrahlanalysator und verfahren zum feststellen der felddesorptions- kenngroessen bei einem ionenstrahlanalysator
EP0539664A1 (de) Programmierbares Steuer- und Daten Aufnahmesystem für Flugzeit-Massenspektrometer
DE2045955A1 (de) Massenspektrometer
DE2110220A1 (de) Einrichtung zum Nachweisen von Teilchen
DE2705417A1 (de) Anordnung zum ein- und austasten des elektronenstrahls eines elektronenmikroskops

Legal Events

Date Code Title Description
C3 Grant after two publication steps (3rd publication)
E77 Valid patent as to the heymanns-index 1977