DE1592853B2 - Verfahren und Vorrichtung zur Herstellung von Ruß - Google Patents

Verfahren und Vorrichtung zur Herstellung von Ruß

Info

Publication number
DE1592853B2
DE1592853B2 DE1592853A DE1592853A DE1592853B2 DE 1592853 B2 DE1592853 B2 DE 1592853B2 DE 1592853 A DE1592853 A DE 1592853A DE 1592853 A DE1592853 A DE 1592853A DE 1592853 B2 DE1592853 B2 DE 1592853B2
Authority
DE
Germany
Prior art keywords
furnace
combustion gases
supply
combustion
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE1592853A
Other languages
English (en)
Other versions
DE1592853C3 (de
DE1592853A1 (de
Inventor
Charles L. West Monroe La. Deland (V.St.A.)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cities Service Co New York Ny (vsta)
Original Assignee
Cities Service Co New York Ny (vsta)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cities Service Co New York Ny (vsta) filed Critical Cities Service Co New York Ny (vsta)
Publication of DE1592853A1 publication Critical patent/DE1592853A1/de
Publication of DE1592853B2 publication Critical patent/DE1592853B2/de
Application granted granted Critical
Publication of DE1592853C3 publication Critical patent/DE1592853C3/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/50Furnace black ; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/19Oil-absorption capacity, e.g. DBP values

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Herstellung von Ruß durch thermische Zersetzung von flüssigen Kohlenwasserstoffen durch den Kontakt mit heißen Verbrennungsgasen in einem längsausgedehnten unverschlossenen Ofenraum, in den die Kohlenwasserstoffe und die heißen Verbrennungsgase im Bereich der einen Stirnseite parallel zur Längsachse eingespritzt bzw. eingeblasen werden und sich dort intensiv miteinander vermischen und aus dem an der anderen Stirnseite die Verbrennungsgase und die gasförmigen Produkte der thermischen Zersetzung der Kohlenwasserstoffe zusammen mit dem gebildeten Ruß abgezogen werden.
Die meisten im Handel befindlichen Ruße werden derzeit durch thermische Zersetzung von normalerweise nicht gasförmigen Kohlenwasserstoffen, wie
etwa Petroleum-Rückständen oder Kreosot-Öle, her- brennung ein einziger, etwa koaxial zu dem zu Ruß gestellt. Dazu werden diese Kohlenwasserstoffe in zu ersetzenden Kohlenwasserstoffstrom in dem Ofen einem Ofenraum mit heißen Verbrennungsgasen ge- austretender Verbrennungsgasstrom. Eine Einflußmischt, die durch Verbrennen eines geeigneten Brenn- nähme auf die Qualität des Rußes ist bei diesem Verstoffes mit Luft gewonnen werden. Oft verbrennt 5 fahren nur auf eine Variation der Geschwindigkeit dabei ein Teil des Kohlenwasserstoffs mit, doch wird beschränkt, mit der Verbrennungsgas und zu zerdiese Nebenreaktion im Interesse einer möglichst setzender Kohlenwasserstoff den Ofen zugeführt werhohen Rußausbeute im allgemeinen unter Kontrolle den.
gehalten. Dieselben Nachteile weisen auch die aus den USA.-
Je nach derspeziellenRußsorte, die hergestellt werden io Patentschriften 2 779 665 und 3 003 854 bekannten soll, müssen oft sehr verschiedene Betriebs- Vorrichtungen auf, bei denen die Brenner für das bedingungen eingehalten werden. Einige Rußsorten Verbrennungsgas so angeordnet sind, daß die Erkönnen in ein und demselben Ofenprozeß hergestellt zeugung der Verbrennungsgase erst relativ tief innerwerden, sofern es möglich ist, die Betriebsbedingungen halb des Ofenraumes stattfindet. Einer Beeinflussung wie Reaktionszeit, Verbrennungsgas-Atmosphäre, 15 der Rußqualität durch eine geeignete Einstellung der Mengenverhältnisse der Reaktionspartner usw. ent- Strömungsgeschwindigkeiten von Kohlenwasserstoff sprechend einzustellen. Die Mannigfaltigkeit der und Verbrennungsgas wirkt hier zusätzlich noch enthandelsüblichen Rußsorten hat sich jedoch so sehr gegen, daß eine starke Verwirbelung und Durchentwickelt, daß zur Herstellung des ganzen Programms mischung der Verbrennungsgase eintritt,
viele Ofentypen und -größen erforderlich sind. 20 Statt die Verbrennungsgase parallel zur Längsachse
Bislang war die Einflußnahme auf die Struktur des in den Ofenraum einzuführen, werden nach einem
herzustellenden Rußes im wesentlichen auf eine Va- weiteren vorbekannten Verfahren (französische Patent-
riation der Geschwindigkeiten beschränkt, mit welchen schrift 1 392 077) die Verbrennungsgase radial in den
die Kohlenwasserstoffe und die Verbrennungsgase Ofenraum eingeblasen, was ebenfalls eine starke Ver-
dem Ofenraum zugeführt wurden. Da das Kohlen- 25 wirbelung der Gase und die vorgenannten, damit
Wasserstoffmaterial für eine praktisch vollständige verbundenen Nachteil zur Folge hat.
thermische Zersetzung mit einer bestimmten Mindest- Aus der belgischen Patentschrift 691 506 ist des
menge an heißen Verbrennungsgasen vermischt wer- weiteren noch ein Verfahren bekannt, bei welchem
den muß, sind der Variationsmöglichkeit der Zufuhr- ein erster Brennstoff sowie ein erstes Oxydationsmittel
geschwindigkeit von Kohlenwasserstoff und Ver- 30 in eine erste, am stirnseitigen Ende des Ofens vor-
brennungsgasen Grenzen gesetzt, die eine Herstellung gesehene Brennkammer, welcher auch der zu zerset-
von Rußen verschiedener Struktur nicht gestatten. zende Kohlenwasserstoff zugeführt wird, eingeblasen
Bei der Herstellung von Ruß durch thermische Zer- werden. Von der ersten Brennkammer gelangt das setzung von Kohlenwasserstoffen nehmen diese die Gasgemisch in eine gegenüber der ersten Kammer Wärme von den Verbrennungsgasen auf. Während 35 axial versetzte zweite Brennkammer, in die ein zweiter der zu Rußbildung führenden Umsetzung befindet Brennstoff sowie ein zweites Oxydationsmittel tangensich in der oberen Zone des Ofenraums eine Pufferzone, tial eingeblasen werden, wonach in einer dritten die in der Hauptsache aus Ruß, Verbrennungsgasen Brennkammer die thermische Zersetzung des Kohlen- und gasförmigen Produkten der thermischen Zerset- wasserstoff schließlich beendet wird. Auch bei dieser zung des Kohlenwasserstoffmaterials besteht. Bei 40 Vorrichtung ist eine Einflußnahme auf die Rußqualität senkrecht angeordneten öfen werden die Verbren- durch Einregulierung der Strömungsgeschwindigkeit nungsgase oder Bestandteile davon entweder in der der Gase und des Kohlenwasserstoffs nur in geringem Weise in den Ofenraum eingeführt, daß sie über Ausmaß möglich. Außerdem läßt sich bei dieser Vordessen gesamten Querschnitt gleichmäßig nach oben richtung eine Überhitzung der Innenwände des Ofengeleitet werden, oder die Verbrennungsgase werden 45 raumes durch die Verbrennurigsgase und damit eine bei einem anderen Ofentyp nur in eine bestimmte frühzeitige Zerstörung der feuerfesten Ofenauskleidung Zone des Ofenraums eingeführt, die zur Einführung nicht vermeiden.
des Kohlenwasserstoffmaterials in den Ofenraum in Der Erfindung liegt daher die Aufgabe zugrunde, Beziehung steht. Bei den vorbekannten Vorrichtungen ein Verfahren und eine Vorrichtung zur thermischen zur Herstellung von Ruß durch thermische Zersetzung 50 Zersetzung von Kohlenwasserstoffen zu entwickeln, lassen sich die Geschwindigkeit, die Temperatur und das die Herstellung einer breiten Skala von Rußsorten die Zusammensetzung der Gase in den verschiedenen ermöglicht. Das Verfahren soll außerdem mit hohen Zonen des Ofenraumes nicht oder zumindest nicht Produktionsgeschwindigkeiten und Ausbeuten durchin dem Maß regulieren, wie es erforderlich wäre, um führbar sein, ohne daß eine Überhitzung der Ofenmit einem Minimum an Aufwendungen eine optimale 55 wände und eine dadurch bedingte frühzeitige ZerQualität zu erzielen. Die Einregulierung der Bedin- störung der Ofenauskleidung eintritt. Die Vermeidung gungen ist im unteren Bereich des Ofenraums, in einer Überhitzung der Ofeninnenwände auch bei Verweichem die Berührung zwischen dem Kohlenwasser- wendung von vorerhitzter Luft ist besonders deshalb Stoffmaterial und den heißen Verbrennungsgasen wichtig, weil dann, wenn vorerhitzte Luft zur Verzuerst zustandekommt, ein besonderes Problem. 60 brennung des Brennstoffs eingesetzt wird, eine er-
Bei einem bekannten Verfahren der eingangs er- höhte Produktionsrate und eine bessere Rußausbeute
wähnten Art zur Herstellung von Ruß (USA.-Patent- erzielt werden können.
schrift 3 003 855) wird ein Verbrennungsgasstrom Bei einem Verfahren der eingangs erwähnten Art dadurch erzeugt, daß im Bereich der einen Stirnseite ist diese Aufgabe erfindungsgemäß dadurch gelöst des Ofens ein öl eingespritzt und in einem ebenfalls 65 worden, daß in den Ofenraum ein sich unmittelbar in diesem Bereich eingeführten Luftstrom verbrannt mit dem eingespritzten Kohlenwasserstoff vermischenwird. Infolge der dicht beieinander liegenden Anord- der regelbarer erster Verbrennungsgasstrom zur teilnung der Brenneröffnungen entsteht bei der Ver- weisen Zersetzung der Kohlenwasserstoffe sowie ein
5 6
sich mit dem Gemisch aus dem ersten Verbrennungs- Vorzugsweise weisen das erste und das zweite Zu-
gas und den teilweise zersetzten Kohlenwasserstoffen leitungssystem für die Verbrennungsgase jeweils eine vermischender regelbarer zweiter Verbrennungsgas- Ringleitung für die Zufuhr von Luft zu den betrefstrom zur vollständigen Zersetzung der noch vorhan- fenden Zuleitungen und mindestens einen Injektor denen Kohlenwasserstoffe eingeblasen werden. 5 für die Beschickung der Zuleitungen mit Brennstoff
Gemäß einer besonders bevorzugten Ausführungs- auf.
form des erfindungsgemäßen Verfahrens werden die Gemäß einer weiteren bevorzugten Ausgestaltung
Kohlenwasserstoffe unter Bildung von Flüssigkeits- der erfindungsgemäßen Vorrichtung sind in den zu tröpfchen in den Ofenraum eingesprüht. den Ringleitungen führenden Luftzufuhrleitungen und
Insbesondere im Hinblick auf Produktionsge- io in den zu den Injektoren führenden Brennstoffzufuhrschwindigkeit und Ausbeute hat es sich als vorteilhaft leitungen jeweils ein Strömungsregler zur Einstellung erwiesen, die zur Erzeugung der Verbrennungsgase der Luft- bzw. Brennstoffzufuhr angeordnet,
verwendete Luft vor dem Vermischen mit dem Brenn- Bei der Durchführung des erfindungsgemäßen Ver-
stoff auf eine Temperatur im Bereich zwischen unge- fahrens kann durch eine einstellbare Ausbildung eines fähr 315°C und ungefähr 8150C vorzuwärmen. 15 Profils bestimmter Zustandsgrößen wie Temperatur,
Zur Vermeidung einer Überhitzung der Innenwände Strömungsgeschwindigkeit und Zusammensetzung der des Ofens hat es sich des weiteren von Vorteil er- Verbrennungsgase über dem Ofenquerschnitt eine wiesen, daß die Verbrennungsgase des ersten Ver- erhebliche Verbesserung der Rußqualität und der brennungsgasstroms aus einer brennstoffreichen Mi- Ausbeute erzielt werden. Ferner lassen sich je nach schung und die des zweiten Verbrennungsgasstroms 20 Wunsch unterschiedliche Rußsorten hinsichtlich Feinaus einer sauerstoffreichen Mischung erzeugt werden, heit und Struktur durch entsprechende Wahl des Zuso daß der verhältnismäßig kühlere zweitejVerbren- Standsgrößenprofils in ein und demselben Ofen hernungsgasstrom die Wände des Ofenraums gegen den stellen.
heißeren ersten Verbrennungsgasstrom abschirmt. Bei der Durchführung des erfindungsgemäßen Ver-
Die Durchführung des erfindungsgemäßen Ver- 25 fahrens hat es sich als vorteilhaft erwiesen, den Sprühfahrens erfolgt vorzugsweise in einem wärmeisolierten, strahl der Kohlenwasserstoffe von unten nach oben senkrecht angeordneten Ofen, in dessen unterem in einen senkrecht angeordneten, längsausgedehnten Bereich mindestens eine Leitung zum achsparallelen Ofenraum einzuspeisen und die thermische Zersetzung Einspritzen des Kohlenwasserstoffes und eine Anzahl der Kohlenwasserstoffe im oberen Bereich des Ofeneinen Abstand von der Einspritzleitung aufweisende 30 raumes zu vervollständigen. Die Eigenschaften des Zuleitungssysteme zum achsparallelen Einblasen der Rußes können auch noch dadurch variiert werden, heißen Verbrennungsgase einmünden. Erfindungsge- daß die Verbrennungsgase für den ersten und den maß münden die Zuleitungen zweier unabhängig von- zweiten Verbrennungsgasstrom unabhängig voneineinander beschickbarer und steuerbarer Zuleitungs- ander durch Verbrennung eines Brennstoffs und eines systeme für Verbrennungsgase in verschiedenen Ab- 35 freien Sauerstoffs enthaltenden Gase hergestellt werständen von der Einspritzleitung für den Kohlenwas- den, wobei das Mengenverhältnis von Brennstoff und serstoff derart in den Ofenraum ein, daß der durch Oxydationsmittel für jeden Verbrennungsgasstrom undas erste Zuleitungssystem eingeblasene Verbrennungs- abhängig eingestellt wird. Eine weitere Möglichkeit gasstrom in unmittelbaren Kontakt mit dem Kohlen- zur Beeinflussung der Rußqualität ergibt sich daraus, wasserstrom gelangt, während der durch das zweite 40 daß die Geschwindigkeiten der beiden in den Ofen Zuleitungssystem eingeblasene Verbrennungsgasstrom eingespeisten Verbrennungsgasströme unterschiedlich mittelbar über den ersten Verbrennungsgasstrom mit gehalten werden können,
dem Kohlenwasserstoff in Berührung kommt. Bei der Durchführung des erfindungsgemäßen Ver-
Vorzugsweise sind die Zuleitungen der beiden Zu- fahrens wird ein dosierter Strom eines nicht gasförleitungssysteme so zueinander angeordnet, daß die 45 migen Kohlenwasserstoffmaterials in Form von vorvon ihnen abgegebenen Verbrennungsgase koaxial in zugsweise Dampf oder eines Sprühstrahls am unteren bezug auf den eingespritzten Kohlenwasserstoffstrom Ende des Ofens in eine nicht abgeteilte erste Zone in den Ofenraum eingeblasen werden. eingebracht. Die zur Zersetzung des Kohlenwasser-
Gemäß einer besonders vorteilhaften Ausgestaltung Stoffmaterials erforderlichen heißen Verbrennungsgase der erfindungsgemäßen Vorrichtung sind die Zulei- 5° werden in zwei getrennten Anteilen dem Ofen zugetungen des ersten Zuleitungssystems in der Nähe des führt. Ein Teil davon wird durch ein erstes Zuleitungs-Zentrums des Ofenbodens und die Zuleitungen des system eingeblasen, das so ausgebildet ist, daß diese zweiten Zuleitungssystems in einem größeren Ab- Verbrennungsgase in die oben beschriebene erste Zone stand davon angeordnet. gelangen und sich dort vollständig mit dem Kohlen-
Vorzugsweise weist das erste Zuleitungssystem eine 55 Wasserstoffmaterial vermischen.
Anzahl einzelner Zuleitungen auf, die zu einer Gruppe Die Menge der durch das erste Zuleitungssystem
zusammengefaßt nahe dem Zentrum des Ofenbodens zugeführten Verbrennungsgase ist so bemessen, daß in den Ofenraum einmünden. in der ersten Zone nur eine teilweise Umsetzung des
Des weiteren ist es zweckmäßig, wenn auch das Kohlenwasserstoffmaterials zu Ruß erfolgt. Das zweite Zuleitungssystem eine Anzahl von Zuleitungen 60 zweite Zuleitungssystem, über das eine weitere einaufweist, die symmetrisch in einem größeren Abstand gestellte Menge Verbrennungsgas dem Ofenraum zuum das Zentrum des Ofenbodens in den Ofenraum geführt wird, ist so angeordnet, daß diese Gase in den einmünden. Raum um die obenerwähnte erste Zone gelangen und
Um die im Ofenraum befindliche Gasatmosphäre dabei zunächst im wesentlichen ohne Berührung mit in eine drehende Bewegung zu versetzten, ist es vorteil- 65 dem Kohlenwasserstoffmaterial bleiben. Wenn die haft, ein drittes Zuleitungssystem vorzusehen, aus vorgebildete Mischung des teilweise umgesetzten dem Verbrennungsgase tangential in den Ofenraum Kohlenwasserstoffmaterials mit den heißen Verbreneingeblascn werden. nungsgasen die unabgeteilte erste Zone verläßt, ver-
mischt sie sich mit den heißen Verbrennungsgasen erfindungsgemäßen Verfahrens ist in der Zeichnung
aus dem zweiten Zuleitungssystem, und die thermische schematisch dargestellt. Es zeigt
Zersetzung des Kohlenwasserstoffmaterials zu Ruß F i g. 1 einen Seitenschnitt eines zylindrischen,
wird innerhalb des Ofenraums, aber außerhalb der senkrecht angeordneten Ofens gemäß der Erfindung,
Grenzen der nicht abgeteilten ersten Zone praktisch 5 bei welchem der Schnitt entlang der Linie 1-1 der
vollständig, in welcher sich das Kohlenwasserstoff- F i g. 2 geführt ist;
material und die durch die primären Zuleitungen ein- F i g. 2 einen Querschnitt durch den Ofen in einem
geführten Verbrennungsgase miteinander ver- größeren Maßstab entlang der Linie 2-2 der F i g. 1;
mischen. F i g. 3 einen Schnitt durch den Bodenteil des in
Das erste und das zweite Zuleitungssystem werden io F i g. 1 dargestellten Ofens in einem etwas größeren
unabhängig voneinander mit Verbrennungsgasen ver- Maßstab;
sorgt, so daß sie entweder für sich oder gleichzeitig F i g. 4, 5, 6 und 7 schematisierte Darstellungen benutzt werden können. Besondere Vorteile haben der Geschwindigkeitsprofile, die im Ofenraum ersieh bei der gleichzeitigen Benutzung der ersten und halten werden können, wenn die Einführung der der zweiten Zuleitung ergeben. Die Geschwindigkeit 15 heißen Verbrennungsgase in der erfindungsgemäßen und die Zusammensetzung der Verbrennungsgase, mit Weise erfolgt.
welcher das erste und das zweite Zuleitungssystem ver- Wie aus F i g. 1 zu ersehen ist, wird ein zylinsorgt werden, können unabhängig voneinander ein- drischer, offener hoher Ofenraum 1 durch die Schicht2 gestellt werden, woraus sich gegenüber den herkömm- aus feuerfestem Material gebildet. Das feuerfeste Malichen Ofeneinrichtungen eine wesentliche gesteigerte 20 terial ist mit einer Schicht von wärmeisolierendem Flexibilität der Betriebsbedingungen ergibt. Das Ver- Material 3 überdeckt, die ihrerseits von außen von mischen und die Reaktion des Kohlenwasserstoff- einem Metallgehäuse 4 umschlossen und zusammenmaterials mit den heißen Verbrennungsgasen kann gehalten wird. Die aus dem Ofenraum 1 entweichenden auf diese Weise in einem ungewöhnlich starken Maß Reaktionsprodukte gelangen durch die kegelstumpfbeeinflußt werden, wodurch die Eigenschaften des 25 artige Haube 5 in den Schornstein 6 als Ruß-Gashergestellten Rußes variiert werden können. So läßt Aerosol, das durch einen Kühler und einen Ruß-Absich z. B. die Geschwindigkeit der Verbrennungsgase, scheider geführt wird, die von herkömmlicher Bauart die in die unabgeteilte erste Mischzone eingeblasen und hier nicht wiedergegeben sind. Die Verbrennungswerden, verändern, ohne daß sich die Geschwindigkeit gase können in den Reaktionsraum durch die primären der Verbrennungsgaszufuhr insgesamt verändert. An- 30 Zuleitungen 7 und die sekundären Zuleitungen 8 eindererseits läßt sich die Geschwindigkeit der Zufuhr gebracht werden, die durch den Boden des Ofens hinvon Verbrennungsgasen insgesamt gewünschtenfalls durchgeführt sind. Das Kohlenwasserstoffmaterial leicht variieren. wird mittels der Einspritzvorrichtung 9 in den Reak-
Da außerdem die Zusammensetzung des ersten tionsraum eingespeist.
und des zweiten Verbrennungsgases unabhängig von- 35 Wie F i g. 1 zeigt, können Verbrennungsgase auch einander reguliert werden kann, ist es möglich, die durch ein drittes Zuleitungssystem 10, das sich in Atmosphäre in der unabgeteilten ersten Mischzone der Seitenwand des Ofens befindet, in den Reaktionsganz nach Wunsch mehr oxidierend oder reduzierend raum 1 eingebracht werden; bei Benutzung dieser zu machen, während eine davon verschiedene Atmo- Zuleitungen ergibt sich eine spiralige Bewegung der Sphäre in den Bereichen des Ofenraumes aufrecht- *o Gasatmosphäre im Ofenraum. Die spiralige Strömung erhalten bleibt, in welchen die Rußbildung vollständig der Gase im Ofenraum kann vorzugsweise mit Hilfe wird. einer Brenneranordnung hervorgerufen sein, die —
Die unabhängige Regelung der Geschwindigkeit wie schon früher beschrieben — die Verbrennungsund der Zusammensetzung der zugeführten Verbren- gase tangential in den Ofenraum einbläst,
nungsgase im ersten und zweiten Zuleitungssystem 45 Die von dem ersten Zuleitungssystem gespeisten ist besonders dann von Vorteil, wenn in senkrecht Zuleitungen 7 sind als eine Gruppe um die Kohlenangeordneten öfen Ruß unter Verwendung von vor- wasserstoff-Einspritzleitung 9 angeordnet, so daß die erhitzter Luft für die Brennmischung hergestellt wird, Mündungen dieser Zuleitungen in nächster Nähe durch deren Verbrennung die für die Zersetzung be- der Einspritzvorrichtung liegen. Die von dem zweiten nötigten heißen Verbrennungsgase erzeugt werden. 50 Zuleitungssystem gespeisten Zuleitungen 8 sind da-Eine Einstellung des Temperaturprofils über den gegen in einem Ring angeordnet und haben von der Querschnitt des Ofenraums läßt sich leicht vor- Gruppe der Zuleitungen 7 einen gewissen Abstand, nehmen, so daß es ohne weiteres möglich ist, die so daß die Mündungen dieser Zuleitungsrohre einen feuerfeste Auskleidung des Ofens vor dem Überhitzen größeren Abstand von der Einspritzleitung für den zu bewahren. 55 Kohlenwasserstoff haben als die Zuleitungen 7.
Bei einer anderen Ausführungsform der vorliegen- Für die Zuleitungen 7 und 8 sind voneinander unden Erfindung erfolgt die Strömung der Verbrennungs- abhängige Systeme für die Luft- und Brennstoff-Zufuhr gase auf einer spiraligen Bahn. Somit kann auch hier vorgesehen. Wie aus F i g. 1 ersichtlich, wird das die Vervollständigung der thermischen Zersetzung in erste Zuleitungssystem 13, welches gemeinsam alle einer speziellen Zone des Reaktionsraumes vorge- 60 Zuleitungen 7 versorgt, über die Luftzufuhrleitung 11, nommen werden, z. B. im Kern eines sich in Spiral- die mit einer Absperr- und Regelvorrichtung 12 verbahnen bewegenden Körpers von heißen Verbren- sehen ist, mit Luft beschickt. Die andere Luftzufuhrnungsgasen, oder verteilt über den ganzen Querschnitt leitung 14, die ebenfalls mit einer Absperr- und Regeldes Raumes, jedenfalls mit dem Ziel, den vorhandenen vorrichtung 15 ausgestattet ist, dient der Luftzufuhr Reaktionsraum so weitgehend als möglich auszu- 65 zu der Ringleitung 16, welche gemeinsam alle Zuleimitzen, um mit einer Ofeneinheit eine maximale tungen 8 miteinander verbindet. Ein fließfähiger Produktion zu erreichen. Brennstoff, wie etwa Naturgas, wird dem ersten und
Ein besonders vorteilhaftes Ausführungsbeispiel des dem zweiten Zuleitungssystcm Unabhängig vonein-
9 10
ander durch die Injektoren 17 a bzw. 17 b zugeführt. daher keiner besonderen Beschreibung. Der Injektor Die Injektoren 17 α des ersten Zuleitungssystems sollte jedoch eine gerichtete Einspritzung ermöglichen, werden von dem Ringrohrverteiler 18 (s. F i g. 3) so daß das Kohlenwasserstoffmaterial, das von einem gespeist und sind koaxial in den Zuleitungen 7 ange- Punkt aus in axialer Richtung nach oben in den ordnet. Sie werden durch die Leitungen 19, die mit 5 Reaktionsraum eintritt, sozusagen gezielt in einen einer herkömmlichen Absperr- und Regelvorrichtung ganz bestimmten Bereich des Ofenraums gelangt.
20 zur Regelung der Brennstoffversorgung des ersten Nachdem in den Zuleitungen 7 und 8 der Brenn-Zuleitungssystems versehen ist, mit dem Brennstoff stoff und die Luft miteinander vermischt sind und gespeist. Die Injektoren YIb des zweiten Zuleitungs- die Mischung abgebrannt ist, werden die Verbrensystems sind in den von dem zweiten Zuleitungssystem io nungsgase vom Boden her in den Ofenraum 1 eingespeisten Zuleitungen 8 in ähnlicher Weise angeord- geleitet, so daß die aus den Zuleitungen abströmenden net und werden durch das Ringverteilerrohr 21 mit heißen Gase nach oben in den Reaktionsraum einBrennstoff versorgt. Der Ringverteiler 21 wird durch strömen, wobei die Strömung im wesentlichen koaxial die Zuleitung 22 mit Brennstoff gespeist, die mit kon- zu dem Sprühstrahl der Tröpfchen des Kohlenwasserventionellen Absperr- und Regelorganen versehen ist, 15 Stoffmaterials erfolgt. Die Gase aus den Zuleitungen7 um die Brennstoffversorgung der von dem zweiten strömen in Richtung auf den Sprühstrahl des Kohlen-Zuleitungssystem gespeisten Zuleitungen 8 zu regu- Wasserstoffmaterials ein, so daß sich eine erste Milieren. Die Leitungen 19 und 22 sind an der Brenn- schung zwischen den heißen Verbrennungsgasen und stoff-Hauptversorgungsleitung 24 angeschlossen. dem Kohlenwasserstoffmaterial in einer nicht abge-
Aus F i g. 3 ist ersichtlich, daß das Brennstoffver- 20 teilten Zone ergibt, wobei sich diese erste Mischzone sorgungs-Aggregat für die Zuleitungen 7 durch Glei- im wesentlichen entlang der Längsachse des Ofentender Leitung 19 des ersten Zuleitungssystems durch raums erstreckt. Die aus den Zuleitungen 8 eindie Führung 25 auf und ab bewegt werden kann, strömenden Gase sind so gerichtet, daß sie die nicht damit eine genaue Justierung der Injektor-Mündungen abgeteilte erste Mischzone umhüllen,
in den Zuleitungen 7 möglich ist; dies ist notwendig, 25 Ein Teil der heißen Verbrennungsgase wird von damit sich der Brennstoff vor dem Entzünden mit den eine Gruppe bildenden Zuleitungen 7 mit konder Luft in gewünschter Weise vermischen kann. trollierter Geschwindigkeit in den Sprühstrahl der Wenn die Injektoren richtig justiert sind, können Kohlenwasserstofftröpfchen eingeblasen, der von der sie durch Anziehen der Stellschraube 26, welche die Zerstäuberdüse 27 ausgeht, so daß eine geeignete ge-Leitung 19 in ihrer Führung festhält, in ihrer Lage 30 genseitige Mischung eintritt, die eine teilweise therfixiert werden. In ähnlicher Weise können auch die mische Zersetzung des Kohlenwasserstoffmaterials Mündungen der Injektoren in den von dem zweiten zu Ruß zur Folge hat. Gleichzeitig wird ein anderer Zuleitungssystem gespeisten Zuleitungen 8 in verti- Teil der heißen Verbrennungsgase mit kontrollierter kaier Richtung justiert werden, da sich das Zuleitungs- Geschwindigkeit von dem Ring der Zuleitungen 8 rohr für den Ringverteiler 21 in einer ähnlichen 35 in den Ofenraum eingeblasen. Das Vermischen der Führung mit Stellschrauben (in den Figuren nicht Verbrennungsgase aus den Zuleitungen 8 mit dem dargestellt) auf und ab bewegen läßt. teilweise zersetzten Kohlenwasserstoffmaterial erfolgt
Die vertikale Lage der Injektor-Mündung 27 für außerhalb der nicht abgeteilten, lokalisierten Zone, in das Kohlenwasserstoffmaterial ist so angeordnet, daß welcher sich die erste Mischung des Kohlenwassersie mit dem Boden des Ofenraums fluchtet. Ge- 40 Stoffmaterials mit den heißen Verbrennungsgasen wünschtenfalls kann die Mündung jedoch dadurch aus den Zuleitungen 7 ergibt. Die vollständige Zerangehoben oder abgesenkt werden, daß die ganze Setzung des Kohlenwasserstoffmaterials erfolgt daher Zerstäuberanordnung durch die Führung 29 nach im wesentlichen auf dem ganzen Querschnitt über den oben oder unten verschoben wird. Wenn die Düsen- Ofenraum 1.
mündung sich in der gewünschten Höhe befindet, 45 Die Zuleitungen 7 und 8 sind in den Figuren in
wird die ganze Anordnung durch Anziehen der Form einer Reihe von einzelnen Einführungen rund
Stellschraube 28 in ihrer Lage fixiert. um den Mittelpunkt des Bodens des Ofenraums
Als Dosier- und Regelvorrichtungen für die Luft- wiedergegeben. Es versteht sich jedoch, daß es für und Brennstoffzufuhr zu den ersten und zweiten Zu- das erfindungsgemäße Verfahren und die erfindungsleitungssystemen ist jedes brauchbare konventionelle 5° gemäße Vorrichtung nicht wesentlich ist, daß mehr Gerät geeignet, welches eine gleichmäßige Strömungs- als eine erste und zweite Zuleitung vorhanden ist. Im geschwindigkeit ergibt und zugleich die Möglichkeit Ofen der F i g. 1 kann auch nur eine größere erste bietet, die Strömungsgeschwindigkeit zu verändern Zuleitung vorgesehen sein. In ähnlicher Weise kann oder gewünschtenfalls auch ganz abzustellen. Für die von dem zweiten Zuleitungssystem gespeiste Zudie Messung kann z. B. eine Meßblende verwendet 55 leitung auch nur aus einer einzigen ringförmigen werden, während ein Ventil die Veränderung der öffnung bestehen, welche die von dem ersten Zu-Fließgeschwindigkeit und das Unterbrechen des leitungssystem gespeiste Zuleitung umgibt. Es ist Stromes ermöglicht. In ganz ähnlicher Weise kann ferner anzumerken, daß dann, wenn eine Reihe von jede geeignete und allgemein erhältliche Vorrichtung aus dem zweiten Zuleitungssystem gespeisten Zu-Stromes ermöglicht. In ganz ähnlicher Weise kann 60 leitungen vorgesehen ist, diese in jeder geeigneten verwendet werden, mit deren Hilfe die Beschickung Weise angeordnet sein können. Eine besonders vorder Sprühdose mit dem Kohlenwasserstoff material teilhafte Anordnung ist eine symmetrische Gruppiemit einem konstanten, aber regelbaren Strom möglich rung um die aus einer oder mehreren öffnungen beist. So kann z. B. eine Dosierpumpe mit variabler stehenden, aus dem ersten Zuleitungssystem gespeisten Geschwindigkeit Verwendung finden. Geeignete und 65 Zuleitungen, wie dies in den Figuren dargestellt ist. allgemein erhältliche Injektoren für das verdampfte Wenn die erfindungsgemäße Vorrichtung mit vor- oder das flüssige Kohlenwasserstoffmaterial sind in erhitzter Luft betrieben werden soll, können die Zuder Fachwelt allgemein bekannt und bedürfen hier leitungen und die Ringverteiler im Innern mit einer
ι oyz odd
11 12
feuerfesten Isolierung versehen sein, um Verluste Änderung der Rußeigenschaften läßt sich nicht ohne durch eine Wärmeabgabe an die Atmosphäre zu ver- drastische Änderung von einer oder von beiden dieser meiden und eine vorzeitige Zerstörung des Metalls Geschwindigkeiten erzielen. Darüber hinaus ist das zu verhindern, aus welchem die Zuleitungen und die Ausmaß der möglichen Variation der Rußeigenschaf-Ringverteiler normalerweise bestehen. Die Brennstoff- 5 ten erheblichen Einschränkungen dadurch unterwor-Injektoren und die Rohrverteiler sind so konstruiert, fen, daß der Betrieb der Anlage unter möglichst wirtdaß sie dem fließfähigen Brennstoff eine ausreichende schaftlichen Bedingungen eine möglichst hohe ProStrömungsgeschwindigkeit verleihen, um ein Verkoken duktion ermöglichen soll.
des Brennstoffs in diesen Leitungen dadurch zu unter- Wird zur Erzeugung eines wesentlich gröberen
binden, daß der Wärmeübergang von der heißen Luft io Rußes die Einspeisungsgeschwindigkeit des Kohlen-
zum Brennstoff im Bereich der Leitungen so niedrig Wasserstoffmaterials erhöht, so kann dies z. B. zu
wie möglich gehalten wird. einem Restölgehalt des Rußes führen (residual stain),
Die erfindungsgemäße Vorrichtung kann in der da die Kontaktzeit begrenzt war oder die insgesamt Weise betrieben werden, daß die gesamten heißen zur Verfügung gestellte Wärmemenge für eine voll-Verbrennungsgase entweder nur durch die Gruppe 15 ständige thermische Zersetzung des Kohlenwasserder von dem ersten Zuleitungssystem gespeisten Zu- Stoffmaterials nicht ausreichte. Des weiteren kann leitungen 7 oder durch den äußeren Ring der von dem die Turbulenz, die im Innern des Ofens erzeugt wird, zweiten Zuleitungssystem gespeisten Zuleitungen 8 zu hoch sein, als daß sich Rußteilchen der gewünschten allein eingeführt werden. Eine solche Verfahrensweise Größe bilden könnten. Wenn dagegen andererseits ist dann günstig, wenn eine Rußsorte erzeugt werden 20 eine verminderte Einspeisungsgeschwindigkeit des soll, die keine so sorgfältige Einstellung und Über- Kohlenwasserstoffmaterials angewandt wird, um feiwachung der Strömungsgeschwindigkeiten, der Tem- nere Ruße zu erzeugen, so ergeben sich geringere Properaturen und der Zusammensetzung der Atmosphäre duktionsgeschwindigkeiten und eine wenig wirtschaftin den verschiedenen Zonen des Ofenraums er- liehe Arbeitsweise. Wenn die Beschickungsgeschwinfordert. Das erfindungsgemäße Verfahren kann jedoch 25 digkeit für die gesamten Verbrennungsgase verminauch in der Weise durchgeführt werden, daß Strö-, dert wird, um einen gröberen Ruß zu erzielen, so mungsgeschwindigkeiten, Temperaturen und Zusam- ergibt sich ein erhöhter Restölgehalt des Rußes, da mensetzung der Atmosphäre in den verschiedenen die zugeführte Wärmemenge für eine vollständige Zonen im unteren Bereich des Ofens genau eingestellt Zersetzung des Kohlenwasserstoffmaterials nicht aus- und überwacht werden können, wodurch auf die Art 30 reicht. Jede Verminderung der Einspeisungsgeschwin- und Weise, in der sich das Kohlenwasserstoffmaterial digkeit des Kohlenwasserstoffmaterials zur Behebung mit den heißen Verbrennungsgasen vermischt, Einfluß dieses Problems führt notwendigerweise zu einer vergenommen werden kann. Eine derartige Einregulie- minderten Produktionsgeschwindigkeit. Das Ausmaß, rung wird dadurch möglich, daß die Verbrennungs- in welchem die Beschickungsgeschwindigkeit der gegase sowohl durch die Gruppe der ersten Zuleitungen? 35 samten Verbrennungsgase zur Steigerung der Feinheit als auch durch den äußeren Ring der zweiten Zulei- des Rußes erhöht werden kann, ist normalerweise tungen 8 eingeführt werden, wobei die Geschwindig- durch die begrenzte Kapazität der Abscheideanlage keit, die Zusammensetzung und demgemäß auch die zur Abtrennung und Gewinnung des produzierten Temperatur der Verbrennungsgase in der oben be- Rußes festgelegt.
schriebenen Weise unabhängig voneinander einge- 40 Werden andererseits die gesamten Verbrennungs-
stellt und variiert werden können. gase durch die von dem zweiten Zuleitungssystem ge-
Viele Eigenschaften des Rußes und darunter be- speisten Zuleitungen 8 eingeführt, so läßt sich keine sonders die Feinheit sind in starkem Maße davon intensive Mischung dieser Gase mit dem Sprühstrahl abhängig, wie intensiv die Vermischung des Sprüh- der Kohlenwasserstofftröpfchen erzielen, da diese Zustrahls aus dem Kohlenwasserstoffmaterial mit den 45 leitungen zu weit von der Sprühzone entfernt sind, heißen Verbrennungsgasen vorgenommen wird. Da um in dieser eine Turbulenz erzeugen zu können, die Intensität des Vermischens in hohem Maße von Auch bei günstiger Anpassung des Kohlenwasserstoffder Turbulenz in der Mischzone abhängig ist, kann materials können unter diesen Bedingungen nur verdie Einflußnahme auf die Geschwindigkeit der Gase, hältnismäßig grobe Rußsorten produziert werden, die in Richtung auf den Sprühstrahl des Kohlenwasser- 50 Solange die gesamten Verbrennungsgase entweder Stoffmaterials eingeblasen werden, eine wirksame durch die Gruppe der von dem ersten Zuleitungs-Möglichkeit zur Einstellung bestimmter Rußeigen- system gespeisten Zuleitungen 7 oder durch den Ring schäften ergeben, die nicht zur Verfügung steht, wenn der von dem zweiten Zuleitungssystem gespeisten Zudie Geschwindigkeit der Verbrennungsgase, die in leitungen 8 eingeführt werden, ist die Vielfalt der Rußden Ofen eingeblasen werden, keiner unabhängigen 55 Sorten, die hergestellt werden können, sehr stark einRegulierung zugänglich sind. Wenn die Gesamtmenge geengt, gegenüber den Ergebnissen, die erzielt werden der heißen Verbrennungsgase durch die mittlere können, wenn man die Einführung der gesamten VerGruppe der Zuleitungen 7 in den Ofen eingeführt brennungsgase auf die beiden Zuleitungssysteme aufwird, hängt die Turbulenz in der Kohlenwasserstoff- teilt. Während bei festgelegten Einspeisungsgeschwin-Verbrennungsgas-Mischzone in erster Linie von den 60 digkeiten des Kohlenwasserstoffmaterials und der Eintrittsgeschwindigkeiten der Verbrennungsgase und Verbrennungsgase gröbere Ruße leicht dadurch erdes Kohlenwasserstoffmaterials ab. zeugt werden können, daß nur der äußere Ring der
Bei einer festgelegten Temperatur kann die Turbu- ersten Zuleitungen benutzt wird, lassen sich feinere
lenz in der Verbrennungsgas-Kohlenwasserstoff-Misch- Ruße dadurch gewinnen, daß steigende Anteile der
zone in diesem Fall nur durch Veränderung der Ein- 65 Verbrennungsgase mit steigenden Geschwindigkeiten
trittsgeschwindigkeit der gesamten Verbrennungsgase durch die innen gelegene Gruppe der ersten Zufüh-
oder der Einspeisungsgeschwindigkeit des Kohlen- rungen eingeblasen wird. Somit können Ruße inner-
wasserstoffmaterials verändert werden. Eine stärkere halb eines sehr weiten Teilchengrößenbereiches mit
13 14
optimaler Qualität und Ausbeute dadurch gewonnen zugleich eine Abwärtsbewegung der Reaktionsprowerden, daß die heißen Verbrennungsgase zwischen dukte unterdrückt wird. Die Pufferzone dient auch den ersten und zweiten Zuleitungen aufgeteilt werden. zur Umhüllung der sich über eine beträchtliche Länge
Die mengenmäßige Verteilung der heißen Verbren- des Ofens erstreckende Zone, die sich auf hohen Tem-
nungsgase, die in den Ofenraum eingeführt werden 5 peraturen befindet, wodurch die Wände des Ofens
sollen, auf die ersten und zweiten Zuleitungen kann vor der direkten Berührung mit den heißen Verbren-
während des Betriebs sehr erheblich variieren. Die nungsgasen geschützt und gegen Strahlung durch
Aufteilung hängt natürlich davon ab, welche Rußsorte eine sehr dichte schwarze Wolke abgeschirmt werden,
hergestellt werden soll. Wie schon oben angedeutet, Bei den seitherigen, senkrecht stehenden Öfen war
werden feinere Ruße dadurch gewonnen, daß ein grö- io die Anwendung von vorerhitzter Luft sehr beschwer-
ßerer Anteil der heißen Verbrennungsgase durch die lieh, wenn nicht gar unmöglich wegen der zerstörenden
ersten Zuleitungen eingeführt wird, während bei der Wirkung der intensiven lokalen Hitzeeinwirkungen,
Einführung eines größeren Anteils der heißen Ver- sowohl durch Strahlung als auch durch Wärmeleitung,
brennungsgase durch die ersten Zuleitungen gröbere im unteren Bereich des Ofenraumes. Dabei wurden
Ruße erhalten werden. 15 Temperaturen erreicht, die das feuerfeste Material
Zuweilen ist es erwünscht, der Atmosphäre im nicht mehr aushielt, es sei denn, das Mengenverhält-Ofenraum eine spiralige Bewegung zu verleihen, um nis freier Sauerstoff zu Brennstoff wurde in der verdas Vermischen der partiell zersetzten Kohlenwasser- brennenden Mischung so hoch eingestellt, daß die stoffe mit dem Anteil der heißen Verbrennungsgase, Wirtschaftlichkeit der Rußerzeugung in Frage geder durch die von dem zweiten Zuleitungssystem ge- 20 stellt war. Bei der erfindungsgemäßen Vorrichtung speisten Zuleitungen eingebracht wird, zu begünstigen. kann vorerhitzte Luft von z. B. 315 bis 8200C etwa Eine solche spiralige Bewegung der Atmosphäre kann in der Weise angewandt werden, daß die Gruppe der dadurch erzeugt und aufrechterhalten werden, daß von dem ersten Zuleitungssystem gespeisten Brenner ( ein Teil der heißen Verbrennungsgase tangential in mit einer brennstoffreichen Mischung versorgt wird, den Ofenraum eingeblasen wird. Dies läßt sich mit 25 wohingegen der Ring der aus dem zweiten Zuleitungs-Hilfe von Brennern 10 erreichen, die an der Wand system gespeisten Brenner eine sauerstoffreiche Mides Ofenraums angebracht sind. schung erhält. Auf diese Weise wird die aus feuer-
Bei der Durchführung des erfindungsgemäßen Ver- festem Material bestehende Wand des Ofenraums gefahrens wird das Kohlenwasserstoffmaterial in Rieh- schützt, da durch Verbrennen der Mischung, die tung der Längsachse des Ofens nach oben in den Ofen- 30 durch das zweite Zuleitungssystem eingeführt wird, raum mit praktisch konstanter Geschwindigkeit ein- verhältnismäßig kühlere Flammen und Gase erzeugt gespeist. Die Verbrennungsgase werden in diesen werden. Die Flammen und Gase aus dem ersten Zu-Sprühstrahl mit einer festgelegten konstanten Ge- leitungssystem, die in diesem Fall in die zentral anschwindigkeit von der Gruppe der ersten Zuleitungen? geordnete Gruppe der Brenner eingespeist werden, eingeblasen, so daß sich das Kohlenwasserstoffmate- 35 sind viel heißer, doch sind die im allgemeinen auf den rial und die heißen Gase in einer nicht abgeteilten, zentralen Bereich des Ofenraums begrenzt. Das Veraber lokalisierten Zone im unteren zentralen Bereich mischen der Gase, die durch die ersten und zweiten des Ofenraums miteinander vermischen. Das Kohlen- Zuleitungen eingeführt werden, erfolgt in den oberen Wasserstoffmaterial wird während seiner Abwärts- Bereichen des Ofenraums, wodurch eine Atmosphäre bewegung durch die heißen Gase, die durch das erste 4° erzeugt wird, die für eine wirtschaftliche Rußherstel-Zuleitungssystem eingeführt werden, teilweise zer- lung nicht zu oxidierend ist und auch von der Zusamsetzt. Die teilweise zersetzten Kohlenwasserstoffe mensetzung her sehr günstig ist für die Ausbildung vermischen sich anschließend mit dem Teil der heißen der erwünschten Eigenschaften des Rußes.
Verbrennungsgase, die durch das zweite Zuleitungs- Je nachdem, welche Rußsorte hergestellt werden ι system mit einer bestimmten konstanten Geschwindig- 45 soll, unterliegt die Zersetzungstemperatur erheblichen keit eingeblasen werden. Die vollständige thermische Variationen; die angewandten Temperaturen für die Zersetzung des Kohlenwasserstoffmaterials erfolgt Zersetzung liegen im allgemeinen zwischen ungefähr prinzipiell in den oberen Bereichen des Ofenraums 870 und 16500C. Diese Temperatur kann durch die oberhalb der nicht abgeteilten und lokalisierten Zone, Geschwindigkeit reguliert werden, mit welcher die in welcher das erste Vermischen erfolgt. In diesem 5° heißen Verbrennungsgase in den Ofenraum eingeoberen Bereich besteht eine Pufferzone, die sich aus führt werden, und durch Einstellung der Temperatur in Zersetzung befindlichem Kohlenwasserstoffmate- dieser Gase selbst. Die Temperatur der Verbrennungsrial, gebildetem Ruß, den gasförmigen Produkten gase kann innerhalb gewisser Grenzen durch Variader thermischen Zersetzung, den Verbrennungsgasen tion des Luft-Brennstoff-Verhältnisses in der Brenn- und anderen Produkten der Reaktion zwischen den 55 mischung beeinflußt werden. Je mehr das Verhältnis vorhandenen Reaktanten zusammensetzt. Die Höhe, Luft/Brennstoff den stöchiometrischen Wert überin der sich die Unterseite dieser Pufferzone über dem steigt, desto niedriger liegt die Temperatur der geBoden des Ofenraums einstellt, kann durch Regulie- bildeten Verbrennungsgase. Das Verhältnis Luft/ rung der Saugwirkung am Ofenauslaß, der Eintritts- Brennstoff wird für gewöhnlich jedoch je nach der geschwindigkeit des Kohlenwasserstoffmaterials und 60 Art des herzustellenden Rußes verschieden eingedcr Geschwindigkeit beeinflußt werden, mit welcher stellt; ähnliches gilt auch für die Geschwindigkeit die Verbrennungsgase in den Ofenraum eingeblasen der Einführung der Verbrennungsgase insgesamt und werden. Welche Höhe für diese Pufferzone über dem für die Aufteilung dieser Gase auf die ersten und Boden des Ofens erwünscht ist, hängt von der spe- zweiten Zuleitungen.
ziellen Rußsorte ab, die hergestellt werden soll. Eine 65 Die vorliegende Erfindung bietet eine Möglichkeit
spiralige Bewegung der Atmosphäre im Ofenraum zur Einstellung der Atmosphäre der Verbrennungs-
unterstützt ebenfalls die Fixierung der Unterseite gase, die in die lokalisierte erste Mischzone zur par-
dieser Pufferzone in einer bestimmten Höhe, wobei tiellen Zersetzung des Kohlenwasserstoffmatcrials ein-
15 16
geführt wird, während die Atmosphäre in der Puffer- gebrachten Gase darzustellen. Die gekrümmte Linie
zone praktisch die gleiche ist. wie sie in einem Ofen quer durch den Ofenraum stellt die Type des linearen
herrschen würde, bei dem die verschiedenen Anteile Geschwindigkeitsprofils dar, wie es etwa mit Hilfe
der Verbrennungsgase nicht unabhängig voneinander eines Staudruckmessers gemessen werden könnte, der
eingestellt werden können. Es kann z. B. im ersten 5 im unteren Bereich des Ofenraums quer durch diesen
Zuleitungssystem ein Liift-Naturgas-Volumenverhält- hindurchbewegt wird.
nis 10: 1 und im zweiten Zuleitungssystem ein solches In F i g. 4 werden die Verbrennungsgase durch den von 16 : 1 eingestellt werden. Diese Verhältnisse äußeren Ring der Brenner mit größerer Geschwindigkönnen umgekehrt oder modifiziert werden, um für keit eingeführt als durch die zentrale Brennergruppe, die partielle Zersetzung des Kohlenwasserstoffmate- io Die Strömungsgeschwindigkeit ist daher im Zentrum rials innerhalb der unabgeteilten lokalisierten Zone des Ofenquerschnitts viel geringer als im Raum über mehr oder weniger Wärme oder eine andersartige den zweiten Leitungen. Demgemäß vermischt sich das Atmosphäre zur Verfugung zu stellen, während die Kohlenwasserstoffmaterial in der lokalisierten ersten Einspeisungsgeschwindigkeit so eingestellt bleibt, daß Mischzone mit den heißen Verbrennungsgasen nicht sich in der Mischzone die gewünschte Strömungs- 15 so intensiv, wie dies bei der Gasführung der F i g. 5 geschwindigkeit ergibt. Das jeweils anzuwendende der Fall ist, bei welcher die heißen Verbrennungsgase Luft-Brennstoff-Verhältnis richtet sich nach der für durch das erste Zuleitungssystem mit viel größerer die Bildung der gewünschten Rußsorte einzustellenden Geschwindigkeit eingeführt werden als durch den Atmosphäre und der Wärmemenge, die der lokali- äußeren Ring des zweiten Zuleitungssystems. In sierten Mischzone und der Pufferzone zuzuführen 20 F i g. 6 ist die Beschickungsgeschwindigkeit mit Versind, brennungsgasen bei dem ersten und dem zweiten Zu-
Die Struktur des gebildeten Rußes ist eine andere leitungssystem praktisch gleich groß; diese Verhalt-Eigenschaft, die durch eine Variation des Luft-Brenn- nisse entsprechen im wesentlichen einem früheren stoff-Verhältnisses in der Mischung beeinflußt werden Vorschlag, nach welchem die Verbrennungsgase über kann, die zur Erzeugung der heißen Verbrennungsgase 35 den ganzen Querschnitt des Ofenraums eine gleiche verbrannt wird, die ihrerseits mit dem Kohlenwasser- Geschwindigkeit aufweisen sollen. Bei F i g. 7 werden Stoffmaterial in der nicht abgeteilten lokalisierten die gesamten Verbrennungsgase durch die zentrale Zone zur Bildung eines Rußes mit Struktur, während Gruppe des ersten Zuleitungssystems in den Ofendie Anwendung einer reduzierenden Atmosphäre auf raum geführt, um durch die höchste Strömungsgedie Entwicklung einer Struktur hemmend wirkt. 3° schwindigkeit, welche die Verbrennungsgase in diesem
Bei der in der Zeichnung dargestellten Ausfüh- Ofenbereich überhaupt erhalten könne, in der loka-
rungsform der erfindungsgemäßen Vorrichtung wer- lisierten Mischzone eine möglichst intensive Ver-
den die heißen Verbrennungsgase in Brennern erzeugt, mischung zu erzielen.
die sich am Boden des Ofens befinden. Es ist jedoch Um die günstigen Ergebnisse, die sich mit Hilfe auch möglich, die Brenner an einer anderen Stelle 35 der vorliegenden Erfindung erzielen lassen, an ganz des Ofens anzubringen, oder die heißen Verbrennungs- konkreten Beispielen vor Augen zu führen, wurde mit gase außerhalb des Ofens in einem separaten Gene- einem Ofen entsprechend den F i g. 1 bis 3 eine Reihe rator zu erzeugen. Darüber hinaus kann die Anord- von Versuchen gefahren. Der innere Durchmesser nung der Brenner auch in anderer Weise als in Grup- des zylindrischen Ofenraums betrug ungefähr 1,95 m pen und in einem Ring vorgenommen werden, um 40 und die Höhe ungefähr 2,33 m. Der kegelstumpfdie zwei verschiedenen Anteile des Verbrennungsgases ähnliche Oberteil des Ofenraums verengte sich auf in den Ofenraum einzuführen. In ähnlicher Weise ist einer Strecke von ungefähr 0,75 m auf einen Durches möglich, drei oder mehr separate und unabhängig messer des Ableitungsrohres von ungefähr 0,83 m. voneinander zu regulierende Vorrichtungen zum Ein- Die Zerstäubervorrichtung für das Kohlenwasserblasen der Verbrennungsgase in den Ofenraum vor- 45 Stoffmaterial war durch eine in der Achse des Ofenzusehen, raums liegende Öffnung im Boden des Ofens einge-
Die angewandte Zerstäuberdüse kann eine einfache führt und mit einer einfachen Zerstäuberdüse mit
Düse sein, die einen etwas konischen Sprühstrahl aus einer Düsenöffnung von 6,3 mm Innendurchmesser
feinsten Tröpfchen ergibt, welcher den Strom der und 3,13 mm Länge versehen, die einen konischen
heißen Verbrennungsgase schneidet, die durch das 5° Sprühstrahl aus den Tröpfchen des Kohlenwasserstoff-
erste Zuleitungssystem in den Ofenraum eingeblasen materials mit einem Öffnungswinkel von ungefähr
werden. Eine andere Möglichkeit ist, Mehrstoffzer- 20° ergab. Gesättigter Wasserdampf mit einem Druck
stäuber zu verwenden oder solche Zerstäuber, die von ungefähr 7 atü wurde als Zerstäubungsmedium
einen Sprühstrahl in Form eines Hohlkegels ergeben. benutzt und vor dem Zerstäuben in einem Eduktor
Des weiteren kann an Stelle einer einzelnen Düse 55 mit dem Kohlenwasserstoffmaterial vermischt. Die
auch eine Gruppe von Düsen vorgesehen werden. Die Zerstäuberdüse und die Zuleitung dazu waren durch
Zerstäuberdüse und die Zuleitung für das Kohlen- einen Wassermantel gegen Überhitzung geschützt.
Wasserstoffmaterial können gegen die Hitzeeinwirkung Die Zerstäubermündung befand sich ungefähr 10 cm
durch einen Wassermantel oder eine andere geeignete über dem Boden des Ofens. Die Zuleitungen für das
Vorrichtung, wie sie auf diesem Fachgebiet bekannt 6° erste und das zweite Zuleitungssystem im Boden des
ist, geschützt werden. Ofens waren in der in den Figuren dargestellten
Die F i g. 4 bis 7 sind nicht maßstabgerechte schema- Weise angeordnet, so daß die Verbrennungsgase nach
tische Darstellungen von linearen Geschwindigkeits- oben eingeführt wurden. Seitlich angebrachte Brenner
profilen, die in einem erfindungsgemäßen Ofen ein- wurden nicht verwendet. Jede Einführung hatte eine
gestellt werden können. Die in den Ofenraum hinein- 65 Länge von ungefähr 225 mm, an der Eintrittseite
weisenden Pfeile sind von unterschiedlicher Länge, einen !Durchmesser von ungefähr 50 mm und an
um die verschiedenen relativen Geschwindigkeiten der Mündung einen solchen von ungefähr 75 mm. Die
der durch die ersten und die zweiten Zuleitungen ein- Mündungen der Brennstoffdüsen befanden sich jeweils
ungefähr 75 mm im Innern der Zuleitung, gemessen von der Eintrittseite her. Ein Satz von sechs Zuleitungen für den inneren Verbrennungsgasstrom war als Gruppe auf einem Kreis von ungefähr 200 mm Durchmesser mit der Zerstäuberdüse als Mittelpunkt in gleichen Abständen angeordnet. Ein zweiter Satz von sechs Zuleitungen für das aus dem zweiten Zuleitungssystem kommende Verbrennungsgas war auf einem äußeren Ring von ungefähr 801 mm Durchmesser, ebenfalls mit der Zerstäuberdüse als Mittelpunkt, in gleichen Abständen angebracht.
Tabelle I
Versuch 1 Versuch 2 Versuch 3
Zentrale Gruppe
Luft Nm3/h 1274 637
Gas Nm3/h 106 53
Luft-Gas-Verhältnis 12/1 12/1
Außenring
Luft Nm3/h 637 1274
GasNm3/h 53 . 106
Luf t-G as-Verhältnis 12/1 12/1
Kohlenwasserstoff
material l/h 265 265 265
Rußeigenschaften
Farbkraft
% FF Ruß 75 58 45
Ö lauf nähme l/kg .. 1,09 1,05 0,526
Jod-Adsorption
ASTM 33 23 16
Die ersten drei Versuche wurden durchgeführt, um zu zeigen, wie sich die Eigenschaften des gebildeten Rußes ändern, wenn die Stelle geändert wird, an welcher die heißen Verbrennungsgase mit konstanter Beschickungsgeschwindigkeit in den Ofen eingebracht werden. Bei Versuch 1 wurden die gesamten Verbrennungsgase durch die zentrale Gruppe des ersten Zuleitungssystems eingeführt. Bei Versuch 3 erfolgte das Einblasen der gesamten Verbrennungsgase in den Ofenraum durch den äußeren Ring des zweiten Zuleitungssystems. Bei Versuch 2 wurde die halbe Menge der Verbrennungsgase durch das erste und die andere
ίο Hälfte durch das zweite Zuleitungssystem in den Ofen eingebracht. Die heißen Verbrennungsgase wurden durch Verbrennen einer Mischung von Naturgas und Luft erzeugt. Die Arbeitsbedingungen und die Ergebnisse der Versuche sind in Tabelle I zusammengestellt.
Die Teilchengröße des Rußes kommt in der Farbkraft zum Ausdruck. Je höher die in Prozenten eines Vergleichsrußes ausgedrückte Farbkraft ist, umso feiner ist der Ruß. Es zeigt sich deutlich, daß die Verhältnisse, die in dem Bereich des Ofenraums herrschen, in welchen die heißen Verbrennungsgase eingeblasen werden, von erheblichem Einfluß auf die Teilchengröße des erzielten Rußes sind. Bei Versuch 1, bei dem die gesamten zur Anwendung kommenden heißen Verbrennungsgase durch das erste Zuleitungssystem direkt in den Sprühstrahl eingeblasen wurden, war die Teilchengröße am geringsten und, wie der Wert für die Ölaufnahme andeutet, die Struktur des Rußes am höchsten. Wenn andererseits die gesamten Verbrennungsgase durch das zweite Zuleitungssystem eingeführt werden, ist der gebildete Ruß erheblich grobteiliger und hat eine viel weniger ausgebildete Struktur. Wird die Einführung der Gase zwischen dem ersten und dem zweiten Zuleitungssystem aufgeteilt, so liegt der Wert für die Farbkraft des gebildeten Rußes ungefähr zwischen den Werten für die bei Versuch 1 und bei Versuch 3 erzeugten Ruße, während die ölaufnahme gegenüber dem Ruß aus Versuch 1 nur wenig niedriger liegt. Es wurden keine Alkalimetalle zur Beeinflussung der Struktur des Rußes bei seiner Bildung verwendet.
Tabelle II
Versuch 4
Versuch 5
Versuch 6
Versuch 7
Zentrale Gruppe
LuftNm3/h
Gas Nm3/h
Luft-Gas-Verhältnis
Außenring
LuftNm3/h
GasNnrVh
Luft-Gas-Verhältnis
Kohlenwasserstoffmaterial l/h
Rußeigenschaften
Farbkraft % FF-Ruß
ölaufnahme l/kg
Jod-Adsorption ASTM
637
42,5
15/1
637
42,5
15/1
265
65
1,03
28
849
56,6
15/1
425
28,3
15/1
265
74
1,13
41
637
35,4
15/1
637
35,4
18/1
265
63
1,08
637
30,3
21/1
637
30,3
21/1
265
62
1,10
31
Eine weitere Reihe von Versuchen sollte zeigen, abhängig von dem Luft-Brennstoff-Verhältnis der
daß eine Verschiebung der Mengenverhältnisse der 65 Brennmischung. Bei den Versuchen 4 und 5 waren
Verbrennungsgase, die durch die Brennergruppe des die Einspeisungsgeschwindigkeit des Kohlenwasser-
ersten Zuleitungssystems eingeführt wird, die Eigen- Stoffmaterials und die Beschickungsgeschwindigkeit
schaft des Rußes ganz erheblich verändern kann, un- der Verbrennungsgase insgesamt die gleichen. Bei
Versuch 4 wurde die Verbrennungsgas-Zuführung gleichmäßig auf das erste und das zweite Zuleitungssystem aufgeteilt. Diese Aufteilung wurde in Versuch 5 so geändert, daß 67% der Gase durch das erste und 33% durch das zweite Zuleitungssystem eingeführt wurden. Das Luft-Brennstoff-Verhältnis wurde bei den Versuchen 4 und 5 bei beiden Gruppen der Zuleitungen gleich gehalten.
Bei den Versuchen 6 und 7 war die Luftzufuhr zu beiden Gruppen von Zuleitungen die gleiche wie bei Versuch 4, doch wurden die Mischungsverhältnisse mit dem Brennstoff so geändert, daß sich zunehmend ärmere Gemische ergaben. Die Ergebnisse dieser Versuchsserie sind in Tabelle II zusammengestellt.
Aus den in Tabelle II wiedergegebenen Versuchsergebnissen ist zu ersehen, daß der bei Versuch 5 erzeugte Ruß deutlich höhere Werte für die Farbkraft und die ölaufnahme aufweist wie der Ruß von Versuch 4. Der einzige wesentliche Unterschied in den Arbeitsbedingungen lag in der verschiedenen Mengenverteilung der Gase, die dem Ofenraum durch die ersten und die zweiten Zuleitungen zugeführt wurden.
Die Eigenschaften des bei den Versuchen 6 und 7 erhaltenen Rußes sind zwar auch etwas verschieden von denen des Rußes von Versuch 4, doch sind die Unterschiede nicht so groß wie bei dem Ruß von Versuch 5, wodurch belegt wird, daß die Geschwindigkeit, mit der die heißen Verbrennungsgase in den Sprühstrahl der Kohlenwasserstofftröpfchen eingeblasen werden, die Eigenschaften des gebildeten Rußes deutlich beeinflußt.
Bei jedem der vorstehenden Versuche wurde die Temperatur des Ofens im Bereich zwischen ungefähr 1095 und ungefähr 13700C gehalten. Das zur Herstellung des Rußes verwendete Kohlenwasserstoffmaterial war ein hoch aromatischer Rückstand aus einem Petroleum-Crack-Prozeß mit einem hohen Molekulargewicht, dessen Eigenschaften und Zusammensetzung in der folgenden Tabelle zusammengestellt sind:
Analyse des Kohlenwasserstoffmaterials
Spezifisches Gewicht 0API 0,2
Viscosität, bei ungefähr 54° C .. 594 Sayboldt-
Sekunden
bei ungefähr 990C .. 67 Sayboldt-
Sekunden
Molekulargewicht 295
BMCI 123
Brechungsindex 1,648
Schwefel, Gewichtsprozent 1,060
Asche, Gewichtsprozent 0,003
Benzolunlösliches, Gewichtsprozent 0,039
Asphaltene, Gewichtsprozent ... 0,50
UOP K Faktor 10,0
mittlerer Siedepunkt ungefähr 421° C
spezifisches Gewicht 1,0744
Elementaranalyse:
Kohlenstoff, % 89,94
Wasserstoff, % 8,29
Schwefel, % 1,03
Asche, % 0,03
Rest, % 0,71
Natrium, mg/kg 2,0
Kalium, mg/kg 0,0
Hierzu 1 Blatt Zeichnungen

Claims (1)

  1. Patentansprüche:
    1. Verfahren zur Herstellung von Ruß durch thermische Zersetzung von flüssigen Kohlenwasserstoffen durch den Kontakt mit heißen Verbrennungsgasen in einem längsausgedehnten unverschlossenen Ofenraum, in den die Kohlenwasserstoffe und die heißen Verbrennungsgase im Bereich der einen Stirnseite parallel zur Längsachse eingespritzt bzw. eingeblasen werden und sich dort intensiv miteinander vermischen und aus dem an der anderen Stirnseite die Verbrennungsgase und die gasförmigen Produkte der ther- mischen Zersetzung der Kohlenwasserstoffe zusammen mit dem gebildeten Ruß abgezogen werden, dadurch gekennzeichnet, daß in den Ofenraum ein sich unmittelbar mit dem eingespritzten Kohlenwasserstoff vermischender regelbarer erster Verbrennungsstrom zur teilweisen Zersetzung der Kohlenwasserstoffe sowie ein sich mit dem Gemisch aus dem ersten Verbrennungsgas und den teilweise zersetzten Kohlenwasserstoffen vermischender regelbarer zweiter Ver- brennungsgasstrom zur vollständigen Zersetzung der noch vorhandenen Kohlenwasserstoffe eingeblasen werden.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Kohlenwasserstoffe unter Bildung von Flüssigkeitströpfchen in den Ofenraum eingesprüht werden.
    3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die zur Erzeugung der Verbrennungsgase verwendete Luft vor dem Vermischen mit dem Brennstoff auf eine Temperatur im Bereich zwischen ungefähr 315°C und ungefähr 815°C vorgewärmt wird.
    4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Verbrennungsgase des ersten Verbrennungsgasstroms aus einer brennstoffreichen Mischung und die des zweiten Verbrennungsgasstroms aus einer sauerstoffreichen Mischung erzeugt werden und daß der verhältnismäßig kühlere zweite Verbrennungsgasstrom die Wände des Ofenraums gegen den heißeren ersten Verbrennungsgasstrom abschirmt.
    5. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 4 mit einem wärmeisolierten, senkrecht angeordneten Ofen, in dessen unterem Bereich mindestens eine Leitung zum achsparallelen Einspritzen des Kohlenwasserstoffes und eine Anzahl einen Abstand von der Einspritzleitung aufweisende Zuleitungssysteme zum achsparallelen Einblasen der heißen Verbrennungsgase einmünden, dadurch gekennzeichnet, daß die Zuleitungen (7, 8) zweier unabhängig voneinander beschickbarer und steuerbarer Zuleitungssysteme (11, 13, 19, 17a, 7; 14, 16, 22, YIb, 8) für Verbrennungsgase in verschiedenen Abständen von der Einspritzleitung (9) für den Kohlenwasserstoff derart in den Ofenraum (1) einmünden, daß der durch das erste Zuleitungssystem (11, 13, 19, 17 a,
    7) eingeblasene Verbrennungsgasstrom in unmittelbaren Kontakt mit dem Kohlenwasserstoffstrom gelangt, während der durch das zweite Zuleitungssystem (14, 16, 22, YIb, 8) eingeblasene Verbrennungsgasstrom mittelbar über den ersten Verbrennungsgasstrom mit dem Kohlenwasserstoff in Berührung kommt.
    6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die Zuleitungen (7, 8) der beiden Zuleitungssysteme so zueinander angeordnet sind, daß die von ihnen abgegebenen Verbrennungsgase koaxial in bezug auf den eingespritzten Kohlenwasserstoffstrom in den Ofenraum (1) eingeblasen werden.
    7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Zuleitungen (7) des ersten Zuleitungssystems in der Nähe des Zentrums des Ofenbodens und die Zuleitungen (8) des zweiten Zuleitungssystems in einem größeren Abstand davon in den Ofenraum (1) einmünden.
    8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß das erste Zuleitungssystem eine Anzahl einzelner Zuleitungen (7) aufweist, die zu einer Gruppe zusammengefaßt nahe dem Zentrum des Ofenbodens in den Ofenraum (1) einmünden.
    9. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß das zweite Zuleitungssystem eine Anzahl von Zuleitungen (8) aufweist, die symmetrisch in einem größeren Abstand um das Zentrum des Ofenbodens in den Ofenraum (1) einmünden.
    10. Vorrichtung nach einem der Ansprüche 5 bis 9, gekennzeichnet durch ein drittes Zuleitungssystem (10) zum tangentialen Einblasen von Verbrennungsgasen in den Ofenraum (1), um die darin befindliche Gasatmosphäre in eine drehende Bewegung zu versetzen.
    11. Vorrichtung nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, daß das erste und das zweite Zuleitungssystem für die Verbrennungsgase jeweils eine Ringleitung (13, 16) für die Zufuhr von Luft zu den betreffenden Zuleitungen (7, 8) und mindestens einen Injektor (17a, YIb) für die Beschickung der Zuleitungen (7, 8) mit Brennstoff aufweisen.
    12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, daß in den zu den Ringleitungen (13, 16) führenden Luftzufuhrleitungen (11, 14) und in den zu den Injektoren (17a, YIb) führenden Brennstoffzufuhrleitungen (19, 22) jeweils ein Strömungsregler (12, 15; 20, 23) zur Einstellung der Luft- bzw. Brennstoffzufuhr angeordnet ist.
DE1592853A 1967-08-09 1967-08-31 Verfahren und Vorrichtung zur Herstellung von RuB Expired DE1592853C3 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US65941667A 1967-08-09 1967-08-09

Publications (3)

Publication Number Publication Date
DE1592853A1 DE1592853A1 (de) 1971-12-23
DE1592853B2 true DE1592853B2 (de) 1974-05-30
DE1592853C3 DE1592853C3 (de) 1975-01-23

Family

ID=24645323

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1592853A Expired DE1592853C3 (de) 1967-08-09 1967-08-31 Verfahren und Vorrichtung zur Herstellung von RuB

Country Status (4)

Country Link
US (1) US3490870A (de)
DE (1) DE1592853C3 (de)
GB (1) GB1221443A (de)
NL (1) NL6811406A (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3726964A (en) * 1970-11-18 1973-04-10 Phillips Petroleum Co Process for the production of carbon black
AR205159A1 (es) * 1973-04-02 1976-04-12 Cabot Corp Producto de negro de humo del tipo de horno composiciones que lo contienen y procedimiento para preparar estas
DE2530371B2 (de) * 1975-07-08 1981-05-21 Degussa Ag, 6000 Frankfurt Verfahren und Vorrichtung zur Herstellung von Ruß
CH630948A5 (de) * 1977-09-02 1982-07-15 Mura Anst Anlage zur russherstellung.
DE3565476D1 (en) * 1984-07-11 1988-11-17 Rhone Poulenc Chimie Process and apparatus for contacting at least two gaseous components reacting at high temperatures
US4927607A (en) * 1988-01-11 1990-05-22 Columbian Chemicals Company Non-cylindrical reactor for carbon black production
JP2662413B2 (ja) * 1988-04-12 1997-10-15 昭和電工株式会社 気相成長炭素繊維の製造方法
JP4645972B2 (ja) * 2005-12-14 2011-03-09 修 廣田 噴射炎バーナー及び炉並びに火炎発生方法
US8650881B2 (en) * 2009-06-30 2014-02-18 General Electric Company Methods and apparatus for combustor fuel circuit for ultra low calorific fuels

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2779665A (en) * 1954-10-27 1957-01-29 Columbian Carbon Manufacture of carbon black
US3003854A (en) * 1957-12-23 1961-10-10 Columbian Carbon Manufacture of carbon black
US3003855A (en) * 1959-04-27 1961-10-10 Columbian Carbon Carbon black manufacture
US3301639A (en) * 1963-03-20 1967-01-31 Columbian Carbon Method and apparatus for the manufacture of carbon black
US3235334A (en) * 1962-06-11 1966-02-15 Phillips Petroleum Co Process and apparatus for carbon black production
DE1252342B (de) * 1963-09-26 1900-01-01

Also Published As

Publication number Publication date
DE1592853C3 (de) 1975-01-23
NL6811406A (de) 1969-02-11
US3490870A (en) 1970-01-20
GB1221443A (en) 1971-02-03
DE1592853A1 (de) 1971-12-23

Similar Documents

Publication Publication Date Title
DE976236C (de) Verfahren und Vorrichtung zur Herstellung von Russ
DE3306483C2 (de)
DE974927C (de) Ofen zur Herstellung von Gasruss und Verfahren fuer seinen Betrieb
CH622081A5 (de)
EP0374423A2 (de) Atmosphärischer Brenner
DE3041177A1 (de) Brenner
DE2431573A1 (de) Brenneranordnung mit verminderter emission von die luft verunreinigenden stoffen
DE1592853C3 (de) Verfahren und Vorrichtung zur Herstellung von RuB
DE2300217A1 (de) Verfahren und vorrichtung zur brennstoffeinspritzung in hochoefen o. dgl
DE946835C (de) Verfahren zur Herstellung von Russ
DE1301018B (de) Verfahren und Vorrichtung zur Herstellung von Fasern aus thermoplastischem mineralischen Material, insbesondere von Glasfasern
DE2210773C3 (de) Vorrichtung zur Verbrennung von Schwefel
DE975285C (de) Verfahren zur Herstellung von Ofenruss
DE1020139B (de) Verfahren und Vorrichtung zur Herstellung von Furnace-Russ
DE1083001B (de) Verfahren und Vorrichtung zur Herstellung von Aktivruss
DE1274262B (de) Verfahren und Vorrichtung zur Herstellung von Ofenruss
DE1146215B (de) Russofen
DE2410847A1 (de) Vorrichtung zur verbrennung von schwefel
DE2644146A1 (de) Verfahren und vorrichtung zur direkten beheizung eines wirbelschichtofens
AT250235B (de) Ölbrennersystem, insbesondere für Öfen der keramischen Industrie
DE918614C (de) Insbesondere fuer Zement- u. dgl. OEfen bestimmter Brenner
DE939706C (de) Brenner fuer OEfen und Feuerungen
DE1592955C3 (de) Verfahren und Vorrichtung zur Herstellung von Ruß
AT227241B (de) Verfahren zur thermischen Behandlung von Kohlenwasserstoffen
AT241669B (de) Verfahren und Vorrichtung zur kontinuierlichen Erzeugung von Wasserstoff und Kohlenmonoxyd enthaltenden Gasgemischen

Legal Events

Date Code Title Description
C3 Grant after two publication steps (3rd publication)