DE112017004914B4 - Wellenleiterstruktur - Google Patents
Wellenleiterstruktur Download PDFInfo
- Publication number
- DE112017004914B4 DE112017004914B4 DE112017004914.8T DE112017004914T DE112017004914B4 DE 112017004914 B4 DE112017004914 B4 DE 112017004914B4 DE 112017004914 T DE112017004914 T DE 112017004914T DE 112017004914 B4 DE112017004914 B4 DE 112017004914B4
- Authority
- DE
- Germany
- Prior art keywords
- waveguide
- layer
- cladding layer
- waveguide core
- thermally
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010410 layer Substances 0.000 claims abstract description 103
- 238000005253 cladding Methods 0.000 claims abstract description 66
- 239000000463 material Substances 0.000 claims abstract description 31
- 239000012792 core layer Substances 0.000 claims abstract description 24
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 239000011810 insulating material Substances 0.000 claims abstract description 3
- 238000010438 heat treatment Methods 0.000 claims description 20
- 238000002161 passivation Methods 0.000 claims description 12
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims description 11
- KXNLCSXBJCPWGL-UHFFFAOYSA-N [Ga].[As].[In] Chemical compound [Ga].[As].[In] KXNLCSXBJCPWGL-UHFFFAOYSA-N 0.000 claims description 8
- 229910000673 Indium arsenide Inorganic materials 0.000 claims 1
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 claims 1
- AJGDITRVXRPLBY-UHFFFAOYSA-N aluminum indium Chemical compound [Al].[In] AJGDITRVXRPLBY-UHFFFAOYSA-N 0.000 claims 1
- 239000011162 core material Substances 0.000 description 14
- 239000012530 fluid Substances 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000005530 etching Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 241000237983 Trochidae Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/0607—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
- H01S5/0612—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/12002—Three-dimensional structures
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/0147—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on thermo-optic effects
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/13—Integrated optical circuits characterised by the manufacturing method
- G02B6/136—Integrated optical circuits characterised by the manufacturing method by etching
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/011—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour in optical waveguides, not otherwise provided for in this subclass
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/024—Arrangements for thermal management
- H01S5/02461—Structure or details of the laser chip to manipulate the heat flow, e.g. passive layers in the chip with a low heat conductivity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/026—Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/062—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
- H01S5/0625—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
- H01S5/06255—Controlling the frequency of the radiation
- H01S5/06256—Controlling the frequency of the radiation with DBR-structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/2054—Methods of obtaining the confinement
- H01S5/2081—Methods of obtaining the confinement using special etching techniques
- H01S5/2086—Methods of obtaining the confinement using special etching techniques lateral etch control, e.g. mask induced
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12035—Materials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
- G02B2006/12097—Ridge, rib or the like
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
- G02B2006/12107—Grating
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12133—Functions
- G02B2006/12135—Temperature control
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12166—Manufacturing methods
- G02B2006/12176—Etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/024—Arrangements for thermal management
- H01S5/02453—Heating, e.g. the laser is heated for stabilisation against temperature fluctuations of the environment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/1003—Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
- H01S5/2218—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special optical properties
- H01S5/222—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special optical properties having a refractive index lower than that of the cladding layers or outer guiding layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
- H01S5/2222—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/227—Buried mesa structure ; Striped active layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/3211—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
- H01S5/3214—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities comprising materials from other groups of the Periodic Table than the materials of the active layer, e.g. ZnSe claddings and GaAs active layer
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Nonlinear Science (AREA)
- Geometry (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Integrated Circuits (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
- GEBIET DER ERFINDUNG
- Die vorliegende Erfindung betrifft eine Wellenleiterstruktur. Insbesondere betrifft die vorliegende Erfindung eine verbesserte Wellenleiterstruktur, die einen Wellenleiter einschließt, der eine thermisch steuerbare Sektion aufweist.
- ALLGEMEINER STAND DER TECHNIK
- Wo der Begriff „Licht“ verwendet wird, bezieht sich dieser auf elektromagnetische Strahlung und nicht spezifisch auf sichtbares Licht. Wo der Begnff „Laser“ verwendet wird, bezieht sich dieser auf einen Halbleiterlaser, sofern es nicht anders angegeben ist.
- Es werden thermisch abgestimmte Halbleiterlaser (z.B. Laser mit Bragg-Spiegel (distributed Bragg reflector - DBR)) entwickelt, um die Linienbreitenleistung, verglichen mit bekannten elektronisch abgestimmten Lasern, zu verbessern. Jede Art von Abstimmung wirkt durch Modifizieren des Brechungsindex eines oder mehrerer Bestandteile des Lasers, wie beispielsweise eines Reflektors, was bewirkt, dass der Bestandteil nach einer anderen Wellenlänge selektiert.
- Elektronisch abgestimmte Laser liefern hohe Niveaus von optischer Dämpfung, was den Laser-Schwellstrom steigert und die Linienbreite verschlechtert. Darüber hinaus wird, weil elektronische Abstimmung ein sehr schnelles Ansprechen (in der Größenordnung von Nanosekunden) aufweist, Elektronikrauschen leicht in den Laserausgang gekoppelt.
- Im Gegensatz dazu steigert thermische Abstimmung die optische Dämpfung nicht bedeutend, so lass es eine zu vernachlässigende Verschlechterung der Linienbreite gibt. Darüber hinaus wird, weil das Ansprechen von thermischer Abstimmung viel langsamer ist (in der Größenordnung von mehreren Zehntelsekunden), der Laserausgang von Hochfrequenz-Rauschquellen entkoppelt. Wärme wird über einen Widerstandsheizstreifen, der oben auf oder eng parallel zu dem Wellenleitersteg verläuft, auf den optischen Wellenleiterkern ausgeübt. Der Streifen ist durch ein Passivierungsdielektrikum elektrisch von dem Steg isoliert.
- Ein typischer elektrisch abgestimmter Laser weist einen Querschnitt, wie in
1A gezeigt, auf. Der Laser umfasst einen p-Mantel 101, eine Wellenleiter-Kernschicht 102, eine n-Mantelschicht 103 und ein Substrat 104. Der p-Mantel 101 ist geätzt, um einen Wellenleitersteg 105 zu bilden, an dem elektrische Mittel zum Verändern des Brechungsindex (nicht gezeigt) befestigt sind. Der Bereich der Wellenleiter-Kernschicht unter dem Wellenleitersteg bildet den Wellenleiterkern. -
1B zeigt einen Laser mit „vergrabener Heterostruktur“. Der Laser umfasst einen p-Mantel 111, eine Wellenleiter-Kernschicht 112, eine n-Mantelschicht 103 und ein Substrat 114. Anstelle des Wellenleitersteges 115 wird der Wellenleiter durch eine Struktur 115 in der oberen Mantelschicht und der Wellenleiter-Kernschicht gebildet, die durch einen isolierenden Bereich 116 isoliert wird. Der Wellenleiterkern des Lasers mit vergrabener Heterostruktur wird durch die Sektion der Wellenleiter-Kernschicht innerhalb der Struktur 115 gebildet. - Jeder Laser ist eine ebene Struktur aus Materialien mit guter Wärmeableitung, gestaltet, um die durch die Dioden erzeugte Wärme herauszuziehen. Jedoch bedeutet dies, dass, wenn eine solche Lasergestaltung für thermische Abstimmung angepasst wird, die erforderliche Leistung, um die notwendigen Temperaturverschiebungen zu bewirken, sehr groß ist (z.B. 1 W für eine Temperaturänderung von 50 bis 70°C). Um den Wirkungsgrad der thermischen Abstimmung zu verbessern, ist es wünschenswert, den Wellenleiter thermisch von den Stützstrukturen zu isolieren. Jedoch sollten sich Sektionen des Lasers, die nicht thermisch abgestimmt werden, in thermischem Kontakt mit den Stützstrukturen befinden, so dass ihre Temperaturen konstant gehalten werden können.
- Eine beispielhafte bekannte Struktur, um dies zu erreichen, wird für einen Stegwellenleiter-Laser in
2A und B gezeigt, wobei2A eine Querschnittsansicht der Struktur entlang der Linie IIA-IIA in2B ist und2B eine Draufsicht ist. Der Laser weist eine obere p-Mantelschicht 201, einen Wellenleiterkern 202 und eine untere n-Mantelschicht 203 auf. Die obere p-Mantelschicht ist geätzt, um einen Wellenleitersteg 204 zu bilden. Eine Schicht von Opfermaterial 205 ist zwischen der unteren Mantelschicht und einem Substrat 206 angeordnet, und dieses Opfermaterial wird durch ein Nassätzverfahren herausgeätzt, um einen Luftspalt 208 unterhalb der Sektion, die den Wellenleitersteg enthält, zu lassen. Bohrungen 207 werden in der oberen Mantelschicht, dem Wellenleiterkern und der unteren Mantelschicht bereitgestellt, um zu ermöglichen, dass die Nassätzung das Opfermaterial erreicht. Offensichtlich würde, falls die Bohrungen den Wellenleiter vollständig umgäben, er nicht länger gestützt werden, also werden Stützstrukturen 209 in den Bohrungen bereitgestellt, um den Wellenleiter mit dem Rest des Substrats zu verbinden. - Jedoch verursachen diese Stützstrukturen, dass der Wellenleiter ungleichmäßige thermische Eigenschaften aufweist - d.h., Teile des Wellenleiters nahe einer Stützstruktur werden sich leichter abkühlen als Teile entfernt von einer Stützstruktur. Diese ungleichmäßige Erwärmung beeinträchtigt die gleichförmige Steuerung des Brechungsindex entlang des Bauteils und verringert die Leistung des Lasers.
- Weiterhin können die Offenbarungen der
US 2014 / 0 321 488 A1 US 2003 / 0 025 976 A1 - Die
US 2014 / 0 321 488 A1 - Die
US 2003 / 0 025 976 A1 - KURZDARSTELLUNG
- Die vorliegende Erfindung betrifft eine Wellenleiterstruktur gemäß Anspruch 1 sowie einen abstimmbaren Laser nach Anspruch 15. Vorteilhafte Ausführungsformen können Merkmale abhängiger Ansprüche aufweisen.
- Figurenliste
-
-
1 zeigt einen Querschnitt einer Wellenleiterstruktur eines typischen elektrisch abgestimmten Lasers; -
2A und2B zeigen einen Querschnitt und eine Draufsicht einer bekannten Wellenleiterstruktur für einen thermisch abgestimmten Laser; -
3 zeigt einen Querschnitt und eine Draufsicht einer beispielhaften Wellenleiterstruktur für einen thermisch abgestimmten Laser; -
4 zeigt die Stadien der Fertigung der Struktur von3 ; -
5 zeigt ein typisches Temperaturprofil einer beispielhaften Wellenleiterstruktur während des Erwärmens; -
6 zeigt einen Querschnitt eines thermisch abgestimmten Lasers. - AUSFÜHRLICHE BESCHREIBUNG
- Unten wird eine alternative unterschnittene Struktur vorgestellt. Diese Struktur überwindet die Beschränkungen des Standes der Technik, da sie ein gleichmäßigeres Erwärmungsprofil liefert. Darüber hinaus ist die Struktur sehr tolerant für Veränderungen im Fertigungsprozess und ermöglicht, in bestimmten Ausführungsformen, ein wirksameres Erden der Wellenleiterstruktur, als es mit vorherigen Unterschnitten möglich ist.
- Eine beispielhafte Struktur wird in
3A und3B gezeigt, wobei3A eine Querschnittsansicht der Struktur entlang der Linie IIIA-IIIA in3B ist und3B eine Draufsicht ist. Ähnlich der Struktur des Standes der Technik von2 , weist diese Struktur einen oberen p-Mantel 301 und einen unteren n-Mantel 303 auf, die einen Wellenleiterkern 302 umschließen. Der obere p-Mantel ist geätzt, um einen Wellenleitersteg 304 bereitzustellen. Eine Opferschicht 305 wird zwischen dem unteren n-Mantel und einem Substrat 306 bereitgestellt. Anstatt eine Reihe von Bohrungen auf beiden Seiten des Wellenleiters bereitzustellen, wie bei bekannten Strukturen, wird eine einzige Bohrung 307 auf einer Seite des Wellenleiters bereitgestellt. Diese Bohrung weist keinerlei Stützstrukturen auf, die sie kreuzen, und erstreckt sich durch die obere Mantelschicht 301, die Wellenleiter-Kernschicht 302 und die untere Mantelschicht 303 so weit wie die Opferschicht 305. Die Bohrung verläuft parallel zu dem Wellenleitersteg entlang der gesamten Länge der thermisch steuerbaren Sektion. Ätzfluid wird in die Bohrung bereitgestellt, um die Opferschicht zu ätzen, was dazu führt, dass die Sektion, die den Wellenleitersteg enthält, in einer auslagerartigen Anordnung einen Luftspalt 308 überragt. Es können angemessene thermische Eigenschaften erreicht werden, solange das geopferte Material wenigstens über den Wellenleiter hinaus geätzt wird, da dies dazu führt, dass der Wellenleiter thermisch von dem Substrat isoliert wird. Jegliche kleine Überätzung wird entlang der Länge der Bohrung gleichförmig sein und hat wenig Wirkung auf die thermischen Eigenschaften der Struktur. -
4 zeigt einen Fertigungsprozess zum Herstellen der Struktur von3 . Es wird eine geschichtete Struktur 400 gefertigt, die, nacheinander, eine Substratschicht 406, eine Opferschicht 405, eine untere Mantelschicht 403, eine Wellenleiter-Kernschicht 402 und eine obere Mantelschicht 401 umfasst. Die obere Mantelschicht umfasst ein oberes Mantelmaterial, z.B. ein p-Mantelmaterial. Die Wellenleiter-Kernschicht umfasst ein Wellenleiter-Kernmaterial. Die untere Mantelschicht umfasst ein unteres Mantelmaterial, z.B. ein n-Mantelmaterial. Die Opferschicht umfasst ein Opfermaterial. Das Substrat umfasst ein Substratmaterial. - Die geschichtete Struktur 400 wird dann (z.B. unter Verwendung von Trockenätzen oder einer Kombination von Trockenätzen und Nassätzen) geätzt 4000, 4001, um eine Zwischenstruktur 410 zu erzeugen. Die erste Ätzung 4000 ätzt die obere Mantelschicht 401, um einen Wellenleitersteg 404 und eine geätzte obere Mantelschicht 411 zu bilden. Die Zwischenstruktur weist ebenfalls eine Bohrung 407 auf, die durch die Wellenleiter-Kernschicht 402 und die untere Mantelschicht 403 geätzt worden ist, um eine geätzte Wellenleiter-Kernschicht 412 und eine geätzte untere Mantelschicht 413 zu hinterlassen. Die Bohrung 407 geht durch die obere Mantelschicht, die Wellenleiter-Kernschicht und die untere Mantelschicht hindurch bis zu der Opferschicht. Die obere Mantelschicht 401 kann während des Ätzschrittes 4000 (wie gezeigt) von der Position der Bohrung aus geätzt werden, oder sie kann zusammen mit der Wellenleiter-Kernschicht 402 und der unteren Mantelschicht 403 während des Ätzschrittes 4001 geätzt werden. Falls die obere Mantelschicht nur während des Ätzschrittes 4000 geätzt wird, dass kann sich die Seite der geätzten oberen Mantelschicht 411 nicht an der Kante der Bohrung befinden (wie in der Figur gezeigt).
- Die Zwischenstruktur wird dann durch die Verwendung einer chemisch selektiven Nassätzung, die in die Bohrung 407 eingeleitet wird, geätzt 4002, um die Wellenleiterstruktur 420 zu erzeugen. Die Nassätzung ätzt vorzugsweise das Opfermaterial, um die geätzte Opferschicht 415 zu bilden, so dass das geopferte Material von einem Bereich entfernt wird, der sich wenigstens von der Bohrung 407 bis jenseits des Wellenleitersteges 404 erstreckt, wobei in diesem Bereich ein Luftspalt 408 zwischen der unteren Mantelschicht 413 und dem Substrat 406 gelassen wird. Der Luftspalt bewirkt, dass der Bereich wärmeisolierend ist. Es wird zu erkennen sein, dass die Wellenleiterstruktur 420 äquivalent zu der in
3 vorgestellten Wellenleiterstruktur ist. - Die Ätzprozesse 4001 und 4002 können gesondert durchgeführt werden, oder eine Zwischenstruktur 410 kann durch andere Mittel erzeugt und für den Nassätzprozess 4002 bereitgestellt werden.
-
5 zeigt ein thermisches Modell der in3 gezeigten Struktur. Wärme wird auf den Wellenleitersteg 304 angewendet, und das Substrat 306 wird bei einer konstanten Temperatur gehalten. In3 stellt eine hohe Dichte von Punkten eine hohe Temperatur dar, und eine niedrige Dichte von Punkten stellt eine niedrige Temperatur dar. Der Wärmefluss über die verbleibende Opferschicht ist deutlich zu sehen. Die thermischen Eigenschaften werden von der Breite und Dicke des Überhangs, der Wahl des Opfermaterials und der Dicke des Opfermaterials abhängen. - Typische Überhangbreiten sind 20 bis 50 Mikrometer. Typische Opfermaterialdicken sind 0,25 bis 2 Mikrometer. Typische Dicken sowohl der oberen Mantel-, der unteren Mantel- als auch der Wellenleiter-Kernschicht sind 1 bis 3 Mikrometer. Das Opfermaterial befindet sich typischerweise 1 bis 2 Mikrometer unterhalb des optischen Kerns. Der wärmeisolierende Bereich erstreckt sich typischerweise 10 bis 40 Mikrometer über den Wellenleitersteg hinaus, zum Beispiel 30 Mikrometer über den Wellenleitersteg hinaus. Um thermische Effekte an den Enden des Überhangs zu vermeiden, kann sich der Überhang in der Richtung der Achse des Wellenleiters wenigstens 20 Mikrometer von kritischen Merkmalen des Lasers, wie beispielsweise Gittern, wenigstens 50 Mikrometer von solchen Merkmalen oder wenigstens 100 Mikrometer von solchen Merkmalen erstrecken.
- Die Kombination von Material, das für die Opferschicht, das Ätzfluid und die Mantelschichten verwendet wird, sollte derart gewählt werden, dass das Ätzfluid eine starke Präferenz zum Ätzen des Opfermaterials gegenüber den Mantelschichten aufweist. In dem Fall, dass der Wellenleiterkern für das Ätzfluid verletzlich ist, kann ein Passivierungsdielektrikum auf die freigelegte Oberfläche des Wellenleiterkerns innerhalb der Bohrung aufgebracht werden, um ein Ätzen des Wellenleiterkerns zu verhindern.
- Als ein Beispiel kann das in der Opferschicht verwendete Opfermaterial eines oder mehrere von InGaAs, AlInAs und AlGalnAs einschließen, und die Mantelschichten können InP einschließen. Mögliche Ätzfluids, welche die Opferschicht, aber nicht bedeutend die Mantelschicht, ätzen würden, schließen Folgendes ein:
- • H3PO4-H2O2
- • H2SO4-H2O2
- • Zitronensäure-H2O2
- • HNO3
- • Weinsäure-HNO3
- • Weinsäure-H2O2
- • HF-H2O2.
- Das Opfermaterial in der Opferschicht verbleibt an seinem Platz an den Seiten der Wellenleiterstruktur und kann an seinem Platz in anderen Bereichen des Bausteins als denjenigen, die thermisch steuerbar sind. Dies stellt sicher, dass jene Bereiche thermischen Kontakt mit dem Substrat haben, was bei der Temperatursteuerung jener Bereiche hilft. Anstatt einen Luftspalt in dem geätzten Bereich zu hinterlassen, kann er mit einem wärmeisolierenden Material, d.h., einem Material, das stärker wärmeisolierend ist als das Opfermaterial, gefüllt oder teilweise gefüllt werden.
- Das in der Opferschicht verwendete Opfermaterial kann ebenfalls als mehr als eine diskrete Schicht geformt sein, obwohl, wenn dies der Fall ist, alle dieser diskreten Schichten noch gemeinsam das Opfermaterial bilden. In einer Anordnung kann das Opfermaterial eine untere Schicht aus AlInAs mit einer oberen Schicht aus InGaAs einschließen. Diese besondere Anordnung hat eine Anzahl von Vorteilen. Auf InGaAs scheint, verglichen mit AlInAs eine bessere Wachstumsmorphologie für nachfolgende Schichten erreichbar zu sein, und Bearbeitungspläne, die eine Kombination von Nassätz- und Trockenätzverfahren einschließen, können vorteilhafterweise eingesetzt werden. Die Kombination von Materialien ermöglicht eine Optimierung der Wärmeleitfähigkeit in der Schicht, die unter der Verstärkungsschicht verbleibt. Die optische Absorption auf Grund von InGaAs hilft, streuendes (nichtgeleitetes) Licht zu kontrollieren. Als eine Alternative kann nur InGaAs als die Opferschicht verwendet werden.
-
6 zeigt eine beispielhafte Struktur mit weiteren Bestandteilen. Der obere und der untere Mantel 601, 603, die Wellenleiter-Kernschicht 602, der Wellenleitersteg 604, die Opferschicht 605, die Bohrung 607 und das Substrat 606 sind äquivalent zu denen der Struktur in3 . Die Struktur umfasst ferner ein Passivierungsdielektrikum 609, einen Heizwiderstand 610 und Erdkontakte 611, 612. Das Passivierungsdielektrikum 609 schirmt den Wellenleiterkern von der Nassätzung ab und isoliert dien Stegwellenleiter elektrisch von dem Heizwiderstand 610. Das Passivierungsdielektrikum kann dafür angeordnet sein, eine oder beide dieser Funktionen auszuüben. Unter erneuter Bezugnahme auf4 kann das Passivierungsdielektrikum vor dem Einleiten der Nassätzung 4002 auf die Zwischenstruktur 410 aufgebracht werden. Der Heizwiderstand 610 stellt eine Heizung für den Stegwellenleiter bereit, wie es zum thermischen Abstimmen des Lasers erforderlich ist. Die Erdkontakte 611, 612 bewirken eine Verringerung bei Trägerdichteoszillationen in dem Wellenleiterkern und ein Festhalten des Fermi-Niveaus, was zu einer Unterdrückung von Schrotrauschen und verbesserter Leistung insbesondere im Bereich von 10 MHz bis 100 MHz führt. Da der p-Erdkontakt 611 besser mit dem Wellenleitersteg verbunden ist, als es bei Unterschnittgestaltungen des Standes der Technik möglich ist, ist das Schrotrauschen der gezeigten Struktur, verglichen mit einer äquivalenten Struktur auf Grundlage der in2 gezeigten, bedeutend verringert. Es sind andere Konfigurationen von Erdkontakten und Heizelementen möglich. Zum Beispiel kann es einen Erdkontakt oben auf dem Wellenleitersteg, mit Heizelementen an beiden Seiten des Steges, oder einen Erdkontakt innerhalb eines oder beider Spalte in der oberen Mantelschicht neben dem Steg. Das/Die Heizelement(e) kann/können in Kontakt mit dem Oberteil des Steges, den Seiten des Steges oder beiden stehen. -
7 zeigt eine alternative beispielhafte Struktur. Der obere und der untere Mantel 701, 703, die Wellenleiter-Kernschicht 702, der Wellenleitersteg 704, die Opferschicht 705, die Bohrung 707 und das Substrat 706 sind äquivalent zu denen der Struktur in3 . Die Struktur umfasst ferner Heizwiderstände 709, 710, Erdkontakte 711, 712 und einen Stützsteg 713. Der Erdkontakt 711 ist oben auf dem Wellenleitersteg 704 angeordnet, und die Heizelemente 709, 710 sind in gleichem Abstand auf beiden Seiten des Steges angeordnet. Ein Passivierungsdielektrikum 714 wird bereitgestellt, um einen elektrischen Kontakt zwischen den Heizelementen und dem Halbleiter zu verhindern. Das Passivierungsdielektrikum 714 weist einen Spalt auf, um einen Kontakt zwischen dem Erdkontakt 711 und dem Wellenleitersteg 704 zu ermöglichen. Diese Anordnung gewährleistet ein verbessertes Phasenrauschen im Verhältnis zu der Anordnung von6 . Der Stützsteg 713 verbessert die mechanische Festigkeit des Überhangs, auf eine Weise, ähnlich einem „C-Träger“ oder „Parallelflanschkanal“, wie sie auf mechanischen Gebieten verwendet werden. Der obere Mantel 701 des Stützsteges 713 kann verdickt sein, um die mechanische Integrität zu steigern. - Die zusätzlichen Merkmale von
6 und7 können in einer beliebigen geeigneten Anordnung oder mit anderen Merkmalen, die in der Offenbarung erwähnt, aber in den Figuren nicht dargestellt werden, kombiniert werden. Zum Beispiel kann eine Struktur mit der Anordnung der Erdkontakte 611, 612 und dem Stützsteg 713, oder mit der Anordnung der Heizwiderstände 709, 710 und des Erdkontakts 712, ohne einen Stützsteg 713, bereitgestellt werden. - Eine ähnliche Wärmeisolationsstruktur kann auf einen Laser mit vergrabener Heterostruktur angewendet werden, wie in
8 gezeigt.8 zeigt eine Wellenleiterstruktur, die einen oberen und einen unteren Mantel 801, 803, eine Wellenleiter-Kernschicht 802, einen Wellenleiter 804, isolierende Bereiche 808, eine Opferschicht 805, eine Bohrung 807 und ein Substrat 806 umfasst. Das Substrat 806, die Bohrung 807 und die Opferschicht 805 sind äquivalent zu denen von6 und7 . Der Wellenleiter 804 und die isolierenden Bereiche 808 sind äquivalent zu der Struktur 115 und den isolierenden Bereichen 116 von1B . Die Erdkontakte 811, 812 werden in einer Anordnung gezeigt, die derjenigen von6 entspricht, können sich aber ebenfalls in einer Anordnung befinden, die zu derjenigen von7 äquivalent ist. Heizelemente können an einer beliebigen geeigneten Position um die Wellenleiterstruktur 804 angewendet werden, z.B. auf beiden Seiten der Wellenleiterstruktur, wie für die Heizelemente 809, 810 gezeigt. Ein Passivierungsdielektrikum wird angewendet, um einen elektrischen Kontakt zwischen den Heizelementen 814 und den darunterliegenden Bestandteilen zu verhindern. Um eine ausreichende Wärmeisolation zu gewährleisten, sollte sich der Unterschnitt wenigstens über den Wellenleiterkern hinaus, d.h., über die Wellenleiterstruktur 804 hinaus, erstrecken. - Die oben offenbarte Wellenleiterstruktur kann für einen beliebigen Wellenleiter mit einer thermisch steuerbaren Sektion verwendet werden. Zum Beispiel kann die Wellenleiterstruktur in einem Laser mit Bragg-Spiegel (DBR) für die hintere DBR-Sektion und/oder die Phasensteuerungssektion verwendet werden, um eine verbesserte thermische Steuerung dieser Sektionen bereitzustellen.
Claims (17)
- Wellenleiterstruktur, die einen Wellenleiter einschließt, der eine thermisch steuerbare Sektion aufweist, wobei die Wellenleiterstruktur mehrere Schichten und einen Erdkontakt (611; 711; 811) umfasst, wobei die Schichten, nacheinander, Folgendes umfassen: ein Substrat (606; 706; 806), eine Opferschicht (605; 705; 805), eine untere Mantelschicht (603; 703; 803), eine Wellenleiter-Kernschicht (602; 702; 802) und eine obere Mantelschicht (601; 701; 801), wobei: die untere Mantelschicht (603; 703; 803), die Wellenleiter-Kernschicht (602; 702; 802) und die obere Mantelschicht (601; 701; 801) den Wellenleiter bilden, wobei der Wellenleiter einen Wellenleiterkern aufweist, die Wellenleiterstruktur eine durchgehende Bohrung (607; 707; 807) aufweist, die durch die obere Mantelschicht (601; 701; 801), die Wellenleiter-Kernschicht (602; 702; 802) und die untere Mantelschicht (603; 703; 803) hindurchgeht und parallel zu dem Wellenleiterkern entlang im Wesentlichen der gesamten Länge der thermisch steuerbaren Sektion auf nur einer Seite des Wellenleiterkerns verläuft, und die Opferschicht (605; 705; 805) einen wärmeisolierenden Bereich einschließt, der sich wenigstens von der Bohrung (607; 707; 807) bis jenseits des Wellenleiterkernes entlang der gesamten Länge der thermisch steuerbaren Sektion erstreckt, wobei die Opferschicht (605; 705; 805) ein Opfermaterial außerhalb des wärmeisolierenden Bereichs aufweist, und wobei im wärmeisolierenden Bereich die Opferschicht entfernt ist und einen wärmeisolierenden Spalt oder wärmeisolierendes Material aufweist, das die untere Mantelschicht (603; 703; 803) und das Substrat (606; 706; 806) voneinander trennt, wobei der Erdkontakt (611; 811) in elektrischem Kontakt mit der oberen Mantelschicht (601; 801) auf der zu der Bohrung (607; 807) entgegengesetzten Seite des Wellenleiterkerns steht, oder wobei der Erdkontakt (711) in elektrischem Kontakt mit der oberen Mantelschicht (701) angrenzend an den Wellenleiterkern steht.
- Wellenleiterstruktur nach
Anspruch 1 , wobei sich der wärmeisolierende Bereich von der Bohrung (607; 707; 807) bis wenigstens 5 Mikrometer jenseits des Wellenleiterkernes erstreckt. - Wellenleiterstruktur nach einem der vorhergehenden Ansprüche und umfassend ein Passivierungsdielektrikum (609; 714), das auf eine freigelegte Oberfläche der Wellenleiter-Kernschicht (602; 702; 802) aufgebracht ist.
- Wellenleiterstruktur nach einem der vorhergehenden Ansprüche und umfassend ein Heizelement (709, 710, 809, 810) in thermischem Kontakt mit der oberen Mantelschicht (601; 701; 801) angrenzend an den Wellenleiterkern.
- Wellenleiterstruktur nach einem der vorhergehenden Ansprüche und umfassend zwei Heizelemente (709, 710, 809, 810), die auf beiden Seiten des Wellenleiterkerns angeordnet sind.
- Wellenleiterstruktur nach
Anspruch 4 oder5 und umfassend ein Passivierungsdielektrikum, das zwischen der oberen Mantelschicht (601; 701; 801) und dem Heizelement (709, 710, 809, 810) aufgebacht ist, wobei das Passivierungsdielektrikum dafür konfiguriert ist, den Wellenleiterkerns elektrisch von dem Heizelement (709, 710, 809, 810) zu isolieren. - Wellenleiterstruktur nach einem der
Ansprüche 4 bis6 , wobei das Heizelement (709, 710; 809, 810) ein Heizwiderstand ist. - Wellenleiterstruktur nach einem der vorhergehenden Ansprüche, wobei eine Dicke der Opferschicht (605; 705; 805) zwischen 0,5 Mikrometer und 2 Mikrometer beträgt.
- Wellenleiterstruktur nach einem der vorhergehenden Ansprüche, wobei eine Breite des wärmeisolierenden Bereichs 20 Mikrometer bis 40 Mikrometer beträgt, wobei die Breite in einer Richtung, senkrecht zu dem Wellenleiterkern, und in der Ebene der Opferschicht (605; 705; 805) gemessen wird.
- Wellenleiterstruktur nach einem der vorhergehenden Ansprüche, wobei das Opfermaterial eines oder mehrere von Folgendem umfasst: Indiumgalliumarsenid, InGaAs, Aluminiumindiumarsenid, AlInAs und Aluminiumgalliumindiumarsenid, AlGaInAs.
- Wellenleiterstruktur nach einem der vorhergehenden Ansprüche, wobei das Opfermaterial eine untere Schicht aus AlInAs und eine obere Schicht aus InGaAs umfasst.
- Wellenleiterstruktur nach einem der vorhergehenden Ansprüche, wobei die obere Mantelschicht (601; 701; 801) einen Wellenleitersteg (604; 704; 804) umfasst, der angrenzend an den Wellenleiterkern angeordnet ist.
- Wellenleiterstruktur nach
Anspruch 12 und umfassend einen Stützsteg (713), der zwischen dem Wellenleitersteg (604; 704; 804) und der Bohrung (707) angeordnet ist, wobei er parallel zu dem Wellenleitersteg (604; 704; 804) im Wesentlichen entlang der gesamten Länge der thermisch steuerbaren Sektion verläuft. - Wellenleiterstruktur nach einem der
Ansprüche 1 bis11 , wobei die Wellenleiterstruktur ferner isolierende Bereiche (808) auf beiden Seiten des Wellenleiters umfasst, die den Wellenleiter von anderen Teilen der oberen Mantelschicht (601; 701; 801) und der Wellenleiter Kernschicht (602; 702; 802) isolieren. - Abstimmbarer Laser, der die Wellenleiterstruktur nach einem der vorhergehenden Ansprüche umfasst.
- Laser nach
Anspruch 15 , wobei die thermisch steuerbare Sektion des Wellenleiters einen Teil eines Bragg-Spiegels (Distributed Bragg reflector) bildet. - Laser nach
Anspruch 15 , wobei die thermisch steuerbare Sektion des Wellenleiters einen Teil einer Phasensteuerung in einem Laserhohlraum bildet.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1616562.3 | 2016-09-29 | ||
GB1616562.3A GB2554460A (en) | 2016-09-29 | 2016-09-29 | Waveguide structure |
PCT/GB2017/052931 WO2018060729A1 (en) | 2016-09-29 | 2017-09-29 | Waveguide structure |
Publications (2)
Publication Number | Publication Date |
---|---|
DE112017004914T5 DE112017004914T5 (de) | 2019-06-19 |
DE112017004914B4 true DE112017004914B4 (de) | 2023-05-04 |
Family
ID=57571172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE112017004914.8T Active DE112017004914B4 (de) | 2016-09-29 | 2017-09-29 | Wellenleiterstruktur |
Country Status (6)
Country | Link |
---|---|
US (1) | US10746922B2 (de) |
JP (1) | JP6696051B2 (de) |
CN (1) | CN109804513B (de) |
DE (1) | DE112017004914B4 (de) |
GB (2) | GB2554460A (de) |
WO (1) | WO2018060729A1 (de) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2595588B (en) * | 2018-02-21 | 2022-08-31 | Rockley Photonics Ltd | Optoelectronic device |
GB2571269B (en) | 2018-02-21 | 2021-07-07 | Rockley Photonics Ltd | Optoelectronic device |
EP3565068B1 (de) * | 2018-04-30 | 2021-02-24 | FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. | Thermisch abstimmbarer laser und verfahren zur herstellung solch eines lasers |
US11262603B2 (en) | 2019-06-13 | 2022-03-01 | Rockley Photonics Limited | Multilayer metal stack heater |
CN110716262A (zh) * | 2019-11-19 | 2020-01-21 | 杭州芯耘光电科技有限公司 | 一种硅光光模斑模式转换器及其制造方法 |
KR102372373B1 (ko) * | 2020-03-13 | 2022-03-11 | 한국전자통신연구원 | 레이저 소자 |
US11226506B2 (en) * | 2020-03-17 | 2022-01-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Heater structure with a gas-filled isolation structure to improve thermal efficiency in a modulator device |
CN111596406B (zh) * | 2020-04-27 | 2022-08-05 | 联合微电子中心有限责任公司 | 厚膜光波导及其制造方法 |
CN117192689A (zh) * | 2020-04-29 | 2023-12-08 | 朗美通经营有限责任公司 | 热控光子结构 |
GB2595880B (en) * | 2020-06-09 | 2023-05-10 | Rockley Photonics Ltd | Optoelectronic device and method of manufacture thereof |
CN111653856A (zh) * | 2020-06-24 | 2020-09-11 | 中国电子科技集团公司第四十一研究所 | 一种陶瓷矩形太赫兹波导管芯、波导组件及其制备方法 |
FR3111997B1 (fr) * | 2020-06-29 | 2022-09-23 | Soitec Silicon On Insulator | Procede de fabrication d’un composant thermo-optique |
US11784464B2 (en) * | 2020-09-30 | 2023-10-10 | Ii-Vi Delaware, Inc. | Directly modulated laser |
CN112563878B (zh) * | 2020-12-10 | 2023-11-07 | 武汉光迅科技股份有限公司 | 一种热调谐半导体芯片及其制备方法 |
CN114764163B (zh) * | 2021-01-15 | 2024-07-30 | 宁波元芯光电子科技有限公司 | 一种悬空波导支撑结构及其制作方法 |
DE102021211848A1 (de) | 2021-10-20 | 2023-04-20 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein | Vorrichtung zur erzeugung einer laserstrahlung mit einer lateral-current-injection-laseranordnung und einem hohlraum, sowie verfahren zur herstellung derselben |
CN114035270B (zh) * | 2021-11-08 | 2023-10-13 | 浙江光特科技有限公司 | 一种光波导中金属刻蚀的方法 |
CN114089598A (zh) * | 2022-01-24 | 2022-02-25 | 浙江光特科技有限公司 | 半导体器件的制造方法 |
CN114597763B (zh) * | 2022-05-07 | 2022-09-20 | 武汉光迅科技股份有限公司 | 一种新型结构的热调谐激光器芯片及其制作方法 |
US20240219636A1 (en) * | 2023-01-04 | 2024-07-04 | Globalfoundries U.S. Inc. | Edge couplers with a fine-alignment mechanism |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030025976A1 (en) | 2001-07-31 | 2003-02-06 | Torsten Wipiejewski | Tunable electro-absorption modulator |
US20140321488A1 (en) | 2013-04-30 | 2014-10-30 | Futurewei Technologies, Inc. | Tunable Laser With High Thermal Wavelength Tuning Efficiency |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01158413A (ja) * | 1987-09-29 | 1989-06-21 | Nippon Telegr & Teleph Corp <Ntt> | 光導波路装置 |
JP3204493B2 (ja) * | 1996-01-31 | 2001-09-04 | 日本電信電話株式会社 | 位相調整機能付光導波路の作製方法 |
JP2000206476A (ja) * | 1999-01-18 | 2000-07-28 | Kyocera Corp | 温度制御型光導波路 |
JP4078898B2 (ja) * | 2002-06-28 | 2008-04-23 | 日本電気株式会社 | 熱光学位相シフタ及びその製造方法 |
US6925232B2 (en) | 2003-05-30 | 2005-08-02 | Lucent Technologies, Inc. | High speed thermo-optic phase shifter and devices comprising same |
CA2565194A1 (en) | 2004-05-18 | 2005-11-24 | Valtion Teknillinen Tutkimuskeskus | A structure comprising an adiabatic coupler for adiabatic coupling of light between two optical waveguides and method for manufacturing such a structure |
JP4945907B2 (ja) * | 2005-03-03 | 2012-06-06 | 日本電気株式会社 | 波長可変レーザ |
WO2008047634A1 (fr) | 2006-10-20 | 2008-04-24 | Nec Corporation | Déphaseur thermo-optique et procédé de production de celui-ci |
US8179935B2 (en) * | 2008-04-01 | 2012-05-15 | Hewlett-Packard Development Company, L.P. | Tunable optical resonator |
US8861556B2 (en) * | 2012-07-05 | 2014-10-14 | Jds Uniphase Corporation | Tunable Bragg grating and a tunable laser diode using same |
JP6102381B2 (ja) | 2013-03-18 | 2017-03-29 | 富士通株式会社 | 光スイッチ及びその製造方法 |
JP2015170750A (ja) * | 2014-03-07 | 2015-09-28 | 住友電気工業株式会社 | 光半導体素子及び光半導体素子の製造方法 |
-
2016
- 2016-09-29 GB GB1616562.3A patent/GB2554460A/en not_active Withdrawn
-
2017
- 2017-09-29 DE DE112017004914.8T patent/DE112017004914B4/de active Active
- 2017-09-29 US US16/328,654 patent/US10746922B2/en active Active
- 2017-09-29 GB GB1715826.2A patent/GB2556995B/en active Active
- 2017-09-29 JP JP2019517031A patent/JP6696051B2/ja active Active
- 2017-09-29 WO PCT/GB2017/052931 patent/WO2018060729A1/en active Application Filing
- 2017-09-29 CN CN201780060157.5A patent/CN109804513B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030025976A1 (en) | 2001-07-31 | 2003-02-06 | Torsten Wipiejewski | Tunable electro-absorption modulator |
US20140321488A1 (en) | 2013-04-30 | 2014-10-30 | Futurewei Technologies, Inc. | Tunable Laser With High Thermal Wavelength Tuning Efficiency |
Also Published As
Publication number | Publication date |
---|---|
CN109804513B (zh) | 2021-03-30 |
US10746922B2 (en) | 2020-08-18 |
US20190369328A1 (en) | 2019-12-05 |
GB201616562D0 (en) | 2016-11-16 |
WO2018060729A1 (en) | 2018-04-05 |
GB2554460A (en) | 2018-04-04 |
JP6696051B2 (ja) | 2020-05-20 |
GB2556995A (en) | 2018-06-13 |
DE112017004914T5 (de) | 2019-06-19 |
GB201715826D0 (en) | 2017-11-15 |
GB2556995B (en) | 2020-04-22 |
CN109804513A (zh) | 2019-05-24 |
JP2019530978A (ja) | 2019-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE112017004914B4 (de) | Wellenleiterstruktur | |
EP2467909B1 (de) | Diodenlaser und laserresonator für einen diodenlaser mit verbesserter lateraler strahlqualität | |
EP1770836B1 (de) | Laserdiodenvorrichtung, Laseranordnung mit mindestens einer Laserdiodevorrichtung und optisch gepumpter Laser | |
DE4327102A1 (de) | Abstimmbares optisches Filter | |
DE68913934T2 (de) | Verstimmbarer Halbleiterdiodenlaser mit verteilter Reflexion und Verfahren zum Herstellen eines derartigen Halbleiterdiodenlasers. | |
DE2925648C2 (de) | ||
DE112015002094B4 (de) | Lichtemittierende Vorrichtung des äußeren Resonatortyps | |
DE112016005129B4 (de) | Halbleiterlaserdiode | |
EP2523279B1 (de) | Breitstreifen-Diodenlaser mit hoher Effizienz und geringer Fernfelddivergenz | |
DE69708911T2 (de) | Verbesserungen an und im zusammenhang mit lasern | |
DE69801283T2 (de) | Optisches Halbleiterbauelement | |
DE69730872T2 (de) | Laservorrichtung | |
WO2012168437A1 (de) | Kantenemittierender halbleiterlaser | |
DE102013204192B4 (de) | Halbleiterlaser mit verbesserter Indexführung | |
DE102013223499C5 (de) | Breitstreifenlaser und Verfahren zum Herstellen eines Breitstreifenlasers | |
DE60204848T2 (de) | Anbringung eines optischen bauelements an einem kühlkörper | |
DE602004008096T2 (de) | Steuerung der ausgangsstrahldivergenz in einem halbleiterwellenleiterbauelement | |
DE102016202210B4 (de) | Laseranordnung, Verfahren zum Steuern eines Lasers und Messverfahren | |
DE69012704T2 (de) | Spitz zulaufender Halbleiterwellenleiter und Verfahren zu seiner Herstellung. | |
EP1625644B1 (de) | Modengekoppelte halbleiterlaser-pulsquelle | |
EP2057720B1 (de) | Vorrichtung und verfahren zur erzeugung von terahertz-strahlung | |
DE10105731A1 (de) | Laserstruktur und Verfahren zur Einstellung einer definierten Wellenlänge | |
EP0768740B1 (de) | Optoelektronisches Bauelement mit kodirektionaler Modenkopplung | |
EP3879642A9 (de) | Monomodiger halbleiterlaser mit phasenkontrolle | |
DE10129393A1 (de) | Halbleiterlaser mit variierter Breite der Quantenpotentialtöpfe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R012 | Request for examination validly filed | ||
R409 | Internal rectification of the legal status completed | ||
R081 | Change of applicant/patentee |
Owner name: LUMENTUM TECHNOLOGY UK LIMITED, CASWELL TOWCES, GB Free format text: FORMER OWNER: OCLARO TECHNOLOGY LIMITED, TOWCESTER, NORTHAMPTONSHIRE, GB |
|
R082 | Change of representative |
Representative=s name: MARKS & CLERK LLP, GB Representative=s name: PROCK, THOMAS, DR., GB |
|
R016 | Response to examination communication | ||
R082 | Change of representative |
Representative=s name: MURGITROYD GERMANY PATENTANWALTSGESELLSCHAFT M, DE Representative=s name: MURGITROYD & COMPANY, DE Representative=s name: PROCK, THOMAS, DR., GB |
|
R016 | Response to examination communication | ||
R082 | Change of representative |
Representative=s name: MURGITROYD GERMANY PATENTANWALTSGESELLSCHAFT M, DE Representative=s name: MURGITROYD & COMPANY, DE |
|
R016 | Response to examination communication | ||
R018 | Grant decision by examination section/examining division | ||
R020 | Patent grant now final |