DE112016005319B4 - Verfahren zur Herstellung eines Leuchtdiodenchips - Google Patents

Verfahren zur Herstellung eines Leuchtdiodenchips Download PDF

Info

Publication number
DE112016005319B4
DE112016005319B4 DE112016005319.3T DE112016005319T DE112016005319B4 DE 112016005319 B4 DE112016005319 B4 DE 112016005319B4 DE 112016005319 T DE112016005319 T DE 112016005319T DE 112016005319 B4 DE112016005319 B4 DE 112016005319B4
Authority
DE
Germany
Prior art keywords
layer
semiconductor layer
passivation layer
layer sequence
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE112016005319.3T
Other languages
English (en)
Other versions
DE112016005319A5 (de
Inventor
Jens Ebbecke
Petrus Sundgren
Roland Zeisel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Publication of DE112016005319A5 publication Critical patent/DE112016005319A5/de
Application granted granted Critical
Publication of DE112016005319B4 publication Critical patent/DE112016005319B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

Verfahren zur Herstellung eines Leuchtdiodenchips mit den folgenden Schritten:- Bereitstellen einer epitaktisch gewachsenen Halbleiterschichtenfolge (1) mit einer aktiven Zone (2), die dazu geeignet ist, elektromagnetische Strahlung zu erzeugen,- Aufbringen einer Passivierungsschicht (10) auf eine Seitenfläche (8) der Halbleiterschichtenfolge (1), so dass in der Passivierungsschicht (10) elektrische Ladungsträger statisch fixiert werden, wobei- die Halbleiterschichtenfolge (1) auf einem Phosphidverbundhalbleitermaterial beruht und zum Aufbringen der Passivierungsschicht (10) die folgenden Schritte durchgeführt werden:- Aufbringen einer nicht-stöchiometrischen Siliziumoxidschicht (7) in direktem Kontakt auf die Seitenfläche (8) der Halbleiterschichtenfolge (1),- Aufbringen einer Aluminumoxidschicht (9) in direktem Kontakt auf die Siliziumoxidschicht (7),- Tempern des Schichtverbundes, so dass eine aluminiumoxidhaltige Schicht an der Grenzfläche zwischen Passivierungsschicht (10) und Halbleiterschichtenfolge (1) entsteht.

Description

  • Es wird ein Verfahren zur Herstellung eines Leuchtdiodenchips angegeben.
  • Die Druckschrift US 2013 / 0 105 836 A1 offenbart ein lichtemittierendes Element, ein Verfahren zu dessen Herstellung und ein lichtemittierendes Bauelement.
  • Die Druckschrift DE 10 2015 120 323 A1 betrifft einen Leuchtdiodenchip mit einer Verkapselungsschicht, die stellenweise zwischen einem Träger und einer reflektierenden Schichtenfolge angeordnet ist, wobei sich die Verkapselungsschicht stellenweise durch die reflektierende Schichtenfolge hindurch in eine Halbleiterschichtenfolge hinein erstreckt.
  • Leuchtdiodenchips, insbesondere auf der Basis von InGaAlP, weisen häufig aufgrund von nichtstrahlenden Verlusten in der aktiven strahlungserzeugenden Zone an geätzten Seitenflächen ein Effizienzmaximum bei vergleichsweise hohen Stromdichten auf. Dies begrenzt den Einsatz derartiger Leuchtdiodenchips bei geringen Stromdichten.
  • Eine Aufgabe der vorliegenden Anmeldung ist es, ein Verfahren zur Herstellung eines Leuchtdiodenchips anzugeben, dessen Effizienzmaximum bei niedrigen Stromdichten liegt.
  • Diese Aufgabe wird durch ein Verfahren mit den Schritten des Patentanspruches 1 gelöst.
  • Vorteilhafte Ausführungsformen sowie Weiterbildungen des Verfahrens sind Gegenstand der abhängigen Ansprüche.
  • Gemäß einer Ausführungsform weist der Leuchtdiodenchip eine epitaktische Halbleiterschichtenfolge mit einer aktiven Zone auf, die im Betrieb elektromagnetische Strahlung erzeugt.
  • Besonders bevorzugt umfasst der Leuchtdiodenchip eine Passivierungsschicht, in der elektrische Ladungsträger statisch fixiert sind oder die zu einer Absättigung der Oberflächenzustände der Halbleiterschichtenfolge führt.
  • Die Passivierungsschicht ist bevorzugt auf einer Seitenfläche der Halbleiterschichtenfolge aufgebracht und überdeckt bevorzugt zumindest die aktive Zone seitlich.
  • Weiterhin ist es auch möglich, dass sich die Passivierungsschicht vollflächig über die Seitenfläche der epitaktischen Halbleiterschichtenfolge erstreckt. Alternativ oder zusätzlich kann die Passivierungsschicht auch zumindest teilweise auf einer Lichtaustrittsfläche der epitaktischen Halbleiterschichtenfolge oder des Leuchtdiodenchips angeordnet sein.
  • Eine Idee der vorliegenden Anmeldung ist es, auf der Seitenfläche der Halbleiterschichtenfolge, und insbesondere im Bereich der aktiven strahlungserzeugenden Zone, statisch fixierte Ladungsträger anzuordnen, so dass sich im an die Passivierungsschicht angrenzenden Halbleitermaterial der Halbleiterschichtenfolge Ladungsträger mit entgegengesetzter elektrischer Ladung sammeln. Die statisch fixierten Ladungen in der Passivierungsschicht führen mit Vorteil zu einer Abschirmung der entgegengesetzt geladenen Sorte von Ladungsträger an der Seitenfläche. Da für nichtstrahlende Effekte beide Arten von Ladungsträgern lokal vorhanden sein müssen, wird die nichtstrahlende Rate, die zu Verlusten führt, an den in der Regel geätzten Seitenflächen deutlich verringert. Die Effizient des Leuchtdiodenchips wird so mit Vorteil erhöht.
  • Besonders bevorzugt ist die Passivierungsschicht in direktem Kontakt mit dem Material der epitaktischen Halbleiterschichtenfolge angeordnet. Mit anderen Worten weist die Passivierungsschicht mit der epitaktischen Halbleiterschichtenfolge besonders bevorzugt eine gemeinsame Grenzfläche auf.
  • Gemäß einer bevorzugten Ausführungsform des Leuchtdiodenchips handelt es sich bei den statisch fixierten Ladungsträger um Elektronen.
  • Besonders bevorzugt erzielen die statisch fixierten Ladungen in der Passivierungsschicht eine Verbiegung der Bandkante von Leitungsband und Valenzband in dem an die Passivierungsschicht angrenzenden Halbleitermaterial der epitaktischen Halbleiterschichtenfolge. Auf diese Art und Weise reichern sich Ladungsträger aus dem Halbleitermaterial, deren Ladung entgegengesetzt ist zu der Ladung der statisch fixierten Ladungsträger in der Passivierungsschicht, in dem an die Passivierungsschicht angrenzenden Halbleitermaterial an. Die statisch fixierten Ladungen in der Passivierungsschicht führen in der Regel mit Vorteil zu einer Abschirmung der entgegengesetzt geladenen Sorte von Ladungsträger an der Seitenfläche.
  • Beispielsweise führen die statisch fixierten Ladungsträger in der Passivierungsschicht zu einer Bandkantenverbiegung im Bereich der Passivierungsschicht zu kleineren Energien, sodass sich hier Elektronen im Grenzbereich zur Halbleiterschichtenfolge anreichern. Aufgrund der lokal erhöhten Elektronendichte in der Passivierungsschicht sammeln sich im Gegenzug im angrenzenden Bereich der Halbleiterschichtenfolge positive Ladungsträger, beispielsweise Löcher. Der Bereich der Bandkantenverbiegung an der Grenzfläche Halbleiterschichtenfolge - Passivierungsschicht weist beispielsweise eine Ausdehnung zwischen 1 Nanometer und 100 Nanometer auf. Beispielsweise beträgt die Bandkantenverbiegung von Valenzbandkante und Leitungsbandkante mindestens 0,1 eV.
  • Gemäß einer Ausführungsform weist die Ladungsträgerdichte der statisch fixierten Ladungsträger im Grenzbereich zwischen der Halbleiterschichtenfolge und der Passivierungsschicht mindestens 1011 cm-2 auf. Besonders bevorzugt weist die Ladungsträgerdichte der statisch fixierten Ladungsträger im Grenzbereich zwischen der Halbleiterschichtenfolge und der Passivierungsschicht mindestens 1012 cm-2 auf.
  • Gemäß einer bevorzugten Ausführungsform basiert die epitaktische Halbleiterschichtenfolge auf einem III/V-Halbleiterverbundmaterial.
  • Bei dem III/V-Halbleiterverbundmaterial handelt es sich besonders bevorzugt um ein Phosphid-Halbleiterverbundmaterial. Ein Phosphid-Halbleiterverbundmaterial ist ein Halbleiterverbundmaterialien, das Phosphor enthält, wie die Materialien aus dem System InxAlyGa1-x-yP mit 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 und x+y ≤ 1. Insbesondere weist die epitaktisch gewachsene Halbleiterschichtenfolge eines dieser Materialien auf oder besteht auf einem dieser Materialien.
  • Die Passivierungsschicht weist bevorzugt eine Dicke zwischen einschließlich 1 Nanometer und einschließlich 100 Nanometer auf. Besonders bevorzugt ist die Passivierungsschicht sehr dünn ausgebildet. Bevorzugt übersteigt die Dicke der Passivierungsschicht 5 Nanometer nicht.
  • Die statisch fixierten Ladungen in der Passivierungsschicht führen mit Vorteil zu einer Abschirmung der entgegengesetzt geladenen Sorte von Ladungsträger an der Seitenfläche. Da für nichtstrahlende Effekte beide Arten von Ladungsträgern lokal vorhanden sein müssen, wird die nichtstrahlende Rate, die zu Verlusten führt, an den Seitenflächen deutlich verringert. Dies führt insbesondere zu einer Effizienzerhöhung bei Leuchtdiodenchips mit geringer lateraler Ausdehnung. Besonders bevorzugt weisen die Leuchtdiodenchips daher eine Kantenlänge auf, die 1 Millimeter nicht überschreitet.
  • Weiterhin ist die Effizienzerhöhung besonders effektiv bei einem Leuchtdiodenchip, der ein vergleichsweise hohes Verhältnis von Seitenfläche zu Lichtaustrittsfläche aufweist. Das Verhältnis von Seitenfläche zu Lichtaustrittsfläche des Leuchtdiodenchips beträgt bevorzugt mindestens 0,01.
  • Die Passivierungsschicht weist bevorzugt eines der folgenden Materialien auf oder ist aus einem der folgenden Materialien gebildet: Aluminiumoxid, Siliziumoxid, Aluminiumphosphid, Indiumaluminiumphosphid.
  • Gemäß einer bevorzugten Ausführungsform des Leuchtdiodenchips basiert die Halbleiterschichtenfolge auf einem Phosphid-Verbundhalbleitermaterial oder ist aus einem Phosphid-Verbundhalbleitermaterial gebildet, wobei die Passivierungsschicht in direktem Kontakt auf die Halbleiterschichtenfolge aufgebracht ist. Die Passivierungsschicht weist hierbei besonders bevorzugt Aluminiumphosphid und/oder Aluminiumoxid auf. Beispielsweise ist es möglich, dass die Passivierungsschicht aus zwei Einzelschichten gebildet ist, von denen die eine Aluminiumphosphid aufweist oder aus Aluminiumphosphid besteht, während die andere Aluminiumoxid aufweist oder aus Aluminiumoxid besteht. Besonders bevorzugt ist hierbei die Aluminiumoxidschicht in direktem Kontakt mit dem Halbleitermaterial angeordnet.
  • Weiterhin ist es auch möglich, dass die Passivierungsschicht ungeordnete Bereiche aufweist, von denen die einen Aluminiumphosphid aufweisen oder aus Aluminiumphosphid bestehen und die anderen Aluminiumoxid aufweisen oder aus Aluminiumoxid bestehen. Besonders bevorzugt ist hierbei die Passivierungsschicht sehr dünn ausgebildet und weist lediglich einige Nanometer Dicke auf. Weiterhin überwiegen bei dieser Ausführungsform die Bereiche, die Aluminiumoxid aufweisen, die Bereiche, die Aluminiumphosphid aufweisen bevorzugt deutlich. Beispielsweise besteht die Passivierungsschicht zu mindestens 95% aus Aluminiumoxid.
  • Bei einem Verfahren zur Herstellung eines Leuchtdiodenchips wird zunächst eine epitaktisch gewachsene Halbleiterschichtenfolge mit einer aktiven Zone bereitgestellt, wobei die aktive Zone dazu geeignet ist, elektromagnetische Strahlung zu erzeugen.
  • Auf eine Seitenfläche der Halbleiterschichtenfolge wird eine Passivierungsschicht aufgebracht, in der elektrische Ladungsträger statisch fixiert sind. Die Passivierungsschicht bedeckt hierbei zumindest die aktive strahlungserzeugende Zone der Halbleiterschichtenfolge.
  • Gemäß einer besonders bevorzugten Ausführungsform des Verfahrens werden Teile der Seitenfläche der Halbleiterschichtenfolge durch Ätzen, insbesondere durch Trockenätzen, erzeugt. Dies wird auch als Mesa-Ätzen bezeichnet. Die Seitenfläche der Halbleiterschichtenfolge wird in der Regel zunächst teilweise durch Ätzen erzeugt, während ein weiterer Teil der Seitenfläche schließlich durch einen anderen Trennprozess, wie beispielsweise Brechen, Sägen oder Laserschneiden, hergestellt wird. Besonders bevorzugt wird die aktive Zone der Halbleiterschichtenfolge durch Ätzen getrennt.
  • Es wird eine Halbleiterschichtenfolge bereitgestellt, die auf einem Phosphid-Verbundhalbleitermaterial beruht oder aus einem Phosphid-Verbundhalbleitermaterial besteht. Zum Aufbringen der Passivierungsschicht wird in direktem Kontakt auf die Seitenfläche der Halbleiterschichtenfolge eine nicht-stöchiometrische Siliziumdioxidschicht (SiOx-Schicht) aufgebracht, bevorzugt durch thermisches Verdampfen.
  • Dann wird in direktem Kontakt auf die nicht-stöchiometrische Siliziumdioxidschicht eine Aluminiumphosphidschicht (Al2O3-Schicht) aufgebracht, besonders bevorzugt durch ein ALD-Verfahren.
  • Mit Atomlagenabscheidung (atomic layer deposition, ALD) ist vorliegend eine spezielle Form eines CVD-Verfahren bezeichnet.
  • Bei einem CVD-Verfahren („chemical vapour deposition“, chemische Gasphasenabscheidung) wird die zu beschichtende Oberfläche in einem Volumen zur Verfügung gestellt. In dem Volumen wird weiterhin zumindest ein Ausgangsmaterial zur Verfügung gestellt, aus dem durch eine chemische Reaktion an der zu beschichtenden Oberfläche eine feste CVD-Schicht abgeschieden wird. In der Regel befindet sich in dem Volumen zumindest ein zweites Ausgangsmaterial, mit dem das erste Ausgangsmaterial unter Bildung der festen CVD-Schicht an der Oberfläche chemisch reagiert. Das CVD-Verfahren zeichnet sich somit durch mindestens eine chemische Reaktion an der zu beschichtenden Oberfläche zur Bildung der CVD-Schicht aus.
  • Mit Atomlagenabscheidung (atomic layer deposition, ALD) ist vorliegend ein CVD-Verfahren bezeichnet, bei dem das erste gasförmige Ausgangsmaterial dem Volumen zugeführt wird, in dem die zu beschichtende Oberfläche bereitgestellt ist, so dass das erste gasförmige Ausgangsmaterial auf der Oberfläche adsorbiert. Nach einer bevorzugt vollständigen oder nahezu vollständigen Bedeckung der Oberfläche mit dem ersten Ausgangsmaterial wird der Teil des ersten Ausgangsmaterial, der noch gasförmig bzw. nicht auf der Oberfläche adsorbiert vorliegt, in der Regel wieder aus dem Volumen entfernt und das zweite Ausgangsmaterial zugeführt. Das zweite Ausgangsmaterial ist dafür vorgesehen, mit der an der Oberfläche adsorbierten, ersten Ausgangsverbindung unter Bildung einer festen ALD-Schicht chemisch zu reagieren.
  • Gemäß einer weiteren Ausführungsform des Verfahrens wird auf eine Halbleiterschichtenfolge, die auf einem Phosphid-Verbundhalbleitermaterial beruht, zum Aufbringen der Passivierungsschicht zunächst eine Aluminiumphosphidschicht (AlP-Schicht) in direktem Kontakt auf die Seitenfläche der Halbleiterschichtenfolge aufgebracht, beispielsweise epitaktisch.
  • Der Schichtverbund mit der Halbleiterschichtenfolge und den darauf aufgebrachten Schichten wird getempert. Die Temperatur zum Tempern liegt bevorzugt zwischen einschließlich 100 °C und einschließlich 800 °C.
  • Weitere vorteilhafte Ausführungsformen und Weiterbildungen der Erfindung ergeben sich aus den im Folgenden in Verbindung mit den Figuren beschriebenen Ausführungsbeispielen.
    • Anhand der schematischen Schnittdarstellungen der 1 bis 3 wird ein erstes Ausführungsbeispiel eines Verfahrens zur Herstellung eines Leuchtdiodenchips näher erläutert.
    • Anhand der schematischen Schnittdarstellungen der 4 und 5 wird ein weiteres Ausführungsbeispiel eines Verfahrens zur Herstellung eines Leuchtdiodenchips näher erläutert.
    • 6 zeigt eine schematische Schnittdarstellung eines Leuchtdiodenchips gemäß einem Beispiel.
    • 7 zeigt schematisch Leitungsband und Valenzband des Halbleitermaterials sowie der Passivierungsschicht des Leuchtdiodenchips gemäß einem Beispiel.
    • 8 zeigt eine schematische Schnittdarstellung einer Halbleiterprobe, anhand derer der positive Effekt der Passivierungsschicht experimentell bestätigt wird.
    • 9 zeigt Messungen der Photolumineszenzintensität der Probe mit dem Aufbau gemäß 8 in Abhängigkeit der Dicke x der Aluminiumphosphidschicht.
  • Gleiche, gleichartige oder gleich wirkende Elemente sind in den Figuren mit denselben Bezugszeichen versehen. Die Figuren und die Größenverhältnisse der in den Figuren dargestellten Elemente untereinander sind nicht als maßstäblich zu betrachten. Vielmehr können einzelne Elemente, insbesondere Schichtdicken, zur besseren Darstellbarkeit und/oder zum besseren Verständnis übertrieben groß dargestellt sein.
  • Bei dem Verfahren gemäß dem Ausführungsbeispiel der 1 bis 3 wird zunächst eine epitaktisch gewachsene Halbleiterschichtenfolge 1 mit einer aktiven Zone 2 bereitgestellt. Die aktive Zone 2 ist hierbei dazu geeignet, im Betrieb des Leuchtdiodenchips elektromagnetische Strahlung zu erzeugen. Die Halbleiterschichtenfolge 1 beruht besonders bevorzugt auf einem Phosphidverbundhalbleitermaterial.
  • Auf einer ersten Hauptfläche 3 der epitaktisch gewachsenen Halbleiterschichtenfolge 1 ist hierbei ein erster elektrischer Kontakt 4 aufgebracht, während auf der zweiten Hauptfläche 5 der Halbleiterschichtenfolge 1, die der ersten Hauptfläche 3 gegenüberliegt, ein zweiter elektrischer Kontakt 6 aufgebracht ist. Beispielsweise handelt es sich bei dem ersten elektrischen Kontakt 4 um einen p-Kontakt und bei dem zweiten elektrischen Kontakt 6 um einen n-Kontakt.
  • In einem nächsten Schritt, der schematisch in 2 dargestellt ist, wird eine nicht-stöchiometrische Siliziumoxidschicht 7 (SiOx-Schicht) in direktem Kontakt auf die Seitenfläche 8 der Halbleiterschichtenfolge 1 mittels thermischen Verdampfens abgeschieden. Die nicht-stöchiometrische Siliziumdioxidschicht 7 überdeckt hierbei insbesondere die aktive Zone 2. Weiterhin ist die zweite Hauptfläche 5 der Halbleiterschichtenfolge 1 sowie der erste elektrische Kontakt 4 zumindest teilweise mit der nicht-stöchiometrische Siliziumoxidschicht 7 bedeckt.
  • Wie schematisch in 3 dargestellt ist, wird dann in direktem Kontakt auf die nicht-stöchiometrische Siliziumoxidschicht 7 eine Aluminiumoxidschicht 9 (Al2O3-Schicht) aufgebracht, bevorzugt mit einem ALD-Verfahren.
  • Schließlich wird der Schichtverbund mit der epitaktischen Halbleiterschichtenfolge 1 und der darauf aufgebrachten nicht-stöchiometrischen Siliziumoxidschicht 7 und der Aluminiumoxidschicht 9 getempert, sodass eine aluminiumoxidhaltige Schicht an der Grenzfläche zur Halbleiterschichtenfolge 1 entsteht. Diese aluminiumoxidhaltige Schicht innerhalb der Passivierungsschicht 10 weist statisch fixierte Ladungsträger, bevorzugt Elektronen auf.
  • Die nicht-stöchiometrische Siliziumoxidschicht 7, die Aluminiumoxidschicht 9 und die grenznahe aluminiumoxidhaltige Schicht bilden bei dem vorliegenden Ausführungsbeispiel die Passivierungsschicht 10 aus.
  • Bei dem Verfahren gemäß dem Beispiel der 4 und 5 wird in einem ersten Schritt wiederum eine epitaktische Halbleiterschichtenfolge 1 mit elektrischen Kontakten 4, 6 bereitgestellt, wie sie bereits anhand von 1 beschrieben wurde.
  • In einem nächsten Schritt wird eine Aluminiumphosphidschicht 11 (AlP-Schicht) in direktem Kontakt auf die Seitenfläche 8 der Halbleiterschichtenfolge 1 aufgebracht, beispielsweise epitaktisch (5). Die Aluminiumphosphidschicht 11 bedeckt hierbei insbesondere die aktive Zone 2 und erstreckt sich bis auf die erste Hauptfläche 3 der Halbleiterschichtenfolge und den ersten Kontakt 4.
  • Auch der Schichtverbund aus der 5 wird besonders bevorzugt in einem nächsten Schritt getempert (nicht dargestellt). Hierbei bildet sich das Aluminiumphosphid zumindest teilweise in Aluminiumoxid (AlxOy) um.
  • Die Aluminiumphosphid/oxidschicht 11 bildet bei dem vorliegenden Beispiel die Passivierungsschicht 10 aus. Diese weist fixierte elektrische Ladungsträger, bevorzugt Elektronen, angrenzend an das Halbleitermaterial der Halbleiterschichtenfolge 1 auf.
  • Bei dem Verfahren gemäß dem Ausführungsbeispiel der 1 bis 3 sowie dem Beispiel der 4 bis 5 entsteht ein Leuchtdiodenchip, wie er beispielsweise in 6 schematisch dargestellt ist.
  • Der Leuchtdiodenchip gemäß dem Beispiel der 6 weist eine epitaktisch gewachsene Halbleiterschichtenfolge 1 basierend auf einem Phosphidverbundhalbleitermaterial auf. Die Halbleiterschichtenfolge 1 umfasst eine aktive Zone 2, die dazu geeignet ist, elektromagnetische Strahlung zu erzeugen, die im Betrieb des Leuchtdiodenchips von einer Lichtaustrittsfläche 12 ausgesandt wird.
  • Auf einer ersten Hauptfläche 3 der epitaktisch gewachsenen Halbleiterschichtenfolge 1 ist ein erster elektrischer Kontakt 4 aufgebracht, während auf der zweiten Hauptfläche 5 der Halbleiterschichtenfolge 1 ein zweiter elektrischer Kontakt 6 aufgebracht ist.
  • Auf der Seitenfläche 8 der epitaktischen Halbleiterschichtenfolge 1 sowie auf Teilen der Lichtaustrittsfläche 12 des Leuchtdiodenchips ist eine Passivierungsschicht 10 aufgebracht. Insbesondere erstreckt sich die Passivierungsschicht 10 über die aktiven Zone 2. In der Passivierungsschicht 10 befinden sich elektrische Ladungsträger, die statisch fixiert sind. Vorliegend handelt es sich bei den elektrischen Ladungsträgern um Elektronen. Weiterhin ist es auch möglich, dass die Passivierungsschicht 10 Oberflächenzustände des angrenzenden Halbleitermaterials absättigt.
  • Teile der Seitenfläche 8 der Halbleiterschichtenfolge 1 gemäß dem Beispiel der 6 sind durch Trockenätzen erzielt worden. Diese Teile der Seitenfläche 8 zeichnen sich vorliegend dadurch aus, dass sie schräg zu einer Mittelachse des Leuchtdiodenchips ausgebildet sind. Ein weiterer Teil der Seitenfläche 8 der Halbleiterschichtenfolge 1 ist vorliegend parallel zu einer Mittelachse des Leuchtdiodenchips angeordnet. Dieser Teil des Leuchtdiodenchips wurde durch einen anderen Trennprozess, beispielsweise mittels Sägen oder Lasertrennen, erzielt.
  • 7 zeigt schematisch den Verlauf der Leitungsbandkante CB und der Valenzbandkante VB im Bereich der Passivierungsschicht 10 sowie der Halbleiterschichtenfolge 1. Die Passivierungsschicht 10 umfasst vorliegend eine Aluminiumoxidschicht 9 sowie eine nicht-stöchiometrische Siliziumoxidschicht 7. Im Bereich der Grenzfläche der Passivierungsschicht 10 angrenzend an das Halbleitermaterial weist die Valenzbandkante VB sowie die Leitungsbandkante CB eine Absenkung hin zu niedrigeren Energien auf, in denen Elektronen statisch fixiert sind. Im Gegenzug bildet sich auf der Seite des angrenzenden Halbleitermaterials eine Erhöhung der Valenzbandkante VB, in der Löcher statisch fixiert sind. Auf diese Art und Weise entsteht an der Grenzfläche Halbleiterschichtenfolge 1 - Passivierungsschicht 10 eine Abschirmung für positive Ladungen, die eine nichtstrahlende Rekombination zumindest verringert.
  • Die Probe gemäß der schematischen Darstellung der 8 weist ein Galliumarsenidsubstrat 13 auf, auf dem eine zirka 1 Mikrometer dicke InAlP-Schicht epitaktisch gewachsen ist. Auf der InAlP-Schicht ist wiederum eine zirka 300 Nanometer dicke InGaAlP-Halbleiterschichtenfolge 1 mit einer aktiven Zone 2 epitaktisch gewachsen, die Strahlung mit einer Wellenlänge von zirka 620 Nanometer emittiert.
  • Auf die epitaktisch gewachsene Halbleiterschichtenfolge 1 ist wiederum eine Aluminiumphosphidschicht 11 mit einer sehr geringen Dicke x aufgebracht. Experimentell wurde gezeigt, dass sich die Aluminiumphosphidschicht 11 an Luft nahezu vollständig in eine Aluminiumoxidschicht (AlxOy-Schicht) umwandelt.
  • Die Dicke der Aluminiumphosphid/oxidschicht 11 x wurde nun variiert und die Photolumineszenz der Probe gemessen. Die an der Probe gemäß 8 gemessenen Werte IPL der Photolumineszenz sind in 9 in Abhängigkeit der Dicke x aufgetragen. Die Messung gemäß 9 zeigt, dass bei einer Dicke x von zirka 2 Nanometer die Photolumineszenz um einen Faktor 10 gegenüber einer Probe ohne Aluminiumphosphid/oxidschicht 11 erhöht ist.
  • Bezugszeichenliste
  • 1
    epitaktische Halbleiterschichtenfolge
    2
    aktive Zone
    3
    erste Hauptfläche
    4
    erster Kontakt
    5
    zweite Hauptfläche
    6
    zweiter elektrischer Kontakt
    7
    Siliziumoxidschicht
    8
    Seitenfläche
    9
    Aluminiumoxidschicht
    10
    Passivierungsschicht
    11
    Aluminiumphosphid-Schicht
    12
    Lichtaustrittsfläche
    13
    GaAs-Substrat
    CB
    Leitungsbandkante
    VB
    Valenzbandkante

Claims (7)

  1. Verfahren zur Herstellung eines Leuchtdiodenchips mit den folgenden Schritten: - Bereitstellen einer epitaktisch gewachsenen Halbleiterschichtenfolge (1) mit einer aktiven Zone (2), die dazu geeignet ist, elektromagnetische Strahlung zu erzeugen, - Aufbringen einer Passivierungsschicht (10) auf eine Seitenfläche (8) der Halbleiterschichtenfolge (1), so dass in der Passivierungsschicht (10) elektrische Ladungsträger statisch fixiert werden, wobei - die Halbleiterschichtenfolge (1) auf einem Phosphidverbundhalbleitermaterial beruht und zum Aufbringen der Passivierungsschicht (10) die folgenden Schritte durchgeführt werden: - Aufbringen einer nicht-stöchiometrischen Siliziumoxidschicht (7) in direktem Kontakt auf die Seitenfläche (8) der Halbleiterschichtenfolge (1), - Aufbringen einer Aluminumoxidschicht (9) in direktem Kontakt auf die Siliziumoxidschicht (7), - Tempern des Schichtverbundes, so dass eine aluminiumoxidhaltige Schicht an der Grenzfläche zwischen Passivierungsschicht (10) und Halbleiterschichtenfolge (1) entsteht.
  2. Verfahren nach dem vorherigen Anspruch, bei dem die Seitenfläche (8) der Halbleiterschichtenfolge (1) durch Ätzen erzeugt wird.
  3. Verfahren nach einem der Ansprüche 1 oder 2, bei dem die Siliziumdioxidschicht durch thermisches Verdampfen und die Aluminiumoxidschicht durch ein ALD-Verfahren abgeschieden werden.
  4. Verfahren nach einem der vorherigen Ansprüche, bei dem die statisch fixierten Ladungsträger Elektronen sind.
  5. Verfahren nach einem der vorherigen Ansprüche, bei dem die statisch fixierten Ladungsträger der Passivierungsschicht (10) zu einer Verbiegung der Leitungsbandkante (CB) und der Valenzbandkante (VB) in dem an die Passivierungsschicht (10) angrenzenden Halbleitermaterial der epitaktischen Halbleiterschichtenfolge (1) führt, so dass sich Ladungsträger, deren Ladung entgegengesetzt zu der Ladung der statisch fixierten Ladungsträgern ist, in dem Halbleitermaterial anreichern.
  6. Verfahren nach einem der vorherigen Ansprüche, bei dem die Passivierungsschicht (10) eine Dicke zwischen einschließlich 1 Nanometer und einschließlich 100 Nanometer aufweist.
  7. Verfahren nach einem der vorherigen Ansprüche, wobei eine Kantenlänge des Leuchtdiodenchips 1 Millimeter nicht überschreitet.
DE112016005319.3T 2015-11-19 2016-11-17 Verfahren zur Herstellung eines Leuchtdiodenchips Active DE112016005319B4 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102015120089.9A DE102015120089A1 (de) 2015-11-19 2015-11-19 Leuchtdiodenchip und Verfahren zur Herstellung eines Leuchtdiodenchips
DE102015120089.9 2015-11-19
PCT/EP2016/078032 WO2017085200A1 (de) 2015-11-19 2016-11-17 Leuchtdiodenchip und verfahren zur herstellung eines leuchtdiodenchips

Publications (2)

Publication Number Publication Date
DE112016005319A5 DE112016005319A5 (de) 2018-08-09
DE112016005319B4 true DE112016005319B4 (de) 2024-02-15

Family

ID=57326429

Family Applications (2)

Application Number Title Priority Date Filing Date
DE102015120089.9A Withdrawn DE102015120089A1 (de) 2015-11-19 2015-11-19 Leuchtdiodenchip und Verfahren zur Herstellung eines Leuchtdiodenchips
DE112016005319.3T Active DE112016005319B4 (de) 2015-11-19 2016-11-17 Verfahren zur Herstellung eines Leuchtdiodenchips

Family Applications Before (1)

Application Number Title Priority Date Filing Date
DE102015120089.9A Withdrawn DE102015120089A1 (de) 2015-11-19 2015-11-19 Leuchtdiodenchip und Verfahren zur Herstellung eines Leuchtdiodenchips

Country Status (6)

Country Link
US (1) US10580938B2 (de)
JP (1) JP2018536282A (de)
CN (1) CN108292697B (de)
DE (2) DE102015120089A1 (de)
TW (1) TWI620341B (de)
WO (1) WO2017085200A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017108199A1 (de) 2017-04-18 2018-10-18 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil und Betriebsverfahren für ein optoelektronisches Halbleiterbauteil
DE102017112875A1 (de) * 2017-06-12 2018-12-13 Osram Opto Semiconductors Gmbh Leuchtdiodenchip und Verfahren zur Herstellung eines Leuchtdiodenchips
FR3077931A1 (fr) * 2018-02-14 2019-08-16 Centre National De La Recherche Scientifique Dispositif a semi-conducteur avec structure de passivation des surfaces recombinantes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130105836A1 (en) 2011-10-26 2013-05-02 Sony Corporation Light emitting element, method of manufacturing the same, and light emitting device

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2133928B (en) * 1982-12-04 1986-07-30 Plessey Co Plc Coatings for semiconductor devices
DE102004029412A1 (de) * 2004-02-27 2005-10-13 Osram Opto Semiconductors Gmbh Strahlungsemittierender Halbleiterchip und Verfahren zur Herstellung eines solchen Halbleiterchips
US7791061B2 (en) 2004-05-18 2010-09-07 Cree, Inc. External extraction light emitting diode based upon crystallographic faceted surfaces
KR101232507B1 (ko) * 2006-04-10 2013-02-12 삼성전자주식회사 표면발광소자 및 그의 제조방법
KR100867541B1 (ko) * 2006-11-14 2008-11-06 삼성전기주식회사 수직형 발광 소자의 제조 방법
TW200841393A (en) 2007-04-02 2008-10-16 Miin-Jang Chen Optoelectronic device and method of fabricating the same
KR20110006652A (ko) * 2008-03-25 2011-01-20 라티스 파워(지앙시) 코포레이션 양면 패시베이션을 갖는 반도체 발광 소자
JP2012500479A (ja) * 2008-08-19 2012-01-05 ラティス パワー (チアンシ) コーポレイション 両面不動態化を伴う半導体発光デバイスを製造するための方法
DE102009035429A1 (de) 2009-07-31 2011-02-03 Osram Opto Semiconductors Gmbh Leuchtdiodenchip
TWI408834B (zh) * 2010-04-02 2013-09-11 Miin Jang Chen 基於奈米晶粒之光電元件及其製造方法
KR101782081B1 (ko) * 2010-08-30 2017-09-26 엘지이노텍 주식회사 발광 소자
CN102544009B (zh) * 2010-12-08 2014-03-26 中国科学院微电子研究所 一种高迁移率cmos集成单元
TW201310667A (zh) * 2011-08-17 2013-03-01 Epistar Corp 太陽能電池
KR101867999B1 (ko) * 2011-10-31 2018-06-18 삼성전자주식회사 Iii-v족 물질층을 형성하는 방법, iii-v족 물질층을 포함하는 반도체 소자 및 그 제조방법
TWI452714B (zh) * 2012-01-20 2014-09-11 Univ Nat Taiwan 太陽能電池及其製造方法
TWI455333B (zh) * 2012-04-09 2014-10-01 Sino American Silicon Prod Inc 太陽能電池
US9570662B2 (en) * 2012-07-10 2017-02-14 Osram Opto Semiconductors Gmbh Method of encapsulating an optoelectronic device and light-emitting diode chip
FI20135967L (fi) * 2013-09-27 2015-03-28 Lumichip Oy Asennustason monitoiminen kapselointikerros ja menetelmä sen valmistamiseksi
US9768345B2 (en) * 2013-12-20 2017-09-19 Apple Inc. LED with current injection confinement trench
US9865772B2 (en) * 2015-01-06 2018-01-09 Apple Inc. LED structures for reduced non-radiative sidewall recombination
US9484492B2 (en) * 2015-01-06 2016-11-01 Apple Inc. LED structures for reduced non-radiative sidewall recombination
US9601659B2 (en) * 2015-01-06 2017-03-21 Apple Inc. LED structures for reduced non-radiative sidewall recombination
IL238368B (en) * 2015-04-19 2019-08-29 Semi Conductor Devices An Elbit Systems Rafael Partnership light sensor
DE102015108529A1 (de) * 2015-05-29 2016-12-01 Osram Opto Semiconductors Gmbh Halbleiterlaserdiode und Verfahren zur Herstellung einer Halbleiterlaserdiode
DE102015212477A1 (de) * 2015-07-03 2017-01-05 Osram Oled Gmbh Organisches lichtemittierendes Bauelement und Verfahren zur Herstellung eines organischen lichtemittierenden Bauelements
DE102015120323A1 (de) 2015-11-24 2017-05-24 Osram Opto Semiconductors Gmbh Leuchtdiodenchip mit einer reflektierenden Schichtenfolge

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130105836A1 (en) 2011-10-26 2013-05-02 Sony Corporation Light emitting element, method of manufacturing the same, and light emitting device

Also Published As

Publication number Publication date
CN108292697B (zh) 2020-03-06
US10580938B2 (en) 2020-03-03
WO2017085200A1 (de) 2017-05-26
DE102015120089A1 (de) 2017-05-24
TW201727935A (zh) 2017-08-01
US20180374994A1 (en) 2018-12-27
TWI620341B (zh) 2018-04-01
DE112016005319A5 (de) 2018-08-09
CN108292697A (zh) 2018-07-17
JP2018536282A (ja) 2018-12-06

Similar Documents

Publication Publication Date Title
EP3365923B1 (de) Leuchtdiodenchip und dessen herstellungsverfahren
DE102012106364B4 (de) Optoelektronischer Halbleiterchip und Verfahren zur Herstellung eines optoelektronischen Halbleiterchips
DE112015000703B4 (de) Optoelektronisches Halbleiterbauelement
DE102010034665A1 (de) Optoelektronischer Halbleiterchip und Verfahren zur Herstellung von optoelektronischen Halbleiterchips
DE102012108879B4 (de) Optoelektronischer Halbleiterchip mit mehreren nebeneinander angeordneten aktiven Bereichen
WO1998007187A1 (de) Verfahren zum herstellen von halbleiterkörpern mit movpe-schichtenfolge
WO2015091754A1 (de) Optoelektronisches halbleiterbauteil und verfahren zur herstellung eines optoelektronischen halbleiterbauteils
WO2012110364A1 (de) Optoelektronischer halbleiterchip und verfahren zur herstellung von optoelektronischen halbleiterchips
DE112016005319B4 (de) Verfahren zur Herstellung eines Leuchtdiodenchips
WO2018228993A1 (de) Leuchtdiodenchip und verfahren zur herstellung eines leuchtdiodenchips
EP3327796A1 (de) Optoelektronisches bauelement und verfahren zur herstellung eines optoelektronischen bauelements
EP2304816B1 (de) Elektrolumineszierende vorrichtung und verfahren zur herstellung einer elektrolumineszierenden vorrichtung
DE102018119688A1 (de) Optoelektronisches Halbleiterbauelement mit einem ersten Kontaktelement, welches einen ersten und einen zweiten Abschnitt aufweist sowie Verfahren zur Herstellung des optoelektronischen Halbleiterbauelements
DE102018118824A1 (de) Halbleiterbauelement mit einer stresskompensationsschicht und verfahren zur herstellung eines halbleiterbauelements
DE112015002477B4 (de) Elektrische Kontaktstruktur für ein Halbleiterbauelement und Halbleiterbauelement
WO2014095353A1 (de) Verfahren zur herstellung eines optoelektronischen halbleiterchips und optoelektronischer halbleiterchip
DE102013107971A1 (de) Optoelektronischer Halbleiterchip, Halbleiterbauelement und Verfahren zur Herstellung von optoelektronischen Halbleiterchips
WO2016198620A1 (de) Verfahren zur herstellung von optoelektronischen konversions-halbleiterchips und verbund von konversions-halbleiterchips
WO2021099100A2 (de) Optoelektronisches bauelement und verfahren zu dessen herstellung
DE102019100799A1 (de) Optoelektronisches halbleiterbauelement mit einem schichtstapel mit anisotroper leitfähigkeit und verfahren zur herstellung des optoelektronischen halbleiterbauelements
WO2017140615A1 (de) Optoelektronisches halbleiterbauelement und verfahren zur herstellung eines optoelektronischen halbleiterbauelements
DE10245632B4 (de) Elektromagnetische Strahlung emittierendes Bauelement und Verfahren zu dessen Herstellung
WO2020234163A1 (de) Optoelektronischer halbleiterchip und verfahren zur herstellung eines optoelektronischen halbleiterchips
DE102013112490A1 (de) Halbleiterschichtenfolge und Verfahren zu deren Herstellung
WO2021110585A1 (de) Strahlungsemittierender halbleiterchip

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division