DE112008001335B4 - System und Verfahren zur Erzeugung von Dieselabgasen zum testen von Nachbehandlungsvorrichtungen für Dieselmotoren - Google Patents
System und Verfahren zur Erzeugung von Dieselabgasen zum testen von Nachbehandlungsvorrichtungen für Dieselmotoren Download PDFInfo
- Publication number
- DE112008001335B4 DE112008001335B4 DE112008001335.7T DE112008001335T DE112008001335B4 DE 112008001335 B4 DE112008001335 B4 DE 112008001335B4 DE 112008001335 T DE112008001335 T DE 112008001335T DE 112008001335 B4 DE112008001335 B4 DE 112008001335B4
- Authority
- DE
- Germany
- Prior art keywords
- exhaust gas
- fuel
- burner
- oxygen
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000012360 testing method Methods 0.000 title claims description 17
- 239000007789 gas Substances 0.000 claims abstract description 85
- 239000000446 fuel Substances 0.000 claims abstract description 74
- 239000013618 particulate matter Substances 0.000 claims abstract description 52
- 238000002485 combustion reaction Methods 0.000 claims abstract description 34
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 33
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 33
- 239000001301 oxygen Substances 0.000 claims abstract description 33
- 239000000203 mixture Substances 0.000 claims abstract description 23
- 239000003921 oil Substances 0.000 claims description 36
- 239000000654 additive Substances 0.000 claims description 12
- 239000010687 lubricating oil Substances 0.000 claims description 12
- 230000008929 regeneration Effects 0.000 claims description 10
- 238000011069 regeneration method Methods 0.000 claims description 10
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 8
- 229910052717 sulfur Inorganic materials 0.000 claims description 8
- 239000011593 sulfur Substances 0.000 claims description 8
- 230000001276 controlling effect Effects 0.000 claims description 7
- 230000000996 additive effect Effects 0.000 claims description 6
- 239000010705 motor oil Substances 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 230000001105 regulatory effect Effects 0.000 claims description 2
- 150000003464 sulfur compounds Chemical class 0.000 claims 1
- 239000003570 air Substances 0.000 description 62
- 238000002347 injection Methods 0.000 description 17
- 239000007924 injection Substances 0.000 description 17
- 230000032683 aging Effects 0.000 description 13
- 239000003054 catalyst Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 9
- 238000001816 cooling Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000002283 diesel fuel Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 238000005054 agglomeration Methods 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/30—Arrangements for supply of additional air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2260/00—Exhaust treating devices having provisions not otherwise provided for
- F01N2260/20—Exhaust treating devices having provisions not otherwise provided for for heat or sound protection, e.g. using a shield or specially shaped outer surface of exhaust device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2550/00—Monitoring or diagnosing the deterioration of exhaust systems
- F01N2550/20—Monitoring artificially aged exhaust systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/04—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using liquids
- F01N3/043—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using liquids without contact between liquid and exhaust gases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/25—Chemistry: analytical and immunological testing including sample preparation
- Y10T436/25875—Gaseous sample or with change of physical state
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Exhaust Gas After Treatment (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Ein Verfahren zur Erzeugung von Abgas, das, unter Verwendung eines Brenner-gestützten Systems (100), partikelförmiges Material (PM) enthält, welches das PM simuliert, welches von einem dieselgetriebenen Verbrennungsmotor erzeugt wird, aufweisend: Verwenden eines Brenners (60) zur Aufnahme von Luft und Kraftstoff und zur Verbrennung der Luft und des Kraftstoffes, um Abgas und frei werdendes PM im Abgas zu erzeugen; Verwenden eines Wärmetauschers (70), um das Abgas stromabwärts des Brenners (60) auf eine Temperatur von nicht mehr als 650°C abzukühlen; Verwenden einer Sauerstoffdüse (195), um eine vorbestimmte Menge Sauerstoff in das Abgas einzublasen, um damit das Abgas mit einem Sauerstoffgehalt von 2–10 Vol.% bereitzustellen; Verwenden eines Quenchers (170) stromabwärts der Sauerstoffdüse (195), um das Abgas auf eine Temperatur abzukühlen, die ausreichend niedrig ist, um die Zusammensetzung des PM zu fixieren; und Verwenden eines computergesteuerten Regelsystems (190) zur Regelung der Menge und der Terminierung der Zufuhr von Kraftstoff und Sauerstoff, zum Brenner (60) und zur Sauerstoffdüse (195).
Description
- Technisches Gebiet der Erfindung
- Die vorliegende Anmeldung bezieht sich auf die Verwendung von Brennergestützten Testsystemen zur Erzeugung von Dieselabgas für die Prüfung von Dieselabgas-Nachbehandlungsvorrichtungen.
- Die Druckschrift
US 2003/0079520 A1 - In den Druckschriften
US 2005/0042763 A1 US 7,140,874 B2 wird eine entsprechende Vorrichtung verwendet, um das Altern und Regenerieren von Diesel-Nachbehandlungskomponenten zu simulieren. - In der Druckschrift
WO 2007/019329 A2 US 2003/0079520 A1 - Ein weiteres Verfahren, um das Altern und Regenerieren von Dieselabgas-Katalysatoren zu testen, ist in der
KR 100680363 B1 - Die
JP 2002365203 A - Ein weiteres Verfahren zur Alterung von Katalysatoren ist in der
DE 10 2004 061 400 A1 beschrieben. Die dafür verwendete Vorrichtung erzeugt einen Abgasstrom mit variabler Temperatur, indem der Abgasstrom in zwei Teilströme aufgetrennt wird, einer der Ströme gekühlt wird und anschließend beide Teilströme wieder zusammengeführt werden. - Weiterhin offenbart die
EP 1785715 A2 eine Vorrichtung zum Testen von Katalysatoren. Die beschriebene Vorrichtung dient ebenfalls zur Brenner-basierten Erzeugung von Abgasen, vorzugsweise mithilfe mehrerer Verbrennungskammern. Die Abgase können zum Testen beispielsweise an einen Katalysator weitergeleitet werden. - Hintergrund der Erfindung
- In der Vergangenheit sind zahlreiche Prüfverfahren verwendet worden, um das Altern und Regenerieren von Diesel-Nachbehandlungskomponenten zu simulieren. Die Verwendung von Serien-Dieselmotoren für derartige Prüfverfahren hat viele Nachteile hervorgebracht, einschließlich uneinheitlicher Funktionsfähigkeit, aufwändiger Instandhaltung und hoher Betriebskosten.
- Eine Komponente von Dieselabgas besteht aus unverbrannten Russpartikeln. Die Partikel werden im Allgemeinen durch die Verwendung eines Dieselpartikelfilters aus dem Abgas entfernt. In der Vergangenheit wurde ein Dieselpartikelfilter gealtert, in dem man ihn von einem Dieselmotor erzeugtem Dieselabgas aussetzte und dabei den Filter mit Partikeln aufgeladen hat. Der Dieselmotor konnte auf einem Prüfstand in einem Labor oder in einem Kraftfahrzeug installiert sein. Der Motor musste zyklisch mit unterschiedlichen Geschwindigkeiten und Belastungsbedingungen laufen, um das Altern des Dieselpartikelfilters zu simulieren.
- Aufgrund der Schwierigkeiten, die mit der Verwendung von Motoren einhergingen, sind Brenner-gestützte Systeme entwickelt worden, um Abgase zu erzeugen und auf andere Weise die Betriebsbedingungen für verschiedenartige Nachbehandlungsvorrichtungen zu simulieren.
- Kurze Beschreibung der Zeichnungen
- Ein vollständigeres Verständnis der vorliegenden Ausführungsformen und deren Vorteile erhält man durch Bezugnahme auf die folgende Beschreibung in Verbindung mit den beigefügten Zeichnungen, in denen gleiche Bezugszeichen gleiche Merkmale bezeichnen und wobei:
-
1 ein Brenner-gestütztes System zur Erzeugung von Dieselabgas darstellt; -
2 den Brenner der1 im Detail darstellt. - Detaillierte Beschreibung der Erfindung
- Die folgende Beschreibung ist auf die Verwendung eines Brenner-gestützten Systems zur Erzeugung von Dieselabgas gerichtet, typischer Weise zum Zwecke der Prüfung von Dieselabgas-Nachbehandlungsvorrichtungen. Die Verwendung dieses Systems anstelle eines Dieselmotors senkt die Betriebskosten, reduziert die Testschwankungen und verbessert die Steuerung der Abgaszusammensetzung, des Drucks, der Durchflussrate und der Temperatur.
- Die oben genannte
US 2003/0079520 A1 -
1 stellt ein Brenner-gestütztes Abgaserzeugungssystem100 dar, das insbesondere zur Erzeugung von Dieselabgas mit einer Zusammensetzung geeignet ist, die mit der durch serienmäßig hergestellte, dieselbetriebene Motoren erzeugten übereinstimmt. Es hat viele der gleichen Elemente, wie sie in derUS 2003/0079520 A1 - Insbesondere erzeugt das System
100 einen Abgasstrom mit einer Zusammensetzung und Temperatur, die dem Abgasstrom entspricht, der von einem Dieselmotor erzeugt wird. Das Abgas wird durch Verbrennung von Dieselkraftstoff erzeugt und enthält partikelförmiges Material (PM) einer gewünschten Zusammensetzung. Die Wirkung erweiterter Fahrbedingungen und erhöhter Temperaturen auf die Zusammensetzung des Abgases und seines PM kann simuliert werden. Das System kann auch die Effekte verschiedener Additive und Verunreinigungen des Motors simulieren. Bei dem Ausführungsbeispiel der1 wird das PM in einem Kollektor180 aufgefangen. Bei anderen Anwendungen kann ein Emmissionsteuergerät stromaufwärts, stromabwärts, oder anstelle des Kollektors in der Abgasleitung installiert werden. Beispiele von Emmissionssteuergeräten, die bei der Verwendung des Systems100 getestet werden können, schließen katalysierende und nicht-katalysierende Dieselpartikelfilter (DPFs), gasarme NOx-Abscheider (LNTs), selektive Reduktionskatalysatoren (SRCs) und Dieseloxidations-Katalysatoren (DOCs) ein, sind aber nicht darauf beschränkt. Das System ist geeignet für das so genannte „aging” („Altern”) des Emmissionssteuergeräts, welches dann bewertet, und wenn gewünscht, an einem aktuellen Fahrzeug leistungsgetestet werden kann. - Das System
100 hat die folgenden Sub-Systeme: (1) ein Luftversorgungssystem zur Bereitstellung von Luft für die Verbrennung im Brenner, (2) ein Kraftstoffsystem zur Bereitstellung von Kraftstoff für den Brenner, (3) ein Brennersystem zur Verbrennung des Luft-Kraftstoff-Gemisches und zur Bereitstellung der geeigneten Abgasbestandteile, (4) einen Wärmetauscher zur Regelung der Abgastemperatur, (5) ein Öleinspritzsystem, (6) ein sekundäres Luftinjektionssystem, (7) eine Quenchzone, (8) einen Kollektor, und (9) ein computergesteuertes Regelsystem. - Verbrennungslufteinspeisungssystem
- Ein Luftgebläse
30 zieht Umgebungsluft durch einen Einlassluftfilter20 ein und gibt einen unter Druck stehenden Luftstrom ab. Ein Masseluftstromsensor50 überwacht den Luftstrom. Das zugeführte Luftvolumen wird durch Justierung des Bypass-Ventils40 bestimmt, um einen gewünschten Luftdurchsatz zu erzeugen. - Das Luftgebläse
30 , der Filter20 und der Masseluftstromsensor50 können von jeder konventionellen Bauart sein. Ein Beispiel eines geeigneten Luftgebläses30 ist ein elektrisches Zentrifugalgebläse. Die Regeleinheit190 kann verwendet werden, um Daten von den verschiedenen Elementen des Luftversorgungssystems zu erhalten und/oder diese Elemente anzusteuern. - Ein Merkmal des Systems
100 ist, dass in wenigen Minuten sein Brenner60 deaktiviert werden kann und das Gebläse30 zum Kühlen des Systems100 (oder irgendeines Teils des Systems100 ) verwendet wird. Unmittelbar nach dem Kühlen kann das System100 dann für zusätzliche Tests reaktiviert werden. Damit bietet das System100 verbesserte Wiederholbarkeit und reduzierte Abkühlzeiten. - Kraftstoffzuführungssystem
- Eine Kraftstoffpumpe
10 pumpt Motorkraftstoff durch eine Kraftstoffleitung12 zu einem Kraftstoffregelventil14 . Ein Beispiel eines geeigneten Kraftstoffregelventils14 ist ein Elektromagnetventil, das ein Impulsbreite-moduliertes Signal von der Regeleinheit190 erhält und den Kraftstoffstrom zum Brenner60 im Verhältnis zu der Impulsbreite reguliert. Über die Kraftstoffleitung12 wird Kraftstoff zu einer Kraftstoffeinspritzdüse16 im Brenner60 abgegeben. - Brenner
- Der Brenner
60 ist konstruiert, um eine gewünschte Verbrennung des Kraftstoffs und der Luft zu erzeugen. In dem Beispiel dieser Beschreibung ist der Brenner ein wirbelstabilisierter Brenner, der zur Erzeugung kontinuierlicher Verbrennung bei reichen, mageren, oder stöchiometrischen Luft-Kraftstoff-Verhältnissen geeignet ist. -
2 stellt den Brenner60 im Detail dar. Der Brenner60 hat, getrennt durch eine Wirbelplatte18 , sowohl eine Ansaugluftkammer200 als auch ein Verbrennungsrohr210 . Die Verbrennungsrohr210 ist aus einem Material konstruiert, das geeignet ist, extrem hohen Temperaturen zu widerstehen. Bevorzugte Materialien sind INCONEL oder Edelstahl, sind aber nicht notwendiger Weise darauf beschränkt, optional kann ein Quarzfenster zur visuellen Beobachtung des resultierenden Flammenmusters vorgesehen sein. - Luft und Kraftstoff werden getrennt in den Brenner
60 eingebracht. Die Luft vom Massestromsensor50 wird zur Ansaugluftkammer200 geleitet und dann durch die Wirbelplatte18 in das Verbrennungsrohr210 geführt. - Die Wirbelplatte
18 ist mit einer Kraftstoffdüse16 ausgestattet, die als eine Luftunterstützte Kraftstoffeinspritzdüse16 im Zentrum der Wirbelplatte18 eingebaut ist. Die Wirbelplatte18 hat eine zentrale Bohrung und die Einspritzdüse16 ist an der Wirbelplatte18 an dieser zentralen Bohrung unter Verwendung geeigneter Befestigungsmittel befestigt. - Kraftstoff von der Kraftstoffversorgungsleitung
12 wird zu der Einspritzdüse16 geleitet, wo der Kraftstoff mit Druckluft aus einer Luftunterstützungsleitung15 gemischt wird. Das Gemisch wird in das Verbrennungsrohr210 gesprüht. Die Druckluftleitung15 stellt Hochdruck-Luft bereit, um die Atomisierung des Kraftstoffs zu unterstützen. - Die Wirbelplatte
18 ist in der Lage, eine hochturbulente Wirbelverbrennung zu erzeugen, um so ein komplexes Muster von kollabierter, konischer und verwirbelter Durchströmung im Verbrennungsbereich bereitzustellen. Das von der Wirbelplatte18 erzeugte Durchströmungs-Muster beeinflusst die Interaktion einer Anzahl von Düsen, die durch die Wirbelplatte18 gebohrt sind. Die Anordnung und Neigung dieser Düsen bestimmt, wie sie die Luft leiten. Es können zum Beispiel „Turbolenzdüsen” verwendet werden, um die Luft gegen die zentrale Bohrung zu richten. Es können andere Düsen verwendet werden, um die Luft vom äußeren Umfang der Wirbelplatte18 herzuleiten. Die genauen Dimensionen und die Winkelorientierung der Düsen können variieren. Die Düsen können ferner verwendet werden, um zu verhindern, dass die Flamme die Kraftstoffeinspritzdüse16 kontaktiert. Das Verbrennungsrohr210 ist mit einer oder mehreren Zündkerzen220 ausgestattet. In einer bevorzugten Ausführung sind drei im Wesentlichen im gleichen Abstand zueinander angeordnete Zündkerzen220 um den Umfang des Verbrennungsrohres im Gas-„Wirbelpfad” angeordnet, welcher durch die Wirbelplatte18 erzeugt wird. Ein Beispiel eines geeigneten Zünders ist eine Schiffszündkerze. - Die Wirbelplatte
18 kann als eine im Wesentlichen kreisförmige Scheibe verwendet werden, welche ein Dicke hat, die ausreicht, um das Luftstrommuster festzulegen und eine „Luftwirbelwand” zu erzeugen, die wirksam ist, um die Kraftstoffeinspritzdüse16 zu schützen. Die Wirbelplatte18 kann aus im Wesentlichen jedem Material hergestellt sein, das in der Lage ist, hohen Temperaturen zu widerstehen. Ein bevorzugtes Material ist Edelstahl. - In einigen Ausführungsbeispielen, die für die Verbrennung von schwer flüchtigen Kraftstoffen geeignet sind, ist das Verbrennungsrohr
210 weiterhin mit Keramikschaum ausgestattet, welcher stromabwärts von der Einspritzdüse16 angeordnet ist. Im Wesentlichen kann jeder geeignete Schaum verwendet werden, wie z. B. SiC-Keramikschaum. - Wärmetauscher
- Nochmals Bezug nehmend auf
1 , wird das Abgas vom Brenner60 zu einem Wärmetauscher70 geleitet. Der Wärmetauscher70 kann von jeder konventionellen Bauart sein, die dem Fachmann bekannt ist. Im Beispiel dieser Beschreibung besteht der Wärmetauscher70 aus zwei Bereichen. Ein Stromaufwärts-Bereich besteht aus einem wasserummantelten Rohr. Ein Stromabwärts-Bereich ist eine vertikale Querstromschale und ein Röhrenwärmetauscher. Die vertikale Querstrombauart minimiert die Dampfbildung und die Dampfansammlung innerhalb der Kühlrohre. - Der Wärmetauscher
70 ist mit einer Einlasswasserleitung80 und einer Auslasswasserleitung90 versehen, welche Kühlwasser zu- und abführen. Der Wärmetauscher70 kühlt das Abgas, um eine gewünschte Abgastemperatur zu erreichen (oder unterstützt dieses Ziel). - Öleinspritzsystem
- Stromabwärts des Brenners
60 wird das Abgas an einem optionalen Öleinspritzbereich110 vorbei geleitet, welcher verwendet werden kann, um eine präzise geregelte Menge von Schmieröl in den Abgasstrom einzubringen. Der Öleinspritzbereich110 erzeugt einen atomisierten Ölnebel, welcher Öltröpfchen mit einem ausreichend kleinen Durchmesser enthält, um das Öl zu verdampfen und zu oxidieren, bevor es das Emissionssteuergerät170 erreicht. Das Öleinspritzsystem110 kann Mittel zur Messung der Verbrauchsmenge und des Oxidationsstatus (unverbrannt, teilweise verbrannt, oder vollständig verbrannt) des gelieferten Öls stromabwärts der Öleinspritzung aufweisen. Im Beispiel der1 , wird Schmierstoff (oder eine andere Flüssigkeit) mittels einer Ölpumpe160 aus dem Ölreservoir150 entnommen. Es kann im Wesentlichen jede Arte von Pumpe verwendet werden, vorzugsweise eine Pumpe, welche das Schmiermittel aus dem Reservoir durch eine Öleinspritzleitung140 und in eine wassergekühlten Sonde120 befördert, von wo das Öl in das Abgas hineingespritzt wird. - Wie unten erläutert, wird die Öldüse
120 üblicherweise zum Einspritzen von Motorschmierstoff oder Additiven, die gewöhnlich in solchen Schmierstoffen gefunden werden, verwendet, um Abgase mit gewünschter PM-Zusammensetzung zu erzeugen. Ungeachtet der Tatsache, ob Öl oder Additive eingespritzt werden sollen, wird die Düse120 hier als Öldüse bezeichnet. - Sekundäres Lufteinblasen
- Die sekundäre Luftdüse
195 bläst Luft (oder jedes andere Gas) in die Abgasstromleitung193 stromabwärts des Wärmetauschers70 ein. Zur Erzeugung von Abgas mit gewünschter PM-Zusammensetzung wird üblicherweise, wie unten erläutert, die Luftdüse120 verwendet, um Sauerstoff in das Abgas zu blasen, entweder durch Einblasen von Luft oder von Sauerstoff. Unbeachtet der Tatsache, ob Luft oder Sauerstoff eingeblasen wird, wird die Düse195 hier als Sauerstoffdüse bezeichnet. - Steuereinheit
- Wieder Bezug nehmend auf
1 , empfängt die Steuereinheit190 Eingaben von verschiedenen Sensoren, die mit dem System100 verbunden sind und liefert Steuersignale zu seinen verschiedenen Aktuatoren. Die Steuereinheit190 kann mit konventionellem Computerequipment ausgerüstet sein, einschließlich Prozessoren und Speicher. Sie ist ausgerüstet mit geeigneten Eingabegeräten, einem Monitor und einer Multifunktions-Datenerfassungskarte, die mit einem digitalen Relaismodul verbunden ist, um Systeminformationen zu überwachen und zu registrieren und um die Systemelektronik zu steuern. Die Steuereinheit190 ist programmiert, um zahlreiche Simulationsprogramme ablaufen zu lassen. - Die Sensoren weisen einen Sensor
50 auf und können weitere Sensoren zur Messung zahlreicher Gasgehalte und Ströme aufweisen. Verschiedene gemessene Parameter, die von der Steuereinheit190 erfasst werden, können sein: der Luftmassenstrom im System, das Luft/Kraftstoff Verhältnis (linear und EGO), die Abgastemperatur am Auslass des Wärmetauschers, die Abgastemperatur am Eingang zum Emissionssteuergerät und die Abgastemperatur am Ausgang des Emissionssteuergerätes, und zahlreiche chemische Bestandteile des Abgases. Die von den Sensoren gemessene Information wird durch elektronische Signale zur Steuereinheit190 übertragen, welche alle gemessenen Parameter auf periodischer Basis misst und die Messdaten in einem Datenspeicher speichert. - Die von der Regeleinheit
190 gesteuerten Aktuatoren umfassen zahlreiche Düsen, Pumpen, Ventile und Gebläse (wie oben beschrieben). Insbesondere regelt die Regeleinheit190 das Luft/Kraftstoff Verhältnis durch Modulieren des zur Kraftstoffdüse16 geförderten Kraftstoffs, entweder unter einer offenen oder einer geschlossenen Schleifensteuerkonfiguration. Die Steuereinheit190 stellt weiterhin Mittel bereit zur Steuerung der Zündung, der Luftunterstützung für die Kraftstoffdüse, Sekundärluft, Kraftstoffzufuhr, Gebläseluftzufuhr und Öleinspritzung. Ein Beispiel eines geeigneten Steuersystems könnte eine proportional integrale derivative Steuerschleife (PID) sein. - Die Steuereinheit
190 überwacht das System100 aus Sicherheitsgründen. Zum Beispiel kann sie verwendet werden, um festzustellen, dass der Brenner gezündet ist und dass das Abgas zwischen spezifizierten Grenzen sowohl für die Temperatur als auch für das Luft/Kraftstoff Verhältnis liegt. Die Steuereinheit190 ist programmiert, Schadensbilder zu identifizieren und zu adressieren und das System100 zu überwachen und zu einem sicheren Abschalten zu steuern, wenn ein Fehlmodus detektiert ist. - Eine interaktive Interface-Programmierung der Steuereinheit
190 erlaubt einem Operator, zahlreiche Alterungszyklen zu entwickeln und ablaufen zu lassen. Der Operator kann die Steuereinheit190 verwenden, um die Wirkungen der Verwendung von verschiedenen Ölen und anderen Kraftstoffverunreinigungen oder Additiven zu untersuchen. Die Eingangstemperatur zu dem Emissionssteuergerät170 kann über weite Temperaturbereiche eingestellt werden. Die Steuereinheit190 kann verwendet werden, um Energie zu den Gebläsen und der Kraftstoffpumpe zu schalten, sowie die luftunterstützten Kraftstoffdüsen, die Brennerzündung, die Öleinspritzung und die Sekundärluft zu regeln. Systemtemperaturen, Luftdurchflussmenge für die Verbrennungsluft und das Verhältnis von Verbrennungsluft zu Kraftstoff werden gemessen und in technische Einheiten umgerechnet. Das Softwareprogramm verwendet gemessene Daten, um den gesamten Abgasstrom und das Verhältnis von Verbrennungsluft zu Kraftstoff zu berechnen und die Bedingungen zu ermitteln, die für eine Systemfehlfunktion indikativ sind. Das Luft- zu Kraftstoffverhältnis des Brenners kann entweder als offene oder geschlossene Schleife unter Aufrechterhaltung entweder eines speziellen Kraftstoffflusses oder eines speziellen Luft zu Kraftstoff Verhältnisses gesteuert werden. Die Luft zu Kraftstoff Verhältnis Regelung wird durch Variieren der Kraftstoffmenge, die dem Brenner zugeführt wird, erzielt. Wann immer notwendig, kann eine offene Schleifenregelung aktiviert werden, die dem Operator erlaubt, in einen festen Kraftstoffdüsen-Impulsarbeitszyklus einzutreten. Die geschlossene Schleifensteuerung kann aktiviert werden, indem das aktuelle Luft zu Kraftstoff Verhältnis des Brenners gemessen und mit dem gemessenen Wert des Luft zu Kraftstoff Sollwertes verglichen wird, und anschließend das Kraftstoffdüsen-Arbeitsprogramm eingestellt wird, um den gemessenen Fehler zu korrigieren. - Erzeugung von Dieselabgas
- Die Steuereinheit
190 kann programmiert werden, um Dieselabgas mit spezifizierten Mengen an speziellen Abgaskomponenten zu erzeugen, z. B. um Dieselabgas zu simulieren, das in kalten Klimazonen, in großen Höhen, während Motorbeschleunigungsbedingungen (d. h. erhöhte NOx-Produktion), während Motorverzögerungsbedingungen (d. h. reduzierte NOx-Produktion), und in Kombinationen davon, erzeugt wird. - Zusätzlich kann zur Unterstützung der Simulierung eines bevorzugten Dieselabgases ein Nachbehandlungsgerät angeordnet werden. Zum Beispiel kann das System
100 stromaufwärts des Kollektors180 einen NOx-reduzierenden Katalysator einschließen, um NOx-reduzierte Abgase im Kollektor zu simulieren. Alternativ kann das System100 befeuert und betrieben werden, um NOx-reduziertes Abgas zu erzeugen, ohne eine Reduzierungsvorrichtung zu verwenden. - Die Hauptkomponenten von Dieselabgas umfassen Kohlenmonoxid, Kohlendioxid, Oxide von Stickstoff (NOx), Oxide von Schwefel, Kohlenwasserstoffe (HCs), unverbrannte kohlenstoffpartikelförmiges Material (PM), Sauerstoff und Stickstoff, sind aber nicht notwendigerweise darauf beschränkt. Im Abgas können, abhängig von den gewünschten Testbedingungen, ebenso andere Komponenten enthalten sein. Bevorzugte Bestandteile umfassen Komponenten ausgewählt aus der Gruppe bestehend aus Phosphor, Zink, Schwefel, Kalzium, Magnesium, Harnstoff, Ammoniak und Kombinationen davon. Die Menge und Zusammensetzung von Dieselabgas kann abhängig von der Zahl der zu simulierenden Faktoren variieren, wie: Abnutzung von beweglichen Motorteilen, Qualität des Schmieröles, Schmierölverbrauch, Qualität des Dieselkraftstoffes, Motortyp, Motortuning, Kraftstoffpumpeneinstellung, Belastungsanforderung an den Motor, Motortemperatur, und Motorwartung, ist aber nicht notwendigerweise darauf beschränkt. Schwefeldioxid wird durch den Schwefel erzeugt, der in dem Dieselkraftstoff und im Schmieröl enthalten ist, und die Konzentration von Schwefeldioxid im Abgas hängt vom Schwefelgehalt des Kraftstoffs und des Schmieröls ab.
- Dieselpartikelförmiges Material (PM) wird während des Verbrennungsprozesses in einem Dieselmotor und während des anschließenden Weges des Abgases im Abgassystem erzeugt. Das PM umfasst üblicherweise Kohlenstoff, Metall, absorbierte organische Komponenten (z. B. Kohlenwasserstoffe) und schwankende Mengen von Sulfaten, Nitraten und Kombinationen davon. Die Bildung von PM kann simuliert werden durch die Verwendung unterschiedlicher Formen von Kohlenstoffpulver (Ruß) oder durch Betätigen des Brenners bei kraftstoffreichen Bedingungen. PM enthält auch unterschiedliche Mengen von Sulfaten des Kraftstoffes und Ölschwefels und einen löslichen organischen Anteil, der hauptsächlich vom Schmieröl herrührt.
- PM ist nicht nur ein Verbundmaterial, sondern seine Komponenten selbst sind verantwortlich für die PM-Bildung und seine Eigenschaften. Das Verfahren durch das die partikelförmigen Teile erzeugt werden, ist Keimbildung und Agglomeration.
- Dieselpartikel können sehr fein sein. Die primären (Keim-)Kohlenstoffpartikel haben einen Durchschnittsdurchmesser von etwa 0,01 μm bis etwa 0,08 μm, während die Agglomerate einen Durchschnittsdurchmesser von etwa 0,08 μm bis etwa 1,0 μm aufweisen.
- Wie oben angegeben, hängt die Zusammensetzung des PM auch von den Motorbetriebsbedingungen ab. Die aktuelle Zusammensetzung der Partikel hängt auch von den thermodynamischen Bedingungen im Dieselabgas und dem verwendeten Partikelanreicherungssystem ab. Zum Beispiel können unter normalen Motorarbeitsbedingungen Partikel mit absorbierten und kondensierten organischen Bestandteilen hohen Molekulargewichts beschichtet sein.
- Weil PM im Motorzylinder als Ergebnis von hohem Druck und Temperatur entsteht und durch das Kraftstoff zu Luft Verhältnis in verschiedenen Bereichen der Brennkammer beeinflusst wird, ist es nicht ohne Bedeutung, PM anders als durch einen Dieselselbstzündungsmotor nachzubilden. Ein Merkmal des Systems
100 ist, dass es programmiert und betrieben werden kann, um Dieselabgas zu erzeugen, das eine gewünschte Zusammensetzung und Größe von Dieselpartikeln enthält. Das System100 kann dieselben PM erzeugen, wie sie von einem Dieselmotor erzeugt werden. - Bezug nehmend auf
1 wird der Brenner60 benutzt, um eine initiale PM-Vorstufe zu erzeugen. Der Brenner60 wird überstöchometrisch betrieben, um eine unvollständige Kraftstoff- und Ölverbrennung zu induzieren und dabei frei werdendes PM bereitzustellen. Durch geeignetes Programmieren der Steuereinheit190 kann der Dieselkraftstoff mit Schmieröl oder Schmieröladditiven angereichert werden. Auf die gleiche Weise kann der Schwefelgehalt des Kraftstoffes und/oder Öles gesteuert werden, ebenso wie eine Asche-bildende Komponente des Öles. Die Mehrphasenmischung des Brenners60 strömt zur Kühlung durch den Wärmetauscher70 . Die Kühlrate ist gesteuert, so z. B. durch Variieren der Verweilzeit im Wärmetauscher70 , um die gewünschte Keimbildung und Agglomeration des PM zu erreichen. - Stromabwärts des Wärmetauschers
70 wird das Abgas „gealtert” und zwar durch Verwendung entweder der Öldüse120 , oder der Sauerstoffdüse195 , oder beider Düsen. Die Düse195 wird verwendet, um Gase, wie Luft oder Sauerstoff, zu injizieren. Insbesondere, kann die Düse195 benutzt werden, um den Sauerstoffgehalt zu erhöhen und den Sauerstoffgehalt des Dieselabgases zu simulieren. Ein typischer Sauerstoffgehalt liegt zwischen 2 und 10 Vol.%, insbesondere zwischen 4 und 8 Vol.%. Sauerstoff im Abgas während der PM-Keim Bildung und Agglomeration ist wichtig im Hinblick auf die endgültige Zusammensetzung des PM. Luft und Sauerstoff werden an der Stelle injiziert, wo das Abgas eine bestimmte Temperatur aufweist. Eine geeignete Temperatur an der Injektionsstelle ist niedriger als 650°C, und üblicherweise 500°C oder weniger. Ein Einspritzen bei höheren Temperaturen kann eine unerwünschte Verbrennung des entstehenden PM hervorrufen. - Die In-Abgasöldüse
120 kann entweder stromaufwärts oder stromabwärts der Gasdüse195 verwendet werden. Öl oder Öladditiv-Komponenten, die über die Düse120 eingespritzt werden, werden, verglichen mit den dem Kraftstoff direkt zugefügten Komponenten weniger verbrannt und können verwendet werden, den Teil des PM-Entstehungsprozesses zu simulieren, der nicht direkt aus der Verbrennung in den Motorverbrennungskammern resultiert. Diese Öleinspritzung wird in erster Linie dazu verwendet, um den löslichen organischen Anteil des PM zu modifizieren. Zahlreiche Additive, die bekannt sind, um die Produktion von Asche im Abgas anzuregen, können über die Öldüse zugeführt werden. - Das PM-haltige Abgas wird in einer Quench-Zone
170 abgeschreckt (gequencht), die das Abgas kühlt. Dies kann dadurch bewerkstelligt werden, dass ein Eisbad oder ein anderes Kühlverfahren verwendet wird. Das Quenchen fixiert das PM in seiner gegenwärtigen Form. Wenn gewünscht, kann das PM in einem Kollektor180 aufgefangen werden. Es versteht sich, dass für bestimmte gewünschte PM-Eigenschaften nicht alle Stufen des vorstehend beschriebenen Verfahrens notwendig sein müssen. - Testen des Dieselpartikelfilters
- Ein Dieselpartikelfilter ist irgendein Apparat, der Partikel aus Dieselabgas, das einen Filter kontaktiert, auffangt und zurückhält. Im Allgemeinen besteht ein Dieselpartikelfilter aus einem porösen Substrat oder aus Keramikfasern, die die Partikel zurückhalten, Gasen im Dieselabgas jedoch erlauben, zu passieren.
- Im Allgemeinen wird Dieselpartikelfilteralterung durch eine Verringerung der Filtrationseffektivität nachgewiesen. Die Verringerung der Filtrationseffektivität ergibt sich aus den multiplen PM-Bindungen/Regenerationszyklen, welche zur Ascheanreicherung in dem Dieselpartikelfilter führt. Das Altern hängt auch von zahlreichen Faktoren ab, wie der Einwirkungszeit des Abgases auf den Dieselpartikelfilter, der Durchflussmenge des Abgases durch den Filter, der Höhe des Druckabfalls während der Verwendung, der Porosität des Filters, des verwendeten Filtermaterials und der Umgebungsfeuchtigkeit, die aber nicht notwendigerweise darauf beschränkt sind.
- Während der Verwendung des Systems
100 zu Alterung eines Dieselpartikelfilters wird die Durchflussrate im Allgemeinen von etwa 0 zu etwa 100 Standard Kubikfuß pro Minute (scfm) aufrechterhalten, und die Abgastemperatur wird im Allgemeinen bei etwa 150–650°C gehalten, insbesondere bei etwa 150 bis 300°C für eine erhöhte Laufzeit. Einwirkungszeiten werden üblicherweise gemäß dem Typ des Dieselpartikelfilters der getestet wird, gemäß den Komponenten des Abgasprodukts, den gewünschten Alterungsbedingungen, die simuliert werden sollen und Kombinationen davon, bestimmt. - Regeneration eines Dieselpartikelfilters erfordert die Beseitigung der Partikelmaterie. Im Allgemeinen wird die Abgastemperatur auf eine Temperatur erhöht, die ausreichend hoch ist für die Selbstentzündung und das Aufrechterhalten der Verbrennung des partikelförmigen Materials auf dem Filter. Regenerationstemperaturen betragen im Allgemeinen etwa 300–650°C, vorzugsweise etwa 350°C oder höher für katalysierende Dieselpartikelfilter, abhängig von der Katalysatorzusammensetzung, und etwa 600°C oder höher für die meisten nicht-katalysierenden Dieselpartikelfilter. Die Schadstoffpartikel müssen zur Selbstzündung und Aufrechterhaltung der Verbrennung im Allgemeinen eine Minimaltemperatur von etwa 500–650°C erreichen. Die gewünschte Temperatur wird bestimmt durch Faktoren, wie die Art des Dieselpartikelfilters, der getestet wird, die Kraftstoffschwefelgehalte, NOx-Gehalte, Sauerstoffgehalte, PM-Gehalte, und Kombinationen davon, sind aber nicht notwendigerweise darauf beschränkt.
- Das System
100 ist in der Lage, thermische Abweichungen von noch höheren Temperaturen zu erzeugen, um das Alter zu simulieren und verschiedene Nachbehandlungseinrichtungen zu regenerieren. - Während der Regeneration, zur schnellen Oxidation des partikelförmigen Materials, muss ausreichend freier Sauerstoff zur Verfügung stehen, vorzugsweise zwischen 3 und 20% des Abgasstromes. Die Temperatur- und Sauerstoffgehalte werden aufrechterhalten, bis die Regeneration vollständig ist. Das System
100 kann programmiert werden, um einen gewünschten Alterungszyklus und/oder einen gewünschten Regenerationszyklus zu reproduzieren, und zwar für sich oder in Kombination, einmalig oder mehrmals, wie es gewünscht wird. - Personen, die mit diesem Fachgebiet vertraut sind, werden erkennen, dass zahlreiche Abweichungen von der vorliegenden Anmeldung möglich sind ohne den Geist oder den Umfang der Anmeldung zu verlassen. Das hier beschriebene Ausführungsbeispiel dient lediglich der Illustration und sollte nicht als eine Einschränkung der Anmeldung, die in den Ansprüchen definiert ist, gesehen werden.
Claims (15)
- Ein Verfahren zur Erzeugung von Abgas, das, unter Verwendung eines Brenner-gestützten Systems (
100 ), partikelförmiges Material (PM) enthält, welches das PM simuliert, welches von einem dieselgetriebenen Verbrennungsmotor erzeugt wird, aufweisend: Verwenden eines Brenners (60 ) zur Aufnahme von Luft und Kraftstoff und zur Verbrennung der Luft und des Kraftstoffes, um Abgas und frei werdendes PM im Abgas zu erzeugen; Verwenden eines Wärmetauschers (70 ), um das Abgas stromabwärts des Brenners (60 ) auf eine Temperatur von nicht mehr als 650°C abzukühlen; Verwenden einer Sauerstoffdüse (195 ), um eine vorbestimmte Menge Sauerstoff in das Abgas einzublasen, um damit das Abgas mit einem Sauerstoffgehalt von 2–10 Vol.% bereitzustellen; Verwenden eines Quenchers (170 ) stromabwärts der Sauerstoffdüse (195 ), um das Abgas auf eine Temperatur abzukühlen, die ausreichend niedrig ist, um die Zusammensetzung des PM zu fixieren; und Verwenden eines computergesteuerten Regelsystems (190 ) zur Regelung der Menge und der Terminierung der Zufuhr von Kraftstoff und Sauerstoff, zum Brenner (60 ) und zur Sauerstoffdüse (195 ). - Das Verfahren nach Anspruch 1, wobei der Brenner (
60 ) überstöchiometrisch betrieben wird. - Das Verfahren nach Anspruch 1, weiterhin aufweisend den Schritt des Anreicherns des Kraftstoffes mit Schwefelverbindungen.
- Das Verfahren nach Anspruch 1, weiterhin aufweisend den Schritt des Anreicherns des Kraftstoffes mit Schmieröl oder zumindest mit einem Schmieröladditiv.
- Das Verfahren nach Anspruch 1, weiterhin aufweisend den Schritt der Verwendung einer Öldüse (
120 ), die zwischen dem Wärmetauscher (70 ) und dem Quencher (170 ) angeordnet ist, um eine vorbestimmte Menge von Motorschmierstoff oder Additiv in das Abgas zu injizieren, und dabei eine vorbestimmte Menge eines löslichen organischen Anteils im Abgas bereitzustellen. - Das Verfahren nach Anspruch 1, weiterhin aufweisend den Schritt der Verwendung einer Öldüse (
120 ), die zwischen dem Wärmetauscher (70 ) und dem Quencher (170 ) angeordnet ist, um eine vorbestimmte Menge von Additiv in das Abgas zu injizieren, und dabei Asche im Abgas bereitzustellen. - Das Verfahren nach Anspruch 1, wobei der Schritt der Verwendung eines Wärmetauschers (
70 ) durch Steuerung der Verweilzeit des Abgases im Wärmetauscher (70 ) durchgeführt wird. - Ein Verfahren zur Verwendung eines Brenner-gestützten Systems (
100 ) zur Prüfung eines Emissionssteuergeräts, das Abgas, welches partikelförmiges Material (PM) enthält, aufbereitet, aufweisend: Verwenden eines Brenners (60 ) zur Aufnahme von Luft und Kraftstoff und um die Luft und den Kraftstoff zu verbrennen, um Abgas und freiwerdendes PM im Abgas zu erzeugen; Verwenden eines Wärmetauschers (70 ), um das Abgas stromabwärts des Brenners (60 ) auf eine Temperatur von nicht mehr als 650°C abzukühlen; Verwenden einer Sauerstoffdüse (195 ), um eine vorbestimmte Menge Sauerstoff in das Abgas zu injizieren und damit das Abgas mit einem Sauerstoffgehalt von 2–10 Vol.% bereitzustellen; Verwenden eines Quenchers (170 ) stromabwärts der Öldüse (120 ) und der Sauerstoffdüse (195 ), um das Abgas auf eine Temperatur abzukühlen, die ausreichend niedrig ist, um die PM-Zusammensetzung zu fixieren; Fördern des Abgases zu dem Emissionssteuergerät; und Verwenden eines computergesteuerten Regelsystems (190 ) zur Regelung der Menge und der Terminierung der Zufuhr von Kraftstoff und Sauerstoff zum Brenner (60 ) und zur Sauerstoffdüse (195 ). - Das Verfahren nach Anspruch 8, wobei der Brenner (
60 ) überstöchiometrisch betrieben wird. - Das Verfahren nach Anspruch 8, weiterhin aufweisend den Schritt der Anreicherung des Kraftstoffes mit Schwefelkomponenten.
- Das Verfahren nach Anspruch 8, weiterhin aufweisend den Schritt der Anreicherung des Kraftstoffes mit Schmieröl oder zumindest einem Schmieröladditiv.
- Das Verfahren nach Anspruch 8, weiterhin aufweisend den Schritt des Verwendens einer Öldüse (
120 ), die zwischen dem Wärmetauscher (70 ) und dem Quencher (170 ) angeordnet ist, um eine vorbestimmte Menge von Motorschmierstoff oder Additiv in das Abgas zu injizieren, und dabei eine vorbestimmte Menge eines löslichen organischen Anteils in das Abgas einzubringen. - Das Verfahren gemäß Anspruch 8, wobei der Schritt der Verwendung eines Wärmetauschers (
70 ) durch Steuerung der Verweilzeit des Abgases im Wärmetauscher (70 ) durchgeführt wird. - Das Verfahren gemäß Anspruch 8, wobei das Emissionssteuergerät ein Dieselpartikelfilter ist.
- Das Verfahren gemäß Anspruch 8, wobei das Emissionssteuergerät ein Dieselpartikelfilter ist und wobei das Regelungssystem (
190 ) programmiert ist, um das System (100 ) im Regenerationsmodus zu betreiben.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/765,734 | 2007-06-20 | ||
US11/765,734 US7741127B2 (en) | 2001-08-06 | 2007-06-20 | Method for producing diesel exhaust with particulate material for testing diesel engine aftertreatment devices |
PCT/US2008/067190 WO2008157528A2 (en) | 2007-06-20 | 2008-06-17 | System and method for producing diesel exhaust for testing diesel engine aftertreatment devices |
Publications (2)
Publication Number | Publication Date |
---|---|
DE112008001335T5 DE112008001335T5 (de) | 2010-06-17 |
DE112008001335B4 true DE112008001335B4 (de) | 2016-10-27 |
Family
ID=38860248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE112008001335.7T Active DE112008001335B4 (de) | 2007-06-20 | 2008-06-17 | System und Verfahren zur Erzeugung von Dieselabgasen zum testen von Nachbehandlungsvorrichtungen für Dieselmotoren |
Country Status (4)
Country | Link |
---|---|
US (1) | US7741127B2 (de) |
DE (1) | DE112008001335B4 (de) |
GB (1) | GB2462944B (de) |
WO (1) | WO2008157528A2 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11047287B2 (en) | 2018-01-31 | 2021-06-29 | FEV Europe GmbH | Testing facility for ageing exhaust gas systems |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007046158B4 (de) * | 2007-09-27 | 2014-02-13 | Umicore Ag & Co. Kg | Verwendung eines katalytisch aktiven Partikelfilters zur Entfernung von Partikeln aus dem Abgas von mit überwiegend stöchiometrischem Luft/Kraftstoff-Gemisch betriebenen Verbrennungsmotoren |
US8182578B2 (en) * | 2007-11-30 | 2012-05-22 | Caterpillar Inc. | Engine exhaust after-treatment system |
KR101587217B1 (ko) * | 2009-10-06 | 2016-01-20 | 주식회사 에코닉스 | 배기가스 유해물질 저감장치용 버너 및 이를 포함하는 배기가스 유해물질 저감장치 |
DE102010021753B4 (de) * | 2009-12-17 | 2016-02-04 | Deutz Ag | Regeneration von Partikelfiltern |
US8516800B2 (en) | 2010-12-22 | 2013-08-27 | Caterpillar Inc. | System and method for introducing a reductant agent |
CN102003199B (zh) * | 2010-12-23 | 2012-11-14 | 中国矿业大学 | 煤矿井下热湿环境模拟控制实验系统 |
US8679852B2 (en) * | 2011-03-31 | 2014-03-25 | Southwest Research Institute | Particulate matter generator for use with an emissions control device aging system |
US8783090B2 (en) * | 2011-11-28 | 2014-07-22 | Southwest Research Institute | Apparatus and methods for determination of total and solid carbon content of engine exhaust |
JP6093654B2 (ja) * | 2013-06-03 | 2017-03-08 | 株式会社堀場製作所 | 排ガスサンプリング装置 |
DE102014100766B4 (de) * | 2014-01-23 | 2016-09-22 | Oberland Mangold Gmbh Katalysatortechnik | Verfahren und Vorrichtung zum Prüfen von Diesel-Partikelfiltern (DPF) |
US9739761B2 (en) * | 2014-12-11 | 2017-08-22 | Fca Us Llc | Particulate matter filter diagnostic techniques based on exhaust gas analysis |
DE102015007554B4 (de) * | 2015-06-16 | 2020-09-17 | Federal-Mogul Burscheid Gmbh | Verfahren und Vorrichtung zur Kalibrierung eines Ölverbrauchsmessgeräts |
GB2546095A (en) * | 2016-01-08 | 2017-07-12 | Perkins Engines Co Ltd | System for simulating an aftertreatment of an engine |
DE102016104356A1 (de) | 2016-03-10 | 2017-09-14 | Federal-Mogul Burscheid Gmbh | Verfahren und Einrichtung zur Kalibrierung eines Ölverbrauchsmessgeräts |
CN106812570B (zh) * | 2017-03-30 | 2022-09-20 | 成都青舟特机环境技术有限公司 | 机动车尾气处理系统 |
DE102017129171A1 (de) * | 2017-12-07 | 2018-02-08 | FEV Europe GmbH | Verfahren zum Altern einer Komponente eines Abgasnachbehandlungssystems |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002365203A (ja) * | 2001-06-11 | 2002-12-18 | Toto Ltd | 汚染試験装置 |
US20030079520A1 (en) * | 2001-08-06 | 2003-05-01 | Ingalls Melvin N. | Method and apparatus for testing catalytic converter durability |
US20050042763A1 (en) * | 2002-08-06 | 2005-02-24 | Southwest Research Institute | Testing using diesel exhaust produced by a non-engine based test system |
DE102004061400A1 (de) * | 2004-12-21 | 2006-07-06 | Umicore Ag & Co. Kg | Verfahren zur Erzeugung eines Stromes heißer Verbrennungsabgase mit einstellbarer Temperatur, Apparatur zur Durchführung des Verfahrens und Verwendung der Verbrennungsabgase zur gezielten Alterung von Katalysatoren |
KR100680363B1 (ko) * | 2005-11-08 | 2007-02-08 | 현대자동차주식회사 | 디젤매연 촉매 여과장치의 에이징 방법 |
WO2007019329A2 (en) * | 2005-08-05 | 2007-02-15 | Southwest Research Institute | Secondary air injector for use with exhaust gas simulation system |
EP1785715A2 (de) * | 2005-11-14 | 2007-05-16 | Ngk Insulators, Ltd. | PM-Erzeugungsvorrichtung |
Family Cites Families (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US553450A (en) * | 1896-01-21 | Gin-saw-sharpening machine | ||
US1102510A (en) * | 1911-07-15 | 1914-07-07 | Babcock & Wilcox Co | Apparatus for burning finely-divided fuel. |
FR1094871A (fr) * | 1959-01-22 | 1955-05-25 | Thomson Houston Comp Francaise | Perfectionnements aux appareils de combustion à combustible injecté |
US3131749A (en) * | 1960-11-18 | 1964-05-05 | Gulf Research Development Co | Aspirating liquid fuel burner |
US3176751A (en) * | 1962-10-16 | 1965-04-06 | Robbins & Myers | Heat shield for burner fan |
US3503715A (en) * | 1968-04-05 | 1970-03-31 | Universal Oil Prod Co | Apparatus for treating an exhaust gas stream with different catalyst beds |
US3685740A (en) * | 1969-10-29 | 1972-08-22 | Air Reduction | Rocket burner with flame pattern control |
US3630024A (en) * | 1970-02-02 | 1971-12-28 | Gen Electric | Air swirler for gas turbine combustor |
US3694135A (en) * | 1970-07-20 | 1972-09-26 | Texaco Inc | Flame retention burner head |
US3890088A (en) * | 1970-09-17 | 1975-06-17 | Advanced Tech Lab | Apparatus for reducing formation of oxides of nitrogen in combustion processes |
US3818846A (en) | 1972-04-26 | 1974-06-25 | Combustion Power | Method and apparatus for liquid disposal in a fluid bed reactor |
US3818046A (en) * | 1972-12-18 | 1974-06-18 | Dow Chemical Co | Sulfur-containing hydroxy pyrones and alkali metal salts thereof |
US4035137A (en) * | 1973-04-26 | 1977-07-12 | Forney Engineering Company | Burner unit |
US3986386A (en) * | 1974-04-12 | 1976-10-19 | Exxon Research And Engineering Company | Particulate sampling system |
JPS587884B2 (ja) | 1975-03-26 | 1983-02-12 | 川崎重工業株式会社 | ガス化燃焼法とその装置 |
US4270896A (en) * | 1975-08-26 | 1981-06-02 | Engelhard Minerals & Chemicals Corporation | Catalyst system |
US4054418A (en) * | 1975-11-10 | 1977-10-18 | E. I. Du Pont De Nemours And Company | Catalytic abatement system |
US4118171A (en) * | 1976-12-22 | 1978-10-03 | Engelhard Minerals & Chemicals Corporation | Method for effecting sustained combustion of carbonaceous fuel |
JPS56118641A (en) * | 1980-02-22 | 1981-09-17 | Nippon Soken Inc | Fine particle discharge amount measuring apparatus for vehicle |
US4345431A (en) * | 1980-03-25 | 1982-08-24 | Shimizu Construction Co. Ltd. | Exhaust gas cleaning system for diesel engines |
JPS5847610B2 (ja) | 1980-09-29 | 1983-10-24 | 株式会社日立製作所 | ガスタ−ビン燃焼器 |
US4845940A (en) * | 1981-02-27 | 1989-07-11 | Westinghouse Electric Corp. | Low NOx rich-lean combustor especially useful in gas turbines |
US4375950A (en) * | 1981-04-01 | 1983-03-08 | Durley Iii Benton A | Automatic combustion control method and apparatus |
US4383411A (en) * | 1981-08-10 | 1983-05-17 | General Motors Corporation | Diesel exhaust cleaner with burner vortex chamber |
DE3304846A1 (de) * | 1983-02-12 | 1984-08-16 | Bosch Gmbh Robert | Verfahren und vorrichtung zur detektion und/oder messung des partikelgehalts in gasen |
US4651524A (en) * | 1984-12-24 | 1987-03-24 | Arvin Industries, Inc. | Exhaust processor |
US5149261A (en) * | 1985-11-15 | 1992-09-22 | Nippon Sanso Kabushiki Kaisha | Oxygen heater and oxygen lance using oxygen heater |
JPS62185165A (ja) * | 1986-02-10 | 1987-08-13 | Horiba Ltd | パ−ティキュレ−ト分析装置 |
US4878380A (en) * | 1988-10-03 | 1989-11-07 | Goodman Lynn R | Method of testing catalytic converters and oxygen sensors |
JPH0710022Y2 (ja) * | 1989-10-06 | 1995-03-08 | 京セラ株式会社 | パティキュレートトラップフィルタの再生装置 |
DE4009201A1 (de) * | 1990-01-25 | 1991-08-01 | Man Technologie Gmbh | Abgassystem mit einem partikelfilter und einem regenerierungsbrenner |
JPH0472410A (ja) | 1990-07-13 | 1992-03-06 | Nissan Motor Co Ltd | 排気浄化用触媒の急速耐久装置 |
US5085577A (en) * | 1990-12-20 | 1992-02-04 | Meku Metallverarbeitunge Gmbh | Burner with toroidal-cyclone flow for boiler with liquid and gas fuel |
FR2674333B1 (fr) | 1991-03-22 | 1995-06-09 | Isover Formtec Sa | Dispositif pour tester la resistance d'un materiau a un jet gazeux. |
US5337722A (en) * | 1992-04-16 | 1994-08-16 | Yamaha Hatsudoki Kabushiki Kaisha | Fuel control and feed system for gas fueled engine |
US5267851A (en) * | 1992-03-16 | 1993-12-07 | General Electric Company | Swirl gutters for isolating flow fields for combustion enhancement at non-baseload operating conditions |
US5288021A (en) * | 1992-08-03 | 1994-02-22 | Solar Turbines Incorporated | Injection nozzle tip cooling |
US5339630A (en) * | 1992-08-28 | 1994-08-23 | General Motors Corporation | Exhaust burner catalyst preheater |
US5320523A (en) * | 1992-08-28 | 1994-06-14 | General Motors Corporation | Burner for heating gas stream |
JPH06264740A (ja) | 1993-03-16 | 1994-09-20 | Tanaka Pipe:Kk | エンジン用断熱排気管 |
US5396794A (en) * | 1993-04-05 | 1995-03-14 | Applied Computer Engineering, Inc. | Engine catalyst aging system and method for aging catalyst |
EP0895024B1 (de) | 1993-07-30 | 2003-01-02 | United Technologies Corporation | Wirbelmischvorrichtung für eine Brennkammer |
DE4337793C2 (de) * | 1993-11-05 | 2002-08-14 | Bosch Gmbh Robert | Verfahren und Vorrichtung zum Beurteilen des Funktionszustandes eines Katalysators |
JPH07198127A (ja) | 1993-12-28 | 1995-08-01 | Ckd Corp | 二流体噴霧システム |
US5584178A (en) * | 1994-06-14 | 1996-12-17 | Southwest Research Institute | Exhaust gas combustor |
DE4426020B4 (de) * | 1994-07-22 | 2005-07-28 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Überwachung der Funktionsfähigkeit eines Katalysators im Abgaskanal einer Brennkraftmaschine |
US5493171A (en) * | 1994-10-05 | 1996-02-20 | Southwest Research Institute | Spark plug having titanium diboride electrodes |
US5713336A (en) * | 1995-01-24 | 1998-02-03 | Woodward Governor Company | Method and apparatus for providing multipoint gaseous fuel injection to an internal combustion engine |
EP0725208B1 (de) * | 1995-02-03 | 1997-07-09 | CENTRO RICERCHE FIAT Società Consortile per Azioni | Brennkraftmaschine geeignet zum selektiven Betrieb mit Benzin- oder Flüssiggaseinspritzung |
DE19504183A1 (de) * | 1995-02-09 | 1996-08-14 | Eberspaecher J | Brenner zur thermischen Regeneration eines Partikelfilters in einem Abgasnachbehandlungssystem eines Verbrennungsmotors, insbesondere Dieselmotors |
US5626014A (en) * | 1995-06-30 | 1997-05-06 | Ford Motor Company | Catalyst monitor based on a thermal power model |
DE19540673C2 (de) * | 1995-10-31 | 1997-08-28 | Siemens Ag | Verfahren zur Überprüfung der Funktionsfähigkeit eines Katalysators mit einem Sauerstoffsensor |
JPH1026315A (ja) * | 1996-07-08 | 1998-01-27 | Aisin Seiki Co Ltd | 触媒燃焼器及び触媒燃焼方法 |
US5693874A (en) * | 1996-10-11 | 1997-12-02 | Southwest Research Institute | Test apparatus and method for determining deposit formation characteristics of fuels |
US5899062A (en) * | 1997-01-22 | 1999-05-04 | Ford Global Technologies, Inc. | Catalyst monitor using arc length ratio of pre- and post-catalyst sensor signals |
US5974788A (en) * | 1997-08-29 | 1999-11-02 | Ford Global Technologies, Inc. | Method and apparatus for desulfating a nox trap |
US5998210A (en) * | 1997-10-01 | 1999-12-07 | Ford Global Technologies, Inc. | Method and apparatus for aging a catalyst |
JP3875395B2 (ja) | 1998-03-24 | 2007-01-31 | 財団法人石油産業活性化センター | 触媒燃焼装置 |
US6050128A (en) | 1998-05-28 | 2000-04-18 | Ford Global Technologies, Inc. | Catalyst deterioration monitoring |
JP2000282848A (ja) * | 1999-03-30 | 2000-10-10 | Nissan Motor Co Ltd | 内燃機関の排気浄化装置 |
US6298729B1 (en) * | 1999-07-13 | 2001-10-09 | Corning Incorporated | Catalytic converter testing |
CA2279149C (en) * | 1999-07-30 | 2003-04-22 | James Mancuso | Fuel injector adaptor for conversion of single fuel engines to dual fuel engines |
US6713025B1 (en) * | 1999-09-15 | 2004-03-30 | Daimlerchrysler Corporation | Light-off and close coupled catalyst |
GB2356826B (en) | 1999-12-01 | 2003-10-29 | Jaguar Cars | Process for ageing a catalytic converter |
US6327889B1 (en) * | 1999-12-20 | 2001-12-11 | The United States Of America As Represented By The Secretary Of The Navy | Device and method for introducing surrogates, particularly metal surrogates, into an exhaust stream, for simulating an exhaust stream, and for establishing a standardized source |
US6378359B1 (en) * | 2000-01-07 | 2002-04-30 | Ford Global Technologies, Inc. | Method and system for evaluating exhaust on-board diagnostics system |
US6269633B1 (en) * | 2000-03-08 | 2001-08-07 | Ford Global Technologies, Inc. | Emission control system |
US20010054281A1 (en) * | 2000-05-01 | 2001-12-27 | Adams Joseph M. | Non-engine based exhaust component rapid aging system |
US6301875B1 (en) * | 2000-05-31 | 2001-10-16 | Coen Company, Inc. | Turbine exhaust gas duct heater |
US6586254B1 (en) * | 2000-06-15 | 2003-07-01 | Engelhard Corporation | Method and apparatus for accelerated catalyst poisoning and deactivation |
DE50001415D1 (de) * | 2000-11-03 | 2003-04-10 | Ford Global Tech Inc | Verfahren zur Regeneration des Partikelfilters eines Dieselmotors |
US6490858B2 (en) * | 2001-02-16 | 2002-12-10 | Ashley J. Barrett | Catalytic converter thermal aging method and apparatus |
US20030012700A1 (en) * | 2001-07-11 | 2003-01-16 | Carnahan James Claude | Systems and methods for parallel testing of catalyst performance |
US6983645B2 (en) * | 2002-08-06 | 2006-01-10 | Southwest Research Institute | Method for accelerated aging of catalytic converters incorporating engine cold start simulation |
US7175422B2 (en) * | 2001-08-06 | 2007-02-13 | Southwest Research Institute | Method for accelerated aging of catalytic converters incorporating injection of volatilized lubricant |
US20040007056A1 (en) * | 2001-08-06 | 2004-01-15 | Webb Cynthia C. | Method for testing catalytic converter durability |
US7299137B2 (en) * | 2002-08-06 | 2007-11-20 | Southwest Research Institute | Method for drive cycle simulation using non-engine based test system |
US6796165B2 (en) * | 2002-11-18 | 2004-09-28 | Southwest Research Institute | Apparatus and method for real-time measurement of mass, size and number of solid particles of particulate matter in engine exhaust |
-
2007
- 2007-06-20 US US11/765,734 patent/US7741127B2/en not_active Expired - Lifetime
-
2008
- 2008-06-17 WO PCT/US2008/067190 patent/WO2008157528A2/en active Application Filing
- 2008-06-17 GB GB0916348.6A patent/GB2462944B/en active Active
- 2008-06-17 DE DE112008001335.7T patent/DE112008001335B4/de active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002365203A (ja) * | 2001-06-11 | 2002-12-18 | Toto Ltd | 汚染試験装置 |
US20030079520A1 (en) * | 2001-08-06 | 2003-05-01 | Ingalls Melvin N. | Method and apparatus for testing catalytic converter durability |
US7140874B2 (en) * | 2001-08-06 | 2006-11-28 | Southwest Research Institute | Method and apparatus for testing catalytic converter durability |
US20050042763A1 (en) * | 2002-08-06 | 2005-02-24 | Southwest Research Institute | Testing using diesel exhaust produced by a non-engine based test system |
DE102004061400A1 (de) * | 2004-12-21 | 2006-07-06 | Umicore Ag & Co. Kg | Verfahren zur Erzeugung eines Stromes heißer Verbrennungsabgase mit einstellbarer Temperatur, Apparatur zur Durchführung des Verfahrens und Verwendung der Verbrennungsabgase zur gezielten Alterung von Katalysatoren |
WO2007019329A2 (en) * | 2005-08-05 | 2007-02-15 | Southwest Research Institute | Secondary air injector for use with exhaust gas simulation system |
KR100680363B1 (ko) * | 2005-11-08 | 2007-02-08 | 현대자동차주식회사 | 디젤매연 촉매 여과장치의 에이징 방법 |
EP1785715A2 (de) * | 2005-11-14 | 2007-05-16 | Ngk Insulators, Ltd. | PM-Erzeugungsvorrichtung |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11047287B2 (en) | 2018-01-31 | 2021-06-29 | FEV Europe GmbH | Testing facility for ageing exhaust gas systems |
Also Published As
Publication number | Publication date |
---|---|
DE112008001335T5 (de) | 2010-06-17 |
GB0916348D0 (en) | 2009-10-28 |
WO2008157528A2 (en) | 2008-12-24 |
US7741127B2 (en) | 2010-06-22 |
GB2462944B (en) | 2012-06-27 |
WO2008157528A3 (en) | 2009-03-26 |
GB2462944A (en) | 2010-03-03 |
US20070289290A1 (en) | 2007-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE112008001335B4 (de) | System und Verfahren zur Erzeugung von Dieselabgasen zum testen von Nachbehandlungsvorrichtungen für Dieselmotoren | |
DE60008470T2 (de) | Regenerierungssystem für einen dieselmotorabgaspartikelfilter | |
DE3688741T2 (de) | Verminderung der stickstoff- und kohlenstoffhaltigen schadstoffe mittels harnstofflösungen. | |
DE102017214898B4 (de) | Reformiersystem und Reformierstörungs-Diagnoseverfahren unter Verwendung eines Drucksensors | |
DE102005015998B4 (de) | Katalysatordiagnoseverfahren | |
DE60112672T2 (de) | Kontrolle der verbrennung bei der regeneration eines partikelfilters | |
DE102005019819A1 (de) | Filtersystem | |
WO2010022747A1 (de) | Herstellen von alterungsgas für abgasnachbehandlungssysteme | |
DE2153816A1 (de) | Verfahren zum Vermischen von flussi gern Kraftstoff mit Luft und Einrichtung zum Durchfuhren des Verfahrens | |
DE102005040886A1 (de) | Filterentschwefelungssystem und -verfahren | |
EP1521903B1 (de) | Verfahren und vorrichtung zum künstlichen altern einer katalysatoreinrichtung | |
DE102011018929B4 (de) | Steuersystem, um einen Kohlenwasserstoffschlupf während einer Regeneration eines Partikelmaterialfilters zu verhindern | |
DE102005025924A1 (de) | Abgasbehandlungssystem mit Partikelfiltern | |
DE102006025131A1 (de) | Abgasbehandlungsdiagnose unter Verwendung eines Temperatursensors | |
WO2006040268A1 (de) | Verfahren zum betrieb eines brenners, insbesondere eines brenners einer gasturbine, sowie vorrichtung zur durchführung des verfahrens | |
DE102012205678A1 (de) | Abgasbehandlungssystem für einen Verbrennungsmotor | |
DE112011104327T5 (de) | Abgassystem mit einer DOC-Regenerationsstrategie | |
DE102009046120A1 (de) | Verfahren und Vorrichtung zum Befeuchten der Ansaugluft einer Verbrennungsmaschine | |
DE102008051958A1 (de) | Dieselabgas-Temperaturreduktion | |
EP1831510B1 (de) | Verwendung einer apparatur zur erzeugung eines stromes heisser verbrennungsabgase zur gezielten alterung von katalysatoren | |
EP2657478A1 (de) | Verfahren und Vorrichtung zur Überprüfung der Funktionsfähigkeit eines NO-Oxidationskatalysators | |
DE60313321T2 (de) | Verfahren zur regeneration eines kraftfahrzeugteilchenfilters und system zur steuerung der regeneration solch eines filters | |
DE60002652T2 (de) | Regelungverfahren eines Partikelfilters und Regelungsverfahren einer Brennkraftmaschine | |
DE102018109165A1 (de) | Verfahren zur überwachung und modellierung der thermischen eigenschaften von oxidationskatalysatorvorrichtungen | |
DE102018104444A1 (de) | Ermittlung des Wirkungsgrads der selektiven katalytischen Reduktion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R012 | Request for examination validly filed |
Effective date: 20140324 |
|
R016 | Response to examination communication | ||
R018 | Grant decision by examination section/examining division | ||
R020 | Patent grant now final |