DE10351680A1 - Ventil für eine Kraftstoffeinspritzpumpe - Google Patents

Ventil für eine Kraftstoffeinspritzpumpe Download PDF

Info

Publication number
DE10351680A1
DE10351680A1 DE10351680A DE10351680A DE10351680A1 DE 10351680 A1 DE10351680 A1 DE 10351680A1 DE 10351680 A DE10351680 A DE 10351680A DE 10351680 A DE10351680 A DE 10351680A DE 10351680 A1 DE10351680 A1 DE 10351680A1
Authority
DE
Germany
Prior art keywords
valve
groove
cross
fuel
valve member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10351680A
Other languages
English (en)
Inventor
Stefan Schuerg
Wolfgang Stoecklein
Holger Rapp
Violaine Chassagnoux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE10351680A priority Critical patent/DE10351680A1/de
Priority to PCT/DE2004/001994 priority patent/WO2005045228A1/de
Priority to EP04786716A priority patent/EP1682771B1/de
Priority to JP2006508128A priority patent/JP2006526729A/ja
Priority to KR1020067008671A priority patent/KR101100973B1/ko
Priority to CN2004800325099A priority patent/CN1875184B/zh
Priority to US10/578,506 priority patent/US20070119991A1/en
Publication of DE10351680A1 publication Critical patent/DE10351680A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/466Electrically operated valves, e.g. using electromagnetic or piezoelectric operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0077Valve seat details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0078Valve member details, e.g. special shape, hollow or fuel passages in the valve member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/04Fuel-injection apparatus having means for avoiding effect of cavitation, e.g. erosion

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Die Erfindung betrifft ein Ventil (2) für ein Kraftstoffeinspritzsystem mit einem in einem Ventilgehäuse (4) ausgebildeten Ventilsitz (8) und einem im Ventilgehäuse (4) beweglichen Ventilglied (6), das eine bei geschlossenem Ventil (2) dichtend gegen den Ventilsitz (8) anliegende Dichtfläche (10) aufweist, die bei geöffnetem Ventil (2) zusammen mit dem Ventilsitz (8) einen von Kraftstoff durchströmten Ventilspalt (12) begrenzt. Um Kavitationsschäden zu verhindern, wird vorgeschlagen, dass das Ventilglied (6) eine in Strömungsrichtung unmittelbar hinter der Dichtfläche (10) angeordnete umlaufende Hohlkehle (18) aufweist, an die sich eine umlaufende Querschnittsverdickung (20) des Ventilglieds (6) anschließt.

Description

  • Die Erfindung betrifft ein Ventil für ein Kraftstoffeinspritzsystem einer Verbrennungsmaschine mit den im Oberbegriff des Anspruchs 1 angegebenen Merkmalen, und zwar insbesondere für einen Injektor eines Common-Rail-Einspritzsystems.
  • Common-Rail-Einspritzsysteme weisen eine Mehrzahl von Injektoren auf, die unter der Kontrolle einer elektronischen Motorsteuerung von einer Hochdruckpumpe aus einem als Common-Rail bezeichneten zentralen Hochdruckspeicher mit Kraftstoff gespeist werden und den Kraftstoff über ein Ventil in die Brennräume der Zylinder der Verbrennungsmaschine einspritzen. Ein solches Ventil ist unter anderem aus der DE 199 40 296 A1 der Anmelderin bekannt und dient je nach Ventilstellung dazu, einen Hochdruckbereich eines Injektors des Einspritzsystems mit einem Niederdruckbereich zu verbinden bzw. von diesem zu trennen, wenn Kraftstoff durch das Ventil in den Brennraum eines Zylinders eingespritzt bzw. die Zufuhr von Kraftstoff unterbrochen werden soll.
  • Wenn der Kraftstoff bei geöffnetem Ventil mit hoher Geschwindigkeit durch den zwischen Ventilsitz und Dichtfläche gebildeten Ringkanals strömt, dessen Querschnitt sich hinter dem Ventilsitz stark erweitert, kann es dort zu Kavitationen im Kraftstoff kommen. Dabei bilden sich im Kraftstoff Dampfblasen, wenn der Druck lokal unter den Dampfdruck des Kraftstoffs absinkt. Bei einem erneuten Druckanstieg kondensiert der Kraftstoff in den Dampfblasen, wobei er mit hoher Geschwindigkeit gegen benachbarte Begrenzungsflächen des Ringkanals schlägt. Dadurch kann es direkt hinter dem Ventilsitz zum Auftreten von Kavitationsschäden kommen, durch die mit fortschreitender Erosion auch der Ventilsitz selbst angegriffen wird.
  • Um dieses Problem zu lösen, wurde in der DE 199 40 296 A1 vorgeschlagen, den Querschnitt des Ringkanals ausgehend von einem minimalen Querschnitt im Bereich des Ventilspalts mit einem konstanten Gradienten zu erweitern. Jedoch hat sich gezeigt, dass dies Maßnahme nicht immer ausreicht, um Kavitationsschäden sicher zu verhindern.
  • Vorteile der Erfindung
  • Bei Verwendung des erfindungsgemäßen Ventils mit den im Anspruch 1 genannten Merkmalen konnten demgegenüber Kavitationsschäden mit gutem Erfolg verhindert werden, weil der Kraftstoffstrom hinter dem Ventilsitz nicht einfach nur in axiale Richtung umgelenkt wird. Statt dessen erhält er beim Durchströmen der Hohlkehle eine Geschwindigkeitskomponente in einer von der Mittelachse des Ventilgliedes weg weisenden Richtung, so dass er nach dem Austritt aus der Hohlkehle auf einen gegenüberliegenden Bereich einer Innenwand einer Abströmbohrung des Ventilgehäuses prallt. Beim Aufprall wird ein Teil des Kraftstoffstroms entlang der Innenwand zurück in Richtung des Ventilspalts geleitet, wodurch sich unmittelbar hinter diesem im erweiterten Ringraum zwischen der Hohlkehle und dem gegenüberliegenden Wandbereich der Innenwand ein Wirbel bildet. Durch diesen Wirbel wird zum einen zusätzlicher Kraftstoff in den Ringraum hinter dem Ventilspalt eingetragen, so dass dort vermehrt Kraftstoff vorhanden ist, was Kavitationserscheinungen in der Nähe des Ventilspalts und dadurch langfristig verursachten Kavitationsschäden am Ventilsitz entgegenwirkt. Zum anderen strömt der in Richtung des Ventilspalts zurück geleitete Kraftstoff an der Innenwand des Ventilgehäuses entlang, womit gerade in diesen besonders kavitationsgefährdeten Bereich zusätzlicher Kraftstoff eingebracht und eine lokale Dampfblasenbildung infolge eines Kraftstoffdruckabfalls vermieden werden kann.
  • Unter Hohlkehle soll im Kontext der vorliegenden Erfindung eine konkave Ringnut im Umfang des Ventilglieds verstanden werden, während unter Querschnittsverdickung ein in Strömungsrichtung angrenzender Teil des Ventilglieds verstanden wird, dessen Durchmesser größer als der Durchmesser im Bereich der Ringnut ist.
  • Eine besonders gute Wirbelbildung im erweiterten Ringraum hinter dem Ventilspalt wird in bevorzugter Ausgestaltung der Erfindung dadurch erreicht, dass zwischen der Hohlkehle und der Querschnittsverdickung eine hinterschnittene umlaufende Abrisskante angeordnet ist, an der beiderseits an diese Kante angrenzende äußere Umfangsflächenabschnitte der Hohlkehle und der Querschnittserweiterung unter einem überstumpfen Winkel aufeinandertreffen.
  • Während der auf der Seite der Querschnittsverdickung an die Kante angrenzende äußere Umfangsflächenabschnitt bevorzugt im Wesentlichen parallel zu einer Mittelachse des Ventilglieds ausgerichtet ist, ist der auf der Seite der Hohlkehle an die Kante ist, ist der auf der Seite der Hohlkehle an die Kante angrenzende Umfangsflächenabschnitt vorzugsweise entgegen der Strömungsrichtung unter einem Winkel zwischen 20 und 80 Grad, vorzugsweise zwischen 30 und 60 Grad, zur Mittelachse des Ventilglieds hin geneigt, so dass die beiden Umfangsflächenabschnitte unter einem Winkel zwischen 200 und 260 Grad, vorzugsweise zwischen 190 und 240 Grad aufeinandertreffen.
  • Eine besonders einfache und kostengünstige Herstellung der Abrisskante ist gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung dadurch möglich, dass man bei der Endbearbeitung des Ventilgliedes dessen äußere Umfangsfläche mindestens im Bereich der dem Ventilsitz gegenüberliegenden Dichtfläche und der Hohlkehle bis auf den endgültigen Durchmesser abschleift, nicht jedoch im Bereich der Querschnittsverdickung, so dass das dort stehen bleibende Material automatisch zur Bildung der Abrisskante führt. In diesem Fall verjüngt sich der Querschnitt des Ventilglieds in Strömungsrichtung hinter der Querschnittsverdickung, was jedoch nicht notwendigerweise der Fall sein muss.
  • Um eine für die Serienfertigung kostengünstig zu fertigende Geometrie des Ventilglieds bereitzustellen, weist die konkave Hohlkehle zweckmäßig einen Krümmungsradius auf, der bevorzugt mindestens 0,2 mm beträgt und zweckmäßig über die gesamte Breite der Hohlkehle gleichbleibend groß ist.
  • Um die Wirbelbildung zu fördern, kann gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung auch vorgesehen werden, einen der Hohlkehle im Wesentlichen gegenüberliegenden Innenwandabschnitt der Atiströmbohrung nicht parallel zur Mittelachse des Ventil glieds bzw. zur Mittelachse der Abströmbohrung auszurichten, sondern in diesem Abschnitt eine Stufe oder Schräge anzubringen, die eine Umlenkung eines Teils des Kraftstoffstroms in Richtung des Ventilspalts unterstützt.
  • Zeichnungen
  • Die Erfindung wird nachfolgend in einem Ausführungsbeispiel anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:
  • 1 eine Seitenansicht eines Ventilglieds oder Ventilbolzens eines erfindungsgemäßen Ventils;
  • 2 eine vergrößerte Querschnittsansicht des Ventils im Bereich des Ventilspalts gemäß Ausschnitt Z aus 1;
  • 3 eine Ausschnittsvergrößerung entsprechend 2, jedoch mit einer anderen Geometrie des Ventilglieds in Strömungsrichtung hinter dem Ventilspalt;
  • 4 eine Ausschnittsvergrößerung entsprechend 2, jedoch mit einer noch anderen Geometrie des Ventilglieds und des Ventilgehäuses in Strömungsrichtung hinter dem Ventilspalt.
  • Beschreibung des Ausführungsbeispiels
  • Das in der Zeichnung nur teilweise dargestellte Ventil 2 ist Teil eines Injektors eines Common-Rail-Einspritzsystems einer Verbrennungs maschine, der dazu dient, Kraftstoff aus einem als Common-Rail bezeichneten zentralen Hochdruckspeicher in die Brennräume der Zylinder der Verbrennungsmaschine einspritzen.
  • Der vollständige Aufbau eines derartigen Injektors ist zum Beispiel in der DE 196 19 523 A1 der Anmelderin ausführlich beschrieben, während sich weitere Einzelheiten über den Aufbau seines Ventils aus der bereits genannten DE 199 40 296 A1 der Anmelderin entnehmen lassen, so dass an dieser Stelle auf eine nähere Erläuterung verzichtet und zu diesem Zweck auf die genannten Druckschriften verwiesen wird.
  • Das Ventil 2 besteht im Wesentlichen aus einem Ventilgehäuse 4, in das ein rotationssymmetrischer Ventilbolzen 6 (vgl. 1) axial beweglich eingesetzt ist. Der Ventilbolzen 6 weist eine konische, in Strömungsrichtung verjüngte Dichtfläche 8 auf, die bei geschlossenem Ventil 2 dichtend gegen einen komplementären konischen Ventilsitz 10 des Gehäuses 4 anliegt. Wie am besten in den 2 bis 4 dargestellt, begrenzt bei geöffnetem Ventil 2 die Dichtfläche 8 zusammen mit dem Ventilsitz 10 einen den Ventilbolzen 6 umgebenden Ventilspalt 12 in Form eines ringförmigen Strömungskanals, durch den der einzuspritzende Kraftstoff von der Hochdruckseite 14 des Ventils 2 zu dessen Niederdruckseite 16 strömt.
  • Der Ventilbolzen 6 weist weiter eine in Strömungsrichtung unmittelbar hinter der Dichtfläche 8 in seinem äußeren Umfang angeordnete umlaufende Hohlkehle 18 auf, das heißt eine im Längsschnitt konkave Vertiefung oder Nut, über deren axiale Breite der Durchmesser des Ventilbolzens 6 kleiner als davor bzw. dahinter ist, wo der Ventil bolzen 6 mit einer an die Hohlkehle 18 angrenzenden Querschnittsverdickung 20 versehen ist.
  • Die Hohlkehle 18 dient dazu, mindestens einen Teil des hinter dem Ventilsitz 10 im Wesentlichen in axialer Richtung abgeführten Kraftstoffstroms so umzulenken, dass er eine von einer Mittelachse 22 des Ventilbolzens 6 weg gerichtete Geschwindigkeitskomponente aufweist und nach seinem Austritt aus der Hohlkehle 18 gegen einen gegenüberliegenden Bereich der Innenwand 24 einer Abströmbohrung 26 des Ventilgehäuses 4 prallt. Wie am besten in 2, 3 und 4 durch Pfeile dargestellt, teilt sich dabei der Kraftstoffstrom in zwei Teilströme auf, von denen der größere nach dem Aufprall entlang der Innenwand 24 der Abströmbohrung 26 in den stromabwärtigen Teil der Bohrung 26 gelenkt wird, während der kleinere entgegen der Strömungsrichtung zum Ventilspalt 12 hin zurück gelenkt wird. In dem in Strömungsrichtung an den Ventilspalt 12 anschließenden erweiterten Ringraum 30 zwischen der Hohlkehle 18 und dem gegenüberliegenden Wandbereich der Innenwand 24 bildet dieser Teilstrom zusammen mit dem aus dem Ventilspalt 12 abströmenden Kraftstoffstrom einen Wirbel 32, der das Ventilgehäuse 4 im Bereich unmittelbar hinter dem Ventilsitz 10 vor einer durch Kavitation hervorgerufenen Erosion schützt, so dass der Ventilsitz 10 auch über eine lange Betriebszeit unbeschädigt bleibt.
  • Um diesen schützenden Wirbel 32 zu bilden, darf der Neigungswinkel des aus der Hohlkehle 18 austretenden Kraftstoffstroms in Bezug zur Mittelachse 22 des Ventilbolzens 6 nicht zu klein sein, da ansonsten der gesamte Kraftstoff direkt in die Abströmbohrung 26 gelenkt wird. Daher sollte zum einen die Hohlkehle 18 nicht zu flach ausgebildet sein, sondern in Bezug zur anschließenden Quer schnittsverdickung eine gewisse Mindesttiefe T (1) aufweisen, die bei einem Durchmesser des Ventilbolzens 6 in der Mitte der Dichtfläche von 1,35 mm vorzugsweise größer als 0,04 mm sein sollte. Zum anderen sollte die Hohlkehle 18 am Übergang zur Querschnittsverdickung nicht gerundet sein, weil dadurch der Neigungswinkel des aus der Hohlkehle 18 austretenden Kraftstoffstroms in Bezug zur Mittelachse 22 ebenfalls kleiner wird. Statt dessen wird zwischen der Hohlkehle 18 und der Querschnittsverdickung 20 eine umlaufende Kante 34 vorgesehen, an der aneinandergrenzende äußere Umfangsflächenabschnitte 36, 38 der Hohlkehle 18 und der Querschnittsverdickung 20 einen überstumpfen Winkel β (1) einschließen, der wenigstens 200 Grad betragen und vorzugsweise zwischen 220 Grad und 240 Grad liegen sollte. Anders als bei einem gerundeten Übergang reißt an einer solchen Kante 34 die Strömung des Kraftstoffs von der Umfangsfläche des Ventilbolzens 6 ab, was jedoch wegen der gehärteten Oberfläche des Ventilbolzens 6 keine Kavitationsschäden zur Folge hat. Der Strömungsabriss an der Kante 34 bewirkt, dass der Kraftstoff aus der Hohlkehle 18 unter einem Neigungswinkel zur Mittelachse 22 austritt, der im Wesentlichen dem Neigungswinkel α des innerhalb der Hohlkehle 18 an die Kante 34 angrenzenden Umfangsflächenabschnitts 36 entspricht. Je nachdem, wie groß dieser Neigungswinkel gewählt wird, wird beim Aufprall des Kraftstoffstroms auf den gegenüberliegenden Bereich der Innenwand 24 der Abströmbohrung 26 mehr oder weniger Kraftstoff in Richtung des Ventilspalts 12 zurück gelenkt. Durch eine geeignete Wahl dieses Neigungswinkels, der vorzugsweise zwischen 20 und 60 Grad beträgt, kann daher der Anteil des zurückströmenden Kraftstoffs auf einen solchen Wert eingestellt werden, dass einerseits durch eine Wirbelbildung Kavitationsschäden unmittelbar hinter dem Ventilsitz 10 verhindert werden, andererseits jedoch die Wirbelbildung das Abströmen des Kraftstoffs nach seinem Austritt aus dem Ventilspalt 12 nicht beeinträchtigt.
  • Bei allen dargestellten Ausführungsbeispielen schützt der entlang der Innenwand 24 zurückströmende Kraftstoff die letztere bis unmittelbar hinter dem Ventilspalt 12 vor kavitationsbedingten Schäden, die ansonsten infolge eines Druckabfalls im Kraftstoff bei dessen Austritt aus dem Ventilspalt 12 in den Ringraum 30 verursacht werden könnten.
  • Während 2 einen Ventilbolzen 6 zeigt, bei dem der innerhalb der Hohlkehle 18 an die Kante 34 angrenzende Umfangsflächenabschnitt 36 unter einem Neigungswinkel α von etwa 60 Grad zur Mittelachse 22 des Ventilbolzens 6 ausgerichtet ist, der Kraftstoff daher ziemlich steil auf die Innenwand 24 der Abströmbohrung 26 prallt und somit relativ viel Kraftstoff in Richtung des Ventilspalts 28 zurück gelenkt wird, zeigen die 3 und 4 zwei Ventilbolzen 6, bei denen dieser Neigungswinkel α etwa 35 Grad bzw. etwa 20 Grad beträgt, und daher entsprechend weniger Kraftstoff unter Bildung eines Wirbels 34 in Richtung des Ventilspalts 28 zurück gelenkt wird.
  • Da der Neigungswinkel α in 4 bereits im Grenzbereich liegt, in dem sich noch ein Wirbel 34 bildet, ist dort die gegenüberliegende Innenwand 24 der Abströmbohrung 26 mit einer kleinen Stufe 40 versehen. Diese Stufe 40 begünstigt infolge ihrer zur Mittelachse 22 des Ventilbolzens 6 und der Abströmbohrung 26 geneigten Oberfläche das Zurücklenken eines Teils des Kraftstoffstroms in Richtung des Ventilspalts 12.
  • Die konkave Begrenzung der Hohlkehle 18 ist bei allen Ausführungsbeispielen kreisförmig, wobei der Krümmungsradius 0,2 mm nicht unterschreiten sollte, um eine kostengünstige Serienfertigung des Ventilbolzens 6 zu ermöglichen. An ihrer dem Ventilspalt 12 zugewandten Seite geht die Hohlkehle 18 vorzugsweise übergangslos in die Dichtfläche 8 über, wie bei allen Ausführungsbeispielen dargestellt.
  • Die scharte Abrisskante 34 auf der anderen Seite der Hohlkehle 18 kann bei einer Serienfertigung der Ventilbolzen 6 kostengünstig dadurch hergestellt werden, dass der Ventilbolzen 6 bei seiner Endbearbeitung beiderseits der Querschnittsverdickung 20 auf seinen endgültigen Durchmesser abgeschliffen wird, nicht jedoch im Bereich der Querschnittsverdickung 20, so dass dort der vor der schleifenden Endbearbeitung des Ventilbolzens 6 vorhandene Durchmesser erhalten bleibt, was am Übergang zur Hohlkehle 18 automatisch zur Ausbildung der Abrisskante 34 führt.

Claims (10)

  1. Ventil für ein Kraftstoffeinspritzsystem mit einem in einem Ventilgehäuse ausgebildeten Ventilsitz und einem im Ventilgehäuse beweglichen Ventilglied, das eine bei geschlossenem Ventil dichtend gegen den Ventilsitz anliegende Dichtfläche aufweist, die bei geöffnetem Ventil zusammen mit dem Ventilsitz einen von Kraftstoff durchströmten Ventilspalt begrenzt, dadurch gekennzeichnet, dass das Ventilglied (6) eine in Strömungsrichtung unmittelbar hinter der Dichtfläche (8) angeordnete umlaufende Hohlkehle (18) aufweist, an die sich eine umlaufende Querschnittsverdickung (20) des Ventilglieds (6) anschließt.
  2. Ventil nach Anspruch 1, dadurch gekennzeichnet, dass zwischen der Hohlkehle (18) und der Querschnittsverdickung (20) eine umlaufende Kante (34) angeordnet ist, an der aneinandergrenzende äußere Umfangsflächenabschnitte (36, 38) der Hohlkehle (18) und der Querschnittsverdickung (20) unter einem Winkel (β) aufeinandertreffen.
  3. Ventil nach Anspruch 2 dadurch gekennzeichnet, dass die Umfangsflächenabschnitte (36, 38) des Ventilglieds (6) an der Kante (34) unter einem überstumpfen Winkel (β) aufeinandertreffen.
  4. Ventil nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der auf der Seite der Querschnittsverdickung (20) an die Kante (34) angrenzende äußere Umfangsflächenabschnitt (38) im Wesentlichen parallel zu einer Mittelachse (22) des Ventilglieds (6) ausgerichtet ist.
  5. Ventil nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass der auf der Seite der Hohlkehle (18) an die Kante (34) angrenzende Umfangsflächenabschnitt (36) unter einem Winkel zwischen 20 und 60 Grad zu einer Mittelachse (22) des Ventilglieds (6) geneigt ist.
  6. Ventil nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass ein Krümmungsradius der Hohlkehle (18) größer als 0,2 mm ist.
  7. Ventil nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Hohlkehle (18) und die Dichtfläche (8) übergangslos ineinander übergehen.
  8. Ventil nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass sich der Querschnitt des Ventilglieds (6) in Strömungsrichtung hinter der Querschnittsverdickung (20) verjüngt.
  9. Ventil nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine äußere Umfangsfläche des Ventilglieds (6) mindestens im Bereich der Dichtfläche (8) und der Hohlkehle (18) abgeschliffen ist, nicht jedoch im Bereich der Querschnittsverdickung (20).
  10. Kraftstoffeinspritzpumpe, gekennzeichnet durch einem Ventil nach einem der vorangehenden Ansprüche.
DE10351680A 2003-11-05 2003-11-05 Ventil für eine Kraftstoffeinspritzpumpe Withdrawn DE10351680A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE10351680A DE10351680A1 (de) 2003-11-05 2003-11-05 Ventil für eine Kraftstoffeinspritzpumpe
PCT/DE2004/001994 WO2005045228A1 (de) 2003-11-05 2004-09-06 Ventil für eine kraftstoffeinspritzpumpe
EP04786716A EP1682771B1 (de) 2003-11-05 2004-09-06 Ventil für eine kraftstoffeinspritzpumpe
JP2006508128A JP2006526729A (ja) 2003-11-05 2004-09-06 燃料噴射ポンプのための弁
KR1020067008671A KR101100973B1 (ko) 2003-11-05 2004-09-06 연료 분사 시스템용 밸브 및 연료 분사 펌프
CN2004800325099A CN1875184B (zh) 2003-11-05 2004-09-06 用于燃料喷射泵的阀
US10/578,506 US20070119991A1 (en) 2003-11-05 2004-09-06 Valve for a fuel injection pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10351680A DE10351680A1 (de) 2003-11-05 2003-11-05 Ventil für eine Kraftstoffeinspritzpumpe

Publications (1)

Publication Number Publication Date
DE10351680A1 true DE10351680A1 (de) 2005-06-09

Family

ID=34559352

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10351680A Withdrawn DE10351680A1 (de) 2003-11-05 2003-11-05 Ventil für eine Kraftstoffeinspritzpumpe

Country Status (7)

Country Link
US (1) US20070119991A1 (de)
EP (1) EP1682771B1 (de)
JP (1) JP2006526729A (de)
KR (1) KR101100973B1 (de)
CN (1) CN1875184B (de)
DE (1) DE10351680A1 (de)
WO (1) WO2005045228A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4720724B2 (ja) * 2006-11-13 2011-07-13 トヨタ自動車株式会社 燃料噴射弁
DE102010043360A1 (de) * 2010-11-04 2012-05-10 Robert Bosch Gmbh Kraftstoffinjektor
DE102011004993A1 (de) * 2011-03-02 2012-09-06 Robert Bosch Gmbh Ventileinrichtung zum Schalten oder Zumessen eines Fluids
DE102012218667B4 (de) * 2012-10-12 2014-06-05 Continental Automotive Gmbh Magnetventil
JP6224415B2 (ja) * 2013-10-29 2017-11-01 日立オートモティブシステムズ株式会社 高圧燃料供給ポンプ
JP6781661B2 (ja) * 2017-04-20 2020-11-04 ボッシュ株式会社 燃料噴射装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1952816A (en) * 1931-04-04 1934-03-27 Bendix Res Corp Fuel injector
US4503884A (en) * 1982-06-22 1985-03-12 Spils Richard W Angle globe valve
DE3581160D1 (de) * 1984-09-14 1991-02-07 Bosch Gmbh Robert Elektrisch gesteuerte kraftstoffeinspritzpumpe fuer brennkraftmaschinen.
US4941508A (en) * 1989-12-28 1990-07-17 Dana Corporation Force balanced hydraulic spool valve
DE19619523A1 (de) 1996-05-15 1997-11-20 Bosch Gmbh Robert Kraftstoffeinspritzventil für Hochdruckeinspritzung
DE19940296A1 (de) 1999-08-25 2001-03-01 Bosch Gmbh Robert Ventil
DE10000501A1 (de) * 2000-01-08 2001-07-19 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1118765A3 (de) * 2000-01-19 2003-11-19 CRT Common Rail Technologies AG Brennstoffeinspritzventil für Verbrennungskraftmaschinen
DE10008554A1 (de) 2000-02-24 2001-08-30 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10031264A1 (de) * 2000-06-27 2002-01-17 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
JP2002039031A (ja) * 2000-07-10 2002-02-06 Robert Bosch Gmbh 後置された圧力制御エレメントを備えた、燃料を噴射するためのインジェクタ
DE10134526B4 (de) * 2001-07-16 2007-10-11 Robert Bosch Gmbh Schaltventil für Kraftstoffeinspritzsystem

Also Published As

Publication number Publication date
CN1875184A (zh) 2006-12-06
US20070119991A1 (en) 2007-05-31
JP2006526729A (ja) 2006-11-24
CN1875184B (zh) 2011-04-06
EP1682771A1 (de) 2006-07-26
EP1682771B1 (de) 2012-11-14
KR101100973B1 (ko) 2011-12-29
WO2005045228A1 (de) 2005-05-19
KR20060108655A (ko) 2006-10-18

Similar Documents

Publication Publication Date Title
EP2171255B1 (de) Drossel an einer ventilnadel eines kraftstoffeinspritzventils für brennkraftmaschinen
DE10123775B4 (de) Kraftstoff-Einspritzvorrichtung für Brennkraftmaschinen, insbesondere Common-Rail-Injektor, sowie Kraftstoffsystem und Brennkraftmaschine
EP1891324B1 (de) Kraftstoffeinspritzventll für brennkraftmaschinen
DE102006009070A1 (de) Brennstoffeinspritzventil
EP2470771B1 (de) Kraftstoffeinspritzventil
EP0347581B1 (de) Einspritzpumpe für Brennkraftmaschinen
DE10122256A1 (de) Kraftstoff-Einspritzvorrichtung für Brennkraftmaschinen, insbesondere Common-Rail-Injektor, sowie Kraftstoffsystem und Brennkraftmaschine
EP1682771B1 (de) Ventil für eine kraftstoffeinspritzpumpe
EP1408231B1 (de) Einspritzvorrichtung zum Einspritzen von Kraftstoff
WO2000001936A2 (de) Druckventil
EP1574701A1 (de) Common-Rail Injektor
DE10116714A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen, vorzugsweise für hohe Strahlgeschwindigkeiten
DE3136749A1 (de) Kraftstoffeinspritzpumpe fuer brennkraftmaschinen
DE10261737A1 (de) Innendruckbelastetes Bauteil, insbesondere für die Kraftstoffeinspritzung für Brennkraftmaschinen mit einer Kraftstoffhochdruckpumpe
EP1062423B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP1527272B1 (de) Kraftstoffinjektor mit hochdruckfestem anschlussbereich
DE102006033687A1 (de) Einspritzdüse
DE3409924A1 (de) Duesenhalter fuer eine kraftstoffeinspritzduese
EP1511934B1 (de) Injektor zum einspritzen von kraftstoff
EP2807367B1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
EP1700028B1 (de) Ventilanordnung, inbesondere einlassventil einer hochdruck-kraftstoffpumpe
DE19843912B4 (de) Kraftstoffeinspritzdüse
DE10022378A1 (de) Hochdruckfester Injektorkörper
DE10160490B4 (de) Kraftstoff-Einspritzvorrichtung, Kraftstoffsystem sowie Brennkraftmaschine
EP1003964A1 (de) Kraftstoffeinspritzventil

Legal Events

Date Code Title Description
8141 Disposal/no request for examination